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Abstract— In air traffic management and control, movement data 

describing actual and planned flights are used for planning, 

monitoring and post-operation analysis purposes with the goal of 

increased efficient utilization of air space capacities (in terms of delay 

reduction or flight efficiency), without compromising the safety of 

passengers and cargo, nor timeliness of flights.  

From flight data, it is possible to extract valuable information 

concerning preferences and decision making of airlines (e.g. route 

choice) and air traffic managers and controllers (e.g. flight re-routing 

or optimizing flight times), features whose understanding is intended 

as a key driver for bringing operational performance benefits. 

In this paper, we propose a suite of visual analytics techniques for 

supporting assessment of flight data quality and data analysis 

workflows centred on revealing decision making preferences. 

Keywords-visual analytics, trajectory analysis, route choice 

I.  INTRODUCTION 

Aviation is a complex domain with a variety of different 

stakeholders such as airlines, airports, air traffic management 

services and of course, passengers. The different stakeholders 

have different preferences and, sometimes, conflicting interests. 

Understanding the driving factors of their decision making is 

essential for sustainable functioning of the overall system and 

resolving potential conflicts of interest. This knowledge is an 

enabler to enhanced predictability as key driver for improved 

operational performance, and also contributes to pave the way 

towards collaborative, performance-driven pre-tactical planning 

aiming for global optimum, which reconciles the stakeholders’ 

individual goals.  

Air traffic data contain latent information that can enable 

understanding of how the system works and uncovering decision 

making preferences. Visual analytics proved to be an 

appropriate instrument for supporting spatial decision making 

[1] and analysis of spatio-temporal [2] and movement data [3]. 

Visual analytics combines human and computational data 

processing through interactive visual interfaces, enabling 

understanding of large and complex data, sophisticated data 

analysis procedures, and informed decision making. 

Flight data are collected by different agencies and vary in 

quality and resolution. Before trying to do any analysis, the 

quality of the data must be investigated. Purely computational 

methods often fail in detection of data problems due to high 

complexity of the data, while purely visual approaches are not 

able to handle huge amounts of data. Therefore, visual analytics 

approaches can be more suitable for this problem. 

In this paper, we propose visual analytics techniques and 

workflows supporting, first, assessment of flight data quality 

and, second, data analysis aiming at revealing decision 

preferences of two types of stakeholders, airlines and air traffic 

management authorities. We study several typical decision 

making scenarios. Unlike prior publications [4][5][6], which 

were focused on description of data analysis methods, this paper 

focuses on application of the methods. 

 

II. RELATED WORD 

A. Visual data for spatial decision support and trajectory 

data analysis. 

Defined as the science of analytical reasoning facilitated by 

interactive visual interfaces [7], visual analytics tools are 

typically understood as technology products that can synthesize 

information from complex and dynamic data and in ways that 

directly support assessment, planning, and decision making in 

real-world settings from a wide range of application domains 

[8,9]. With regard to spatial decision making specifically, a 

number of recent advances highlight the utility of VA 

approaches and associated tools for decision making and 

tradeoff under uncertainty [10,11]. A particularly active sub-

field of geo-spatial VA focusses on the analysis of movement 

data [1][12], with approaches ranging from trajectory-focussed 

analysis [3][4][5] to the capture and analysis of overall mobility 

patterns [13,14], trajectory interactions [15], and associated 
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decision making processes [5,6,16] in complex transportation 

systems. 

 

B. Visual analytics for air traffic tasks 

Currently deployed and perspective software tools in the 

domain of air traffic management (ATM) support relatively 

simple queries and include rudimentary visualizations, such as 

maps showing individual movements and time histograms with 

aggregated flight data [17]. Nonetheless, a number of more 

advanced approaches have been proposed for various specific 

problems in air traffic analysis by visual analytics researches 

over recent years. Methods for detection of holding loops, 

missed approaches, and other aviation-specific patterns were 

implemented in a system integrating a moving object database 

with a visual analytics environment [18]. Albrecht et al. [19] 

calculate air traffic density and, considering aircraft separation 

constraints, assess the conflict probability and potentially 

underutilized air space. The traffic density and conflict 

probability are aggregated over different time scales to extract 

fluctuations and periodic air traffic patterns. Hurter et al. [20] 

propose a procedure for wind parameter extraction from the 

statistics of the speeds of planes that pass the same area at similar 

flight levels in different directions. Buchmüller et al. [21] 

describe techniques for studying the dynamics of landings at 

Zurich airport with the goal to detect cases of violating the rules 

that prohibit night-time landings from the north, which produce 

strong noise in populated regions. The detected violations can be 

examined in relation to weather conditions and air traffic 

intensity. Sophisticated domain-specific analyses can be done by 

applying clustering to interactively selected relevant parts of 

trajectories [5,6]. 

Despite these advances, there remain many analysis 

problems that have not yet been addressed in visual analytics 

research. Due to the complexity and various specifics of the 

aviation domain, it is important to do research in collaboration 

with domain experts [5, 17].  

III. VALIDATING TRAJECTORY DATA QUALITY 

Paper [4] considers a typology of problematic aspects of 

trajectory data quality and proposes visual analytics approaches 

to identify and, whenever possible, fix them. The key ideas of 

the approach are: 

1. Consider the data structure. As trajectory data consist of 

flight identities, time stamps, positions and derived 

attributes such as calculated distances and speeds, it is 

necessary to address problems that may occur in each 

component of the data and in their combinations. 

2. Support data transformations. The paper considers a full 

spectrum of potentially possible transformations 

between different types of spatio-temporal data such as 

events, trajectories, spatial time series, and spatial 

situations. 

3. Take into account different types of problems: missing 

data, inconsistent sampling rates, precision errors, 

occasional and systematic errors in the data.  

In the following subsections we shall illustrate some of such 

problems on examples of real data sets that we had access to in 

several projects. 

A. Missing data, partial spatio-temporal data coverage  

In some cases, identification of missing data can be 

performed through purely visual inspection. For example, 

Figure 1 demonstrates spatial coverage of one of data sets. 

Flights are drawn in a semi-transparent way. Respectively, 

darker colours reflect higher density of the flights. Some regions 

where we expect flights to be frequent appear as completely 

empty on the map. In other regions, the density of flights is lower 

than in neighbouring areas. Similar analysis in respect to time 

can be performed by inspecting time histograms with flight 

counts. Spatio-temporal omissions can be identified on a series 

of maps for different periods and/or on maps with localized 

temporal aggregates of trajectories presented by diagrams.  

 

Figure 1.  An example of problems with spatial coverage 

 

Figure 2.  Variability of sampling rates in trajectories 

 

Figure 3.  Duplicate flight identifiers 



More sophisticated methods take into account historical 

density of flights for different days of weeks and times in 

different regions. After aggregating data over space and time and 

building dependency models, it is possible to identify cases 

when a number of flights in a data set substantially deviates from 

expected values for the given location and time interval. Such 

cases need to be inspected visually for checking if they represent 

real events that affected the traffic volume, occasional or 

systematic omissions in the data. 

Many trajectory analysis methods assume that temporal 

resolution of position records is constant. Very often data sets do 

not comply to this requirement. Figure 2 presents an example of 

a data set that was composed from 3 different data sets with 

typical sampling rates of 15, 30 and 60 seconds, respectively. 

B. Duplicate identities 

Opposite to missing data, sometimes trajectory data sets 

contain duplicate records. This happens, for example, when files 

contain daily portions of the data extended by positions of flights 

that started before midnight but ended after the midnight. If a 

data base is assembled from such flights, it will contain many 

records with repeating combinations of flight identifier, time 

stamp, position and additional attributes. Such cases are easy to 

identify and fix by database queries. 

A more complex situation happens when trajectories in 

different subsets of data have different sampling rates and/or 

different time offset. In such cases only a subset of all position 

records repeats, making detection and fixing more challenging. 

Sometimes it happens that two or more trajectories have the 

same identifier by very different positions at the same time 

interval. Connecting consecutive points of such trajectories 

result in a zigzag or more complex shapes, see example in Figure 

3. Such problems occur in flight trajectories data due to errors in 

manually entered data such as flight call signs. Identification and 

correction of such cases require computational processing for 

detecting candidate errors, visual inspection for understanding if 

errors are occasional or systematic and revealing the logic of the 

errors, and then computational methods for fixing the errors. 

Similar zigzag patterns appear if data are integrated from 

multiple sources such as different radars. Paper [22] proposes an 

algorithm for identifying and fixing such problems. 

IV. UNDERSTANDING DECISION MAKING 

We describe three case studies, reflecting various operational 

environments and problems where decision policies are 

unknown a priori, and therefore can neither be predicted nor 

considered for planning purposes. This variety of scenarios 

illustrates the potential of these techniques.  

In two of these cases we applied clustering of flight 

trajectories based on geometric similarity of the routes. The 

general approach is to use a density-based clustering algorithm 

with a special distance function that matches corresponding 

points and segments of trajectories according to their spatial 

proximity. The specifics of the case studies we undertook was 

that not all parts of trajectories might be relevant to the analysis 

goals. Thus, in studying route choices, the initial and final parts 

of trajectories were irrelevant because these parts depend on the 

wind direction and not subject to choice by airlines. In studying 

the separation scheme of the approach routes to multiple airports 

of London, we needed to disregard the holding loops as 

inessential parts of the routes. To be able to apply clustering only 

to task-relevant parts of trajectories, we adapted the distance 

function so that it could account for results of interactive filtering 

of trajectory segments. The method is described in detail 

elsewhere [5].  

A. Revealing route choice criteria 

In this study, we wish to reveal the criteria used by airlines 

in choosing particular flight routes from many possible routes 

connecting a given origin-destination pair. This translates to a 

significant improvement in terms of predictability at pre-tactical 

phase (in particular for routes near local airspace boundaries, for 

which subtle route changes might imply the appearance or 

disappearance of hotspots), among other potential applications. 

As a representative example, we consider the flights from Paris 

to Istanbul. This example provides rich information for the 

study: there are many flights conducted by multiple airlines, 

which take diverse routes crossing the air spaces of different 

European countries whose navigation charges greatly vary. 

Some airlines may prefer such flight routes that minimize the 

navigation costs by avoiding expensive airspaces or travelling 

shorter distances across such airspaces. One of the questions in 

the study was to check if indeed some airlines are likely to have 

such preferences. 

We apply our analysis to trajectories constructed from flight 

plans, because the route choices are made at the stage of 

planning. We use the plans of 1,717 flights performed during 5 

months from January to May, 2016. Additionally, we use a 

dataset specifying the boundaries of the navigation charging 

zones in Europe and the unit rate in each.  The map background 

in Fig. 4 represents the navigation rates by proportional darkness 

of shading. The labels show the exact values, in eurocents per 

mile. On top of this background, coloured lines represent the 

result of clustering of the trajectories by route similarity 

excluding the initial and final parts. On the bottom left, the area 

around Paris is enlarged; the initial parts of the trajectories are 

 

Figure 4.  Trajectories according to flight plans have been clustered by route 

similarity to reveal the major fligh routes from Paris to Istanbul. The initial 

and final parts of the trajectories, which are represented by dashed lines, were 
disregarded in the clustering. 



shown in dashed lines. The lines are coloured according to their 

cluster membership. Through clustering, we have revealed 9 

major routes. The most frequent was route 1 shown in red; it was 

used 1,031 times, i.e., in 60% of the flights. Route 2 (green) was 

used 217 times (12.6% flights), and the others were much less 

frequent. 

It can be observed that the green route goes through cheaper 

airspaces than the other routes. This is the “cheapest” route 

among all, with the total navigation cost ranging from 434.9 to 

492.8 euro, with the median 459.4 euro. The most popular route 

1 costs from 472.2 to 547.3 euros, with the median 515.6 euros. 

Route 2 is the longest among all, except route 9 (yellow) that 

was taken only 11 times; however, the difference from route 1 is 

not dramatic, only about 12 km. 

The graph in Fig. 5 shows how many times each of the 6 

major flight operators (airlines) conducting flights from Paris to 

Istanbul chose each of the routes. The operators are labelled 

FOP1 to FOP6. It can be seen that FOP4 used only the cheapest 

route 2. This route was also occasionally used by FOP1, who 

conducted the largest number of flights (41.9% of all) but not by 

any other airline. Possibly, this route has disadvantages that 

overweigh the navigation cost saving. Apart from the path length 

difference, which is not very large, it may be lower flight levels 

or frequent deviations from the flight plans. Indeed, the flight 

levels on route 2 are lower than on route 1 by about 6 levels on 

the average and the difference between the third quartiles is 20. 

We have also calculated the deviations of the actual flights from 

the planned routes (i.e., the distances between the corresponding 

points in the planned and actual trajectories) and found that they 

are higher on route 2 than on route 1 by about 0.8 km on the 

average while the third quartiles differ by 3.2 km. Route 2 may 

also have other disadvantages that are not detectable from the 

available flight data. 

Hence, we see that the navigation costs is not the main route 

choice criterion for most airlines, but it has high importance for 

some airlines. 

Further details on analysis and modelling route choice 

preferences can be found in paper [23]. 

B. Exploring separation of airport approach routes 

This case study was conducted using 5,045 trajectories of 

actual flights that arrived at 5 different airports of London during 

4 days from December 1 to December 4, 2016. The goals were, 

first, to reconstruct the major approach routes, second, to 

determine which of them may be used simultaneously and, third, 

to study how the routes that can be used simultaneously are 

separated in the three-dimensional airspace, i.e., horizontally 

and vertically. Application of this analysis to TMA again allows 

the understanding of decision making policies allowing their 

modelling for further application.  

 

Figure 5.  Route choices by 6 major flight operators labelled FOP1 to FOP6. 
The length of each coloured bar represents the frequency of using the 

corresponding route by the flight operator specified in the respective row of 

the graph. The topmost row corresponds to all operators in total.. 

 

Figure 6.  Holding loops in the trajectories of the flights arriving to London 

are marked in red. 

 

 
Figure 7.  The routes that were used on the first day till 18:25 (top) and on 

the following days after the wind change (bottom). 



Like in the previous case study, we used clustering of 

trajectories by route similarity to identify the major approach 

routes. A problem we had to deal with was the presence of 

holding loops in many trajectories (Fig. 6). It was necessary to 

filter the loops out so that they could not affect the clustering. 

We have found a combination of query conditions involving 

derived attributes of trajectory segments, such as sum of turns 

during 5 minutes, which allowed us to separate the loops from 

the main paths and filter them out [5]. 

By means of clustering, we have identified 34 distinct routes, 

16 of which were used only on the first day out of four. A major 

change in the use of the routes happened at about 10AM on the 

second day, when the east-west component of the wind direction 

changed from the western to the eastern. This refers to all 

airports except Stansted, where the approach routes changed on 

the first day at about 18:25 in response to a change of the north-

south component of the wind. This was due to the northeast-

southwest orientation of the runway in Stansted while the other 

airports have the east-west orientation. 

Knowing when each route was used, we could investigate 

the groups of the routes that were used simultaneously. Figure 7 

shows the routes that were used on the first day till 18:25 (top) 

and the routes that were used after 10:00 on the second day, i.e., 

after the wind change. Using the 3D representation of the 

trajectories, we observe that the routes coming to the same 

airport from different sides join in their final parts. 

Some routes going to different airports intersect or overlap 

on the 2D map. To investigate whether they are separated 

vertically, we repeatedly applied a spatial filter for selecting 

various groups of intersecting and overlapping routes. An 

example is shown in Fig. 8. The filter (Fig. 8, top) selects two 

partly overlapping routes ending at Luton and Stansted (pink and 

orange, respectively) that apparently intersect two routes ending 

at Heathrow. In a 3D view (Fig. 8, bottom), we see that the 

former two routes overlap also in the vertical dimension but 

there is no intersection with the routes to Heathrow due to 

differences in the flight levels. Our interactive investigation 

shows that it is a general pattern: where segments of different 

routes overlap in the horizontal dimension, their altitude ranges 

overlap as well, and routes intersecting in 2D are separated 

vertically. Hence, relevance-aware clustering of trajectories and 

interactive exploration with the use of temporal and spatial 

filters and a combination of a geographic map and a 3D view 

helped us to understand how air traffic services organise and 

 

 
Figure 9.  Investigation of the route separation. 

 

 
Figure 8.  Top: A state transition graph shows changes of airspace 

configurations in one region during a month. Bottom: The configurations are 
represented by differently coloured bar segments in a periodic time view. The 

rows correspond to time intervals of one week length. 



manage a huge number of flights following diverse routes within 

a small densely packed air space. 

C. Understanding airspace configuration choices 

A sector configuration is a particular division of an airspace 

region into sectors, such that each sector is managed by a 

specific number of air traffic controllers (typically two, 

Executive and Planning Controllers). The number of active 

sectors depends, on the one hand, on the expected traffic features 

(such as number of flights within a time interval and their 

associated complexity/workload given the traffic complexity) 

and, on the other hand, on the available number of controllers 

for that given shift (which depends on the strategical demand 

forecast, which diverges from actual flights for a set of reason).  

On the other hand, often there are multiple ways to divide a 

region into a given number of sectors. The choice of a particular 

division depends on the flight routes within the region.  

Sector configurations schedule is continuously refined as 

getting closer to operation, when the available flight plan 

information is progressively refined. The flight plan information 

available the day before operation, while is sure to change in 

tactical phase, already allows to prepare a schedule of sector 

configurations for the next shifts. 

Ideally, configurations should be chosen so that the demand 

for the use of the airspace in each sector does not exceed the 

sector capacity, while making efficient and balanced use of 

resources (controllers). In reality, demand-capacity imbalances 

happen quite often for a set of reasons (deviations of actual 

flights from flight plans, weather conditions, etc…), causing 

flight regulations and delays. In search for predictive models that 

might support enhanced pre-tactical planning (able to forecast 

deviations), researchers would like to understand how 

configuration choices are made by airspace managers. They 

would also like to find a way to predict which configuration will 

be used at each time moment during the day of operation, 

considering uncertainty caused by operational factors in search 

for a more accurate sector configuration schedule in the day 

before operation (or earlier), allowing better management of 

demand-capacity imbalances. However, it is unclear what 

features should be used for building a predictive model. We 

utilised visual analytics approaches to gain understanding of the 

configuration system, patterns of change, and probable reasons 

for preferring one configuration over another. We performed 

interactive visual exploration of configurations used in several 

regions. 

As an example, the upper image in Fig. 9 shows the 

configurations that were used in one of the regions in Spain 

(namely, LECMCTAS) during one month. The configurations 

are denoted by labels starting with a digit showing the number 

of sectors in which the region is divided. Almost for each 

number of sectors, there are two or more variants, some of which 

are used quite rarely. The lower image shows the use of the 

different configurations over time. The configurations are 

represented by coloured segments of horizontal bars. The light 

colours correspond to small numbers of sectors and dark blue to 

dark purple colours to 7 and 8 sectors, respectively. The 

positions of the segments correspond to the times when the 

configurations were used. The rows correspond to time intervals 

of one week length. The temporal bar graph shows that the 

changes of the configurations happen quite periodically. The 

configurations with small numbers of sectors are used in nights, 

when the air traffic is low. The configurations with 7 and 8 

sectors are usually used from 07:30 till 22:30. 

While the choices between configurations differing in the 

number of sectors can be explained by differences in the traffic 

volume, the reasons for choosing between configuration variants 

with the same number of sectors are not obvious. To understand 

how configurations differ from each other, we used a 3D view 

as shown in Fig. 10. The example in Fig. 10 shows two 

  

Figure 10.  Two configurations with the same number of sectors differ only in 

the vertical division of the sub-region on the west. 

    CNF8A2                                       CNF8A1  CNF8A2 

 

 
Figure 11.  The horizontal and vertical dimensions of the graph represent the 

time and flight level, respectively. The vertical lines mark the times 07:30, 

12:30, 14:00, and 22:30. The horizontal lines mark the flight levels 325 and 
345. The shading shows the variation of the traffic intensity in the western 

sub-region; top: all trajectory segments; bottom: segments where the flight 

level changed with respect to the previous position. 



configurations in which the region is divided into 8 sectors, 

CNF8A1 on the left and CNF8A2 on the right. The sectors are 

represented by distinct colours. The configurations are almost 

identical, except the vertical division of the sub-region on the 

west. In CNF8A1, the sub-area is divided into two sectors at the 

flight level 325, and in CNF8A2 at the flight level 345. These 

two configurations are often used interchangeably during a day. 

The density graph in Fig. 11, in which the horizontal 

dimension represents time and the vertical dimension flight 

level, shows the traffic intensity in the western sub-region in one 

day when CNF8A1 was used in time interval from 12:30 till 

14:00 and CNF8A2 in the remaining time from 07:30 till 22:30. 

These times are marked in the graph by vertical lines. The 

horizontal lines mark the flight levels 325 and 345. The flight 

intensity is represented by shading from light yellow (low) to 

dark red (high). The upper image shows the temporal density of 

all trajectory positions within the western sub-region and the 

lower image shows the density of the positions where the flight 

level changed with respect to the previous positions. 

A reasonable hypothesis for explaining the choice between 

different subdivisions would be that the traffic managers strive 

to balance the workload among the operators controlling 

different sectors, according to the behaviour of the specific 

traffic. Indeed, we see that the traffic intensity at the flight levels 

above 345 decreased after 12:30, and the division level was 

lowered from 345 to 325. However, after 14:00, when the 

division level returned to 345, there was no corresponding 

increase of traffic at the higher levels; so, our hypothesis would 

not be supported by this exclusive factor. Another possible 

decision rationale would be to choose such a division level that 

fewer flights have to cross this level while they are within the 

area. However, this hypothesis is not supported by the lower 

image in Fig. 11, where we see many intersections of both level 

325 and level 345 at the time of using either of the two 

configurations. Hence, the vertical distribution of the flights 

does not explain the reasons for preferring one configuration 

over the other, and further investigation is needed. Domain 

expert suggest that the sector configuration change was 

motivated by controller workload, not always precisely 

represented by traffic counts or intensity. For this model, 

controller workload was not an input so this factor could only be 

taken into account indirectly through traffic. 

V. DISCUSSION AND CONCLUSION 

ATM existing information is often considered inaccurate in 

pre-tactical stages, as well as affected by certain quality flaws 

derived from its pure operational nature. This makes difficult its 

direct exploitation for data-driven analysis unless some quality 

checks and data curation strategies are put in place. 

With them, existing data have the potential to improve 

knowledge and understanding of the existing system, revealing 

decision policies and patterns, from the different actors, that are 

useful tools when moving towards pre-tactical and even strategic 

operations planning for the different actors. Data-driven 

technologies have a great potential for this purposes. In 

particular, visual analytics have proven great potential to 

identify useful patterns and features with a reduced effort, in 

combination with a domain expert analyst.  

This potential has been illustrated by three different cases 

corresponding to diverse operating environment and different 

data sources. The results have been discussed and validated with 

domain experts to ensure applicability to operational needs, in 

particular in terms of predictability. It is demonstrated the value 

of these technologies to identify decision criteria as key aspects 

of the system, able to feed predictive or analytic models 

applicable in planning phase. It is particularly highlighted the 

power of these techniques to derive results from spatio-temporal 

patterns. On the other hand, this paper also shows the capability 

in terms of assessment of data quality. 

Several SESAR projects concluded that visual analytics is an 

important instrument for data analysis and modelling. The white 

paper [24] supports the use of visual analytics for performance 

modelling. Is to be highlighted that in some cases, as well as in 

data quality assessment, similar results can be achieved by 

means of non-visual techniques, but at a significantly higher cost 

of data preparation and analysis. Visual analytics techniques 

have proven as time-efficient for these purposes. 

The improvement in data quality and reliability at planning 

stages that SESAR new concepts will deliver (i.e., by means of 

SBT/RBT and Trajectory-Based Operations) will only enhance 

the benefits demonstrated by reducing data uncertainty. 

However, current day data is already usable by this kind of 

techniques, delivering applicable results. 
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