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Reduction of internal noise in auditory perceptual learning
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(Received 4 July 2012; revised 12 December 2012; accepted 14 December 2012)

This paper examines what mechanisms underlie auditory perceptual learning. Fifteen normal hear-

ing adults performed two-alternative, forced choice, pure tone frequency discrimination for four

sessions. External variability was introduced by adding a zero-mean Gaussian random variable to

the frequency of each tone. Measures of internal noise, encoding efficiency, bias, and inattentive-

ness were derived using four methods (model fit, classification boundary, psychometric function,

and double-pass consistency). The four methods gave convergent estimates of internal noise, which

was found to decrease from 4.52 to 2.93 Hz with practice. No group-mean changes in encoding effi-

ciency, bias, or inattentiveness were observed. It is concluded that learned improvements in fre-

quency discrimination primarily reflect a reduction in internal noise. Data from highly experienced

listeners and neural networks performing the same task are also reported. These results also indi-

cated that auditory learning represents internal noise reduction, potentially through the re-weighting

of frequency-specific channels. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4773864]

PACS number(s): 43.66.Ba, 43.66.Fe [LD] Pages: 970–981

I. INTRODUCTION

Perceptual learning is improved performance on a

sensory judgment task as a result of practice. While the phe-

nomenon is well established, little is known about the mech-

anisms underlying such improvements. In the visual

literature it has been variously suggested that reductions in

internal noise (Dosher and Lu, 1998), or improvements in

encoding efficiency (Gold et al., 1999) may underlie learn-

ing. In this paper we examine whether either of these factors

change during auditory (frequency discrimination) learning.

We also examine two further potential limiting factors that

have not previously been considered: response bias and

attentiveness.

Internal noise is uncertainty in the internal response to a

sensory input which, in contrast with external noise, is gener-

ated by sources intrinsic to the observer. Internal noise is

therefore synonymous with intrinsic variability, and the two

terms are often used interchangeably. Internal noise is funda-

mental to signal detection theory (SDT) (Green and Swets,

1974; Macmillan and Creelman, 2005). It is also a prominent

concept in psychophysics (Gescheider, 1997; Klein, 2001),

where the ogival psychometric function is theoretically justi-

fied as the cumulative form of a random variable with a bell-

shaped distribution. Potential sources of internal noise

include non-deterministic transduction (e.g., due to Brown-

ian motion of hair cells) (Denk et al., 1989), stochastic neu-

ral encoding and transmission both in the auditory periphery

(Javel and Viemeister, 2000) and more centrally (e.g.,

Vogels et al., 1989), and physiological maskers such as

heartbeats and blood flow (Soderquist and Lindsey, 1971).

Over the last 50 years a number of measures of internal

noise have been developed. These include external noise ti-

tration (Lu and Dosher, 2008), model-fitting (Jesteadt et al.,
2003), n-pass consistency (Green, 1964), multiple-looks

(Swets, 1959), and direct variability estimates derived from

distributions of errors (e.g., Buss et al., 2009). Following

related work in the visual literature (e.g., Gold et al., 1999),

we here utilized the model-fitting and double-pass consis-

tency techniques. In addition, we also considered two direct

variability estimates which were derived using the same

data.

In contrast with internal noise, encoding efficiency con-

stitutes a systematic rather than random limitation on per-

formance (cf. Berg, 2004; Berg and Green, 1990). In sensory

tasks, encoding efficiency primarily describes how well the

listener is able to selectively integrate information across

channels. How these channels are conceived depends on the

task. For example, in spectral profile analysis, listeners must

detect when the levels of one or more components of a mul-

titone stimulus are changed. In such a task, if the frequency

components are widely spaced then every frequency compo-

nent in the complex can be considered a channel, and a good

strategy would be to attend predominantly to those compo-

nents where the level difference is greatest relative to the

internal noise. In the present study, each interval in a two-

interval, forced-choice paradigm is considered to be a chan-

nel, with similar quantities of internal noise in both channels.

In this case a good strategy would be to attend equally to

both intervals. Encoding efficiency can either be inferred by

comparing observed sensitivity to the ideal (e.g., Berg and

Green, 1990; Tanner and Birdsall, 1958), or by comparing a

listener’s estimated strategy to the ideal (e.g., Dai and Berg,

1992; Alexander and Lutfi, 2004). Here we used variations

on both these approaches. Signal detection theory was used

to derive a model containing an encoding efficiency
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parameter which was fitted to observed performance, while a

novel classification boundary approach was used to estimate

listeners’ encoding strategies.

Response bias (hereafter, bias) is the tendency to favor

one response over another, irrespective of the stimulus fea-

tures. Thus, a listener who is biased towards one alternative

may select it even when the sensory evidence makes it more

likely that the other is true. Psychometric thresholds are

liable to be negatively affected by bias, unless either explicit

corrections are made, or metrics such as d0 used that are

designed to partial out these effects. Indices of response bias

can be derived from lateral shifts in psychometric functions

(Gescheider, 1997), or by using SDT to calculate the dis-

tance of the listener’s criterion from the ideal (Macmillan

and Creelman, 2005).

Inattentiveness is the complement of sustained attention.

It expresses the fact that in a proportion of trials listeners

appear to respond independently of the sensory information,

possibly reflecting a lapse in concentration. For simplicity, it

is common to assume that inattention is a binary process that

occurs independently of the stimulus level or trial number

(cf. Viemeister and Schlauch, 1992). Historically, inattentive-

ness has been little studied relative to the other limitations

described here. This may in part be because inattentiveness is

specifically selected against in many psychophysical experi-

ments (which tend to be populated by highly experienced,

reliable and well-motivated observers). Nonetheless, a num-

ber of behaviors have been identified from which metrics of

inattention may be derived, such as the amount and/or profile

of excursions from threshold in an adaptive track (Moore

et al., 2008), or asymptotic performance on the psychometric

function (Green, 1995).

In this study, we investigated the extent to which each

of these mechanisms (internal noise, encoding efficiency,

response bias, inattentiveness) contributes to auditory per-

ceptual learning. The task was two-interval, two-alternative,

forced-choice (2I2AFC) frequency discrimination in which

the frequency of both tones was jittered by adding Gaussian

noise. Frequency discrimination was selected due to both its

prevalence in the learning literature (e.g., Hawkey et al.,
2004; Demany, 1985) and its robust tendency to improve

with practice relative to other psychoacoustic tasks (cf.

Wright and Zhang, 2009). Jitter was used to introduce an

external noise component as a reference for internal noise

magnitude. On simple auditory tasks requiring judgments

based on pure tone stimuli, the limiting factor in perform-

ance is often suggested to be internal noise (e.g., Houtsma,

1995; Durlach and Braida, 1969). If this is the case during

learning, then the magnitude of internal noise should

decrease as a function of practice, concomitant with

improved discriminability. Conversely though, there has

been a tendency in the visual literature to conclude that

changes in encoding efficiency underlie learning (e.g., Gold

et al., 1999, 2004; Chung et al., 2005, though see Lu and

Dosher, 2009). If auditory perceptual learning is analogous

to visual perceptual learning then we might expect predomi-

nant changes in encoding efficiency. There has been compa-

ratively little research into response bias and inattentiveness

during learning. We therefore made no predictions as to their

prevalence or whether they would change with practice.

II. GENERAL METHODS

A. Stimuli and apparatus

The stimuli in all conditions were 300 ms sinusoids,

gated on/off by 10 ms cos2 ramps and presented at 70 dB

SPL. Stimuli were digitally synthesized in MATLAB v7.4

(2007a, The MathWorks, Natick, MA) using a sampling rate

of 44.1 kHz and 24-bit quantization. Digital-to-analog con-

version was carried out by a PCI sound card (Darla Echo;

Echo Digital Audio Corporation, Carpinteria, CA), inter-

faced via the Psychophysics Toolbox v3 (Brainard, 1997)

ASIO wrapper (Steinberg Media Technologies, Hamburg).

Stimuli were presented diotically via Sennheiser HD 25-I

headphones. Participants were tested individually in a

double-walled sound-attenuating booth. They responded by

pressing one of two buttons on a button box. Visual fixation

cues and feedback were presented on an LCD monitor.

B. Procedure

The task was 2I2AFC frequency discrimination, for

which participants were asked to “pick the higher-pitched

tone.” Each trial commenced with a 400 ms warning interval

during which a visual fixation cross was displayed, followed

by two 300 ms tones separated by a 400 ms interstimulus

interval. On each trial a pair of tones was sampled in random

order from a pair of Gaussian distributions1 with a common

FIG. 1. (Color online) Stimulus schema for a single external noise condition. The dashed and solid distributions are the jittered “low” and “high” tone distribu-

tions, respectively. On each trial a tone was independently drawn from each distribution in random order. Randomly drawn frequency values for the first five

trials are shown on the right. The difference in Hz between the means of the two normal distributions, DHz, was determined by the condition. The common

standard deviation of the two distributions, rHz, was set so as: rHz ¼ DHz=2. Conditions were fixed within a block, and in every condition the two distributions

were symmetric about 1 kHz. An example pair of distributions corresponding to a greater DHz condition is shown in light gray hairlines.
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standard deviation of rHz and means of 10006rHz (Fig. 1).

Participants were given an unlimited time to respond, after

which visual feedback was presented for 400 ms prior to the

next trial onset.

The standard deviation of the jitter, rHz, took on the val-

ues 0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 Hz. This range of values

was chosen to accommodate the most likely magnitude of in-

ternal noise based on pilot data. In keeping with Jesteadt

et al. (2003), the separation between distributions, DHz, was

co-varied along with the amount of jitter, rHz, such that

DHz ¼ 2rHz. The overlap between distributions was there-

fore constant across all six conditions and resulted in an

invariant d0ideal of 2.0 (i.e., the ideal listener would be

expected to score �92% correct in all conditions).

Feedback was determined by the response of the subject

relative to the actual frequencies presented, and consisted of

a “happy” or a “sad” smiley face. It was designed to rein-

force the optimal response behavior of responding to the

higher frequency tone, and to discourage the use of non-

stimulus driven strategies. Additional feedback was pre-

sented at the end of each block in the form of a percentage

score, again based on the frequencies of sounds presented

(tonesþ noise) rather than on their values prior to jittering.

Each test block consisted of fifty trials drawn from one

of the six frequency differences, DHz. Each session consisted

of thirty-two test blocks. The number of trials per session

(1600) was large given typical frequency-discrimination

learning rates (e.g., Molloy et al., 2012), but is consistent

with the slower learning observed when the training stimuli

are randomly varied (Amitay et al., 2005).

The test blocks in the first session were preceded by two

short practice blocks consisting of 10 “easy” (150 Hz differ-

ence) and 10 “difficult” (8 Hz difference) trials, intended to

familiarize participants with the procedure. In blocks 1 to

24, each frequency difference was tested four times in pseu-

dorandom order. These 1200 trials were used in the model fit

analysis (see below). In the final eight blocks, all the previ-

ous blocks from the narrowest (rHz ¼ 0:5; DHz ¼ 1) and

broadest (rHz ¼ 5:5; DHz ¼ 11) frequency differences were

repeated in pseudorandom order. These last 400 trials were

used in the double-pass consistency analysis. They were

identical to the trials heard earlier in the experiment,

although the order of the trials within each block was

randomized in order to avoid the potential confound of

response dependencies on consistency (for discussion see

Levi et al., 2005; Spiegel and Green, 1981). None of the lis-

teners reported, when questioned, being aware of the fact

that the last eight blocks consisted of repetitions of earlier

trials. All 1600 trials were used to carry out the psychometric

function and classification boundary analyses. Sessions

lasted approximately 80–90 min in total, including two rest

breaks. All listeners took part in one session per day for four

consecutive days.

C. Analyzing learning

Learning was assessed by examining sensitivity as a

function of session. For each stimulus condition, successive

pairs of test blocks were concatenated to yield blocks of 100

trials. Each analysis block was then used independently to

derive estimates of sensitivity, d0, and response criterion, k,

as per Wickens (2002). In two blocks participants responded

100% correctly to one interval. In these two cases, the num-

ber of correct responses was adjusted by 0.5 to yield a

defined d0 value (Macmillan and Creelman, 2005).

D. Modeling behavior

Measures of internal noise, encoding efficiency, bias

and inattentiveness were derived using four methods of

analysis: model fit, classification boundary, psychometric

function, double-pass consistency. Although all related,

each method differs in terms of its precise derivations,

assumptions, and how it partitions performance into vari-

ous limiting parameters. The use of multiple methods

allowed for constructs common across methods (e.g., inter-

nal noise) to be cross-validated, and for a greater range of

constructs to be examined. Example individual data for a

single listener derived using each method are shown in Fig. 2

(n.b. there is no graphical analog to the double-pass method).

Each panel is discussed in the context of its associated

methodology.

1. Model fit

Encoding efficiency, g (cf. Berg, 2004), and the standard

deviation of a zero-mean Gaussian internal noise, rInt, were

calculated by fitting observed sensitivities to the model:

d0 ¼ g � DHzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Int þ r2
Hz

p ; (1)

where DHz and rHz represent the mean separation and the

common deviations of the stimulus distributions, respec-

tively. This model represents a version of that described

previously by Jesteadt et al. (2003), extended to include

an encoding efficiency parameter that reflects any deter-

ministic limitations on performance arising from the listen-

er’s encoding strategy. The derivation of Eq. (1) is given

in Appendix A.

As shown in Fig. 2 (top-left), least-squares fits to Eq.

(1) were made to observed sensitivities. These fits were

constrained by transformation to yield finite and positive

parameter values. Fits were made independently to each set

of 600 trials (two blocks from each condition), yielding two

estimates of internal noise and encoding efficiency per lis-

tener, per session. These estimates were averaged to pro-

vide a single value for comparison with the other three

measures.

2. Classification boundary

The listener’s task in 2I2AFC frequency discrimination

can be conceptualized as a binary classification problem. As

shown in Fig. 2 (top-right), the decision space is two-

dimensional, with each axis corresponding to the frequency

in a given interval. The target variable is the interval con-

taining the higher tone (either “interval 1” or “interval 2”).

When interval 1 is plotted on the abscissa, the data points
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belonging to class “interval 1” will be below the identity

function, while class “interval 2” points will be above the

identity function. Since the stimulus distributions are

arranged symmetrically around 1 kHz, the ideal classification

boundary will have a slope of one and pass through the ori-

gin. Alternatively, less optimal strategies may be employed.

For example, the listener shown in Fig. 2 gives dispropor-

tionate weight to interval 1 in both session 1 and (to a lesser

extent) in session 4.

Each listener’s classification boundary was estimated by

finding the linear function that best predicts their responses

given the presented frequencies (i.e., after the addition of

external noise). The angle from the observed slope to the

ideal was taken as an index of encoding efficiency, g. The

spread of misclassifications given this boundary was inter-

preted as an index of internal noise magnitude, rInt. Spread

was computed as the standard deviations of 2-D Gaussians

fitted to errors (shown by the ellipses in Fig. 2). The Euclid-

ean distance of the classification boundary from the point of

physical equality {1000,1000} was interpreted as interval

response bias, CE.

Linear discriminant analysis was used to fit classifica-

tion boundaries to the data from each session2 (1600 trials

per fit). This yielded one estimate of internal noise, encoding

efficiency and bias per listener, per session.

3. Psychometric function

Psychometric functions were estimated by maximum

likelihood fits to the function

PðInt 2Þ ¼ clo þ ðcup � cloÞUðx; l; rÞ; (2)

where Pðint 2Þ is the proportion of interval 2 responses, clo

and cup are lower and upper asymptotes, and Uðx; l; rÞ is the

Gaussian cumulative distribution function with mean l and

standard deviation r, evaluated at the values x. In our task, x
is the linear difference in frequency between the two inter-

vals, with a positive value representing a higher frequency in

the second interval. When fitting psychometric functions,

some authors additionally include a variable exponent term,

which introduces a potential non-linearity to the slope of the

sigmoid (e.g., Dai and Micheyl, 2011; Dai and Richards,

2011). Such a term did not substantively effect the present

findings, and so was omitted (see Appendix B).

The fitted value of r was taken as a measure of internal

noise. The psychometric function was also used to derive

two additional measures: response bias and inattentiveness.

Response bias was indexed by constant error (CE): the esti-

mated point of subjective equality, l̂, minus the point of

physical equality on the psychometric function. Inattention

was modeled as a stationary, stochastic process by which lis-

teners, on some proportion of trials K, respond independently

of the sensory evidence. Following (Green, 1995, see also

Wightman and Allen, 1992), K was derived from the esti-

mated asymptote values, thus

K ¼ 1� cup þ clo: (3)

The main caveat with this approach as a measure of in-

ternal noise is that the psychometric function confounds ran-

dom and deterministic limitations on performance, the latter

of which are inconsistent with the notion of noise as random

variability (Green, 1964). In the limit, a listener who attends

only to uninformative channels will have a slope of zero.

FIG. 2. Individual model fits for a single

listener; first and last session only. (Top-

left) Model-fits to observed sensitivities.

Curves represent least-square fits to Eq.

(1), from which internal noise and encod-

ing efficiency parameters are derived.

(Top-right) Estimated classification boun-

daries (solid lines) and standard deviations

of errors with respect to their boundaries

(ellipses). Smaller ellipses indicate less in-

ternal noise, while a classification bound-

ary closer to the identity function indicates

a more efficient encoding strategy. (Bot-

tom-left) Cumulative Gaussian psychomet-

ric fits to Eq. (2). The proportion of

interval 2 responses are given as a function

of frequency difference (freq2 � freq1),

post-jittering. A steeper slope indicates

less internal noise, while asymptotic per-

formance closer to the upper/lower bounds

(0 and 1) indicates more attentiveness.

(See body text for further details.)
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Changes in the gradient of the psychophysical slope are

therefore ambiguous; they may reflect either more variability

in the decision variable, or a less efficient strategy, or a mix-

ture of both. This ambiguity can be resolved either by

assuming (often implicitly) that the encoding strategy is

ideal (e.g., Glasberg et al., 2001; Tanner, 1958), or by esti-

mating the listener’s encoding strategy and making fits to the

actual, trial-by-trial decision variable, thereby partialing out

any systematic performance limitations (e.g., Berg, 2004). In

the present work we assumed that the encoding strategy is

ideal. However, in doing so we acknowledge that the result-

ant value will be an upperbound on internal noise magnitude.

The extent that this value approximates the true value will

depend on the efficiency of the encoding strategy. This will

be indicated both by the model-fit analysis and the classifica-

tion boundary analysis.

Psychometric functions were fitted using the ‘psignifit’

Matlab toolbox (v2.5.6), which implements the maximum-

likelihood method described by Wichmann and Hill (2001).

As shown in Fig. 2 (bottom-left), fits were made independ-

ently for each session, using all 1600 trials. This yielded one

estimate of internal noise, inattentiveness and bias per lis-

tener, per session.

4. Double pass consistency

The central tenet of the n-pass consistency technique

(Green, 1964; Spiegel and Green, 1981) is that when the

same stimulus is presented multiple times, the probability of

agreement between each of the listener’s responses is deter-

mined by the ratio of internal-to-external noise. The mathe-

matics of this is expounded by (Lu and Dosher, 2008, see

also Burgess and Colborne, 1988), who show that, assuming

a normally distributed internal noise drawn independently on

each observation, the probability of two answers agreeing,

PA, is determined solely by the ratio of internal-to-external

noise, a, together with the stimulus-determined parameters

(DHz,rHz):

PA ¼
ð

/ðx� DHz; 0;
ffiffiffi
2
p

rHzÞfU2ðx; 0;
ffiffiffi
2
p

arHzÞ

� ½1� Uðx; 0;
ffiffiffi
2
p

arHzÞ�2gdx; (4)

where /ðx; 0; rÞ is a Gaussian random variable with mean 0

and standard deviation r, and Uðx; 0; rÞ is its cumulative dis-

tribution function. In short, this equation states that the prob-

ability of agreement can be computed from the probability

of the same response occurring twice for a given signal,

weighted by the probability of that signal occurring. In turn,

the probability of the same internal response occurring twice

is the probability of a greater interval 1 internal response

occurring on the first pass, multiplied by the probability of a

greater interval 1 internal response occurring on the second

pass (which, assuming independent, identically distributed

noise, is the square of either probability considered singu-

larly), additively combined with the analogous product of

the corresponding interval 2 probabilities.

Consistency was examined independently for each ses-

sion, and separately for the low and high external noise con-

ditions. Specifically, a subset of the trials were presented in a

two-pass manner to allow for double pass consistency (DPC)

to be estimated. Response consistency was calculated as the

proportion of trials where the listener responded the same

way across both presentations, irrespective of whether the

response was correct. The consistency score was then used

to derive estimates of internal noise by numerically solving

Eq. (4). This yielded two estimates of internal noise and

encoding efficiency per listener, per session (i.e., one each

for the lowest and highest external noise conditions). How-

ever, performance was so low in the hardest condition

(rHz ¼ 0:5; DHz ¼ 1) that it appeared that some listeners

were not able to maintain a stable criterion. Thus, only the

internal noise estimates from the low external noise condi-

tion (rHz ¼ 5:5; DHz ¼ 11) are reported here.

III. EXPERIMENT I: LEARNING IN NAIVE LISTENERS

A. Listeners

Sixteen listeners participated, none of whom had any

prior experience of auditory psychophysics. Eleven were

female (mean age 22.3), five were male (mean age 25.3). All

had normal hearing, as assessed by audiometric screening

administered in accordance with the BSA standard procedure

(�20 dB HL or less bilaterally at 0.5–4 kHz octaves; British

Society of Audiology, 2004). Listeners were not screened

based on initial task performance, were recruited through

advertisements placed around Nottingham University cam-

pus, and received an inconvenience allowance for their

time. The study was conducted in accordance with Notting-

ham University Hospitals Research Ethics Committee

approval and informed written consent was obtained from all

participants.

One listener was excluded from all analyses due to per-

forming at chance in all conditions throughout all four ses-

sions. Two additional listeners were not included in the

double-pass analysis due to a technical error.

B. Results

1. Learning

Group mean sensitivity (d0) for listeners across sessions

is shown for each stimulus condition in Fig. 3. Sensitivity

increased as a function of session [Fð3; 42Þ ¼ 16:7;
p < 0:001; g2

p ¼ 0:54], indicating improvement with prac-

tice. There was no significant interaction between session

and condition [F(15,210)¼ 1.3, p¼ 0.21], indicating that

learning occurred irrespective of external noise condition.

Response criterion (k) did not change across sessions

[F(3,42)¼ 1.3, p¼ 0.30]. There was substantial variability in

performance between listeners, with d0 ranging by approxi-

mately one unit within each session. There was also a large

degree of variability in learning, with changes in mean sensi-

tivity, Dd0, varying from �0.04 to 0.92 across listeners.

2. Model fit

Least-square fits were made to the model given in Eq.

(1). Figure 4 shows the group mean values of internal noise
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(rInt) and encoding efficiency (g). Internal noise estimates

decreased significantly across sessions [Fð3; 42Þ ¼ 4:7;
p ¼ 0:007; g2

p ¼ 0:25]. There was a non-significant trend

towards an improvement in encoding efficiency, with

improvements observed in 11 of 15 listeners. [F(3,42)¼ 2.4,

p¼ 0.08]. Goodness-of-fit improved throughout the study,

with median r2¼ 0.53 in session 1 increasing to r2¼ 0.63 in

session 4.

3. Classification boundary

Group mean values of internal noise (rInt), encoding effi-

ciency (g) and bias (CE), as derived using the classification

boundary technique, are given as a function of session in Fig.

5. Internal noise estimates decreased significantly across ses-

sions [Fð3; 42Þ ¼ 6:9; p < 0:001; g2
p ¼ 0:33]. No change in

encoding efficiency was observed [F(3,42)¼ 0.6, p¼ 0.60].

Bias did significantly change over sessions [Fð3; 42Þ
¼ 4:6; p ¼ 0:007; g2

p ¼ 0:25], with listeners tending to favor

interval 2 in session 1 (CE¼ 0.10), and interval 1 in session 4

(CE¼�0.11), though none of the session means signifi-

cantly differed from 0 (no bias) [Hotelling’s T2; T2ð4; 11Þ
¼ 13:2; p ¼ 0:10].

FIG. 4. Changes in model fit parameter estimates with practice. (Top) Group

mean internal noise, rInt, as a function of session. (Bottom) Group mean

encoding efficiency, g, as a function of session. In each panel, the main

effect p value from the associated repeated measures analysis of variances

are shown top-right; see body text for details.

FIG. 5. Changes in classification-boundary parameter estimates with prac-

tice. Panels show the following group mean values as a function of session:

(top) standard deviation of errors (given an estimated classification bound-

ary) as a measure of internal noise; (middle) distance of the boundary slope

from the ideal, as a measure of encoding efficiency; and (bottom) CE as a

measure of bias (a negative CE value indicates an interval 1 response prefer-

ence). This figure follows the same format as Fig. 4, with which the internal

noise estimates are directly comparable.

FIG. 3. Frequency discrimination learning. Each point shows group-mean

sensitivity, d0, as a function of session, averaged over all 15 listeners. Error

bars represent 6 1 standard error of the mean, both here and in all subse-

quent figures. Each stimulus condition is shown separately. The breaks

between data points in conditions DHz ¼ f3� 9g are due to the fact that

blocks from these conditions were not repeated at the end of each session

(i.e., when assessing consistency).
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4. Psychometric function

Psychometric function fits were made to Eq. (2). [Mean

goodness-of-fit: r2¼ 0.87.] The slope of the function (internal

noise) became steeper in 87% of listeners. There was little

change in lower or upper asymptote (inattention) or in con-

stant error (bias). Group mean values of internal noise (rInt),

inattention (K) and bias (CE) are given as a function of ses-

sion in Fig. 6. Internal noise estimates decreased significantly

across sessions [Fð3; 42Þ ¼ 8:2; p < 0:001; g2
p ¼ 0:37]. No

changes in inattention [F(3,42) ¼ 0.60, p¼ 0.62] or bias

[F(3,42)¼ 0.68, p¼ 0.57] were observed, with mean

bias remaining indistinguishable from 0 throughout

[T2(4,11)¼ 2.9, p¼ 0.69].

5. Double pass consistency

Group mean values of internal noise (rInt) as derived

using the DPC technique are given as a function of session

in Fig. 7. Internal noise estimates decreased significantly

across sessions [Fð3; 36Þ ¼ 9:9; p < 0:001; g2
p ¼ 0:45].

6. Comparison of metrics

As shown in Table I, correlations between the four sets

of internal noise estimates were strong [r � 0:69; all

p < 0:001]. Positive correlations were also observed

between the bias estimates from the classification boundary

and psychometric fit approaches [r ¼ 0:63; p < 0:001], and

between the encoding efficiency estimates from the model fit

and classification boundary measures [r¼ 0.37; p¼ 0.004].

Individual internal noise estimates for the first and last ses-

sions are given for each test in Table II. The double-pass

consistency method tended to produce the somewhat larger

estimates, being the greatest of the four in 88% of cases.

Conversely, the model fit and classification boundary meth-

ods tended to produce the smallest noise estimates.

C. Discussion

Frequency discrimination sensitivity improved signifi-

cantly with practice, although there was substantial individual

variability in both performance and learning. Improvements

in sensitivity were accompanied by a significant decrease in

internal noise with little change in encoding efficiency, bias,

and inattentiveness. The results show that practice-induced

improvements in frequency discrimination sensitivity primar-

ily represent a reduction in internal noise. Averaged over the

four methods, mean internal noise values ranged from 3.2 to

6.0 Hz in session 1, and 2.5 to 2.9 Hz in session 4.

FIG. 6. Changes in psychometric function parameter estimates with prac-

tice. Panels show the following group mean values as a function of session:

(top) fitted Gaussian standard deviation as a measure of internal noise, rInt;

(middle) inattentiveness (derived from asymptotic performance), K, as a

measure of sustained attention; (bottom) CE as a measure of bias.

FIG. 7. Changes in double-pass internal noise estimates with practice. Each

point shows group mean internal noise, rInt, as a function of session, esti-

mated using the double-pass consistency method.

TABLE I. Correlation coefficients, r, between internal noise estimates, rInt,

from the model fit (MF), classification boundary (CB), psychometric func-

tion (PF), and double-pass consistency (DPC) methods.

MF CB PF

DPC 0.68 0.81 0.82

PF 0.80 0.82 –

CB 0.62 – –
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The four methods yielded highly correlated estimates of

internal noise. Notably, since encoding efficiency was less

than ideal, the internal noise estimates from psychometric

functions tended to be consistently greater than with the

model-fit and classification boundary methods. However,

encoding efficiency remained largely invariant throughout.

The changes in internal noise observed using psychometric

functions therefore remained robust.

IV. EXPERIMENT II: EXPERIENCED LISTENERS

Group mean performance in our naive listeners (experi-

ment I) failed to asymptote after four sessions. It may there-

fore be that sensitivity could be further improved with

additional training. It may also be that any such additional

learning is limited by factors other than internal noise. To

assess these possibilities, two listeners with extensive prior

task experience (one of whom was the first author) were

tested using the same stimuli.

Furthermore, a potential concern with the methodology

of experiment I is that the external noise (introduced via jit-

tering) may not have been independent of listeners’ internal

noise, and thus may have introduced additional variability

into listeners’ decisions, not normally present during fre-

quency discrimination. The two experienced listeners were

therefore also tested using unjittered stimuli. Psychometric

functions fitted to “zero noise” data were compared to those

derived under jittering. Greater internal noise would be indi-

cated by systematically shallower slopes in the jittered

condition.

A. Methods

The stimuli followed those described in Experiment I,

except that all stimulus parameter values (rHz, DHz) were

halved. This adjustment was necessary since these listeners

performed at ceiling when DHz > 5 Hz. Both listeners per-

formed three practice sessions, followed by nine test sessions

over two weeks. Each session consisted of 12 blocks, equiva-

lent to the first phase of the session in the main experiment.

Listeners then performed 3 additional test sessions in which

no external noise was added (rHz¼ 0).

B. Results and discussion

1. Performance and model estimates

The results of two experienced listeners are summarized

in Table III, along with the group-mean data from the final

training session of experiment I for comparison. Given the

amount of prior task experience no improvement in sensitiv-

ity was expected across test sessions, and none was observed

[Fð7Þ � 2:3; p � 0:176]. Because of the different stimulus

conditions, d0 values were not comparable between experi-

ments. As such, performance was quantified as the mean of

listeners’ discrimination limens at the 75% and 25% correct

levels, FDLHz.

Both listeners’ frequency discrimination limens were

significantly lower than in the post-training naive listeners

[tð14Þ � 4:5; p < 0:001], indicating that further learning

beyond that observed in experiment I is possible. As per

experiment I, the model fit and psychometric fit techniques

were used to estimate internal noise, encoding efficiency,

inattention and bias. The pattern of results continued the

learning trend observed in experiment I. Relative to the less

experienced listeners of experiment I, internal noise magni-

tude was further decreased [tð14Þ � 4:1; p � 0:001], with no

differences in encoding efficiency [tð14Þ � 0:2; p � 0:828]

or bias [tð14Þ � 0:5; p � 0:632]. This finding corroborates

our conclusion that changes in internal noise underlie fre-

quency discrimination learning. Inattentiveness was also

lower than the naive group-mean [tð14Þ � 4:9; p < 0:001],

suggesting that very highly trained listeners may also benefit

from improved sustained attention.

2. Internal noise with and without external noise

Figure 8 shows psychometric functions with and with-

out external noise. Performance in the two cases was virtu-

ally indistinguishable. In one listener (PJ) estimated

internal noise was marginally (0.1 Hz) smaller, while in

KM estimated internal noise was marginally (0.2 Hz)

greater. These results indicate that the use of jittering did

not affect the internal noise estimates, either here or in

experiment I. These results are consistent with Jesteadt

TABLE III. Summary of frequency difference limens (FDLs) in Hz, and fit-

ted behavioral parameters for group-mean naive listeners (final session) and

the experienced listeners KM and PJ. Fitted parameters were internal noise

(rInt) and encoding efficiency (g), estimated using the model fit; and internal

noise (rInt), inattentiveness (K), and bias (CE) estimated from psychometric

functions.

Model fit Psychometric fit

Listener FDLHz rInt g rInt K CE

lNa€ıve 2.8 3.0 0.8 2.9 0.0 �0.3

KM 0.8 0.7 0.8 0.8 0.0 �0.0

PJ 1.3 1.1 0.8 1.2 0.0 0.0

TABLE II. Summary of internal noise results, rInt, for individual listeners

during the first and last session. Initialisms follow the same format as Table I.

Session 1 Session 4

Listener MF CB PF DPC MF CB PF DPC

L1 3.0 3.1 3.2 5.3 1.3 2.0 2.0 2.9

L2 4.6 3.2 4.5 6.1 4.8 2.9 4.0 4.5

L3 2.3 2.5 3.3 5.2 2.5 2.2 2.4 3.3

L4 1.8 2.2 2.2 3.2 2.0 2.1 1.9 3.2

L5 1.4 3.4 3.7 6.1 2.1 2.3 2.0 3.2

L6 5.0 4.1 6.1 11.6 4.5 3.7 3.9 7.4

L7 1.8 2.1 2.0 2.9 1.4 1.1 1.5 1.8

L8 2.7 2.3 2.0 – 2.7 3.5 2.6 –

L9 10.3 5.1 15.8 – 2.0 4.8 9.4 –

L10 5.1 2.9 4.1 5.0 3.3 2.0 2.7 3.0

L11 2.3 2.3 2.6 3.6 1.5 2.1 2.0 2.6

L12 5.3 4.8 10.2 11.9 1.6 3.0 1.9 4.5

L13 2.6 2.7 3.0 4.0 2.8 2.0 2.6 4.4

L14 6.8 3.5 5.5 6.9 3.1 2.8 2.6 3.2

L15 3.5 3.2 5.1 6.7 2.0 1.5 2.1 4.0

J. Acoust. Soc. Am., Vol. 133, No. 2, February 2013 Jones et al.: Internal noise in learning 977



et al. (2003), who also observed good agreement between

estimates of internal noise derived under jittering, and the

slope of a psychometric function fitted to data without

external variability.

V. EXPERIMENT III: SIMULATIONS

It has been suggested in the visual literature that per-

ceptual learning represents “re-weighting of stable early

sensory representations” (Lu and Dosher, 2009; Mollon and

Danilova, 1996). Although we found no evidence of chan-

nel re-weighting at the behavioral level (where each stimu-

lus presentation interval was modeled as a channel), our

data are consistent with a process of iterative re-weighting

of channels at a neural level of description. Such channel

re-weighting is a plausible explanation for learning on a

frequency discrimination task, since psychophysical thresh-

olds are substantially poorer than would be predicted from

the precision of information encoded at the periphery (e.g.,

Siebert, 1970; Heinz et al., 2001). To investigate whether a

process of early sensory re-weighting can produce the

observed pattern of learning, a simple neural network

model was trained and analyzed using the same methods as

the human listeners.

A. Methods

The neural network consisted of a single-layer percep-

tron (Dayan and Abbott, 2001), with 60 input units innervat-

ing a single output unit. The input layer simulated a

population of human auditory nerve fibres, with 60 gamma-

tone filters ERB-spaced between 100 and 10 000 Hz (Glas-

berg and Moore, 1990). This array was constructed using the

same model and parameters as described in Heinz et al.
(2001). The mean firing rate of each node (i.e., rate-place

encoding) was combined in a linear weighted sum by the

output node. The decision rule was to select the interval that

maximized the output, thus

out¼ Int 1; if

��Xn

i¼1

xiai

�
�
�Xn

i¼1

xibi

��
> 0;

Int 2; otherwise;

8><>: (5)

where out is the system output, ai and bi represent the ith input

unit’s response to the first and second stimulus, respectively,

and where xi represents the strength of the connection between

the ith input unit and the output unit (which may be negative).

All learning occurred via changes in the connection strengths

between the input nodes and output node. The simulations

were presented with the same stimuli/protocol as the human

listeners. Weight adjustments were made online (i.e., after ev-

ery trial) via the delta rule (Dayan and Abbott, 2001). The

range of learning and starting rates were selected based on a

brief period of trial-and-error using a validation dataset, but the

precise values were randomly generated at the point of testing.

B. Results and discussion

Fifteen independent simulations were run and were ana-

lyzed in the exact same manner as the human listeners. The

key results are summarized in Fig. 9. The upper panel

expresses how frequency discrimination sensitivity increased

as a function of session [p < 0:001]. The lower panel shows

the concomitant decrease in internal noise as estimated

with the same four methods as described previously [all

p < 0:001]. In short, through the selective re-weighting of

simulated auditory nerve responses, the model exhibited a

qualitatively similar pattern of learning to human listeners in

terms of increased performance and reduced internal noise.

This indicates that the observations of reduced internal noise

in human listeners are consistent with the hypothesis of

FIG. 9. Simulated frequency discrimination learning. The top panel shows

changes in d0 as a function of block/session for each stimulus condition, in

the same format as the human listener data given in Fig. 3. The bottom panel

shows internal noise estimates as a function of session using each of the fol-

lowing measures: model fit (MF), classification boundary (CB), psychomet-

ric function (PF), and double-pass consistency (DPC).

FIG. 8. Psychometric functions for experiment II. Black triangles and dashed-

lines indicate raw data and psychometric fits (respectively) given non-jittered

stimuli. Gray circles and lines indicate analogous binned raw data and psycho-

metric fits given jittered stimuli. In both cases fits were made to Eq. (2).
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Lu and Dosher (2009) that perceptual learning reflects are

re-weighting of early sensory representations.

VI. GENERAL DISCUSSION

The purpose of the experiments reported here was to

determine the mechanisms underlying auditory perceptual

learning. With each of four separate techniques, significant

improvements on a frequency discrimination task was best

modeled as a decrease in internal noise magnitude. No sig-

nificant changes in encoding efficiency, bias or inattentive-

ness were observed. This pattern of results was continued in

very highly trained listeners (though these listeners also

exhibited less inattentiveness in addition to decreased inter-

nal variability and improved frequency discrimination).

The finding that internal noise underlies learning is con-

sistent with recent work in auditory development, where differ-

ences in internal noise have also been effective in explaining

age-related changes in pure tone discrimination performance.

For example, a recent paper by (Buss et al., 2009, see also

Buss et al., 2006) concluded, based on the slopes of psycho-

metric fits, that children’s poorer intensity discrimination

limens were due to elevated levels of internal noise.

However, our finding conflicts with a prominent claim

in the visual perceptual learning literature that “signal

[enhancement] but not noise changes with perceptual

learning” (Gold et al., 1999, see also Gold et al., 2004). In

such papers, signal enhancement is conceived as occurring

through the appropriate, relative weighting of spatially dis-

tributed channels (e.g., by concentrating on those parts of an

image that contain the greatest signal-to-external-noise

ratios). Such signal enhancement corresponds to our

“encoding efficiency” concept. The claim of “signal not

noise” is therefore diametrically opposed to our finding that

internal noise underlies learning. This may indicate qualita-

tive differences between auditory and visual learning. How-

ever, the claim by Gold et al. (1999) lacks coherence. In

Gold et al. (1999) observers attempted to identify images

corrupted by simultaneous Gaussian masker. Using a model

equivalent to the SDT model presented in Eq. (1) an increase

in signal enhancement was reported, with no change in inter-

nal noise magnitude. However, using a double-pass consis-

tency analysis, a constant ratio of internal-to-external noise

was reported. Given the nature of the noise, an optimization

of spatial channel weights implies a reduction in effective

external noise. Thus, a constant ratio of internal-to-external

noise therefore implies a concomitant reduction in internal

noise (see Lu and Dosher, 2009 for further discussion).3

A more cohesive account of visual perceptual learning is

given by Lu and Dosher (e.g., Dosher and Lu, 1999), who

argue that learning consists of both internal noise reduction

and external noise exclusion. Given that our task precluded

external noise exclusion (cf. Lu and Dosher, 2008, for discus-

sion), our finding that internal noise reduction was the primary

mechanism of learning is consistent with the theory of visual

perceptual learning of Lu and Dosher. We predict that our

finding would generalize to other pure tone auditory tasks

(e.g., see Wright and Fitzgerald, 2005), which, together with

frequency discrimination, constitute the substantial majority of

the auditory perceptual learning literature. However, it remains

an important and open question as to whether external noise

reduction also occurs in auditory learning. For example, every-

day listening situations often involve a substantial masking

noise component. The filtering out of such noise may consti-

tute a distinct and important perceptual learning process.

Given the results from visual tasks, we predict that learning in

such situations will be subserved by both additive internal

noise reduction and an external noise exclusion mechanism.

VII. CONCLUSIONS

(1) Learning on a pure tone frequency discrimination task is

subserved by a reduction in internal noise, potentially

through re-weighting of early sensory information.

Changes in encoding efficiency, bias or attentiveness do

not contribute to learning.

(2) Estimates of internal noise derived from four methods

(model fit, classification boundary, psychometric function,

double pass consistency) yield values in close agreement.
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APPENDIX A: MODEL DERIVATION

We assume that listeners perform the 2I2AFC task by

linearly summing weighted activities across multiple chan-

nels. Here we shall treat each stimulus presentation interval

as a channel. We further assume that (a) a given set of stim-

uli, hS1; S2i, generates fixed responses S1 in channel 1, and

S2 in channel 2; (b) the external noise is a zero-mean Gaus-

sian variable with standard deviation rHz [/ð0; r2
ExtÞ], which

is independently and identically distributed across both chan-

nels; (c) the internal noise is zero-mean Gaussian variable

with standard deviation, rInt [/ð0; r2
IntÞ], which is independ-

ently and identically distributed across both channels; (d) the

total activity in each channel is the difference between the

signal stimuli and some fixed criterion value jk� Sj, addi-

tively combined with observations from each of the noise

distributions; (e) the relative weight given to channel 1 and 2

are denoted by the scalars x1 and x2, respectively, the

squared values of which sum to 1; (f) the observer chooses

interval 1 if ð½k� S2 þ /ð0; r2
IntÞ þ /ð0; r2

ExtÞ� � x1 þ ½k
�S1 þ /ð0; r2

IntÞ þ /ð0; r2
ExtÞ� � x2Þ < 0 (and interval 2 oth-

erwise); (g) the ideal weights are given by the values

ha1; a2i, which, when both intervals are equally informative

will take the values ½�
ffiffiffi
2
p

=2ðþ
ffiffiffi
2
p

=2Þ�. Given these assump-

tions, observed sensitivity, d0, in the 2AFC case is

d0obs ¼
X
jxDHzjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Int þ r2

Hz

p ; (A1)
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where x is an array of relative channel weights, and DHz is

an array of mean differences between criterion and signal

values, jk� Sj. The performance of an observer limited only

by their adopted relative weights is

d0weight ¼
X
jxDHzj
rHz

: (A2)

While ideal performance is

d0ideal ¼
X
jaDHzj
rHz

¼ DHz

rHz

; (A3)

where DHz is the difference in mean frequency of the two

stimulus classes. Following the concept of efficiency of Berg

(2004), we can partition overall observed efficiency, gtotal,

into the loss of efficiency due to non-optimal weights,

gweight, and due to internal noise, gnoise, thus:

gtotal ¼
ðd0obsÞ

2

ðd0idealÞ
2
¼ ðd0obsÞ

2

ðd0weightÞ
2
�
ðd0weightÞ

2

ðd0idealÞ
2

¼ gnoisegweight; (A4)

where

gweight ¼
d0weight

d0ideal

� �2

¼
X
jxDHzjX
jaDHzj

 !2

(A5)

and

gnoise ¼
d0obs

d0weight

 !2

¼ rHzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Int þ r2
Hz

p !2

: (A6)

Note that by definition 0 � ffiffiffiffiffiffiffiffiffiffiffiffigweight
p � 1. Applying this

partitioning of efficiency (A4)–(A6) to the d0 equations

(A1)–(A3):

d0obs ¼ d0ideal

ffiffiffiffiffiffiffiffiffi
gtotal

p
(A7a)

¼ d0ideal

���� d0obs

d0weight

���� ffiffiffiffiffiffiffiffiffiffiffiffi
gweight

p
(A7b)

¼ d0ideal

X
jxDHzjffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Int
þr2

Hz

pX
jxDHzj

rHz

����������

����������
ffiffiffiffiffiffiffiffiffiffiffiffi
gweight

p
(A7c)

¼ d0ideal

rHzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Int þ r2
Hz

p ffiffiffiffiffiffiffiffiffiffiffiffi
gweight

p
(A7d)

¼ DHz

rHz

rHzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Int þ r2
Hz

p ffiffiffiffiffiffiffiffiffiffiffiffi
gweight

p
(A7e)

¼
ffiffiffiffiffiffiffiffiffiffiffiffigweight
p DHzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Int þ r2

Hz

p : (A7f)

For simplicity, d0obs and
ffiffiffiffiffiffiffiffiffiffiffiffigweight
p

are henceforth referred

to as d0 and g, thus:

d0 ¼ g � DHzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Int þ r2
Hz

p : (A8)

APPENDIX B: NON-LINEAR SLOPES IN
PSYCHOMETRIC FITS

Several studies concerning 2I2AFC pure tone discrimi-

nation tasks (e.g., Dai and Micheyl, 2011; Dai and Richards,

2011) have fitted psychometric functions in which sensitivity

is related to signal strength, x, as follows: d0 ¼ ðjxj=aÞb. The

b term in such models serves to vary the linearity of the psy-

chometric slope (see Fig. 1 of Dai and Richards, 2011). Such

non-linearity can be incorporated into the cumulative Gaus-

sian fits described in Eq. (2), thus

PðInt 2Þ ¼ clo þ ðcup � cloÞUðsignðxÞjxjb; l; rbÞ: (B1)

The psychometric functions reported in the present study

can thus be considered a special case of Eq. (B1), in which

b¼ 1. By force-fitting linear (b¼ 1) slopes, an alternative ex-

planation of learning may have been occluded. Moreover,

since the value of b is liable to affect the other parameter esti-

mates, the values of l̂; r̂; cclo, and ccup may have been bi-

ased. To assess these possibilities, Eq. (B1) was fitted to each

listener’s session-by-session data, both when b¼ 1, and when

b was a free parameter, constrained to be >0.

Consistent with Dai and Micheyl (2011), estimated val-

ues of b did not deviate from unity in any of the four sessions

[Hotelling’s T2; T2ð4; 11Þ ¼ 12:2; p ¼ 0:11]. Accordingly,

unconstraining b had a minimal effect on the estimates of the

other four parameters. In each case, no significant differences

were observed when b was allowed to vary [Hotelling’s

T2; T2ð4; 11Þ ¼ 3:0� 9:7; p ¼ 0:18� 0:67], although, con-

sistent with Dai and Micheyl (2011), there was a general trend

towards lower lapse rates (e.g., grand-mean cclo decreased by

0.5%, while ccup increased by 0.7%); this difference was not

significant, however.
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