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ABSTRACT 

Many sensory inputs contain multiple sources of information (‘cues’), such as two sounds of 
different frequencies, or a voice heard in unison with moving lips. Often, each cue provides a 
separate estimate of the same physical attribute, such as the size or location of an object. An ideal 
observer can exploit such redundant sensory information to improve the accuracy of their 
perceptual judgments. For example, if each cue is modeled as an independent, Gaussian, random 
variable, then combining N cues should provide up to a √N improvement in 
detection/discrimination sensitivity. Alternatively, a less efficient observer may base their decision 
on only a subset of the available information, and so gain little or no benefit from having access to 
multiple sources of information. Here we use Signal Detection Theory to formulate and compare 
various models of cue-combination, many of which are commonly used to explain empirical data. 
We alert the reader to the key assumptions inherent in each model, and provide formulas for 
deriving quantitative predictions. Code is also provided for simulating each model, allowing 
expected levels of measurement error to be quantified. Based on these results, it is shown that 
predicted sensitivity often differs surprisingly little between qualitatively distinct models of 
combination. This means that sensitivity alone is not sufficient for understanding decision 
efficiency, and the implications of this are discussed. 

 
KEY WORDS 
Cue Combination; Multisensory Integration; Weighted Linear Summation; Signal Detection 
Theory; Internal Noise  
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Consider a simple sensory judgment, such as ‘where was the source of a sound located’? When 1 

attempting to understand how such a decision is made, the sensory input can be thought of as 2 

containing multiple sources of information (‘cues’). In general, each cue is a function of the sensory 3 

input, which conveys information about a particular physical attribute1. However, exactly how 4 

cues are conceptualized varies between scientific disciplines. In biochemistry, the output of each 5 

ionotropic receptor may be considered a distinct cue2. In electrophysiology, a cue is generally the 6 

firing-rate of a neuron3, or of a given population of neurons4–7. In the behavioral sciences, which 7 

the present paper concerns, cues are typically defined with respect to the stimulus. Thus, 8 

interaural differences in intensity and phase may be thought of as separate cues in a sound-9 

localization task8. Similarly,  texture and disparity may be thought of as separate cues when 10 

judging visual depth9. Alternatively, cues may be defined with respect to time; for example, each 11 

interval in a two-alternative forced choice [2AFC]10, or each sample in a sequential-observation11–12 
13 task. Finally, in some cases, cues may be defined with respect to the observer themselves. Thus, 13 

each eye14,15, ear16, area of skin17, or sensory modality18 may be thought of as yielding a separate 14 

cue. 15 

Irrespective of how exactly the various cues are defined, a number of interesting questions arise: 16 

Can observers exploit these multiple sources of information19,20? Do they do so in an optimal 17 

manner21,22? Do they continue to do so when the statistics of the task vary23–26? At what age does 18 

this ability to combine cues develop27,28? Is it preserved in old age29,30? Is it present in clinical 19 

populations where some information channels are degraded31,32, or have been previously deprived 20 

of input33–35? 21 

In psychophysics, such questions are often addressed by comparing an empirical measure to the 22 

predictions of one or more theoretical model of decision making. Since psychophysical tasks often 23 

require observers to minimize error, the key empirical measure tends to be some index of 24 

sensitivity (e.g., d', or the slope of the psychometric function). Accordingly, one might measure d' 25 

when two cues (e.g., texture and disparity) are presented individually, and again when both cues 26 

are presented together. If d' in the multi-cue case exceeds that of the best single-cue, then this is 27 

strong evidence that observers are using information from both cues to make their decision; we 28 

can therefore rule out any model of decision making that relies solely on a single source of 29 

information. 30 

If the underlying model of decision making is known, it can also be used as a yardstick to assess 31 

how effective observers are at exploiting the information available to them. Thus, by defining some 32 

putative ‘ideal’ level of performance, it becomes possible to compare observed performance to the 33 

ideal, and thereby to state whether the observer is behaving optimally. Furthermore, by measuring 34 

observed performance relative to the ideal, a measure of efficiency can be computed (defined 35 

formally in Eq 1.1.5). This allows cue-combination ability to be compared across observers, even 36 

when each individual’s sensitivity is expected to vary36. Ideal observer analyses are therefore of 37 

substantial practical and theoretical utility, and are used extensively throughout studies of sensory 38 

cue-combination37,38 (for further discussion, see Ref~[39]). 39 

However, what has not always been made clear is the diversity of plausible ideal-observer models. 40 

Thus, depending on the specific model used, what constitutes ‘ideal’ performance may differ 41 

between papers, and human performance in one study can exceed the predictions of an ideal 42 

observer in another (e.g., contrast the factor of N improvement predicted by Saarela and Landy40 43 

with the factor of √N improvement predicted by Knill and colleagues23). A closely related issue is 44 

that readers are not always fully aware of the key assumptions that are often required in order to 45 

compute ‘ideal’ performance. As shall be discussed, these assumptions are rarely strictly correct, 46 

and depending on exactly what assumptions one makes, the inferences regarding underlying 47 

decision-process may differ markedly.  48 



Tutorial on cue combination         Page 4 of 53 

 

The present paper 49 

The goal of the present paper is to detail exactly what conclusions regarding cue-combination 50 

can, and cannot, be inferred from behavioral estimates of sensitivity. 51 

Note that because we are only considering sensitivity as our dependent variable, we will limit 52 

ourselves to tasks where the observer’s goal is to minimize response error. Such tasks are in no 53 

way an exhaustive reflection of everyday sensory decision making (see §4), though they do 54 

constitute the substantial majority of tasks in the cue-combination literature. 55 

Also note that, when quantifying sensitivity, we shall focus specifically upon d' and other 56 

related Signal Detection Theory41–43 [SDT] metrics. Other measures can also be used to study 57 

perceptual sensitivity,  such as the slope parameter of the psychometric  function22 or the 58 

variance of a continuously distributed response28. However, SDT metrics are of particular 59 

interest due to their prevalence in the literature26,40,44–48,i, and the fact that SDT provides a 60 

formal mathematical framework for exploring the key assumptions/ideas common across most 61 

studies of cue combination. 62 

The paper is divided into four main sections. In §1, we introduce briefly the relevant 63 

background theory. In §2, we consider the different ways in which information from multiple 64 

cues can be used to make a decision, and derive quantitative predictions for each possible 65 

decision strategy. In doing so, we detail the assumptions implicit in the various models, and 66 

alert the reader to the difficulties that arise if these assumptions are not met. Working 67 

examples of each model are also provided in the Supplemental Materials (coded in MATLAB; The 68 

MathWorks, Natick, MA). In §3, we summarize the information presented and develop overall 69 

comparisons and corollaries. In §4 we highlight the limits of what can be inferred from 70 

sensitivity alone, and discuss other approaches to studying cue-combination.  71 

                                                             
i The use of SDT metrics is particularly prevalent among paradigms where the intensity of the target stimulus is 

fixed or determined by an adaptive (threshold) algorithm, and/or in cases where responses are binary. For 

continuously distributed responses, experimenters may wish to dispense with SDT sensitivity metrics, and instead 

use the variability of the response distribution as a more ‘direct’ proxy for the precision of the observer’s sensory 

estimate. However, not all tasks lend themselves to this type of experimental design, and more complex methods 

of response can also introduce unwanted (e.g., non-sensory) sources of noise or bias. Traditional psychophysical 

task therefore ask observers to make a discrete (e.g., yes/no) response. If Method of Constant Stimuli is used, then 

even binary responses can be used to recover a continuous psychometric function, from which a measure of 

sensory precision can be derived. However, such experimental designs are time consuming and not always 

practicable – for example, when performing multiple tests, or when working with children or clinical populations. 
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§1 Background Theory 72 

§1.1 Using Signal Detection Theory to measure perceptual sensitivity 73 

Explicitly or implicitly, studies of cue-combination typically use the theoretical framework of 74 

Signal Detection Theory [SDT] to understand how observers make their perceptual judgments49. 75 

Here we detail its key tenets. For more comprehensive expositions, see Refs~[41–43]. 76 

In SDT, an incoming sensory signal is theorized to produce an internal response, typically 77 

represented as a single scalar variable, x (Fig 1A). Exactly how this number is instantiated in the 78 

brain is irrelevant for present purposes; however, for the sake of example, it could be thought of as 79 

the firing rate of a neuron, or the maximum response of a neural population code. Now, consider a 80 

simple yes/no detection task. On signal-absent trials, the expected response will equal some 81 

baseline quantity that we shall call “0”, while on signal-present trials the expected response will be 82 

proportional to the task-relevant stimulus feature, S (e.g., the intensity of a sound, in dB SPL, or the 83 

luminance of a light, in cd/m2). Notably though, various neural50, physiological51, and cognitive 84 

processes mean that the internal response is noisy. Thus, on each observation (i.e., on each trial in a 85 

yes/no task, or each interval in a two-alternative forced-choice task) x may deviate slightly from 86 

the expected mean value of 0 or S (Fig 1B). To classify any given value of x as either ‘signal’ or 87 

‘noise’, the observed value of x must therefore be compared to some cut-off criterion, λ, thus: 88 

 
( 1.1.1a) 

In Eq 1.1.1a the decision variable, DV, upon which the behavioral response is based (‘Response’), 89 

is simply the internal response to a single cue, x. In more complex tasks, however, the DV will not 90 

be determined by a single internal response. For example, in a two alternative forced-choice task, 91 

the DV is generally considered to be the difference between the internal responses to each interval: 92 

 
( 1.1.1b ) 

While in a compound-detection task (which the present paper focuses on primarily), the DV is the 93 

sum of N internal response values: 94 

 
( 1.1.1c ) 

Irrespective of how exactly the DV is derived, to make a binary decision it must be compared to a 95 

criterion, λ. Ideally, λ will be placed so as to maximize some expected utility function (e.g., percent 96 

correct, N points won, etc.). If λ deviates from the ideal location then the observer is said to be 97 

biased. However, even with an unbiased criterion, when the sensory noise is continuously 98 

distributed some errors are inevitable. That is, no criterion will perfectly separate the signal-99 

absent and signal-present distributions. An input of “0” may therefore sometimes trigger a ‘Signal 100 

Present’ response, or an actual signal, S, may trigger a ‘Signal Absent’ response (Fig 1C). To the 101 

extent that the ‘Noise’ and ‘Signal’ internal-response distributions overlap (the shaded area in Fig 102 

1C), the observer is said to be less sensitive to differences between the two. 103 
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 104 
Fig 1. Signal Detection Theory schema for a simple, yes/no detection task. On each trial, either a signal is 105 
presented, or nothing is presented. (A) The mean internal response is either 0 (Nothing), or S (Signal; where S is 106 
proportional to signal magnitude). (B) However, internal noise means that, on any given trial, the internal 107 
response may be slightly higher or slightly lower. Any given internal responses must therefore be compared to a 108 
criterion, λ, in order to determine the appropriate behavioral action. (C) When averaging across many trials, a 109 
distribution of internal responses is observed for each condition (in this image the noise is additive and normally 110 
distributed). To the extent that the two distributions overlap (red shaded region), the observer cannot distinguish 111 
the two conditions perfectly. This overlap is what is indexed by the sensitivity metric, d'. 112 

If we assume for now that the sensory noise is Gaussian distributed, then sensitivity (the degree of 113 

separation between the two internal response distributions) is determined formally by the 114 

difference in the means of the two internal response distributions, divided by their root mean 115 

variance: 116 

 

( 1.1.2 ) 

Equation 1.1.2 contains four parameters: the means of the two distributions (µsignal, µnoise) and 117 

their variances (σsignal
2, σnoise

2). Such a model is non-identifiable by most behavioral datasets, in 118 

that the four parameters cannot be uniquely constrained by observations of Hit (yes|signal), h, and 119 

False Alarm (yes|noise), f, rates. Fortunately, however, we are not typically interested in the 120 

individual parameters, and only want to index overall sensitivity. In that case, we can, without any 121 

loss of generality, recenter the means of the two distributions so that µnoise = 0 (while µsignal 122 

remains an unknown parameter, to be estimated empirically). Furthermore, we shall for now 123 

assume that the internal noise is additive (i.e., is independent of internal response magnitude), in 124 

which case the variance of each distribution will be identical (signal
2 = noise

2
 = 2). Finally, we can, 125 

again without any loss of generality, scale the means of the distributions by their standard 126 

deviations. In this way, the standard deviation becomes unity ( = / = 1), and the mean becomes 127 

the mean scaled by the standard deviation (µsignal = µsignal/). By convention, this scaled mean is 128 

referred to as d', and can now be seen to be the sole determinant of sensitivity: 129 

 

( 1.1.3 ) 

In practice, the value of d' can be estimated empirically from the observed Hit rate, h, and False 130 

Alarm rate, f, thus: 131 

 ( 1.1.4a ) 

where Ф-1 represents the inverse of the cumulative standard normal function (also commonly 132 

referred to as the z function in statistics), which can be expressed in terms of the inverse error 133 

function: 134 

 ( 1.1.4b ) 

For the derivation of Eq 1.1.4, see Refs~[36—38]. 135 
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Finally, it is often useful to measure observed sensitivity, d'obs relative to some putative ideal, d'ideal. 136 

This allows easy comparison across conditions where d'ideal is expected to vary – for example, 137 

when comparing compound-cue sensitivity across observers who are differentially sensitive to the 138 

constituent single-cues. Such a measure is known as efficiency, , and is defined by Tanner and 139 

Birdsall (1958)52 as: 140 

 
( 1.1.5 ) 

Thus, =1 indicates ideal sensitivity, and lower values indicate suboptimal performance. 141 

§1.2 Combining random variables 142 

§1.1 expounded how, according to SDT, binary decisions are made by comparing a scalar Decision 143 

Variable, DV, to a criterion, λ. If there is just a single cue, then the DV is fully determined by a single 144 

internal response variable, x (DV = x). However, as discussed, many models of decision-making 145 

imply multiple separate cues, each with its own associated source of noise. In that case, each cue 146 

can be considered a separate random variable, and in most models of decision making the DV is 147 

some combination of these variables (though cf. §2.1, §2.2). It is therefore important to 148 

understand the expected properties of a random variable that is the combination of N random 149 

variables. 150 

Firstly, let us assume for now that the process of combination is linear. The linear combination 151 

of two random variables is the additive sum of the individual values, each multiplied by some 152 

relative weighting constant. Thus, if x1 and x2 are two internal responses (two distinct cues), 153 

and ω1 and ω2 are their associated weight coefficients, then: 154 

 ( 1.2.1 ) 

When ω1 = 1 and ω2 = 1 the two cues are summed completely (Total Summation). This may not 155 

always be desirable, however. For example, when detecting a change of heading, our sense of 156 

vision often provides more accurate information then our internal sense of balance28. If the 157 

goal is to minimize response error, then the less reliable balance cue should be given less 158 

relative weight (ω < 1; Partial Summation). 159 

The exact way to weight cues optimally shall be discussed in §2. However, irrespective of the 160 

specific weights employed, the mean of the weighted-sum of two random variables is the 161 

weighted-sum of the individual means: 162 

 ( 1.2.2 ) 

Furthermore, if we assume for the moment that the noise associated with each cue is 163 

independent, then the variance of the weighted-sum is the sum of the individual variances, 164 

weighted by the squares of the coefficients: 165 

 
( 1.2.3 ) 

By applying Equation (1.2.3) to the SDT sensitivity formula given earlier (Eq 1.1.2), a general 166 

formula can be derived for expected sensitivity when two independent cues are linearly 167 

summed, d1+2, thus: 168 

 

( 1.2.4 ) 

Finally, recalling that µsignal = µnoise = d', and signal = noise = 1: 169 

 
( 1.2.5 ) 

Note, however, that in deriving Equation (1.2.5) we have assumed that the internal noise is 170 

Gaussian, additive, and independent, and that the process of combination is linear. As we shall see 171 

in §2, all of these assumptions are open to question, and expected sensitivity is liable to differ if 172 
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any is violated.173 
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§2 Taxonomy 174 

In this section we describe fourteen algorithms that a sensory system might plausible employ 175 

in order to make a judgment based on multiple sensory cues. Practical examples of each model 176 

are also given in Appendix A, in the form of MATLAB code. 177 

Some models differ in complexity, while others differ in terms of the assumptions they make about 178 

key properties of the underlying decision process (e.g., in terms of how error is introduced, or how 179 

it is distributed). In each case, we shall describe: (i) the key rules/principles underlying the model; 180 

(ii) how the decision variable is formed; and (iii) what the expected change in sensitivity would be 181 

for a given observer presented with one versus two cues. In particular, we specify what the upper-182 

bound change in sensitivity would be for an ideal observer, by which an estimate of efficiency can 183 

be computed. Interested readers are also encouraged to read works by Macmillan and Creelman 184 

(2005; Ch. 6)42, Wickens (2002; Ch. 10)43, and Triesman (1998)53, in which some of the present 185 

information is also discussed. A broader overview of the modern cue-combination literature can 186 

also be found in Trommershauser, Kording and Landy (2011)38. 187 

For simplicity, we will constrain ourselves to situations where there are only two sources of 188 

information (Cue1 and Cue2), though many of the same principles generalize straightforwardly to 189 

more complex scenarios. We shall also further restrict ourselves to discussing simple detection 190 

tasks, rather than tasks requiring parameter discrimination, identification, or estimation. These 191 

latter tasks are liable to be more complicated to specify, and also tend to differ in terms of the 192 

language used to describe them (e.g., it makes more sense to think of sensory estimates being 193 

summed for detection, but averaged for estimation). Ultimately, however, many the same key 194 

conclusions often apply as with simple detection, including how much sensitivity is expected to 195 

improve for the ideal observer, and the form of the equation used to predict changes in sensitivity. 196 

Overview of models 197 

Table I and Figure 2 provide overviews of the various decision models, each of which is 198 

defined in detail from §2.1 onwards. 199 

Table I summarizes the form of each model, and provides an equation for computing multi-cue 200 

sensitivity given observed single-cue performance. It also specifies, in the final column, the 201 

expected change in sensitivity for an ideal observer. For example, given two equally informative 202 

cues, the ‘Sumearly’ model (Row 7; §2.4) predicts up to a √2 improvement in sensitivity when a 203 

second cue is introduced. Notably, it can be seen that a given improvements in sensitivity is 204 

generally consistent with a range of possible decision models. For example, a 25% increase in d' is 205 

consistent with seven strategies, while an improvement of 100% or more is consistent with two 206 

models (‘Sumadd’, and ‘Superadditivity’). 207 

Note also that the final column of Table I includes 95% confidence intervals, derived numerically 208 

for cases in which 100 empirical trialsii are used to estimate d' (Grey shaded regions; for derivation 209 

see Appendix B). From this, it can be seen that differences between the predictions of competing 210 

models are often liable to be rather small, relative to the amount of measurement error expected in 211 

a typical experiment. For example, to discriminate expected performance given a ‘1-look’ or ‘2-212 

look’ strategy with a confidence level of 95% would require either at least 400 trials, or seven 213 

compliant observers performing 50 trials each (see Appendix B for derivations of confidence 214 

intervals). 215 

An additional perspective on the various decision models is given in Figure 2, which shows 216 

how the expected benefit of a second cue increases as the difference in sensitivity to each 217 

individual cues decreases (i.e., as the second cue becomes proportionately more useful).218 

                                                             
ii 100 trials represents a an arbitrary but realistic number 
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 220 

 221 
Fig 2. Percent gain in combined-sensitivity (vs. Cue1 alone), as relative sensitivity to Cue2 increases. For example, in the 222 
“Sumearly” model the benefit of having a second cue increases exponentially as the difference in single-cue sensitivity 223 
decreases (red line, right panel). For display purposes only, models have been divided between two panels. Models for 224 
which d' is not an appropriate sensitivity metric are not shown (see Table I).  225 
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§2.1 One-look 226 

 227 

Fig 3. 1-look cue-combination schema. (A) box-and-arrow logic diagram, showing how internal noise is added to 228 
the signals of each cue, and how signals are combined to make a decision. (B) Decision Variable (DV) distributions 229 
for signal-absent (black dashed) and signal-present (blue solid) conditions, for Cue1 only (top), Cue2 only (middle), 230 
and when both Cues are present together (bottom). These diagrams follow the same format as that shown 231 
previously in Fig 1C. Note that with the 1-look strategy, the DV in the combined condition is fully determined by 232 
the internal response to a single cue (see Eq 2.1.1c). The observer is therefore no more sensitive in the ‘both’ 233 
condition, than in either of the single cue conditions. (C) Matrix of scatter plots, showing correlations between 234 
10,000 trial-by-trial DV values for each of the three conditions (Cue1, Cue2, Both; signal present condition only). 235 
Marginal histograms show the univariate distributions for each of the three conditions (i.e., these histograms 236 
correspond to the solid blue curves in Panel B). Red lines show the best fitting regression slope between each pair 237 
of conditions (flat line if no relationship between conditions). Only the lower-triangle of the matrix is shown, as 238 
the upper diagonal values are identical. In the case illustrated here, the observer only attends to Cue1. The DV in 239 
the combined condition is therefore identical to that in the Cue1 condition, and is totally uncorrelated with the DV 240 
in the Cue2 condition. Alternatively, the observer could attend solely to Cue2 (perfect correlation with Cue2), or 241 
switch between cues (partial correlation with both cues). 242 

In the 1-look strategy (Fig 3), the observer bases their decision solely on a single cue (i.e., they 243 

‘look’ only at one component of the sensory input; see Ref~[43] for further background on this 244 

nomenclature). The other cue is simply ignored. The observer therefore gains no benefit from 245 

multiple cues, and would never be expected to perform better than in the best single-cue condition. 246 

To formalize the 1-look decision process, let the response to a signal-absent stimulus be 0, and let 247 

the response to a signal-present stimulus be S1 and S2 (for cues 1 and 2, respectively). On each trial, 248 

the stimulus response is jittered by noise samples, N1 and N2, each drawn independently from their 249 

corresponding noise distribution. For now, we shall assume that these distributions are zero-mean 250 

Gaussians, with standard deviations 1 and 2 (where  represents the ‘magnitude’ of internal 251 

noise). We shall further assume that these values are combined additively with the initial stimulus 252 

response. Thus, the DV, is S1 + N1 for Cue1, and S2 + N2 for Cue2. As described in §1.1, the relevant 253 

DV is then compared to a criterion, , in order to determine a response. Thus, the decision 254 

strategies for the two individual cue conditions are: 255 

 

( 2.1.1a ) 

 

( 2.1.1b ) 

while the decision strategy in the combined condition is given by: 256 
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( 2.1.1c ) 

where i in the two-cue case is equal to either 1 or 2. Note that there is no guarantee that the 257 

response criterion in the combined-cue condition (Eq 2.1.1c) is the same as that in the single-cue 258 

condition (Eq 2.1.1a-b). Thus, the simultaneous presence of the second cue could conceivably bias 259 

the observer towards or against a particular response. Such bias could affect some measures of 260 

performance, but should not affect d', which is specifically designed to be independent of bias 261 

(though cf. Ref ~[51]). Similarly, any such bias should affect the point of subjective equality [PSE] 262 

of a psychometric function, but not its slope.  263 

Sensitivity in the 1-look model will simply equal sensitivity in the corresponding single-cue 264 

condition. If both cues are not equally informative, then it becomes meaningful to ask which cue 265 

the observer attended to. An inefficient observer may base their decisions on the less informative 266 

of the two cues, in which case: 267 

 ( 2.1.2a ) 

This could occur if, for example, the observer misjudged the relative utility of the two cues (e.g., 268 

due to a run of lucky guesses), because the poorer cue is somehow more convenient or easier to 269 

attend to, or because of some a priori bias in favor of that cue. Conversely, an ideal 1-look observer 270 

would base their decisions on the more informative of the two cues, in which case: 271 

 ( 2.1.2b ) 

Finally, the observer may alternate: using one cue on some trials, and the other cue on other trials. 272 

Such alternation is often observed anecdotally in psychophysical experiments, where it may be 273 

variously attributed to: demand characteristics, exploration of the ‘gain landscape’ of the task54, an 274 

attempt to mitigate the effects of sensory adaptation, and/or simply an expression of boredom. If 275 

we assume for the moment that the trial-by-trial decision regarding which cue to attend to is made 276 

a priori, independent of the sensory evidence, then the result of switching is an intermediate level 277 

of sensitivity, somewhere between that of the best (d' max) and worst (d' min) single-cue.  278 

More exactly, if the probability of using each cue, Pi, is known, then predicted sensitivity in the 279 

multi-cue case can be computed through linear interpolation. Note, however, that it is the raw Hit, 280 

h, and False Alarm, f, rates that must be interpolated, and not the single-cue sensitivity estimates. 281 

Thus: 282 

 
( 2.1.3 ) 

which can then be used to compute d' in the standard manner (Eq 1.1.3): 283 

 
( 2.1.4 ) 

Although generally considered a poor strategy, several considerations actually favor the use of 284 

only a single cue. Firstly, finite cognitive (attention, memory) resources may prohibit the observer 285 

from attending to more than one cue. Secondly, the cost of attending to multiple cues may 286 

outweigh the perceived benefit. Thus, although cue-combination is often assumed to be without 287 

cost, processing a second cue may be effortful or confusing for some observers. In contrast, the 288 

gains of cue-combination are often small, either because the observer is already performing at 289 

ceiling, because the observer is content with their single-cue performance, or because the second 290 

cue genuinely provides relatively little additional information (see Fig 2A). A rational observer 291 
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may therefore trade-off cost against expected reward, and decide to predicate their decisions upon 292 

only a single cue. Whether observers do make such calculations, either implicitly or explicitly, is 293 

largely unknown, and to our knowledge, no attempts have been made to quantify perceived 294 

cost/benefits in sensory integration tasks.295 
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§2.2 Two-look (aka ‘Probability Summation’) 296 

 297 
Fig 4. 2-lookOR cue-combination schema; same format as Fig 3. The observer responds if either the Cue1 or Cue2 298 
internal response exceeds criterion, λ. The DV distributions in the ‘both’ condition (bottom of Panel B) are the 299 
maximum of the two corresponding single-cue distributions, and upon close inspection can be seen to exhibit a 300 
slight rightward-skew. 301 

In the 2-look strategy (Fig 4) --- also commonly known as ‘Probability Summation’ --- each cue is 302 

used to make an independent decision (i.e., the observer ‘looks’ separately at each component of 303 

the sensory input). A third, ‘meta’ decision rule is then used to combine the two results. Thus, an 304 

observer might respond ‘signal-present’ if the internal response to either cue exceeded criterion: 305 

 
( 2.2.1a ) 

or if both internal response exceeded criterion: 306 

 

( 2.2.1b ) 

By the laws of probability, having multiple cues increases the likelihood that at least one will be 307 

successfully ‘seen’. As such, expected sensitivity is greater than in any of the individual single-cue 308 

conditions. In both the AND or OR case, expected sensitivity is given approximately by: 309 

 
( 2.2.2a ) 

More exactly, assuming an ideal criterion placement and additive internal noise, expected 310 

sensitivity is given by: 311 

 

( 2.2.2b ) 

To understand how Eq 2.2.2b is derived, consider that the probability of both of two independent 312 

internal response exceeding criterion is equal to the product of the two individual probabilities 313 

(note that Probability “Summation” is therefore a misnomer, since probabilities are multiplied). 314 

Thus, the chance of a hit or a miss in the AND rule is given by: 315 

 
( 2.2.3a ) 

While the chance of a hit or a miss in the OR rule (i.e., the complement of neither exceeding 316 

criterion) is given by: 317 
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( 2.2.3b ) 

In either case, using the outputs of Eq 2.2.3a and Eq 2.2.3b, d' for the combined condition can be 318 

computed in the standard manner41–43, based upon the difference in hits and false alarms (Eq 319 

1.1.2). Notably, when the internal noise is additive (and signal and noise trials occur with equal 320 

frequency), then the ideal criterion location, λ, is equal to d'/2. Thus, if the observer is unbiased 321 

then the difference between hits and false alarms is equal in both the AND and the OR cases, and 322 

expected sensitivity is given by: 323 

 

( 2.2.3 ) 

However, when the criterion is not ideal (i.e., if the observer is biased in either of the single cue 324 

conditions), then the predicted sensitivities of the AND and OR strategies will differ slightly, and d' 325 

must be calculated for each strategy separately, as per Eq 2.2.3a / Eq 2.2.3b. 326 

Three further features of 2-look strategy are also worth noting. Firstly, although both the AND and 327 

OR strategies may predict the same improvement in sensitivity, they can be distinguished 328 

empirically by examining the SDT bias parameter, c55. Thus, the OR strategy would result in a bias 329 

towards responding ‘Signal Present’ (liberal observer), while the AND strategy would result in a 330 

bias towards responding ‘Signal Absent’ (conservative observer). Secondly, in both cases, percent 331 

correct would actually be no different to in the simple, 1-look strategy. Third and finally, note that 332 

although the 2-look strategy guarantees some improvement in sensitivity when the two cues are 333 

equally informative, when d'1 ≠ d'2 sensitivity in the combined condition may actually be lower 334 

than in the best single-cue condition (Fig 2A). This is in contrast to the linear-summation models 335 

that we consider below, where the ideal observer’s sensitivity is guaranteed to increase as a 336 

function of the number of cues (Fig 2B).  337 

The formal equivalence of the 2-lookOR and Max-DV models, and why d' is technically an 338 

invalid measure of sensitivity under either model 339 

If two random variables are independent, then the probability that the maximum of the two will 340 

exceed criterion is equal to the probability that either of the two exceeds criterion: 341 

 342 

 
( 2.2.4 ) 

 343 

With this in mind, it can be seen that 2-lookOR (Eq. 2.2.1a) is formally equivalent to a prima facie 344 

quite different strategy, in which the observer bases their response on whichever cue produced the 345 

greatest internal response on that particular trial. We shall denote this strategy ‘Max-DV’iii, and 346 

define it formally as: 347 

 

( 2.2.5 ) 

                                                             
iii Note, that the Max-DV rule (respond based on greatest trial-by-trial internal response) should not be confused with 
the 1-lookmax rule (respond based on cue with greater expected sensitivity). The Max-DV decision rule is not truly ‘1-
look’, in that all cues must be monitored before a decision is made. However, there is no integration of information 
across cues, and ultimately the decision is made based on information from one cue alone 
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Note, however, that the maximum of two Gaussian random variables is not itself Gaussian 348 

distributed (see Ref~[56]). This is potentially problematic, because, as detailed in §1.1, the 349 

sensitivity metric d' implicitly assumes normality. A practical corollary of this is that empirical d' 350 

values will vary somewhat, depending on where observers place their criterion (see simulations in 351 

Appendix A). This confound between bias and sensitivity is negligible when sensitivity to the 352 

individual cues is low (e.g., d' = 1.0), but increases when single-cue sensitivity is greater. For 353 

example, when d1' = 4.0 and d2' = 4.0, the value of d' in the combined condition may vary by 354 

approximately  15%, depending on the observer’s exact criterion placement. The level of error 355 

also increases as the number of cues increases beyond two. For example, the maximum of 100 356 

independent Gaussian variables exhibits a heavy rightward-skew. 357 

For many experiments, this error is unlikely to be of substantive concern. However, for 358 

experimenters requiring exactitude, one way to deal with a deviation from internal-response 359 

normality is to measure performance as the criterion location is systematically varied (ROC 360 

analysis -- see §2.6). In this way, the effect of criterion can be partial-out. As detailed in §2.6, such 361 

an analysis can provide criterion-invariant metric of sensitivity -- for example, the term da, which 362 

we define later in Eq. 2.6.3. Notably, in the simple, two-cue case it is possible to predict da
 in the 363 

combined cue condition, using just the single cue measurements of d'. To see how this can be done, 364 

note that the DV in the Max-DV/2-look-OR model can be approximated by a Gaussian variable56, 365 

with an expected mean and standard deviation of: 366 

 367 

 

( 2.2.6 ) 

where ϕ and Ф are the probability distribution function (pdf) and cumulative distribution function 368 

(cdf) of the standard normal distribution (respectively), and where θ is determined by the internal 369 

noise magnitude for each cue, together with the degree of correlation, ρ, between them, thus: 370 

 
( 2.2.7 ) 

By substituting the appropriate values for each individual cue, the DV for each of the noise (µi = 0;  371 

σi = 1) and signal (µi = d'i;  σi = 1) conditions can be derived. The resultant estimates of µnoise, µsignal, 372 

σnoise, σsignal can then be combined using Eq 1.1.2 to compute expected da. Furthermore, since three 373 

of the DV values (µnoise, σnoise, σsignal) are defined as constants (see §1.1), and if we assume that the 374 

cues are independent (ρ = 0; though cf. §2.4), then this model reduces to: 375 

 

( 2.2.8a ) 

where 376 

 

( 2.2.8b ) 
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To summarize, the 2-lookOR decision strategy is equivalent to a strategy in which responses are 377 

based on the greatest internal response to all cues (Max-DV). In the Max-DV model, the DV is not 378 

Gaussian, and so d' is liable to misestimate sensitivity. Furthermore, Max-DV is formally identical 379 

to 2-lookOR. By extension, d' is therefore not an ideal metric for observers using the 2-lookOR/2-380 

lookAND strategies either. The error may be tolerable if sensitivity and/or the number of cues are 381 

low. However, in other cases alternative measures of sensitivity may be more appropriate, such as 382 

da (see §2.6). A formula for approximately predicting da based on single-cue d' estimates is given in 383 

Eq 2.2.8. 384 

Practical advantages of a 2-look decision strategy 385 

As with 1-look strategies, 2-look (probability summation) models are generally considered 386 

relatively crude – providing only a modest improvement in sensitivity, relative to the linear-387 

summation models that we shall consider next. However, as discussed previously with regard to 388 

the 1-look model (§2.1), practical considerations may make the 2-look model more appealing. For 389 

example, consider a repeated-observation task. Observers are sequentially presented with N 390 

samples of the same stimulus (i.e., all `signal present’ or all `signal absent’). They are then asked to 391 

make a single judgment as to whether or not the signal had been present throughout all the trials. 392 

To solve this task, more complex, linear-summation strategies (§2.3) would require the observer 393 

to remember the exact internal response value for each cue, and to estimate and store their 394 

relative reliabilities. In contrast the N-look strategy is computationally trivial. Nothing other than 395 

the chosen response needs to be stored in memory, and in terms of effort, the N-look observer can 396 

stop paying attention altogether once either a signal (if using OR) or a noise (if using AND) has 397 

been observed (see Appendix C for example pseudocode).  398 

Thus, an ideal observer with limited working memory might use a powerful linear-summation 399 

model (§2.3) when the number of cues is low, but revert to an N-look strategy (or similar), once 400 

some putative processing threshold is exceeded. In normal adults, and given only two cues, such a 401 

threshold is unlikely to be reached. However, if capacity is diminished (e.g., under conditions of 402 

high load57,58, or among children59,60 and older adults61), or if the demands of the task are 403 

increased (e.g., by increasing the number of cues), then processing costs may start to become a 404 

limiting factor. To our knowledge, this hypothesis has not been studied systematically within the 405 

cue-combination literature. However, limited supporting data do exist. For example, in the 406 

repeated-observation task described above, observers have been shown to exhibit a √N 407 

improvement in sensitivity when the number of cues is low (N = 1—5)11. This exceeds the 408 

predictions of the N-look model, and is suggestive of an more complex linear-summation model 409 

(§2.3) . However, when the number of cues is increased to seven13 (i.e., close to62, or exceeding63 410 

the limit of human working memory), relative performance is diminished, and observers appear 411 

no longer able to integrate cues optimally. Similar effects have also been reported for observers 412 

asked to form ‘summary statistics’ (e.g., average the size or orientation) of an array of objects64–66. 413 

For example, given a mean-size-discrimination task, Solomon and colleagues67 reported that 414 

observers benefited from having two or four cues, but showed no significant improvement when 415 

the number of cues was increased to eight. The exact reason for this decrease in efficiency at high 416 

numbers of cues is unclear. For example, it may be that observers resort to a qualitatively different 417 

N-look strategy when the numbers of cues is high, or it may be that observers continue to 418 

integrate, but are quantitatively constrained in their efficiency by finite attention or memoryiv 419 

                                                             
iv For example, Gorea and colleagues64 discuss the possibility of a limited-memory (‘Markovian’) linear-summation 
model, in which the observer maintains a running-weighted-average of the observed data. In such a model, 
incoming information is effectively integrated with the average of what has come previously. Such models are 
outside the scope of the present paper, but have been discussed previously by a number of authors140,141. 
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limits. Irrespective of the true explanation, that human observers behave in this way does at least 420 

highlight the importance of considering observers’ limited processing resources when determining 421 

what constitutes ‘ideal’ performance. Thus, algorithmic limitations may prove instructive for 422 

understanding why observed sensitivity is often less than predicted in children26–28 and older 423 

adults30, and in normal adults performing complex tasks13.424 
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§2.3 Linear summation with early, independent noise  (𝑺𝒖𝒎𝒆𝒂𝒓𝒍𝒚) 425 

 426 

Fig 5. Linear summation with early, independent noise; same format as Fig 3. Independent noise is added to each 427 
cue prior to summation (Panel A). In the case illustrated here, the observer is equally sensitive to each cue (d'1 = 428 
d'2) and acts in the ideal manner by weighting each cue equally. Due to cancelation of noise between cues, the 429 
distributions in the combined cue condition therefore exhibit substantially (2) less overlap than in either of the 430 
single cue conditions (Panel B). 431 

In linear-summation models, the internal responses to each cue are summed to create the DV (see 432 

§1.2). Mathematically, this summation causes independent samples of noise to partially cancel out: 433 

improving the Signal to Noise Ratio [SNR], and thereby increasing sensitivityv. Physiologically, the 434 

process is plausible, prima facie, as it has long been known that individual neurons sum their 435 

dendritic inputs68, and there is growing evidence of sensory integration at the network level 436 

also24,69,70. 437 

The defining property of the Early Noise linear-summation model (Fig 5) is that all the internal 438 

variability is introduced into the system prior to the two cues being combined (i.e., ‘early’ – see 439 

§2.5 for further definition of ‘early’ versus ‘late’). Thus: 440 

 

( 2.3.1 ) 

The ‘Early Noise’ linear-summation model could be equivalently called the ‘late integration’ model, 441 

but that terminology becomes confusing when we go on to consider multiple sources of noise (i.e., 442 

situated both before and after the point of integration). The Early Noise model essentially implies 443 

that all uncertainty arises within the peripheral sensory system, and that the subsequent decision 444 

process is entirely noiseless. It also means that, when computing expected sensitivity, the final 445 

decision variable is the sum of N random variables. Typically, the noise associated with each cue is 446 

assumed to be independent, additive, and Gaussian distributed. As such, and as shown previously 447 

in Eq. (1.2.4), it follows that the final decision variable is also Gaussian distributed, with a mean 448 

equal to the linear weighted sum of the single-cue means, µ (where µ = d'), and a variance equal to 449 

the linear weighted sum of the variances, 2 (where σ = 1). Sensitivity in the combined condition is 450 

                                                             

v Due to the Law of Large Numbers142, an extreme noise sample for one cue is likely to be partially cancelled out by an 
opposite value for another, such that if there were an infinite number of cues the internal noise samples internal noise 
would be effectively zero. As an interesting aside, this is also why sensitivity in a two interval, two alternative forced 
choice [2AFC] task is typically √2 better than in a one interval, yes/no task (see Macmillan and Creelman, 2005, pp. 
166 – 17042), and why, in statistics, Standard Error decreases with √N data points. 
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therefore given by: 451 

 

( 2.3.2 ) 

When the relative weights, ω, both equal one (equal attention paid to both cues), and when 452 

sensitivity is equal for both cues (d'1 = d'2), then this reduces to simply: 453 

 

( 2.3.3 ) 

Notably though, Eq (2.3.3) ceases to be the ideal decision strategy when one cue is more 454 

informative than the other (d'1 ≠ d'2). In that case, the ideal weights, ωi, must be computed 455 

explicitly, and the appropriate values inserted into Eq (2.3.2).  456 

How to compute ideal relative weight coefficients , ωi 457 

Intuitively, it is obvious that one should give less weight to less informative cues, and more 458 

weight to more informative cues. More formally, it has been shown by previous authors that 459 

the ideal strategy is to weight each cue proportional to its signal-to-variance ratio71,72. Since d' 460 

has already been scaled to be a random Gaussian variable with a variance of one (σ2 = 1), ideal 461 

relative weights are simply proportional to d'. Given our present convention of normalizing 462 

weights so that the greatest weight magnitude, |ω|, always equals one (see §1.2), the ideal 463 

weight for the ith cue is therefore: 464 

 
( 2.3.4 ) 

For example, if d'1 = 1, and d'2 = 1.5, then the ideal weights would equal ω1 = 0.67 and ω2 = 465 

1.00, and ideal sensitivity would be d'1+2 = 1.58. More generally, by combining Eq. (2.3.2) and 466 

Eq. (2.3.4), and assuming that all d' values are positive, ideal sensitivity reduces to simply: 467 

 
( 2.3.5 ) 

A common alternative to Eq 2.3.4 is to normalize weights so that their magnitudes sum to one:  468 

 
( 2.3.6 ) 

When considering sensitivity, this scheme is formally equivalent to the ‘max’ approach of Eq 469 

2.3.4, and results in the same quantitative predictions (e.g., in terms of d'). Conceptually, 470 

however, Eq 2.3.4 is more natural when considering detection (where cues are thought to be 471 

‘summed’), while Eq 2.3.4 is more suited to estimation tasks (where cues are thought to be 472 

‘averaged’). As discussed previously (§2), we shall, for simplicity, restrict ourselves to the case 473 

of detection, and so use Eq 2.3.4 throughout. Eq 2.3.4 also has the advantage that in many 474 

situations (e.g., when sensitivity is equal across all cues) all weights equal one; in which case, 475 

the ωi terms can be omitted from many equations altogether. 476 

How do observers know how to weight cues appropriately? 477 
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One possibility is that observers learn to weight cues appropriately through practice, for 478 

example via a process of supervised learning. In this case, weightings should improve over 479 

time, and, in the limiting case where the task is entirely novel, observers should be at chance on 480 

trial one. Another possibility is that reliability is estimated directly, within a single trial. This 481 

could be achieved if, for example, information was encoded by a distributed population code. 482 

Thus, if the internal response was a distribution, rather than a single scalar value, then the 483 

variance of the population-response distribution could be used as an estimate of the amount of 484 

signal uncertainty4,73,74. If this were the case, then observers could be capable of assigning 485 

appropriate weights to completely novel stimuli, and of responding on a trial-by-trial basis to 486 

random variations in relative SNR between cues. The evidence appears to somewhat favor the 487 

latter, ‘dynamic reweighting’, hypothesis. Thus, in experiments where the relative reliability of 488 

two cues is randomly varied trial-by-trial, both humans23 and macaque monkeys18,24 have been 489 

shown to update weightings across trials. However, it is possible that such weights are also 490 

refined across trials, and there is some evidence in perceptual learning paradigms that cue 491 

weightings do improve with repeated practice75–77. 492 

Expected sensitivity in the early weighted linear summation model 493 

Under ideal conditions, with two cues of equal sensitivity, and equal weights given to each cue, 494 

sensitivity will increase by a factor of √2 (41%; as shown graphically in Table I). More 495 

generally, ideal sensitivity will increase by √N, where N is the number of cues. If the two cues 496 

are not equally useful, but the weights are adjusted to remain ideal, then sensitivity is still 497 

guaranteed to be greater than in the best single cue (Eq 2.3.5). However, the magnitude of the 498 

benefit falls away exponentially as the observer’s sensitivity to the two individual cues begins 499 

to differ (Fig 2B, black dashed line). For example, if an observer is only half as sensitive to the 500 

second cue (d1
′ = d2

′ 2⁄ ) then d' in the combined condition would only be expected to increase 501 

by a maximum of 12%. Given that estimates of d' often have a standard error on the order of 502 

±50% (e.g., given 50 trials, see Appendix B), any asymmetry will therefore greatly reduce the 503 

likelihood that observed sensitivity will improve significantly. 504 

Finally, if weights are not optimal, then some information will be lost, and sensitivity in the 505 

combined condition can actually be reduced relative to the best single cue (Fig 2B, green dot-506 

dashed line). Suboptimal weightings could occur if the observer misestimated the reliability of 507 

each cue, or if observers had some a priori bias towards a particular cue (for discussion, see 508 

Ref~[18]). An important, but often underappreciated point, is that although the early-noise linear-509 

summation model predicts at most a √N improvement in sensitivity, an increase of less than √N 510 

does not mean that fewer than N cues are being used (as is sometimes, erroneously implied78). For 511 

example, Figure 6 shows a number of relative-weight functions that would lead to a √3 512 

improvement, only one of which involves giving no weight to two cues.  513 

 514 

Fig 6. Three ways of weighting multiple sensory cues (N = 5), each of which 515 
predicts a √3 improvement in sensitivity (assuming that all cues are equally 516 
useful). Note that here we have scaled the weights so that the greatest weight is 517 
one, and the other weights are expressed as a fraction of this value (Eq 2.3.4). 518 
However, since we are only interested in the relative weight given to each cue, we 519 
could equivalently have normalized all the weights so that, for example, their 520 
magnitudes summed to one (Eq 2.3.6). 521 

522 
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§2.4 Linear summation with early, correlated noise  (𝑺𝒖𝒎𝒆𝒂𝒓𝒍𝒚
𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒆𝒅)523 

 524 

Fig 7. Linear summation with early, correlated noise; same format as Fig 3. As shown in Panel C, the internal 525 
responses to the two cues (Cue1 vs. Cue2) are perfectly correlated. Therefore, while the sum of these two variables 526 
is greater in magnitude than either alone, there is no cancelation between noise samples, and so no change in the 527 
amount of overlap between the ‘Signal Absent’ and ‘Signal Present’ distributions in the combined condition (Panel 528 
B, bottom). 529 

 530 

Fig 8. Half-correlated cue-combination schema; same format as Fig 3. Here the correlation coefficient was ρ = 0.5, 531 
though in practice ρ could be any value between 0 (total independence; Fig 6) and 1 (total redundancy; Fig 7). As 532 
a result, there was partial trial-by-trial correlation between internal responses to each (Panel C), and some 533 
increase in over-all sensitivity in the combined condition (Panel B). 534 

A key assumption in the standard (early-noise) linear-summation model, described previously in 535 

§2.3, is that the internal noise associated with each cue is independent. However, this is unlikely to 536 

be strictly correct. Within a population of neurons, correlations exist between the firing patterns of 537 

individual cells79, and voltage signals across the cortex exhibit regular oscillations over time80vi. 538 

How would such correlations affect predicted performance? If all internal noise was correlated 539 

perfectly (Fig 7), then the observer would gain no benefit whatsoever from having access to a 540 

second cuevii. More realistically, internal noise may be partially correlated, with some internal 541 

variability shared between cues, and some internal variability independent across cues (Fig 8). 542 

Mathematically, this can be expressed as follows: 543 

                                                             
vi Conversely, there have been reports that some neighboring cortical neurons appear to behave with statistical 
independence143. Furthermore, it may be that any correlations in part represent a shared global gain factor, which 
could in principle be factored out by an ideal decoder100,144 
vii NB: assuming that external noise levels are negligible. In the real world, and in some psychophysical studies also 
10,145, cues may also be corrupted by external noise (i.e., noise arising from sources extrinsic to the observer, and 
which is therefore common across all observers). If this external noise is independently distributed between cues, 
then having multiple observations of it will confer a benefit in exactly the same way as with two independent 
internal noise sources. 
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( 2.4.1 ) 

where ρ represents the correlation coefficient between the two internal noise sources. Notably, the 544 

ideal weights for such are model are different to those expressed previously in Eq. (2.3.4), and are 545 

given by: 546 

 

( 2.4.2 ) 

The formal proof of Eq (2.4.2) is given elsewhere81. However, it can be understood intuitively as 547 

representing a ‘relative utility’ weighting, in which each cue is weighted proportional to its 548 

reliability, but only after correcting for redundancies between cues. 549 

The effect of correlated noise is typically to reduce sensitivity in the multi-cue condition (e.g., 550 

relative to the ideal, independent, early noise linear-summation model). Specifically, the variance 551 

of the sum of two uncorrelated Gaussian variables is increased by a factor of 1 + ρ. Thus, for 552 

example, when both cues are equally useful, then ideal (uncorrelated) sensitivity in the combined 553 

condition would be √2d', while actual (correlated) sensitivity is: 554 

 
( 2.4.3 ) 

(N.B. when the cues are not equally useful then expected sensitivity values would have to be 555 

computed using Eq 2.4.1.) Equation 2.4.3 implies that a negative correlation between cues (ρ 556 

< 0) would actually cause sensitivity to increase. This is in fact the case, as can be seen in the 557 

simulation presented in Appendix A, and follows from the fact that a noise sample for one cue 558 

would tend to be cancelled out by an opposing/complimentary noise sample in the other. 559 

How to estimate the unknown correlation coefficient, ρ 560 

One suggested technique (Wickens, 2002, pp 184 - 18643) for quantifying ρ is to infer the 561 

degree of correlation from the ratio of observed sensitivity, d'obs, to predicted sensitivity given 562 

uncorrelated internal noise, d'pred: 563 

 

( 2.4.4 ) 

which, solving for ρ, yields: 564 

 

( 2.4.5 ) 

The problem with this approach is that Eq 2.4.4 assumes, implicitly, that correlation between 565 

internal noise sources is the only reason why observed sensitivity (the denominator) deviates from 566 

the optimal prediction (the numerator). In actuality though, observers may also deviate from the 567 

optimal prediction for other reasons: for example, because they are using suboptimal weights, or a 568 

less powerful decision strategy (e.g., 2-look). Without some independent means to rule out these 569 

other explanations, all that can be said based on sensitivity alone is that performance is consistent 570 

with a certain degree of internal noise correlation. However, by inspection of Table I (Column 3), it 571 

may also be consistent with a wide range of other explanations. 572 
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Ultimately, the only robust way to estimate ρ would be to compare the trial-by-trial internal 573 

responses to each cue (Fig 8C). This would be difficult to achieve behaviorally, however, as it 574 

would require observers to make independent judgments of each cue simultaneously. This is 575 

conceptually possible, but we know of no study where this has been attempted, and the obvious 576 

concern is that the two stimuli/judgments would affect each other, either negatively (interference) 577 

or positively (compulsory integration26,82). Any such interaction would be evident by a change in 578 

sensitivity relative to the single-cue conditions, and would cause ρ to be over or under estimated, 579 

respectively. Alternatively, one might try to use neuroimaging to estimate an observer’s internal 580 

responses directly83; however, such techniques are still in their infancy, and have yet to be proven 581 

robust.582 
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§2.5 Linear summation with late noise  (𝑺𝒖𝒎𝒍𝒂𝒕𝒆) 583 

 584 

Fig 9. Linear summation with late noise; same format as Fig 3. In this case all internal noise is assumed to occur 585 
after the point at which the two cues are integrated (Panel A). As a result, the internal responses to each cue are 586 
perfectly correlated (Panel C). However, unlike in the correlated early-noise condition (Fig 7), internal noise is 587 
constant, and does not increase as a function of N cues. Therefore, there sensitivity doubles when two equally-588 
informative cues are optimally combined (Panel B) 589 

Up until this point, we have assumed that all internal noise arises early in the decision-making 590 

process (i.e., before the point at which the internal responses to each sensory cue are integrated). 591 

However, internal noise may also be introduced at a later stage. For example, the circuits that 592 

perform the integration may themselves be subject to random error, or the observer may be 593 

unable to maintain a stable decision criterion84,85, or the measured response of the observer may 594 

itself be stochastic (e.g., in a pointing or reaching task). Thus, Figure 9 shows the opposite 595 

extreme, in which all variability is introduced after the sensory signals have been combined (Late 596 

Noise). The decision strategy for late-noise linear-summation is: 597 

 

( 2.5.1 ) 

It is important to note that the noise in this model, NL, is ‘late’ relative to the point of integration, 598 

not in absolute terms within the neural processing hierarchy. Thus, stochastic variation in one 599 

brain region could potentially be a source of early noise for one pair of cues, but a source of late 600 

noise with respect to another pair of cues (Fig 10). It is therefore not strictly correct to equate 601 

early/late noise with sensory/cognitive noise, although at times it may be convenient to do so (and 602 

in general the two dichotomies are likely to be closely correlated). 603 

 604 
Fig 10. Early versus late noise. The leftmost noise source would be considered early when comparing cues C1 and C2, 605 
but late when comparing cues C1 and C3. 606 

If, as is typically the case in psychophysical paradigms, the amount of external noise is minimal, the 607 

ideal late-noise observer should always weight each cue equally, as each cue provides only signal 608 

(in contrast to the early-noise model, where each cue also contributes additional noise). Ideally, 609 
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the relative weights should therefore all equal 1, and the weight terms, ω, can simply be omitted. 610 

Accordingly, ideal performance is given by: 611 

 
( 2.5.2a ) 

However, an observer may in practice under-weight one or more cues. In that case, the 612 

improvement in sensitivity would be less than the arithmetic sum (< d'1 + 2d'2), and could be 613 

computed explicitly as: 614 

 
( 2.5.2b ) 

It is clear that the potential gains are far larger than with the models discussed previously. Thus, if 615 

all cues are equally informative then ideal sensitivity will increase by a factor of N, versus the √N 616 

predicted by the early-noise linear-summation model (Eq 2.3.3). A minority of authors have 617 

reported cases of factor-of-N improvements40. However, for most tasks the late-noise model is 618 

actually logically implausible in its extreme form. For example, it would imply that there was some 619 

location in the brain where the two stimuli are represented perfectly (i.e., such that they could be 620 

summed together prior to any noise being introduced). Since even the peripheral mechanisms that 621 

encode incoming sensory information act in a stochastic manner86,87, it is difficult to imagine 622 

where in the brain such a noiseless representation could exist. A more realistic scheme is therefore 623 

the hybrid model (Fig 11), in which some noise is early, and some late: 624 

 

( 2.5.3 ) 

 625 
Fig 11. Linear summation with half late noise, and half early noise; same format as Fig 3. The early noise 626 
components are independent across cues, so the internal responses to each are only partially correlated (Panel C; 627 
Cue1 vs. Cue2). The overall increase in sensitivity (Panel B) is an intermediate value, between the lower bound of 628 
the early, independent noise model (Fig 5), and the upper bound of the pure late noise model (Fig 9). 629 

Expected performance in the hybrid model is given by: 630 
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( 2.5.4 ) 

When the two cues are equally useful, the ideal weights will all remain equal to one (as in both the 631 

early- and late-noise models). When one cue is more useful than the other (Fig 2B), the weights 632 

will depend on the ratio of early- to late-noise (see Appendix A). If the late noise dominates, the 633 

ideal weights will all continue to equal (or approximately equal) one, as in the late-noise model. If 634 

the early noise dominates, the weights will be primarily determined by the relative reliability of 635 

the two cues, as in the early-noise model (Eq 2.3.4). In each case, sensitivity will lie somewhere 636 

between the predictions of the early- and late-noise models. For example, consider the case where 637 

signal and noise are equal in magnitude for all cues. If the majority of noise is late, then the benefit 638 

will be large: 639 

 
( 2.5.5a ) 

If the majority of the noise is early, the benefit will be smaller: 640 

 
( 2.5.5b) 

If half the noise is early and half is late, then the benefit will be an intermediate value: 641 

 
( 2.5.5c ) 

Empirical separating early and late noise 642 

Is it possible to determine what proportion of noise is early/late on the basis of sensitivity 643 

alone? In principle, one could attempt to infer the ratio of early-to-late noise by comparing 644 

observed sensitivity to the ideal. For example, if d' equals Eq (2.5.5a) then one might claim 645 

that all noise is late, or if d' equals Eq (2.5.5b) then one might claim that all noise is early. 646 

However, as discussed previously with regards to estimating internal-noise correlation (§2.4), 647 

the difficulty with this inference-from-efficiency approach is that it requires us to assume that 648 

no other factors limit performance. Thus, the level of sensitivity predicted by early noise (Eq 649 

2.5.5a) could also be explained by 100% late noise and suboptimal weights (see Fig 2B, dot-650 

dashed green line), or by a mixture of late noise and correlated early noise. 651 

Instead then, one possible way to disambiguate early and late noise would be to examine how 652 

sensitivity changes with cue asymmetry. Thus, it was noted earlier that multi-cue sensitivity 653 

decreases exponentially as the difference in single-cue sensitivity increases (Fig 2B, red dotted). In 654 

contrast, with late-noise, benefit varies linearly with cue asymmetry (Fig 2B, solid line), and 655 

various admixtures of early/late noise will fall along intermediate isobars (e.g., Fig 2B, black 656 

dashed). These differing predictions could be used in principle to differentiate between relative 657 

quantities of early vs. late noise. We are not aware of any attempts to perform such an analysis, 658 

and most existing datasets would be unsuitable, since experimenters tend to design cues to always 659 

be equally useful (since this is when expected gain is maximized --- see §3.2). Moreover, such a 660 

technique implicitly assumes that the late noise is additive, and does not vary with combined 661 

internal response magnitude; an assumption which is itself open to question. 662 

It is also important to note that the ratio of early-to-late-noise may not be stationary. For example, 663 

it has been well-established that sensory judgements improve with practice (perceptual 664 



Tutorial on cue combination         Page 29 of 
53 

 

learning88,89), suggesting that sensitivity changes over time. This can lead to some interesting 665 

predictions regarding how cue-combination strategies may differ between naïve and well-trained 666 

observers. For example, it has been shown that some of the learnt improvements in sensitivity can 667 

be attributed to reductions in nonstationary bias85, which for present purposes can be considered 668 

a source of late internal noiseviii. Thus, while sensitivity may primarily reflect sensory limitations in 669 

well-trained observers (early noise), naïve observers may be more limited by late noise. Such 670 

considerations lead to the novel, and somewhat counterintuitive prediction, that naïve observers 671 

should gain more benefit from having multiple cues than well-practised observers do (i.e., since 672 

before practice, decisions will be limited partially by late noise, and so sensitivity should increase 673 

by more than the Pythagorean sum of the two cues). In contrast, after practice, sensitivity should 674 

be determined by early noise alone, and so follow Eq (2.3.3). If a greater proportion of internal 675 

noise were ‘late’ in naïve observers, then this would also mean that the ideal weights for a naïve 676 

and a trained observer would differ when the cues are of unequal utility. Thus, in well-practised 677 

observers each cue should be weighted proportional to its reliability (as per the early-noise 678 

model), whereas in naïve observers the weights should tend more towards equality, irrespective of 679 

any asymmetry (as per the late-noise model). This may be an important consideration when 680 

determining whether, for example, observers can learn to optimize their decision weights with 681 

practice75–77 (i.e., since an observer could conceivably change their weights while remaining equally 682 

efficient/inefficient). 683 

Finally, it is worth noting that there is a potential contradiction between the correlated-early-noise 684 

model and the late-noise linear-summation model. The late-noise model predicts that when cues 685 

are similar, the information should be integrated early (i.e., more noise should be late), and so the 686 

benefits of integration should be greater. Conversely, it might be argued that when two cues 687 

activate similar sensory regions, more of the noise should be correlated across cues, and so the 688 

benefits would be smaller. The evidence tends to favor the former viewpoint, with the benefits of 689 

integration being greater when the two cues are more similar. Thus, when the cues are located in 690 

different modalities22,90,91 or spatial locations92, improvements tend to follow the early-noise 691 

predictions (Eq. 2.3.2). In contrast, reported improvements for two visual-depth-cues40, or two 692 

nearby retinal locations92, have tended to be greater, and to follow the late-noise prediction (Eq. 693 

2.5.2b).694 

                                                             
viii NB: response bias ought to be independent of sensitivity, but, as discussed in Ref~[85], the two factors are liable to 

confounded when the bias varies between trials. Furthermore, although bias fundamentally reflects a deterministic 

process, it may still be considered a source of ‘random noise’ for present purposes, so long as it is uncorrelated with the 

task-relevant information. 
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§2.6 Linear summation with multiplicative noise (𝑺𝒖𝒎𝒆𝒂𝒓𝒍𝒚/𝒍𝒂𝒕𝒆
𝒎𝒖𝒍𝒕𝒊 ) 695 

 696 
Fig 12. Linear summation with multiplicative noise; same format as Fig 3. In the example shown here, all internal 697 
noise is assumed to be late (Panel A). Since in this model internal noise magnitude increases as a function of signal 698 
strength, internal noise magnitude is greater in the Signal Present condition (Panel B; solid blue line) than in the 699 
Signal Absent condition (Panel B; dashed black line). This makes da a more appropriate metric of sensitivity than 700 
d'. Furthermore, internal noise magnitude will increase more as N cues increases (Panel B; bottom). As a result, 701 
sensitivity in the compound-cue condition will increase by less than that predicted by the additive late noise 702 
model (Fig 9). In this case, the multiplicative factor is relatively low (γ = 1.19), so the overall increase in sensitivity 703 
is similar to the linear summation model with early, independent noise (Fig 5). If γ were greater, the increase in 704 
sensitivity would be smaller, and could even become negative. 705 

Up until this point, we have assumed that all internal noise is additive. In reality though, internal 706 

noise may be multiplicative (Fig 12), such that the degree of internal variability, , varies with the 707 

magnitude of the internal response, µ. We begin by considering the implications if the additivity 708 

assumption is breached, before considering the evidence for or against it. 709 

The first point to note is that the effect of multiplicative noise depends on whether the internal 710 

noise is early or late. In the Early Noise model, the multiplicative gain is applied before the signals 711 

have been summed; 712 

 

( 2.6.2 ) 

In both the single-cue and combined-cue condition, the strength of the sensory signal (and thus the 713 

amount of multiplication) is identical at the point when internal noise is introduced. The fact that 714 

the noise is multiplicative therefore has no effect on the predicted benefit of integration, which 715 

remains unchanged from the additive early noise model (Eq 2.3.3). The caveat to this, however, is 716 

that d' is no longer a valid measure of sensitivity when internal noise is multiplicative. Thus, recall 717 

that for a single parameter, d', to fully constrain sensitivity, it is necessary to assume that the signal 718 

and noise distributions have equal variance43,93 (see Eq 1.1.3). Equal variance cannot be the case 719 

with multiplicative noise, since, tautologically, the signal magnitude will be greater in the ‘signal’ 720 

condition than in the ‘noise’ condition (γS > γ0). Instead, recalling Eq (1.1.2), sensitivity must 721 

therefore be estimated using the more general sensitivity measure, da: 722 

 

( 2.6.2 ) 

As discussed extensively elsewhere42,43,93, da can be estimated empirically, using the equation: 723 

 

( 2.6.3 ) 

where a and b are, respectively, the intercept and slope of an observed Receiver Operator 724 
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Characteristic42,43,94 (ROC; see Fig 13A). Failure to use the appropriate measure of sensitivity may 725 

lead to spurious variations in apparent sensitivity, depending on where precisely the observer 726 

places their criterion. 727 

Fortunately, however, estimates of da can be used to predict multi-cue performance in exactly the 728 

same manner as with d' (Eq 2.3.2), thus: 729 

 

( 2.6.4 ) 

With da
, ideal weights remain proportional to the sensitivity values of the two cues, as per Eq 730 

(2.3.2). Thus, as with d', the ideal linear-weighted sum of two equally useful cues will cause da to 731 

improve by √2 (41%), and this benefit will diminish exponentially as one cue is made less 732 

informative (Fig 2B). In short then, if the multiplicative noise is early, then the practical method of 733 

computing sensitivity differs from the additive case, but predicted change in sensitivity remains 734 

invariant. 735 

In contrast, if the internal noise is late (§2.5) then the presence multiplicative noise markedly 736 

affects predicted sensitivity in the multi-cue condition. For instance, let the level of multiplication 737 

be represented by the gain constant: γSi (where Si is the average internal response magnitude in 738 

the ith cue). In the late-noise model, this gain is applied after the individual signals have been 739 

summed, thus: 740 

 

( 2.6.2 ) 

This introduces a non-linearity, such that the magnitude of noise in the multi-cue condition may 741 

not equal the sum of noise magnitudes in the single cue conditions:  742 

 

( 2.6.5 ) 

When γ = 1, Eq (2.6.5) reduces to the additive late noise model, and sensitivity in the multi-cue 743 

condition will equal the arithmetic sum of the individual sensitivities (Eq 2.5.2a). When γ < 1, the 744 

integration is supralinear (sensitivity will increase at a rate greater than predicted by the late noise 745 

model). When γ > 1, the integration is sublinear (sensitivity will increase at a rate less than that 746 

predicted by the late noise model). Notably though, even if the gain parameter, γ, were known, the 747 

unobservable DV parameters µ and  would also have to be known in order to predict ideal 748 

performance in a combined-cue model (i.e., rather than the sensitivity ratio µ/, indexed by d'). 749 

In short then, the possibility of multiplicative late noise complicates greatly any attempt to draw 750 

inferences from changes in sensitivity. Any observed sensitivity is consistent with some model in 751 

which the observer’s decisions are limited by a source of internal noise that is multiplicative and 752 

late. This further complicates previous considerations, since now an improvement of less than Nd' 753 

could be caused by multiplicative late noise, as well as by independent early noise, correlated 754 

noise, a poorer decision strategy, or suboptimal decision weights.  755 

Traditionally, however, it has been common to assume that levels of multiplicative noise are 756 

negligibly small. In part, this reflects mathematical convenience. However, there are also empirical 757 

arguments both for and against the presence of multiplicative noise. In favor of multiplicative noise 758 

being present, there is converging evidence from psychophysics11,95,96 and neurophysiology97–101. 759 
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For example, Weber’s lawix is often taken to indicate the presence of a limiting noise source that 760 

increases with stimulus strength. Similarly, single cells are often shown to exhibit Poisson-like 761 

processes, with spike-rate variability increasing as a function of mean firing rate. Prima facie, these 762 

appear good evidence of multiplicative noise in decision-making. However, in the context of cue-763 

combination, the arguments are misleading. Weber’s law is typically observed over large (order of 764 

magnitude) stimulus ranges. In contrast, performance around threshold, which we are principally 765 

interested in, may be approximately, locally linearx. Furthermore, decisions are likely to be driven 766 

by populations of neurons, rather than individual cells. In that case, it follows from the Central 767 

Limit Theorem that the total product of the individual, Poisson-like process will rapidly converge 768 

to a Gaussian as the number of neurons increases4. 769 

In contrast, the evidence that multiplicative noise is of relatively minor concern is more robust. For 770 

example, additivity can be assessed empirically by constructing ROC curves. As shown in Figure 771 

13A, when integration is linear (additive noise), the curve will have unit slope when plotted on 772 

Gaussian-transformed coordinates. In contrast, sublinear and supralinear conditions produce 773 

shallower or greater slopes, respectively. Such curves do not tend to be measured in studies of cue 774 

integration, but have been studied on a range of more basic sensory judgment tasks, where they 775 

tend to have approximately unit slope (albeit with some substantial variation, e.g., 0.5 to 2.0102). 776 

Similarly, the effects of multiplicative noise should also be apparent in psychometric functions103 777 

(Fig 13B). For example, a sublinear process (greater noise in the combined condition) would 778 

result in an asymmetric function with a suppressed asymptote at high stimulus magnitudes 779 

(‘saturation’; purple triangles). This is not typically observed in the types of tasks used in cue-780 

integration studies, again allowing us to discount a substantial source of multiplicative noise. 781 

To summarize, although the evidence is not conclusive, it appears that multiplicative noise is of 782 

relatively minor importance to decision making at a behavioral level. Multiplicative noise is, 783 

however, likely to be present to some extent in all tasks, and may vary in relative magnitude across 784 

tasks. If internal noise is early, then such noise will not affect predicted sensitivity. However, to the 785 

extent that internal noise is late, multiplicative noise may either slightly increase or depress ideal 786 

sensitivity. 787 

 788 
Fig 13. Schematic tests of multiplicative 789 
noise, using (A) ROC analysis, and (B) 790 
Psychometric analysis. When internal noise 791 
is sublinear (purple triangles), internal noise 792 
is proportionally greater at higher stimulus 793 
levels, resulting in a smaller improvement in 794 
sensitivity than in the linear condition (red 795 
square). The supralinear (blue circle) 796 
condition results in the opposite asymmetry 797 
(relatively less noise at higher signal levels).  798 
As detailed elsewhere42,43, an ROC curve 799 

constructed by measuring hit rate and false alarm rates as the criterion, λ (see Fig 1), is systematically shifted 800 
(e.g., by varying the benefit/cost of Hits/Misses). The psychometric function shown here plots proportion of hits, 801 
which is expected to increase monotonically as a function of stimulus magnitude. See body text for details.  802 

                                                             
ix Weber’s law states that the Just Noticeable Difference between two stimuli is proportional to their magnitude 
x One influential experiment by the early proponents of Signal Detection Theory actually appeared to indicate that 
substantial multiplicative noise is present at threshold (see Ref~[146]: “Theoretical and Experimental Analysis of Second 
Choices”). However, as discussed by Solomon (2007)147, the same data can be explained by other models of detection, 
such as an Intrinsic Uncertainty model in which perceptions are dictated by the maximum activity across multiple 
independent cues. 
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§2.7 Superadditivity 803 

 804 
Fig 14. Superadditive cue-combination schema; same format as Fig 3. Some putative mechanism is assumed to 805 
increase the internal response to each cue, when both are observed simultaneously (Panel A). As a result, 806 
sensitivity in the combined condition can increase by more than the sum of the individual cue conditions: d'1+2 > 807 
(d'1 + d'2). 808 

Superadditivity describes a class of decisions rules (Fig 14) in which sensitivity to the combined 809 

stimulus is greater than the arithmetic sum of the individual sensitivities: d'1+2 > (d'1 + d'2). 810 

As with multiplicative noise, superadditivity introduces a nonlinearity into the decision process. 811 

Unlike multiplicative noise, this non-linearity: (i) is generally thought of as being applied to the 812 

signal rather than the noise (i.e., the numerator of Eq 1.1.2), (ii) depends on the presence of both 813 

activity in both cues, and, (iii) by definition, is always superlinear  (‘1 + 1 = 3’). An example 814 

superadditive decision rule is: 815 

 

( 2.7.1 ) 

where β is some putative superadditivity mechanism. Sensitivity in such a model is specified by: 816 

 

( 2.7.2 ) 

This predicts that sensitivity will always increase by a factor greater than the late-noise linear-817 

summation model (> N). 818 

How plausible is superadditivity? The notion of superadditivity is made credible, prima facie, by 819 

studies of physiology. For example, neurons in the Superior Colliculus3,104,105 and Superior 820 

Temporal Sulcus106,107 have been shown to fire more than twice as often when presented with 821 

corresponding information from two modalities (e.g., sight and sound), versus either in isolation. 822 

This has been argued to reflect the linear summation of membrane potentials108 followed by a 823 

static nonlinearity (threshold) in spike generation109. 824 

However, as with multiplicative noise, it may be misleading to draw inferences regarding system-825 

level decision-making from the dynamics of single-cell, and studies at the behavioral level have 826 

seldom reported superadditivity. Moreover, there is doubt over the extent to which, even in 827 

physiology, superadditivity generalizes beyond situations where both inputs are very weak / 828 

subthreshold110. Nonetheless, the possibility of superadditivity cannot be ruled out completely, 829 

and so caution is advised when attempting to infer decision efficiency from observations of 830 

sensitivity alone. For example, based on sensitivity alone, it is impossible to distinguish an early-831 

noise linear-summation observer with ideal weights, from a superadditive observer with 832 
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suboptimal weights.833 
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§2.8 Non-Gaussian noise models (𝑺𝒖𝒎𝒆𝒂𝒓𝒍𝒚/𝒍𝒂𝒕𝒆
𝒏𝒐𝒏−𝒏𝒐𝒓𝒎) 834 

 835 
Fig 15. Non-Gaussian cue-combination schema. Same format as Fig 3. In this arbitrary example, internal noise is 836 
assumed to follow a noncentral t-distribution (an asymmetric distribution with a heavy right tail, which 837 
approximates normality as the shape parameter, v, increases). Due to this asymmetry, the non-parametric ‘Area 838 
Under Curve’ metric is a more appropriate measure of sensitivity than d' (Panel B). 839 

So far, we have relaxed the assumptions of independence, additivity, and linearity. The final 840 

assumption in most models of cue-combination is normality. Thus, while it is common to assume 841 

that internal noise is Gaussian distributed, in principle it may actually take many other forms, such 842 

as the noncentral t-distribution shown in Figure 15B. 843 

What effect do deviations from normality have on expected cue-combination behavior? The 844 

answer is: surprisingly little (see Ref~[81]). In theory, deviations from normality are a substantial 845 

complication. For example, as shown in Figure 16, when the noise is highly asymmetric, 846 

performance in the combined-cue condition ceases to be predicted by the Pythagorean sum of the 847 

individual sensitivities (Eq 2.3.5), and the ideal weights for highly asymmetric noise deviate from 848 

those predicted by the Gaussian early-noise model (Eq 2.3.4). In practice though, the differences 849 

tend to be slight, and tend rapidly towards zero as the amount of skew reduces. 850 

Furthermore, there is good reason to think that a strong departure from normality is unlikely. The 851 

arguments largely recapitulate those against multiplicative noise. In brief, the Central Limit 852 

theorem makes a strong asymmetry theoretically unlikely, and the fact that ROC curves tend to be 853 

linear on Gaussian-transformed coordinates is empirical evidence for normality. 854 

Fig 16. Means of Monte Carlo simulations, showing how sensitivity (top) 855 
and ideal weights (bottom) vary when the skew of the internal noise 856 
distribution is varied, and also as the utility of the second cue (different 857 
colored curves) is varied. Each data point (100 points per curve, per level of 858 
skew) was estimated by mean-averaging over 100 independent simulations, 859 
using 2M trials per simulation (80B trials total). The signal magnitude, µ, of 860 
Cue1 was fixed at 1.0 (i.e., d1' ≈ 1.0, though, as discussed in §2.6, d' is not 861 
technically a valid measure of sensitivity when internal noise is not additive 862 
and Gaussian). For Cue2, µ varied from 0.5—1.0 between curves. The 863 
appropriate non-parametric method of sensitivity is the Area Under the 864 
(ROC) Curve [AUC]. Nonetheless, estimated d' values in the combined 865 
condition were a near miss to the predictions the ideal, additive, Gaussian 866 
model (dashed line, top panel; derived using Eq 2.3.5). Similarly, the ideal 867 
weights (those that maximized d'1+2), approximated the predictions of the 868 
ideal, additive, Gaussian model (dashed line, bottom panel), for all but the 869 
greatest levels of skew. Furthermore, even when differences in ideal 870 
weights appear large, the consequent differences in performance was very 871 
slight (i.e., as indicated in the top panel, comparing observed performance, 872 
to the predictions of the ideal Gaussian model).873 
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§3 Summary and comparisons between models 874 

The question ‘can people combine multiple sensory cues?’ is trivial to answer empirically. If, for 875 

example, sensory judgments are better given sight and sound together than either alone, then 876 

it follows that observers are exploiting both sources of information. However, to quantify how 877 

well the observer is combining the information available, a measure of efficiency must be 878 

derived. This requires some hypothetical benchmark of what ‘ideal’ performance would be, 879 

which in turn requires a model of decision making. In §2, we described a range of such models, 880 

each of which predicts a quantitatively different level of ideal sensitivity.  881 

In some models of decision-making, only a single internal response value is used, and the others 882 

discarded (1-look, max-DV). In others, multiple decisions are made independently, based upon each 883 

individual variable (N-look). Finally, in the most powerful strategies the decision is based on the 884 

linear-weighted sum of N random variables. Exactly how this integration takes place, however, 885 

depends on various properties of the model, such as whether the internal noise is independent for 886 

each cue, whether it combines additively with the signal, whether it occurs early or late, and 887 

whether it is normally distributed. 888 

§3.1 What can and cannot be inferred from observed sensitivity 889 

As has been discussed, some models of cue-combination are more plausible than others. 890 

However, none of them can be ruled out a priori. Based on sensitivity alone, some models make 891 

quantitatively distinct predictions, and so can be delineated empirically (Table I). For example, 892 

a N improvement is consistent with linear summation and superadditive models, but not with 893 

simpler 2-look or max-DV models. However, in many cases multiple models make overlapping 894 

predictions, and this is particularly the case once expected measurement error is taken into 895 

account. Accordingly, when it comes to understanding multi-cue decision making, surprisingly 896 

little can be inferred from changes in sensitivity alone. In general, any observed level of 897 

sensitivity is consistent with a range of possible decision models, and so may be more or less 898 

close to the ideal, to an unknown degree. More specifically: 899 

1. An improvement in sensitivity relative to the best single cue is not proof of linear-weighted 900 

summation. To evidence such a process, performance must not just be better than the best 901 

single cue, but also better than any alternative cue-combination strategies would predict. The 902 

appropriate comparison is therefore not to the individual cues111,112, but to the max-DV and 903 

N-look (probability summation) models26, which predict improvements of up to ~25%. 904 

2. An improvement in sensitivity equal to the predictions of the Early Noise model is neither 905 

necessary or sufficient proof of an optimal decision strategy, unless one assumes (or can 906 

evidence) that internal noise is early, independent, and additive, and that the system is linear. 907 

Without these assumptions, it is not the case that the greatest possible improvement is √N. 908 

Nor is it the case, more generally, that the ideal sensitivity in the combined condition is equal 909 

to the Pythagorean sum of the individual sensitivities. The ideal observer would show a 910 

smaller increase in sensitivity if the noise is correlated or multiplicative (see below), or a 911 

greater increase in sensitivity if the noise is late or superadditive (see Table I). Without 912 

ruling out these other possibilities, one cannot therefore infer whether an observer’s decision 913 

strategy is more or less efficient, or make any claims as to why one observer’s sensitivity 914 

differs from another’s. 915 

3. A √N improvement in sensitivity does not mean that the observer is using N cues to make 916 

their decision. This is the case firstly, because noise may be multiplicative-and-late, or early 917 

and correlated across cues. And secondly, because even assuming independent, additive, 918 

early noise, there are many possible combinations of weights that predict a given level of 919 
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performance (i.e., only a minority of which involve giving zero-weight to any single cue). 920 

Thus, changes in sensitivity cannot reveal the number of cues an observer has used to make 921 

their decision (although, as some authors have noted113,114, sensitivity can be quantified in 922 

terms of the ‘effective’ number of cues that would be required to produce the observed 923 

performance, assuming binary --- 0.0 or 1.0 --- weights) 924 

§3.2 Why multi-cue sensitivity may differ between observers 925 

To summarize then, when presented with two cues, why might observer A exhibit lower 926 

sensitivity than observer B? If the observers have been equated for their individual-cue 927 

sensitivities (e.g., by using a metric of efficiency), then two categories of explanation are 928 

possible. Firstly, observer A may be using a qualitatively poorer strategy to combine the 929 

available information. Secondly, A may be using the same or better strategy to B, but be 930 

implementing it less optimally (e.g., suboptimal weights). Reasons for both of these 931 

eventualities have been discussed throughout the present manuscript. Thus, a less powerful 932 

strategy may be easier to implement, placing fewer demands on memory and attention. While, 933 

in terms of implementation, more complex strategies contain numerous parameters, each of 934 

which may have a level of estimation error associated with it. Accurate parameter estimates 935 

may therefore require a requisite level of skill or practice, and some observers may have a 936 

priori biases that affect their computation or use. 937 

A third alternative is that the two observers do not differ in sensitivity, and that the apparent 938 

difference is a statistical artifact. This may happen for either of two reasons. Firstly, when 939 

assumptions of either normality or additivity are breached, then d' ceases to be an appropriate 940 

measure of sensitivity. This can cause apparent sensitivity to differ spuriously between 941 

tests/observers, depending on where they place their criterion. Such differences would be 942 

eradicated by using an appropriate, non-parametric measure, such as da or AUC. Secondly, as 943 

shown in Table I, the amount of measurement error associated with estimates of sensitive are 944 

non-trivial. This can lead to Type I (false difference reported) or Type II (true difference missed) 945 

errors, either of which can lead to misleading conclusions as to how observers compare in terms of 946 

sensitivity.  947 
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§4 Beyond measures of sensitivity 948 

In the present work, we have assumed that observers are attempting to minimize response 949 

error by combining redundant cues, and have outlined how changes in sensitivity can be used 950 

to evaluate how observers integrate sensory information. In doing so, we have only scratched 951 

the surface of compound-cue decision making. Experimentally, sensitivity is only one of many 952 

possible dependent variables that we wish to measure (see below), and when performing a 953 

psychophysical task, observers may be attempting to optimize parameters other than response 954 

error (e.g., bias21,115 or response time116,117). Furthermore, in the real world observers also 955 

need to consider a range of extraneous factors, such as causation (‘do both cues pertain to the 956 

same common source?’), prior information, and the relative costs/pay-offs associated with 957 

each possible response outcome. A full exposition of all these facets is beyond the scope of the 958 

present work, and interested readers are instead encouraged to consult Ref~[38]. However, in 959 

this final section we highlight two key ways in which our understanding of compound-cue 960 

decision making can be improved by looking beyond measurements of sensitivity alone. 961 

§4.1 Relative weights 962 

In §3.1 we saw that sensitivity alone is a relatively poor indicator of how efficiently an 963 

observer is performing, or of what their underlying decision strategy is. As a result, researchers 964 

interested in human decision-making are increasingly looking to quantify relative decision 965 

weights, ω. These indicate not only how well people are performing a given task, but also how 966 

they are performing it, and can provide additional information with which to disambiguate 967 

between models of decision making (see below). 968 

How to measure relative decision weights 969 

In practice, relative decision weights can be measured by introducing a discrepancy between the 970 

response predicted by each cue, and recording how observers respond (irrespective of whether 971 

the response is correct or incorrect). The discrepancy between cues may be a constant (Cue 972 

Conflict paradigm118), in which case the effect is to laterally shift the psychometric function 973 

leftwards/rightwards in favor of the more weighted cue (Fig 17A). Alternatively, the discrepancy 974 

between cues may be introduced randomly, by adding uncorrelated (external) noise to each cue on 975 

a trial-by-trial basis (Reverse Correlation paradigm64,119–121). In this case, the relative correlation 976 

between the trial-by-trial value of each cue and the observer’s response is used to index weights 977 

(Fig 17B). For example, if a certain cue strongly dictates responses, then the relative correlation 978 

(weight) will be high. Conversely, if a cue is largely ignored, then the relative correlation between 979 

cue-value and observer-response (weight) will be low. The Reverse Correlation approach can be 980 

more easily generalized to more than two cues, and since the expected mean disparity between 981 

each cues is zero, it may discourage observers from modifying their decision strategy due to one 982 

cue being perceived as ‘better’ (less biased)122. 983 

In both the Cue Conflict and Reverse Correlation paradigms described above, relative weights are 984 

computed using data from multiple trials. This provides a measure of the average reliance placed 985 

on each individual cue. However, this does not indicate what weights were used on any specific 986 

trial. In cases where relative weights are not constant across trials, these methods may therefore 987 

provide misleading results. For example, an observer who alternates, trial-by-trial, between giving 988 

full weight to each of two cues (P1 = 0.5; P2 = 0.5), may appear indistinguishable from an observer 989 

who always integrates both cues on every trial, but gives equal weight to each (ω1 = 1.0; ω2 = 1.0). 990 

One way to validate whether weight measures are valid is to reapply them to the original data, and 991 

use them to predict an observer’s trial-by-trial responses (i.e., since predicted and measured 992 

sensitivity would be different – see below). Alternatively, the presence of a nonstationary decision 993 
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strategy can be evidenced by making the response measure continuous, thereby allowing weights 994 

to be estimated within a single trial. For example, if asked to point at the location of a conflicting 995 

flash-beep compound, then the relative weight given to the visual and auditory cues can be 996 

observed directly from a single response. An alternating observer will produce a bimodal 997 

distribution of responses, while the observer who maintains constant weightings will produce a 998 

Gaussian distribution of responses (Fig 17C). 999 

 1000 
Fig 17 Two methods of computing relative decision weights. (A) Cue Conflict Paradigm. To the extent that the 1001 
Point of Subjective Equality [PSE] is shifted laterally towards the Point of Objective Equality [POE] in Cue1, the 1002 
observer can be inferred to be relying upon (giving weight to) Cue1. To the extent that the PSE is shifted towards 1003 
the POE in Cue2, the observer is giving weight to Cue2 (see Appendix D). (B) Reverse Correlation Paradigm. The 1004 
relative magnitude of correlation between the trial-by-trial variations in Cue-level and observer-response, 1005 
indicates the degree to which the observer attends to (weights) that Cue. (C) Continuous Cue Conflict Paradigm. A 1006 
modified version of (A), in which the dependent variable is continuously distributed, allowing weights to be 1007 
inferred from a single trial. If the decision strategy varies across trials, a Gaussian mixture model will be observed. 1008 
If the decision strategy is constant, then a Gaussian distribution will be observed, with a standard deviation 1009 
determined by the observer’s sensitivity (as per the slope of the green dashed curve in A). 1010 

Why measure relative weights 1011 

Irrespective of precisely how they are measured, relative weight coefficients may be of interest for 1012 

two main reasons. The first is that, when used in combination with sensitivity measurements, they 1013 

can help to constrain the number of possible decision models. Thus, while many models may 1014 

predict observed sensitivity given some combination of cues (see Table I), generally only a small 1015 

subset of models are consistent with both a particular level of sensitivity, d', and a particular set of 1016 

relative weights, ω (Fig 18). Therefore, by independently measuring both d' and ω, the underlying 1017 

decision model (and thus efficiency) can be inferred empirically, without the need to make a series 1018 

of debatable assumptions. 1019 

Unfortunately, while this approach is elegant in principle, there is a practical difficulty. Namely, the 1020 

amount of measurement error typically associated with estimates of both d' and ω means that 1021 

their union may fail to adequately constrain the range of possible models (Fig 18). Thus, without 1022 

uncommonly precise measures of d' and ω, it remains impossible to say with certainty precisely 1023 

which model underlies performance, and therefore whether a given level of sensitivity was more 1024 

or less close to ideal. Researchers looking to ensure that they have sufficient data to distinguish 1025 

between rival hypotheses are encouraged to inspect the sampling distributions of d' given in 1026 

Appendix B.  1027 

Furthermore, the potential for an experiment to be underpowered increases as expected benefit 1028 

decreases --- e.g., either because cues are sub-optimally weighted (Fig 18B), or because the 1029 

observer is relative insensitive to the second cue (Fig 18C; see also Fig 2). In either case, the 1030 

difference in predicted sensitivity is further diminished between models. In this light, it is perhaps 1031 

unsurprising that so many studies have found humans to act consistent with a ‘Bayesian (early-1032 

noise) ideal observer’22–28, as with only two cues it would require an acutely poor strategy, or an 1033 
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uncommonly small degree of measurement error, to prove otherwise. 1034 

These practical difficulties can be attenuated by increasing the number of trials used to make each 1035 

estimate, or by averaging estimates to reduce sampling error. However, caution is required in each 1036 

case. Long trial sequences can introduce learning effects123, while if averaging across observers 1037 

there is a danger that qualitative differences in decision strategy (e.g., ωA = {0 1} vs. ωA = {1 0}) 1038 

may alias to produce an unrepresentative mean. Alternatively, effect sizes can be increased by 1039 

increasing the number of cues, in which case the expected differences in sensitivity (between 1040 

models) will increase independent of measurement error. However, as discussed previously in 1041 

§2.3 there is no guarantee that an observer will necessarily rely on the same qualitatively decision 1042 

strategy when cues are few versus many. 1043 

 1044 
Fig 18. Observed (horizontal dashed line) and predicted (markers) sensitivity given various cue-combination 1045 
models (X Axis). Panels show three example combinations of single-cue sensitivities and weights. Amber and 1046 
green markers indicate model predictions that would not be expected to differ significantly from observed 1047 
sensitivity (i.e., and which therefore cannot be discounted). For the sake of example, observed sensitivity 1048 
(horizontal dashed line) was computed using the Sumearly model (§2.3). The value shown represents the mean 1049 
expected d' value, averaged across 20,000 independent simulations. In each simulation, a raw d' value was 1050 
computed by fitting a psychometric function to 600 simulated trials (see Appendix D). The shaded grey region 1051 
shows the 95% Confidence Interval of the mean (CI95% = 1.96 x 1 SD of the N=20,000 sample distribution). To 1052 
compute the various model predictions (colored markers) analogous simulations were also run for each single cue 1053 
condition (to derive estimates of d'1 and d'2), and for a two-cue conflict-condition (to derive estimates of ω1 and 1054 
ω2). The CI95% error bars for the markers therefore incorporate measurement error from each of these three 1055 
conditions. 1056 

The second reason why weight measurements may be of interest is because they often constitute a 1057 

more direct measurement of what we have been so far trying to infer indirectly through estimates 1058 

of sensitivity. Thus, it is often assumed (perhaps not always correctly) that the limiting factor in 1059 

decision-making, and the only component of the decision process that observers have any control 1060 

over, is the relative weight given to each cue. That being the case, the question of “how efficient is 1061 

an observer’s decision-process?’ reduces to ‘how appropriately does the observer weigh each cue?’ 1062 

However, when quantifying weight efficiency, one soon encounters the same difficulty as with 1063 

sensitivity (§3). Namely, that knowledge of the underlying model is necessary in order to establish 1064 

what the appropriate (ideal) weights are in the first place. Thus, for example, it is not the case that 1065 

“optimally, weights are chosen to be proportional to the reliability of a given signal”49, unless one 1066 

assumes that the internal noise is early, independent, and additive, and that summation is linear. 1067 

To the extent that the noise is late, both cues should always be given equal weight. To the extent 1068 



Tutorial on cue combination         Page 41 of 
53 

 

that the noise is correlated or multiplicativexi, the ideal weights will vary in more complex ways. As 1069 

discussed, some of these assumptions are more likely to be valid than others. Notably, deviations 1070 

from normality will not tend to substantially affect the optimal weightings, though may affect the 1071 

taking of measurements on a practical level121. 1072 

In principle then, neither measurements of d' or ω alone are sufficient to estimate an observer’s 1073 

efficiency. Both are required to constrain the underlying model of decision making, and neither are 1074 

intelligible without knowledge of the underlying model. There are, however, two exceptions. The 1075 

first is when all cues are equally useful. In that case almost all decision strategies predict equal 1076 

weights, so there is no need to commit to any specific model. The second occurs when external 1077 

noise is introduced to the stimuli by the experimenter. Such noise is generally assumed to be 1078 

exclusively early in effectxii, can be specified as being independent and Gaussian, and when it is 1079 

great enough in magnitude will swamp the decision-process, making any internal noise negligible. 1080 

Given these assumptions, the ideal weights are guaranteed to be those predicted by the early-noise 1081 

model (i.e., directly proportional to reliability, Eq 2.3.4), and so the efficiency of the weights can be 1082 

meaningfully considered independent of observed sensitivity. 1083 

§4.2 Response Times 1084 

Throughout the present paper, we have assumed that the observer’s goal is always to minimize 1085 

response error. However, observers may also wish to optimize other properties of the decision 1086 

making process, such as response time. A reduction in response time may thus constitute an 1087 

entirely separate reason to attend to a second cue, and a second cue may thereby confer benefit 1088 

even when accuracy/sensitivity in the single-cue conditions is near ceiling. 1089 

Many authors have used response time data to make inferences regarding compound-signal 1090 

decision making116,117,124–126, and a full exposition of this literature is beyond the scope of the 1091 

present work. However, it is worth noting that many commonalities exist between the approaches 1092 

used to study response times, and the models of sensitivity in Section §2. 1093 

In brief, classic response-time theory posits that noisy sensory data is accumulated over time until 1094 

a criterion is reached (a ‘drift-diffusion’ process127), at which point a decision is made. Given this 1095 

framework, authors typically advance three alternative hypotheses, illustrated in Fig 19, for how 1096 

observers respond to two cues: 1097 

1. The observer responds based upon a single cue only. In this case, response times will be 1098 

no quicker than response times in the faster single cue condition. This is equivalent to 1099 

the 1-look model for response-accuracy presented in §2.1. 1100 

2. The observer responds based upon whichever random walk reaches threshold first. In 1101 

this case, response times will, by chance, tend to be faster than in either single-cue 1102 

condition, but should never exceed the sum of both (Miller’s Bound; Fig 19, black line). 1103 

This represents probability summation of response times, and is equivalent to the 2-1104 

look accuracy model presented in §2.2. 1105 

3. Evidence from both cues ‘coactivate’ some central decision-making process (i.e., 1106 

evidence from both is accumulated together within a single random walk). In this case, 1107 

                                                             
xi or, more generally, to the extent that the system is non-linear through superadditivity, or in some other way 
xii This assumption is not necessarily correct, however. For example, it is possible to imagine a situation in which adding 
random jitter to the sensory inputs causes observers to also vary their ability to integrate information or maintain a 
stable criterion, for example due to simple confusion or perceptual load. Evidence against strategy changes can be 
found in Pelli (1990)148. Evidence for strategy changes (for some, but not all types of noise) can be found in works by 
Allard and colleagues149–151. 
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response times in the two-cue condition may reduce by more than the sum of the single-1108 

cue conditions. (Typically, no parametric predictions are made, though are possible if 1109 

assumptions are made regarding the underlying error distribution and sampling rate.) 1110 

In its non-parametric form, this hypothesis is a superset of all the models presented in 1111 

§2.3 onwards.  1112 
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Fig 19. Example response-time analysis. Markers show simulated single-cue 1113 
performance (squares, circles), and two-cue performance (triangles). 1114 
Shaded regions show predicted two-cue performance for three models of 1115 
decision making. The solid black line represents Miller’s Bound (or: ‘the 1116 
Race Model Bound’), which is defined as the sum of the two single-cue 1117 
cumulative probability density functions (for details, see Refs~[128,129]). 1118 
Miller’s Bound constitutes a nonparametric model of the greatest 1119 
improvement over single-cue performance that could be achieved if each 1120 
cue were processed independently (i.e., were combined through probability 1121 
summation alone). In the data shown here, the simulated observer’s 1122 
response times in the compound condition (triangles) exceeded Miller’s 1123 
Bound, so are consistent with coactivation. 1124 

In short, decision-models of response times have typically attempted to address the same basic 1125 

questions as decision-models of sensitivity, and many studies of response times neatly parallel 1126 

those of sensitivity (see, for example, Ref~[26] for a study of sensitivity that explicitly attempts to 1127 

disambiguate between the three hypotheses shown graphically in Figure 19). In doing so, studies 1128 

of response times also suffer from the same theoretical caveats (e.g., failure to exceed Miller’s 1129 

Bound does not rule out more powerful ‘coactivation’ models, unless one assumes independent 1130 

noise and unlimited processing capacity), as well as many of the same practical limitations (e.g., 1131 

relatively small differences in effect size between models). As a dependent measure, response 1132 

times are also complicated by their relative volatility. Thus, researchers often find it necessary to 1133 

exclude as outliers empirical estimates below and/or above an arbitrary threshold. Such trimming 1134 

can in turn introduce non-trivial artefacts into the data, which, if not corrected for, can lead to 1135 

fallacious conclusions130. For practical reasons, many authors therefore to prefer measures of 1136 

sensitivity over response times. 1137 

Recently, however, there has been interest in response time data, for two, related reasons. Firstly, 1138 

because many sensory decisions intuitively represent a trade-off between speed and accuracy. This 1139 

is most obviously the case in situations where the stimulus duration is under the participant’s 1140 

control, but trade-offs may even occur with brief stimulus presentations, given that evidence 1141 

continues to be accumulated even after the physical input is removed (e.g., as evidenced by 1142 

physiological recordings131, and by backward masking132). Thus, an observer may choose to spend 1143 

less time gathering evidence at the cost of decreased accuracy, or may deliberate longer to improve 1144 

accuracy. A number of models have been proposed to account for speed/accuracy trade-off (see 1145 

Refs~[133–135]), and these can, for example, reveal highly efficient decision-process even in 1146 

situations where response accuracy in the multi-cue condition did not improve significantly135. 1147 

Secondly, response times may be of interest because they can provide additional information to 1148 

complement sensitivity metrics. Thus, a recurring conclusion of the present work is that it can be 1149 

remarkably difficult to distinguish between competing models of decision making, based on 1150 

accuracy alone  (e.g., see final column of Table I). Often, however, differences in accuracy are 1151 

comorbid with differences in response time. For example, age-related sensory decline is 1152 

characterized by both slower and less accurate responses. Combining both response times and 1153 

accuracy into a single unified measure – such as in the non-parametric ‘integration coefficient’ 1154 

proposed by Townsend and Altieri (2012)136,137 – might therefore provide a more sensitive test of 1155 

cue-combination ability. Currently, however, the data are lacking to conclusively validate such a 1156 

compound measure. 1157 
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Appendix A: Simulated sensitivity given various cue combination strategies 1450 

Listings 1-3 provide MATLAB code for simulating the various cue-combination strategies 1451 

described in the present paper. In each case, observed performance is computed (as per with a 1452 

human observer), and compared to predicted sensitivity given single-cue performance. Relative 1453 

weights are set to their ideal values for each strategy, and, when making predictions, knowledge of 1454 

other key parameters (e.g., amount of multiplicative gain) is assumed, as specified. Listing 4 shows 1455 

an example output. 1456 

***Listings 1—4 found a separate file: listings_all.pdf *** 1457 

1458 
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Appendix B: Sample error in empirical estimates of d' 1459 

Monte Carlo simulations were used to estimate sampling distributions for different values of d', 1460 

given varying numbers of trials (Fig S1A), or varying numbers of 50 trials ‘blocks’ (Fig S1B). The 1461 

simulated observer was an ideal SDT observer with additive Gaussian noise, the standard 1462 

deviations of which was manipulated to determine true sensitivity. 1463 

With small numbers of trials, estimates of d' were highly variable and tended, on average, to be 1464 

overestimated (Fig S1A, solid lines). Expected estimates of d' became unbiased after 1465 

approximately 100 trials (see also ref [99]138). Sampling error also decreases exponentially with 1466 

small numbers of trials, such that, for example, it would require approximately 150 trials to 1467 

distinguish a d' of 1.41 from a d' of 1.00, on 95% of occasions (red vertical dashed lines; i.e., perfect 1468 

early-noise integration). It follows that when averaging across multiple blocks of 50 trials (Fig 1469 

S1B), mean d' tends to be overestimated. However, this bias is relatively slight, and approximately 1470 

150 trials (3 blocks of 50 trials) was again sufficient to distinguish a d' of 1.41 from a d' of 1.00, on 1471 

95% of occasions. 1472 

Note, however, that these idealized simulations are a profound simplification. For example, Fig S1C 1473 

shows data analogous to Fig S1A, when a lapse rate of 5% was further introduced to simulate 1474 

observers blinking, coughing, or otherwise becoming distracted on a small proportion of trials (i.e., 1475 

the simulated observer responded randomly with a probability of 5%). The result is that d' tended 1476 

to be underestimated, such that, for example, almost 300 trials were required to reliably 1477 

distinguish a d' of 1.41 from a d' of 1.00. Additional complications such as response bias and 1478 

nonstationary variations in inattentiveness139 may add further noise/inaccuracy to empirical 1479 

measurements of sensitivity, and may mean that even more trials are required to differentiate 1480 

models. 1481 
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Fig S1. The sampling distribution of d', as a function of (A) Number of trials within a single observer 1482 
(half signal, half noise), (B) Number of observers performing 50 trials each (mean-averaged), (C) 1483 
Number of trials within a single observer (as per A), but with a simulated lapse rate of 5%. Solid lines 1484 
and shaded regions show the mean estimate of d' and the 95% CI (µ ± 1.96 x 1 SD), computed from 1485 
10,000 Monte Carlo simulations. True sensitivity increases left-to-right across panels, and is given 1486 
graphically by the horizontal dashed lines, and numerically in the bottom-right of each panel. The true 1487 
value from the d' = 1 condition has been extended rightwards across all panels to indicate when 1488 
estimated sensitivity would be expected to differ significantly from 1 in 95% of experiments.1489 
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Appendix C: Algorithmic pseudocode 1490 

Listing 5 shows example pseudocode for how a 1-look, 2-look, or early-noise integration strategy 1491 

would be implemented. Note that the 1-look and 2-look strategies are markedly less taxing, 1492 

computationally. For further discussion, see §2.3. 1493 

***Listing 5 found a separate file: listings_all.pdf ***1494 
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Appendix D: Psychometric simulations 1495 

Listing 6 shows how the sensitivity estimates in Fig 18 were computed. 1496 

***Listing 6 found a separate file: listings_all.pdf *** 1497 


