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Abstract

In this thesis, we study the representation theory of the bubble algebras. We focus on

determining the homomorphisms between cell modules for these algebras.

We show that the bubble algebras are cellular, and form a tower of recollement. By

decomposing Gram matrices we are able to determine homomorphisms in the one arc case.

We determine a generating set for the algebra (and its cardinality), and use this with a

hypercuboid approach to determine homomorphisms in the general case. We end with a

conjectural alternative approach to the general case involving matrix methods.
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Introduction

In this thesis, we are concerned with the problem of finding homomorphisms between two

cell modules for the bubble algebra. This algebra was defined by Grimm and Martin [30]

in 2003. We shall start with a brief review in order to motivate this study.

From the study of dilute lattice models [56, 64], Grimm and Pearce [29] came up with

certain generalisations of some diagram algebras (algebras with a diagrammatic formula-

tion [45]), such as the Temperley-Lieb [60] and BMW [53, 6] algebras. These algebras

play a significant role in the theory of solvable lattice models of two dimensional statis-

tical mechanics [3] and are related to link and knot invariants [62]. The idea behind the

generalisation arises on the diagram level by introducing diagrams with different colour

lines. Each of the algebras was then described by generators by the requirement of solv-

ing the Yang-Baxter equations. However, the topological underpinning was not precisely

formalised.

The discovery of the solvable lattice models called dilute lattice models [56, 64, 40]

stimulated their generalisation. This has very strong connection to models of dilute loops

on a lattice [2, 54]. These models include the solvable companion of the two-dimensional

Ising model in a magnetic field [64, 31, 32], which is one of the unsolved problems in

statistical mechanics. The idea was to consider two colours and regard the second colour

as the dilution of the first.
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Grimm and Pearce’s design of the relations perfectly fulfilled the requirement of solving

the Yang-Baxter equations in the two-colour case. These equations are enough to make sure

of solvability in the sense of commuting transfer matrices [3, 62]. The representation theory

of this kind of algebra facilitated the formation of the solvable dilute and two-colour lattice

models. Many different representations and related models are considered in [29, 24, 25,

34, 35, 26].

The new representation of the algebra contained the previously known lattice mod-

els [24, 25]. It also led to a new series of solvable lattice models [34, 34, 26]. They had

generators and relations, and enough representations to show that these relations do not im-

ply a trivial algebra. However at that time they did not have any knowledge of dimensions

or even of finiteness, and also had no idea of the irreducible representations. This was

unlike the representation theory of the Temperley-Lieb algebra itself, which is very well

studied and understood, in part because of its importance in several areas of mathematics

and physics [18, 43, 41, 45, 37, 38, 42].

Grimm and Martin [30] defined the bubble algebra entirely diagrammatically, in such

a way that it satisfied the general framework of [45, 49, section 9.5]. After that they have

shown it provides a diagrammatic realisation of the Grimm-Pearce multi-colour Temperley-

Lieb algebra. They used the general method to find the generic representation theory of

these algebras. They came up with the machinery to investigate their representation theory

(analogous to that of ordinary Hecke algebras at q a root of unity). They also showed how

irreducible representations may be associated with physical observables in the correspond-

ing lattice models. They concluded in their paper with the discussion of their results for the

Bethe ansatz on models derived using this algebra.

In this paper we consider the algebra considered by Grimm and Martin. Their paper
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mainly considered the two colour case. In our thesis we have considered the bubble algebra

with h colours.

There are various generalisations of the Temperley-Lieb algebra [49, 50, 7, 58, 23], so it

is natural to ask why the bubble algebra in particular should be studied. There are a number

of important reasons that can be given.

First, the diagram form of the Temperley-Lieb algebra is a deep and powerful prop-

erty [43, 41, 45], and the bubble algebra realisation provides a natural generalisation on the

diagram level.

Second, it provides solutions of the Yang-Baxter equation. The Temperley-Lieb algebra

is also related to the blob algebra, which has been shown [17] to be useful in solving the

reflection equation [39]. It is useful in constructing integrable boundary conditions for

certain solvable lattice models, including conformal-twisted boundary conditions [33, 4,

55, 27, 28]. It is quite important to boundary conformal field theory. A bubble algebra

analogue of these relationships would be very interesting.

Third, it is a part of a class of algebras amenable to the methods of [49]. It is quite

relevant for growth of the statistical mechanics (cf [63, 65, 61]); see for example [36]. It

looks like it should be useful for circuit design and even transport network design. There

are also some similarities with Murakami Birman Wenzl algebras [53, 6] and Fuss-Catalan

algebras [15]. Both these algebras have been used to construct integrable systems.

The final reason, which is the key motivation for this thesis, is that the bubble algebras

have some useful technical features of interest in representation theory. There is a general

programme of abstract algebraic Lie theory in diagram algebras which has been introduced

by Cox, Martin, Parker and Xi [13] as towers of recollement, and the bubble algebra also

fits into this framework (as we will prove in this thesis).
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We end this introduction with a brief survey of the rest of this thesis. The first chapter

is devoted to the general theory of cellular algebras, and introduces the Temperley-Lieb

algebra and bubble algebra. In the first section of this chapter we will start by giving

the definition of Graham and Lehrer [20] of a cellular algebra. In the next section we

will introduce the Temperley-Lieb algebra and review the proof that it is a cellular algebra.

After that we will introduce the bubble algebra and show in a similar way that it is a cellular

algebra. This have not been done explicitly before. We will provide the complete proof for

this in this chapter.

In the second chapter, we turn our attention to a paper of Cox, Martin, Parker and

Xi [13]. This chapter is about towers of recollement, which form an axiomatic framework

for studying the representation theory of towers of algebra. If a family of algebras is a tower

of recollement, then we can apply Theorem 2.1.27 in Chapter 2. This theorem helps us to

know whether we have a non-zero homomorphism between two standard (which in our

case are also cell) modules by reducing to the case where one is simple. This allows us to

restrict attention in this thesis to the problem of determining the non-zero homomorphisms

from a simple cell module.

The third chapter is devoted to certain special idempotents, and considers the Gram

matrix associated to a module. We show how certain idempotent subalgebras of the bubble

algebra correspond to tensor products of Temperley-Lieb algebras, and relate the cell mod-

ules of these two types of algebra. We will also show that the Gram matrix in general has

a similar decomposition into products.

From this point onwards we start to concentrate on finding homomorphisms between

cell modules. The fourth chapter is devoted to the special case where the second module

contains a single arc in its basis elements. By finding the matrix corresponding to the
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homomorphism between the modules we can find the homomorphism.

For our convenience, we consider a certain matrix Rn as in (4.1.10). Later we will

see that it is a matrix corresponding to the homomorphism between two Temperley-Lieb

algebra modules. The determinant of this matrixRn satisfies a difference equation (4.1.11).

This helps us to find the homomorphism between cell modules for different values of δ as

in Proposition 4.2.4 and the families of non-zero homomorphism between two modules for

the same values of δ as in Proposition ?? equation (??). At the end of the Chapter 4, we

will show that the homomorphism we found is unique.

The fifth chapter is devoted to considering certain generators of the bubble algebra. We

will classify all the generators into four cases. By finding the generators in each case, we

will give a formula for the total number of generators for the bubble algebra with h colours.

It is given by the Proposition 5.3.1. We use the generators to prove the important Theorem

in Chapter 6.

In Chapter 6 we will find the non-zero homomorphism between cell modules in the

general case. In Chapter 6, we will introduce the idea of the hypercuboid to help us find the

homomorphism between two given modules. Here, we find the homomorphism between

each colour module separately. By gluing each colour shape and by looking at the colour

shape change, we find the homomorphism between h colour modules. This method is

the best way to find the homomorphism between the given two modules. Theorem 6.2.2

displays the main result in Chapter 6.
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Chapter 1

Cellular algebras, Temperley-Lieb
algebras, and bubble algebras

1.1 Cellular algebras

Cellular algebras were introduced by Graham and Lehrer [20] in 1996. In general terms, a

cellular algebra A is an algebra with a very special basis which helps us to study the repre-

sentation theory of A. This section discusses the theory of cellular algebras, our motivation

being that both Temperley-Lieb algebras and bubble algebras are cellular algebras.

A cellular algebra A have two main properties. The first property is that there is a

cellular basis which gives a filtration of A, and defines certain special modules (called cell

modules) of A. The second property is that there are associated bilinear forms on each of

the cell modules. Further, the quotient of a cell module by the radical of its bilinear form

is either zero or absolutely irreducible, and every irreducible (up to isomorphism) arises in

this way. However, it is difficult to determine when the quotients are zero and non-zero.

A basic question in any branch of representation theory is to determine the number of

non-isomorphic simple modules. One of the strengths of the theory of cellular algebras

is that it provides (in principle) a complete list of absolutely irreducible modules for the
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algebra.

We can also define a decomposition matrix for a given cellular algebra. One of the nice

properties of celluar algebras is that this decomposition matrix is always unitrangular and

A is semisimple if and only if the decomposition matrix is the identity.

1.1.1 Formulating the cellular algebra model

We begin by recalling the basic definition of Graham and Lehrer [20].

Definition 1.1.1. Let A be an algebra over a ring R. Suppose that we have a finite partially

ordered set (Λ,≥), and for each λ ∈ Λ a finite set T (λ) such that there exists a basis of A

of the form

C = {Cλ
st : λ ∈ Λ and s, t ∈ T (λ)}. (1.1.1)

For each λ ∈ Λ, let Ǎλ be the R-submodule of A with basis

{Cµ
uv : µ ∈ Λ, µ > λ and u, v ∈ T (µ)} (1.1.2)

and Aλ be the R-submodule of A with basis

{Cµ
uv : µ ∈ Λ, µ ≥ λ and u, v ∈ T (µ)}. (1.1.3)

The pair (C,Λ) is called a cellular basis of A if it satisfies the following two conditions.

(i) There should be an algebra anti-isomorphism “∗” of A such that

Cλ∗

st = Cλ
ts (1.1.4)

for all λ ∈ Λ and all s, t ∈ T (λ).
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(ii) For any λ ∈ Λ, t ∈ T (λ) and a ∈ A there exist rv ∈ R such that for all s ∈ T (λ) we

have

Cλ
sta ≡

∑
v∈T (λ)

rvC
λ
sv mod Ǎλ. (1.1.5)

If A has a cellular basis we say that A is a cellular algebra.

Note that in part (ii), we should write rv = ravt since rv depends on v, t and a; what is

really important is that rv does not depend on s.

The following Lemma summarizes some basic properties of a cellular algebra (see for

example [52], which will be our main reference for standard results about cellular algebras).

Lemma 1.1.2. Let λ be an element of Λ.

(i) If s ∈ T (λ) and a ∈ A, then for all t ∈ T (λ) we have

a∗Cλ
st ≡

∑
u∈T (λ)

ruC
λ
ut mod Ǎλ, (1.1.6)

where for each u, ru is the element of R determined by (1.1.5).

(ii) The R-modules Aλ and Ǎλ are two-sided ideals of A.

(iii) If s and t are elements of T (λ), then there exists an element rst of R such that for any

u, v ∈ T (λ) we have

Cλ
usC

λ
tv ≡ rstC

λ
uv mod Ǎλ. (1.1.7)

1.1.2 Formulating the cell module

Let A be an algebra with basis as in (1.1.1). Then Aλ is an subalgebra of A with basis Cµ
st,

where µ ≥ λ, and Ǎλ is an ideal in Aλ with basis Cµ
st, where µ > λ. Therefore, Aλ/Ǎλ is

an algebra with basis Cλ
st + Ǎλ, where s, t ∈ T (λ).
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Fix an element λ of Λ. If s ∈ T (λ) define Cλ(s) to be the R-submodule of Aλ/Ǎλ with

basis

{Cλ
st + Ǎλ : t ∈ T (λ)}. (1.1.8)

Cλ(s) is a right A-module and the action of A on Cλ(s) is completely independent of s

by (1.1.5). That is

Cλ(s) ∼= Cλ(t) (1.1.9)

for all s, t ∈ T (λ). This allows to define the right cell module Cλ to be the right A-module

which is free as an R-module with basis {Cλ
t : t ∈ T (λ)}. For each a ∈ A we have

Cλ
t a =

∑
v∈T (λ)

rvC
λ
v , (1.1.10)

where rv is the element of R determined by (1.1.5). Then

Cλ ∼= Cλ(s), (1.1.11)

for all s ∈ T (λ), via the canonical R-linear map which sends Cλ
t to Cλ

st + Ǎλ, for all

t ∈ T (λ).

Definition 1.1.3. By Lemma 1.1.2(iii), there is a unique bilinear map

⟨ , ⟩ : Cλ × Cλ → R such that ⟨Cλ
s , C

λ
t ⟩, for s, t ∈ T (λ), is given by

⟨Cλ
s , C

λ
t ⟩Cλ

uv ≡ Cλ
usC

λ
tv mod Ǎλ, (1.1.12)

where u and v are elements of T (λ).

We have

Proposition 1.1.4. [52] If λ ∈ Λ and x, y ∈ Cλ, then

(i) ⟨x, y⟩ = ⟨y, x⟩
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(ii) ⟨xa, y⟩ = ⟨x, ya∗⟩ for all a ∈ A

(iii) xCλ
uv = ⟨x,Cλ

u ⟩Cλ
v for all u, v ∈ T (λ).

Hence ⟨ , ⟩ is both symmetric and associative.

1.1.3 The radical of a cell module

Given a cellular algebra we can make the following definition.

Definition 1.1.5. The radical of the module Cλ is given by

radCλ = {x ∈ Cλ : ⟨x, y⟩ = 0 for all y ∈ Cλ}. (1.1.13)

By proposition 1.1.4(ii), radCλ is an A-submodule of Cλ.

Recall that the Jacobson radical of a moduleM is the intersection of the maximal ideals

of M . There will be no confusion over terminology because of the following proposition.

Proposition 1.1.6. [52] Suppose that R is a field and let µ be any element of Λ.

(i) The Jacobson radical of Cµ is equal to radCµ.

(ii) The right A-module

Lµ = Cµ/radCµ (1.1.14)

is irreducible.

Corollary 1.1.7. Suppose that R is a field and let µ and λ be elements of Λ such that

Lµ ̸= 0 and Lµ ∼= Lλ. Then µ = λ.

One of the main results of Graham and Lehrer [20] is
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Theorem 1.1.8. Suppose that R is a field and let Λ be finite. Set

Λ0 = {µ ∈ Λ : Lµ ̸= 0}.

Then {Lµ : µ ∈ Λ0} is a complete set of pairwise inequivalent irreducible A-modules.

Theorem 1.1.8 classifies the simple A-modules; however it is often difficult to deter-

mine the set Λ0.

Definition 1.1.9. Let µ ∈ Λ0 and λ ∈ Λ. Define

dλµ = [Cλ : Lµ] (1.1.15)

to be the composition multiplicity of the irreducible module Lµ in Cλ. By the Jordan-

Hölder theorem, dλµ is well-defined. The so-called decomposition matrix D of A is given

by

D = (dλµ), (1.1.16)

where λ ∈ Λ and µ ∈ Λ0.

The decomposition matrix has the following special form.

Corollary 1.1.10. [52] Suppose that R is a field. Then the decomposition matrix D of A

is unitriangular; that is, if µ ∈ Λ0 and λ ∈ Λ then dµµ = 1 and dλµ ̸= 0 only if λ ≥ µ.

Decomposition matrices can also be used to determine when a cellular algebra is semisim-

ple.

Corollary 1.1.11. [52] Suppose that R is a field. Then the following are equivalent.

(i) A is (split) semisimple.

(ii) Cλ = Lλ for all λ ∈ Λ.
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(iii) rad(Cλ) = 0 for all λ ∈ Λ.

(iv) dλµ = δλµ for all λ and µ in Λ.

1.2 The Temperley-Lieb algebra

The Temperley-Lieb algebras were first introduced in 1971 by Temperley and Lieb [60].

They were used to study the single bond transfer matrices for the Ising model in statistical

mechanics. Some time after this, they were independently found by Jones [37] when he

characterized the algebras arising from the tower construction of semisimple algebras in

the study of subfactors in mathematics. Their connection with knot theory comes from

their role in the definition of Jones polynomial.

We first define the Temperley-Lieb algebra as in [8].

Definition 1.2.1. The Temperley-Lieb algebra TLn(δ) is the associative algebra over R

with generators 1 (the identity), e1, . . . , en−1 subject to the following conditions:

(1) eiejei = ei if |j − i| = 1,

(2) eiej = ejei if |j − i| > 1,

(3) e2i = δei for 1 ≤ i ≤ n− 1.

By using this definition it is quite hard to understand the nature of the algebra. The

algebra TLn(δ) can be easily described by diagrams in the plane. Here ei is the diagram of

the form as in Figure 1.1. We discuss this in more detail in the next section.
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i + 1

· · ·

Figure 1.1:

1.2.1 Formulating the Temperley-Lieb algebra model

We want to describe the Temperley-Lieb algebra as a diagram algebra — an algebra with

a diagrammatic formulation. The basis of the algebra will be rectangular diagrams with n

nodes at the northern edge and n nodes at the southern edge, decorated with lines which

connect the nodes in pairs without crossing the other lines and with no internal loops. A

line in a diagram with one endpoint in the northern edge and one in the southern edge is

called a propagating line and one with both endpoints in the same edge is called an arc.

The identity element is the unique diagram all of whose lines are propagating.

We can form the product of any two diagrams a, b by concatenating them, writing a

above b, and the southern endpoints of lines in a coincide with the northern endpoints of

lines in b (NB. This requires only that the number of nodes matches up). Each node of

coincidence may then be regarded as an interior point of a continuous line passing though

the concatenated a|b. The multiplication ab is the new diagram of the combined region

which results from this. In this multiplication, if we get any diagram with closed loop in

the middle, then closed loop is removed and replaced with the loop replacement scalar δ

times the same diagram without the closed loops. If several loops are removed, the scalar

is a power of δ raise to the number of loops. At the beginning of Example 1.2.3, we will

see the multiplication of two diagrams under this multiplication rule.
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1.2.2 The Temperley-Lieb algebra is a cellular algebra

One of the easiest examples of a cellular algebra is the Temperley-Lieb Algebra. We will

review the proof of this result, as the corresponding proof for the bubble algebra will be

based on this.

Proposition 1.2.2. The Temperley-Lieb algebra TLn(δ) is a cellular algebra.

Proof. Our finite partially ordered set Λ takes the values of the number of propagating lines

from northern edge to southern edge. Our order on Λ is the opposite of the usual order on

natural numbers. It is always possible to cut every decorated diagram from eastern edge

to western edge in such a way that only propagating lines are cut. These upper halves and

lower halves of diagrams are called half diagrams. The finite indexing set T (λ) is given

by

T (λ) = {half diagrams with λ free lines}

for each λ in Λ.

We will define a set of basis elements of TLn(δ) which we will denote by

C = { Cλ
st : λ ∈ Λ and s, t ∈ T (λ) }.

We denote the algebra TLn(δ) by A for convenience. Let us define an element Cλ
st of C

which is a basis element of A with s, t ∈ T (λ). Here, s is the upper half and t is the lower

half diagram of the basis element, where upper half diagram has been flipped and drawn

above the lower half, and propagating lines from the two halves are connected in the unique

possible way. Recall that we have defined (1.1.2)

Ǎλ = span{ Cµ
st : µ ∈ Λ and µ > λ }. (1.2.1)

We will continue proving TLn(δ) is a cellular algebra after looking at the following

example.
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Example 1.2.3. Let us consider the algebra TL4(δ), which has basis elements those dia-

grams with four nodes at the northern edge and four nodes at the southern edge and non-

crossing lines connecting them in pairs. Figure 1.2 is a basis element of TL4(δ).

Figure 1.2:

Multiplication rule

Figure 1.3 shows the multiplication of two basis elements. This is equivalent to δ times the

Figure 1.4.

Figure 1.3:

Figure 1.4:
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We analyse the algebra TL4(δ) by finding Λ, T (λ), the order of Λ and the basis elements

of the algebra of TL4(δ). Arcs are formed by connecting two nodes in an edge. Basis

elements of TL4(δ) can have no arcs or one arc or two arcs. Therefore, Λ can be given by

Λ = {0, 2, 4}.

A finite indexing set T (λ) is given by Figure 1.5, Figure 1.6 and Figure 1.7.

1 2

Figure 1.5: Half diagrams in T (0)

1 32

Figure 1.6: Half diagrams in T (2)

1

Figure 1.7: Half diagrams in T (4)

The basis element in Figure 1.2 has been constructed by drawing the second half dia-

gram in the northern edge and the first half diagram in the southern edge of the figures in

Figure 1.6. Let us construct all basis elements of TL4(δ).

Let us name the basis elements in the form Cλ
st, where s and t are half diagrams in T (λ)

at the northern and southern edge respectively. Diagrams in Figure 1.8, Figure 1.9, and
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C0
22

C0
12 C0

21

C0
11

Figure 1.8: Basis elements of TL4(δ) with 0 lines

C2
11 C2

22 C2
33

C2
23

C2
12C2

32 C2
21

C2
31C2

13

Figure 1.9: Basis elements of TL4(δ) with 2 lines

C4
11

Figure 1.10: Basis elements of TL4(δ) with 4 lines
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Figure 1.10 are the basis elements of TL4(δ). Therefore, set of basis elements of TL4(δ)

can be written as

C = {C0
11, C

0
22, C

0
12, C

0
21,

C2
11, C

2
22, C

2
33, C

2
12, C

2
21, C

2
13, C

2
31, C

2
23, C

2
32,

C4
11}.

The order on the elements of Λ is as follows:

0 ≥ 2 ≥ 4.

Let us find the basis of Ǎ0, Ǎ2 and Ǎ4.

Basis of Ǎ0 ={Cµ
st : s, t ∈ T (µ) and µ > 0}

=∅

Basis of Ǎ2 ={Cµ
st : s, t ∈ T (µ) and µ > 2}

={C0
11, C

0
22, C

0
12, C

0
21}

Basis of Ǎ4 ={Cµ
st : s, t ∈ T (µ) and µ > 4}

={C0
11, C

0
22, C

0
12, C

0
21,

C2
11, C

2
22, C

2
33, C

2
13, C

2
31, C

2
23, C

2
32, C

2
12, C

2
21}

This example helped us to understand the basis elements of algebra A and its ideal Ǎλ

for each λ ∈ Λ. This understanding will help us to continue proving TLn(δ) is a cellular

algebra.
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C0
21 C0

12

Figure 1.11: Basis to basis map

First condition: Anti-isomorphism

Define the map ∗ of A as follows

∗ : A→ A

Cλ∗

st = Cλ
ts.

This mapping reflects diagrams upside down as shown in Figure 1.11 for the n = 4 case.

Let us explain why ∗ is an anti-homomorphism. We need to show

(ma)∗ = a∗(m)∗.

The left-hand side of the above equation says find the multiplication ma then flip upside

down. On the other hand, the right-hand side says first flip a then flip m then multiply.

Obviously both are the same. From this we can say ∗ is an anti-homomorphism. ∗ is

injective by the way it is defined (it takes a basis to a basis). Now we will show ∗ is

surjective by using the rank nullity-theorem.

dim(A) = dim(Ker(∗)) + dim(Im(∗))

We know that

dim(ker(∗)) = 0.

Therefore, this implies that

dim(A) = dim(Im(∗))
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t

s′

t′

s

Figure 1.12:

and so ∗ is surjective. We have shown ∗ is anti-homomorphism, injective and surjective

therefore, ∗ is anti-isomorphism.

Second condition:

Now we will check the second condition of the cellular basis. Let Cλ
st be a basis element

of A and a ∈ A. We can write a as the linear combination of the basis elements of A.

Therefore, a can be written as follows

a =
∑

dλ′s′t′C
λ′

s′t′ ,

where dλ′s′t′ ∈ C. If we find Cλ
sta we will get

Cλ
sta = Cλ

st

∑
dλ′s′t′C

λ′

s′t′

=
∑

dλ′s′t′C
λ
stC

λ′

s′t′ .

Figure 1.12 illustrates the multiplication of Cλ
stC

λ′

s′t′ . The product of these two diagrams is

a new diagram whose number λ′′ of propagating lines is less than or equal to the minimum

of the two numbers λ and λ′. That is in the order on Λ we have λ′′ ≥ max(λ, λ′).

Case (i) λ = λ′.

In this case multiplication gives us the same number of propagating lines or less than λ

20



(order on Λ is not being used). First we look into the situation that multiplication gives the

same number of propagating lines. In this situation, we may get loops at the middle of the

diagrams when southern edge half diagram t of Cλ
st and northern edge half diagram s′ of

Cλ′

s′t′ meet each other. If the number of propagating lines is unchanged then the multiplica-

tion does not affect the northern edge s of Cλ
st and the southern edge of Cλ′

s′t′ . Therefore,

we can say

Cλ
stC

λ′

s′t′ = rCλ
st′ .

Here r is dependent on t and s′ and most importantly not dependent on s.

Now we look into the situation where multiplication gives fewer propagating lines than λ

and λ′ (order on Λ is not being used). Let us say, we get λ′′ number of propagating lines.

According to our order λ′′ is greater than λ. Therefore,

Cλ
stC

λ′

s′t′ = αCλ′′

s′′t′′ ,

where Cλ′′

s′′t′′ is a basis element constructed from the half diagrams in T (λ′′) and α ∈ C.

Case (ii) λ < λ′.

In this case multiplication gives us fewer propagating lines than λ(order on Λ is not being

used). Let us say we get λ′′ propagating lines. According to our order, λ′′ is greater than λ.

Therefore, this case is very similar to the latter part of Case(i). This implies that,

Cλ
stC

λ′

s′t′ = αCλ′′

s′′t′′ ,

where Cλ′′

s′′t′′ is a basis element constructed from the half diagrams in T (λ′′), α ∈ C and

λ′′ > λ.

Case (iii) λ > λ′

In this case multiplication gives us a number of propagating lines less than or equal to λ′
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(order on Λ is not being used). Let us say we get λ′′ number of propagating lines. According

to our order λ′′ greater than or equal to λ. If λ′′ = λ then

Cλ
stC

λ′

s′t′ = rCλ
st′ .

Here r is dependent on t and s′ and most importantly not dependent on s.

If λ′′ > λ then,

Cλ
stC

λ′

s′t′ = αCλ′′

s′′t′′ ,

where Cλ′′

s′′t′′ is a basis element constructed from the half diagrams in T (λ′′), α ∈ C and

λ′′ > λ.

From Cases (i–iii),we see that

Cλ
sta =

∑
rCλ

st′ +
∑

αCλ′′

s′′t′′ .

This can be written as

Cλ
sta ≡

∑
rCλ

st′ mod Ǎλ.

Hence (C,Λ) is a cellular basis of A. Therefore, A = TLn(δ) is a cellular algebra.

Example 1.2.4. Let the algebra A be TL4(δ) and λ = 2. By (1.1.3) we have that A2 is a

subalgebra of A with basis elements of the form Cµ
st, where µ ≥ λ. Similarly, by (1.1.2)

and Lemma 1.1.2(ii) we have that Ǎ2 ⊂ A2 is an ideal in A2 with basis elements of the

form Cµ
st, where µ > λ. Therefore, A2/Ǎ2 is an algebra with basis elements of the form

C2
st + Ǎ2.

A2/Ǎ2 ∼= algebra with basis elements have exactly 2 propagating lines and

if a is a diagram and b is a diagram and a.b has 0 number of

propagating lines then define a.b = 0.
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C2
1 C2

2 C2
3

Figure 1.13:

a b

Figure 1.14:

The right cell module C2 is a right A-module with basis as in Figure 1.13. The set of basis

elements of C2 is

{C2
t : t ∈ T (2)} = {C2

1 , C
2
2 , C

2
3},

where T (2), the set of labels with two propagating lines, is given by {1, 2, 3}. These three

basis elements have been constructed by fixing the northern edge half diagram and choosing

the southern edge half diagram from T (2).

For each a ∈ A we have

C2
t a =

∑
v∈T (2)

rvC
2
v mod Ǎ2. (1.2.2)

If we take algebra elements a and b as in Figure 1.14, then C2
2a and C2

2b are illustrated

in Figure 1.15. From these Figures we can say, C2
2a is C2

3 and C2
2b is 0. This helps us to

understand the multiplication in (1.2.2).

We will work out the inner product ⟨ , ⟩ of the cell module C2 basis elements in the

following example.
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= = = 0

C2
2a = C2

2b =

Figure 1.15:

C2
11C

2
11 = = δC2

11= δ

Figure 1.16:

Example 1.2.5. Let us consider the algebra TL4(δ) and the associated cell module C2.

Figure 1.6 shows the half diagrams of T (2). Therefore, the basis elements of C2 are

{C2
1 , C

2
2 , C

2
3}.

By using (1.1.12) we can find the following.

i) ⟨C2
1 , C

2
1⟩C2

11 = C2
11C

2
11

From Figure 1.16, we can say multiplication of C2
11 and C2

11 gives us δC2
11. From this

we can say,

⟨C2
1 , C

2
1⟩C2

11 = δC2
11.
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C2
11C

2
21 = = = C2

11

Figure 1.17:

This implies that

⟨C2
1 , C

2
1⟩ = δ.

ii) ⟨C2
1 , C

2
2⟩C2

11 = C2
11C

2
21

From Figure 1.17, we can say C2
11C

2
21 gives us C2

11. From this we can say

⟨C2
1 , C

2
2⟩C2

11 = C2
11.

Therefore,

⟨C2
1 , C

2
2⟩ = 1.

iii) ⟨C2
1 , C

2
3⟩C2

11 = C2
11C

2
31

From Figure 1.18, we can say C2
11C

2
31 is C0

22. From this we can say

⟨C2
1 , C

2
3⟩C2

11 = C0
22.

Therefore,

⟨C2
1 , C

2
3⟩ = 0.
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C2
11C

2
31 = = = C0

22

Figure 1.18:

From these and similar calculations, we get

⟨C2
1 , C

2
1⟩ = ⟨C2

2 , C
2
2⟩ = ⟨C2

3 , C
2
3⟩ = δ

⟨C2
1 , C

2
2⟩ = ⟨C2

2 , C
2
3⟩ = 1

⟨C2
1 , C

2
3⟩ = 0.

(1.2.3)

Example 1.2.6. Let us find radC2 of the cell module of the algebra TL4(δ). According

to (1.1.13) we can say

radC2 = {x ∈ C2 : ⟨x, y⟩ = 0 for all y ∈ C2}.

Suppose ⟨x, y⟩ = 0 with x and y in C2. Therefore, we can write x and y as the linear

combination of the basis elements of C2. That is

x = α1C
2
1 + α2C

2
2 + α3C

2
3 ,

y = β1C
2
1 + β2C

2
2 + β3C

2
3 .

Substituting for x, y and by solving ⟨x, y⟩ = 0 with the help of (1.2.3) and the proposi-

tion 1.1.4 we get

α1β1δ + α1β2 + α2β1 + α2β2δ + α2β3 + α3β2 + α3β3δ = 0.
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However, this equation can be written as

(α1δ + α2)β1 + (α1 + α2δ + α3)β2 + (α2 + α3δ)β3 = 0.

The above equation should be true for all values of β1, β2 and β3. Therefore, we can say

α1δ + α2 = 0, (1.2.4)

α1 + α2δ + α3 = 0, (1.2.5)

α2 + α3δ = 0. (1.2.6)

Equations (1.2.4), (1.2.5) and (1.2.6) can be written as the matrix equation
δ 1 0

1 δ 1

0 1 δ




α1

α2

α3

 = 0. (1.2.7)

We get non zero solutions to (1.2.7) only if

det


δ 1 0

1 δ 1

0 1 δ

 = 0.

This implies

δ(δ2 − 2) = 0.

From this we can say δ = 0 or δ = ±
√
2.

If δ ̸= 0 and δ ̸= ±
√
2 then α1 = α2 = α3 = 0. Therefore, x = 0, which implies that

radC2 = {0}.

Therefore, C2 is a simple module for almost every value of δ.

27



When δ = 0 equations (1.2.4), (1.2.5) and (1.2.6) give us α2 = 0 and α3 = −α1. This

implies that

radC2 = {α1(C
2
1 − C2

3 ) : α1 ∈ C},

which is a one dimensional space with basis (C2
1 − C2

3). In this case C2 is not a simple

module.

When δ = ±
√
2 equations (1.2.4), (1.2.5) and (1.2.6) give us α2 = ∓

√
2α1 and α3 =

α1. Therefore,

radC2 = {α1(C
2
1 ∓

√
2C2

2 + C2
3 ) : α1 ∈ C},

which is a one dimensional space with basis C2
1 ∓

√
2C2

2 + C2
3 . In this case C2 is not a

simple module.

We have shown that C2 is a simple module if and only if δ ̸= 0 and δ ̸= ±
√
2. Similarly

we can show that C0 is a simple module if and only if δ ̸= 0 and δ ̸= ±1 and C4 is a simple

module for all δ ∈ C.

1.3 The bubble algebra

Bubble algebras were first introduced in 2003 by Grimm and Martin [30]. These are di-

agram algebras which provide multiparameter generalizations of the Temperley-Lieb al-

gebra [60, 44]. They can be used to help solve the Yang-Baxter equation [30, section 3,

equation (5)].

In this section, we will define the bubble algebra and show that it is a cellular algebra.

Thereafter, we will discuss the cell modules of the bubble algebra and their reducibility.

Figure 4.1 denotes the labeling for the red, green and black propagating lines and arc colour

of the figures in the remaining Chapters.
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: red colour

: green colour

: black colour

Figure 1.19: Colour labeling

1.3.1 Formulating the bubble algebra model with two colours

Just as for the Templerley-Lieb algebra, we shall first define a basis using diagrams, and

them introduce a multiplication rule on diagrams. The basis of this algebra will consist of

rectangular diagrams with n nodes at the northern edge and n nodes at the southern edge

which connect the nodes in pairs with two different colours red and green, without any

crossings of strings of the same colour and with no internal loops. Different colour strings

can cross each other, but we exclude crossing occurring on the frame of the rectangle. For

example, look at Figures 1.20 and 1.21. (These figures have been taken from [30, Section

2].)

Figure 1.20: Both are equivalent

Let us think of this, as Grimm and Martin [30] did, as lines embedded not in a rectangle,

but in a sheet of bubble wrap. (Bubble wrap is made from two sheets of polythene welded
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Figure 1.21: Both are not equivalent

together along certain lines to trap bubbles). We allow red lines on the weld and the back

of the sheet; green lines are allowed on the welds and the front sheet.

Figure 1.22: Bubble wrap and the equivalent rectangular diagram

In this realization, lines on the same sheet(or on the weld) are not allowed to touch.

Figure 1.22 shows this and the equivalent rectangular diagram. (This figure has been taken

from [30, section 2].)

We define the multiplication of the diagrams whenever the number of end points match

up. We call the match up precise if the colours match up precisely. The composite is zero

unless the match up is precise. If the match up is precise, then we concatenate the diagrams

just as for the Temperley-Lieb algebra. When we multiply two diagrams, if we get any loop

inside then that diagram can be replaced by an appropriate loop replacement scalar times

the rest of the diagram. If the loop is red (respectively green) then the loop replacement

scalar is δR (respectively δG).

We denote a bubble algebra with n nodes and 2 colours red and green by TL2
n(δR, δG),
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Figure 1.23: A basis element of TL2
3(δR, δG)

Figure 1.24: Loop form at the middle

where δR, δG are the red and green loop replacement parameters. We can define an h colour

generalization as TLh
n(δC1 , . . . , δCh

), where δCi
is the loop replacement scalar for the colour

Ci loop for each i ∈ {1, . . . , h}.

Our modules and algebras have more than one colour. Instead of using actual colours,

we have used different types of lines to denote the label of the colours.

Example 1.3.1. Let us consider the algebra TL2
3(δR, δG). It has three nodes at the northern

and southern edges with two colours red and green. Figure 1.23 is a basis element of

TL2
3(δR, δG). Figure 1.24 is an example of the multiplication of two diagrams. This is

equivalent to δG times Figure 1.25.
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Figure 1.25: Loop removed

1.3.2 The bubble algebra is a cellular algebra

We will show that the bubble algebra is a cellular algebra. The full proof of this has not

previously been given. Therefore, it is quite an important matter to discuss.

Proposition 1.3.2. The bubble algebra TLh
n(δC1 , . . . , δCh

) is a cellular algebra.

Proof. We consider the finite partially ordered set

Λ =

{
(c1, . . . , ch) : 0 ≤ ci ≤ n, 1 ≤ i ≤ h and

h∑
i=1

ci = n− 2t for some t ≥ 0

}
.

In our diagrams ci will be the number of colour Ci propagating lines and t will denote the

total number of arcs. Let tCi
denote the number of Ci colour arcs. Therefore, t can be given

by

t =
h∑

i=1

tCi
.

An arc can be constructed by connecting two nodes. Therefore, the total number of propa-

gating lines will be n− 2t for some 0 ≤ t ≤ n
2
. Therefore, we can say

h∑
i=1

ci = n− 2t

and so each diagram is associated to an element in Λ. Define the order on Λ by

(c1, . . . , ch) ≥ (c′1, . . . , c
′
h) if and only if c1 ≤ c′1, . . . , ch ≤ c′h (1.3.1)

32



Let λ ∈ Λ. Therefore, λ can be given by

λ = (c1, . . . , ch)

for some ci ∈ {1, . . . , n}. We define the finite indexing set T (λ) to contain half diagrams

with ci colour Ci propagating lines, where i = 1, 2 . . . , h. (Note that there is no condition

on the colour of any arcs.) As for the Temperley-Lieb algebra, we can form a unique

bubble algebra diagram from a pair of half diagrams in T (λ) by inverting the first and

concatenating. It is clear that the set of all possible basis elements of the bubble algebra

TLh
n(δC1 , . . . , δCh

) arises as we allow λ to vary.

Let us call the algebra A and set

C = { Cλ
st : λ ∈ Λ and s, t ∈ T (λ) }.

Here Cλ
st is the basis element of A with s, t ∈ T (λ), where s is the upper half and t is the

lower half diagram of the basis element. Following (1.1.2) we set

Ǎλ = span{ Cµ
st : µ ∈ Λ and µ > λ } (1.3.2)

Now we define the anti-isomorphism “∗” as follows.

∗ : A→ A

Cλ∗

st = Cλ
ts

which corresponds to reflecting a diagram in the horizontal axis.

The verification that

(ma)∗ = a∗m∗. (1.3.3)

is exactly as for the Temperley-Lieb algebra in Proposition 1.2.2 .
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Now we check the second condition. Let Cλ
st ∈ C and a ∈ A. An element a can be

written as a linear combination of the basis elements in A. Therefore we can give a as

a =
∑

dλ′s′t′C
λ′

s′t′ ,

where dλ′s′t′ is some scalar in C. If we find Cλ
sta we will get

Cλ
sta = Cλ

st

∑
dλ′s′t′C

λ′

s′t′

=
∑

dλ′s′t′C
λ
stC

λ′

s′t′ .

Now we analyze the possible values of Cλ
stC

λ′

s′t′

Case (i) λ = λ′.

In this situation if the colour sequences match and the number of propagating lines does

not change then

Cλ
stC

λ′

s′t′ = rCλ
st′ ,

where r = 1 or a monomial in δC1 . . . . , δCh
. This r is not dependent on s, since any loops

are not dependent on s. If the colours in t and s′ did not match up then the product will be

zero.

If the colour sequences match and the number of propagating lines does change, say to λ′′,

then we get less propagating lines than λ. Therefore, λ′′ greater than λ and

Cλ
stC

λ′

s′t′ = r′′Cλ′′

s′′t′′ ∈ Ǎλ.

Case (ii) λ ̸= λ′.

In this situation two things can happen. If the colors do not match up then

Cλ
stC

λ′

s′t′ = 0.
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=

Figure 1.26:

On the other hand, if the colours match up let us denote by λ′′ the number of propagating

lines in the product. In this situation we get less than or equal to λ propagating lines.

Therefore, according to our order in (1.3.1) we can say λ′′ > λ or λ′′ = λ.

When λ′′ > λ we can say

Cλ
stC

λ′

s′t′ = r′′Cλ′′

s′′t′′ ∈ Ǎλ.

When λ′′ = λ we have by the same argument as in case (i) that

Cλ
stC

λ′

s′t′ = rCλ
st′ ,

From case(i) and case (ii) we can say

Cλ
sta =

∑
rCλ

st′ +
∑

r′′Cλ′′

s′′t′′

=
∑

rCλ
st′ mod Ǎλ

Hence we have shown that (C,Λ) is a cellular basis of A, and so A = TLh
n(δ1, . . . , δh) is a

cellular algebra.

Example 1.3.3. From the above proof we know that TL2
3(δR, δG) is a cellular algebra. We

begin by enumerating the basis elements.
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λ Half diagrams in T (λ)
(3, 0) Figure 1.27
(0, 3) Figure 1.28
(2, 1) Figure 1.29
(1, 2) Figure 1.30
(1, 0) Figure 1.31
(0, 1) Figure 1.32

Table 1.1:

Let Λ have elements as ordered pairs with first part denoting the number of red prop-

agating lines and second part denoting the number of green propagating lines. If we take

any half-diagram in a diagram in TL2
3, it can either have all propagating lines or one prop-

agating line and one arc. If we take λ ∈ Λ it will be of the form

λ = (m,n),

where m denotes the number of red propagating lines and n denotes the number of green

propagating lines. Therefore, we can say

m+ n = 3 or 1.

From this we can say

Λ = {(3, 0), (2, 1), (1, 0), (0, 3), (1, 2), (0, 1)}.

For each λ ∈ Λ the indexing set T (λ) gives half diagrams with m being the number of red

propagating lines and n being the number of green propagating lines. Let us find the half

diagrams for each value of λ. We illustrate these in the Figures indicated in Table 1.1.

The order in Λ is

(a, b) ≥ (c, d) if and only if a ≤ c and b ≤ d.

Figure 1.33 shows the order in Λ.
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1

Figure 1.27: Half diagram in T ((3, 0))

1

Figure 1.28: Half diagram in T ((0, 3))

1 2 3

Figure 1.29: Half diagrams in T ((2, 1))

1 2 3

Figure 1.30: Half diagrams in T ((1, 2))

1 2 3

4 5

Figure 1.31: Half diagrams in T ((1, 0))
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1 2 3

4 5

Figure 1.32: Half diagrams in T ((0, 1))

(0, 1)

(1, 2) (0, 3)

(1, 0)

(3, 0) (2, 1)

Figure 1.33: Partial order in Λ
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Figure 1.34: Basis element of TL2
3(δR, δG)

In general this order is very important to show TL2
3 is a cellular algebra even though it

is not important in this example.

Let us pick the half diagrams denoted by 1 and 4 from T ((1, 0)). Draw the half diagram

1 at the northern edge and 4 at the southern edge of the rectangular box. We will get the

diagram in Figure 1.34. This is a basis element of TL2
3(δR, δG). We name this C(1,0)

14 .

Example 1.3.4. Let algebra A be TL2
3(δR, δG). We find the basis elements of C(1,0)

3 . This

is an A-submodule of A(2,1)/Ǎ(2,1). Half diagrams in T ((1, 0)) are in Figure 1.31. There-

+ Ǎ(1,0)

Ǎ(1,0)+

Ǎ(1,0)+

+ Ǎ(1,0)

+ Ǎ(1,0)

Figure 1.35:

fore, basis of C(1,0)
3 are C(1,0)

3t + Ǎ(1,0) where t ∈ T ((1, 0)). These basis are given by the
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c
(1,0)
1 c

(1,0)
2 c

(1,0)
3

c
(1,0)
4 c

(1,0)
5

Figure 1.36:

Figure 1.35. (We normally ignore the final term Ǎ(1,0).) If we look at each diagram, all

have the same northern edge half diagram.

Basis elements of the cell module C(1,0) areC(1,0)
1 , C(1,0)

2 , C(1,0)
3 , C(1,0)

4 and C(1,0)
5 which

are in Figure 1.36.

Let see what will happen if we multiply C(1,0)
4 in Figure 1.36 by the algebra element a

from TL2
3 which is illustrated in the Figure 1.37. From this we can say

C
(1,0)
4 a = δGc

(1,0)
5 .

Example 1.3.5. Let algebra A be TL2
3(δR, δG) and consider the cell module C(1,0). Now

we find the inner product between the basis elements of the cell module. Figure 1.38 shows

the half diagrams of the basis element of the cell module C(1,0). Basis of C(1,0) is given by

C(1,0) = {C(1,0)
1 , C

(1,0)
2 , C

(1,0)
3 , C

(1,0)
4 , C

(1,0)
5 }.

Let us apply the rule

⟨Cλ
s , C

λ
t ⟩Cλ

uv ≡ Cλ
usC

λ
tv mod Ǎλ,
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=a

=c
(1,0)
4 a

=δG

When we multiply c(1,0)4 and a we will get

By replacing the loop by δG we can get

Figure 1.37:

1 2 3

4 5

Figure 1.38: Half diagrams in T ((1, 0))
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in (1.1.12) All the changes happen at the middle of the two diagrams. Half diagrams

correspond to the basis in < , > responsible for those changes. This observation makes the

working out < , > very easy.

< C
(1,0)
1 , C

(1,0)
4 > = 0 < C

(1,0)
3 , C

(1,0)
3 > = δG

< C
(1,0)
1 , C

(1,0)
5 > = 0 < C

(1,0)
3 , C

(1,0)
4 > = 0

< C
(1,0)
2 , C

(1,0)
2 > = δR < C

(1,0)
3 , C

(1,0)
5 > = 0

< C
(1,0)
2 , C

(1,0)
3 > = 0 < C

(1,0)
4 , C

(1,0)
4 > = δG

< C
(1,0)
2 , C

(1,0)
4 > = 0 < C

(1,0)
4 , C

(1,0)
5 > = 0

< C
(1,0)
2 , C

(1,0)
5 > = 0 < C

(1,0)
5 , C

(1,0)
5 > = δG

Example 1.3.6. Let us find radC(1,0)

radC(1,0) = { x ∈ C(1,0) :< x, y >= 0 for all y ∈ C(1,0) }.

Let x and y be elements in C(1,0). Therefore, we can write x and y as linear combinations

of the basis elements of C(1,0). That is

x = α1C
(1,0)
1 + α2C

(1,0)
2 + α3C

(1,0)
3 + α4C

(1,0)
4 + α5C

(1,0)
5 ,

y = β1C
(1,0)
1 + β2C

(1,0)
2 + β3C

(1,0)
3 + β4C

(1,0)
4 + β5C

(1,0)
5 .

Suppose < x, y >= 0 for all y. By substituting for x and y we obtain the following.

α1δR + α2 = 0 (1.3.4)

α1 + α2δR = 0 (1.3.5)

α3δG = 0 (1.3.6)

α4δG = 0 (1.3.7)

α5δG = 0 (1.3.8)
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If we solve (1.3.4) and (1.3.5) we obtain

α1(δ
2
R − 1) = 0. (1.3.9)

When δR ̸= ±1 and δG ̸= 0 then equations (1.3.4), (1.3.5), (1.3.6), (1.3.7), (1.3.8)

and (1.3.9) imply

α1 = α2 = α3 = α4 = α5 = 0.

Therefore,

rad C(1,0) = {0}.

From this we can say C(1,0) is a simple module for almost every value of δ.

When δR = ±1 and δG ̸= 0 we have

rad C(1,0) = {α1(C
(1,0)
1 ∓ C

(1,0)
2 )|α1 ∈ C}.

This is a one dimensional vector space with basis C(1,0)
1 ∓ C

(1,0)
2 .

When δR ̸= ±1 and δG = 0 we have

rad C(1,0) = {α3C
(1,0)
3 + α4C

(1,0)
4 + α5C

(1,0)
5 |α3, α4, α5 ∈ C}.

This is a three dimensional vector space with basis C(1,0)
3 , C(1,0)

4 and C(1,0)
5 .

When δR = ±1 and δG = 0 we have

rad C(1,0) = {α1(C
(1,0)
1 ∓ C

(1,0)
2 ) + α3C

(1,0)
3 + α4C

(1,0)
4 + α5C

(1,0)
5 |α1, α3, α4, α5 ∈ C}.

This is a four dimensional vector space with basis C(1,0)
1 ∓ C

(1,0)
2 , C

(1,0)
3 , C

(1,0)
4 and C(1,0)

5 .

The module C(1,0) is not a simple module in the last three cases.

If we repeat this calculation for C(0,1), C(2,1), C(1,2), C(3,0) and C(0,3) we obtain the

following results:

43



C(1,0) is a simple module if δR ̸= ±1 and δG ̸= 0.

C(0,1) is a simple module if δG ̸= ±1 and δR ̸= 0.

C(2,1), C(1,2), C(3,0) and C(0,3) are simple modules for all δR, δG.
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Chapter 2

Towers of recollement

In this chapter we are going to discuss an axiomatic framework for studying the representa-

tion theory of towers of algebras. This has been introduced by Cox, Martin, Parker and Xi

[13] in 2006. They introduced a new class of algebras called contour algebras, and proved

that they satisfy the axiomatic framework of towers of recollement. Brauer and walled

Brauer algebras also form towers of recollement [10].

Let An (with n ∈ N) be a family of finite dimensional algebras, with idempotents

en in An, defined over an algebraically closed field K. Such a family of algebras which

satisfies the axioms (A1) to (A6) which we are going to discuss soon is called a tower of

recollement.

If a family of algebras is a tower of recollement, then we can apply Theorem 2.1.27

which we are going to discuss later in this chapter. This Theorem helps us to know whether

we have a non-zero homomorphism between two standard modules by reducing to the case

when one is simple.
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2.1 Bubble algebras satisfies the axiomatic framework

We are going to show that our family of algebras TLh
n (with n ∈ N) is a tower of recolle-

ment when all of the δCi
are non-zero. We introduce each axiom for a tower of recollement

followed by the proof that the bubble algebra satisfies it.

In chapters 4 and 6, we will discuss how to find the non-zero homomorphisms (if they

exist) between two given cell modules where the first has no arcs. If we consider two

modules with the first having some arcs, then by using the Theorem 2.1.27, we can reduce

the size of the modules until the first module has no arcs in it. Therefore, it is enough to

consider whether a homomorphism between the given two modules exists or not in this

special case.

Let An = TLh
n(δC1 , . . . , δCh

). We want to define idempotents en in An. Let en be the

sum over all possible colourings of strings and arcs (with the two arcs coloured the same)

of diagrams as in Figure 2.1, where each such diagram is multiplied by the scalar 1
δCi

which

corresponds to the colour of the arc at the northern edge and southern edge of the diagram.

As the arcs at the northern edge and southern edge of the diagram are the same in colour

they can be coloured in h ways, and the rest of the n − 2 lines can each be coloured by h

different colours. Therefore, en is a sum of hn−1 diagrams.

To be an idempotent element en should satisfy the condition

e2n = en.

When we find en × en, we get zero for the southern edge colour sequence of the diagrams

comes from the first en, and the northern edge colour sequence of the diagram come from

the second en do not match. However, we get a loop at the middle of the diagram if the

southern edge colour sequence of the diagram coming from the first en and the northern
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edge colour sequence of the diagram coming from the second en are the same. For this

reason we defined en as the sum of diagrams as in Figure 2.1 multiplied by the scalar 1
δCi

,

as this gives the desired idempotent property.

. . .

Figure 2.1:

We will show our algebras An = TLh
n satisfies the tower of recollement axioms (A1)

to (A6) in [13].

Definition 2.1.1. Let Λn be an indexing set for the simple An-modules and Λn be an in-

dexing set for the simple An/AnenAn-modules.

For any algebra A with idempotent e ∈ A we have the following Theorem.

Theorem 2.1.2. (Green [22]) Let {L(λ) : λ ∈ Λ} be a full set of simple A-modules, and

set Λe = {λ ∈ Λ : L(λ)e ̸= 0}. Then {L(λ)e : λ ∈ Λe} is a full set of simple eAe-modules.

Further, the simple modules L(λ) with λ ∈ Λ \Λe are a full set of simple A/AeA-modules.

If we take the algebra A to be An, the indexing set Λ to be Λn and the idempotent e to

be en in this Theorem, then Λe is Λn−2 and Λn is Λn \ Λn−2.

Axiom 2.1.3. (A1) For each n ≥ 2 we have an isomorphism

ϕn : An−2 → enAnen.
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Algebra satisfies the first Axiom (A1)

Let us prove our TLh
n satisfies the Axiom 2.1.3. It is convenient to define the linear map

from enTL
h
nen to TLh

n−2 and show that the map is an isomorphism.

Define a linear map

We will define the linear map

θ : enTL
h
nen → TLh

n−2

on diagrams as in Figure 2.2. Here D is a diagram in TLh
n. By removing the arc at the

D

. . .

. . .

D

. . .

. . .

−→

Figure 2.2:

northern edge of en and southern edge of en at the left-hand side of the diagram in enTLh
nen;

we map to the right-hand side diagram in TLh
n−2.

As we have shown in Figure 2.3, enDen is the sum of diagrams over the colour of arcs

and propagating lines of en at the northern edge and southern edge of D. Each en is the

sum of hn−1 diagrams. Therefore, enDen is a sum of h2(n−1) diagrams. However, most of

the diagrams do not survive because the northern edge and southern edge colour sequence
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of D do not match with the en in the northern edge and southern edge of D. If we apply

θ to the diagram on the left-hand side of the Figure 2.3 we are left with only one diagram

as in the right-hand side of Figure 2.3. Therefore, the linear map θ is actually a map from

h2(n−1) diagrams to a single diagram.

. . .

. . .

. . .

. . .

−→D D
∑

arc and propagating line

Figure 2.3:

Map is a homomorphism

Now we will show that θ is a homomorphism. We need to check the condition

θ(enDen)θ(enEen) = θ(enDenenEen).

However, we can simplify the bit inside the right hand side as

enDenenEen = enDenEen.

Therefore, it is enough to check

θ(enDen)θ(enEen) = θ(enDenEen).
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. . .

. . .

D

a b

c d

enDen =

Figure 2.4:

. . .

. . .

a′ b′

c′ d′

enEen =

Figure 2.5:
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Let enDen and enEen be the diagrams in enTLh
nen. Here D and E are the diagrams

in TLh
n. If we consider the diagram enDen, it will be of the form as in Figure 2.4. Here

a, b, c and d are the positions of the nodes of D and enDen is a sum of h2(n−1) diagrams.

According to the Figure a and b are connected by the arc coming from the southern edge

of en and c and d are connected by the arc coming from the northern edge of en. We get

enDen equals 0 if the colour of nodes a and b differ or the colour of nodes c and d differ. If

the colour of the nodes a and b are the same and c and d are the same then enDen is a sum

of h2(n−1) diagrams. However, only one of the diagrams in this sum will survive and the

others will become zero because the colour sequence of northern edge and southern edge

of D do not match with the colour sequence of en. Similarly, enEen can be given by the

Figure 2.5. Here a′, b′, c′ and d′ are the positions of the nodes, and arguments as for enDen

above also apply.

. . .

D

. . .

θ(enDen) =

Figure 2.6:

Now we will find θ(enDen) and θ(enEen). These are given by Figures 2.6 and Fig-

ure 2.7. However, θ(enDen) is 0 if enDen is 0. Similarly, θ(enEen) is 0 if enEen is 0. If
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. . .

. . .

Eθ(enEen) =

Figure 2.7:

we find θ(enDen)θ(enEen) we will get Figure 2.8. This may be zero if the southern edge

of enDen and northern edge of enEen do not match or enDen is 0 or enEen is 0. We know

the idempotent element satisfies the condition

e2n = en.

Therefore, we can say

enDen.enEen = enDenEen.

The diagram of enDenEen is given by Figure 2.9. This is actually the sum of diagrams

over the colour of an arc and the propagating lines of en. However, this may be zero if the

bottom of D and the northern edge of E do not match. In this situation, the southern edge

of enDen and the northern edge of enEen do not match. If they do match only one diagram

will survive in the sum. Therefore θ(enDenEen) is given by 0 or by the Figure 2.10. From

these we can say

θ(enDen)θ(enEen) = θ(enDenEen)
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. . .

D

E

. . .

. . .

. . .

. . .

E

. . .

. . .

D

=θ(enDen)θ(enEen) =

Figure 2.8:
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D

E

. . .

. . .

. . .

enDenEen =

Figure 2.9:
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because θ(enDen)θ(enEen) and θ(enDenEen) both give ous 0, when southern edge of

enDen and northern edge of enEen do not match, or are the same diagram as in Figure 2.8

and Figure 2.10. Therefore θ is a homomorphism.

D

E

. . .

. . .

. . .

θ(enDenEen) =

Figure 2.10:

Map is injective

Now we will show θ is injective. Suppose that

θ(enDen) = θ(enEen).

This is given by Figure 2.11. For θ to be injective we require that

enDen = enEen

as in Figure 2.12. This is obvious because if the diagrams in Figure 2.12 are different we
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. . .

. . .

D

. . .

. . .

E=

Figure 2.11:

D

. . .

. . .

. . .

E

. . .

=

Figure 2.12:

56



can not get the diagram in Figure 2.11. From this we can say θ is injective.

Map is surjective

Now we will show that θ is surjective. Suppose X ∈ TLh
n−2. We want an element enY en

of enTLh
nen, where Y ∈ TLh

n such that

θ(enY en) = X.

We will see how to make Y ∈ TL2
7 from X ∈ TL2

5 in the following cases. If X as in

X =

Figure 2.13:

Figure 2.14:

Figure 2.13 pull the arc and the propagating line in the direction of the arrow. We will get

the Figure 2.14. Diagram inside the box is Y . If X is of the form as in Figure 2.15 then

pull the line in the shown direction. We will get Figure 2.16. In this case, the diagram

inside the box is Y . If we look at Figure 2.17, the diagram on the left-hand side of Figure

X can be drawn as the multiplication of 3 diagrams in the middle of the Figure. If we call
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X =

Figure 2.15:

Figure 2.16:

the middle diagram Y we can say

θ(e7Y e7) = X

If we use this technique for any X ∈ TLh
n−2 then there is an element enY en ∈ enTL

h
nen,

where Y ∈ TLh
n such that

θ(enY en) = X.

Therefore, θ is surjective.

We have shown θ is injective and surjective. Therefore, we have an isomorphism

TLh
n−2 → enTL

h
nen.

Definition 2.1.4. Suppose that we have algebras An and idempotents en satisfying (A1).

We define a pair of families of functors

Fn : An-mod → An−2-mod

M 7→Men
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θX = = =

Figure 2.17:

and

Gn : An-mod → An+2-mod

Gn−2(N) = N ⊗enAnen enAn

via the isomorphism in 2.1.3. The right inverse to Fn is Gn−2.

From Axiom 2.1.3 and Theorem 2.1.2 we have

Λn = Λn ⊔ Λn−2. (2.1.1)

If we find FnGn−2 we will get

FnGn−2(N) = N ⊗enAnen enAnen

= NenAnen ⊗enAnen 1

= N ⊗enAnen 1

∼= N.

Cline, Parshall and Scott [9] use this idea to provide examples of recollement [5] in the

context of quasi-heredity and highest weight categories.
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Set en,0 = 1 in An, and for 1 ≤ i ≤ n/2 define new idempotents in An by setting

en,i = ϕn(en−2,i−1).

There are associated quotients An,i = An/(Anen,i+1An).

Axiom 2.1.5. (A2) (i) The algebra An/AnenAn is semisimple.

(ii) For each n ≥ 0 and 0 ≤ i ≤ n/2, setting e = en,i and A = An,i the surjective

multiplication map Ae⊗eAe eA→ AeA is a bijection.

Algebra satisfies the second Axiom (A2)

Let us prove that our TLh
n satisfies the first statement of Axiom 2.1.5. To prove this we

should know the following Claim.

Claim 2.1.6. TLh
nenTL

h
n has as a basis all diagrams with at most n− 2 propagating lines.

. . .

Figure 2.18:

For simplicity we just represent en by the Figure 2.18. Let us prove the Claim.

Proof. Suppose y has (n − 2) propagating lines or fewer. From this we can say it has

at least one arc on the northern edge and one arc on the southern edge as in Figure 2.19.

This Figure we choose for y to cover all the possible cases. If the first two nodes from the

western edge are in an arc we can use that to construct the middle diagram. Other arcs (not

in the first two nodes) will not come in the construction of the middle diagram. We can
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y = . . .

Figure 2.19:

see this in Figure 2.19. We can get the first diagram in the left-hand side of Figure 2.19 by

doing the concatenation of the three diagrams as in the right-hand side of the Figure 2.19.

The middle diagram is one of the diagrams of en, and we call the diagram above D1 and

below D2. Both diagrams are in TLh
n. When we do the concatenation D1enD2, only one

diagram in en gives the above diagram. Others give zero because the colours did not match

up. Therefore, we can say

y = D1enD2 ∈ TLh
nenTL

h
n.

From this we can say that any diagram y with n− 2 lines or fewer will be in TLh
nenTL

h
n.

It is obvious that diagrams in TLh
nenTL

h
n has at most n − 2 lines or fewer because

the middle en does not allow to have diagram with all lines propagating. This proves the

converse.

Now we show that algebra TLh
n satisfies the first statement of the Axiom (A2). Ac-

cording to Claim 2.1.6 we can say that all diagrams in TLh
nenTL

h
n have at most n − 2

propagating lines. Therefore, the quotient of TLh
n by TLh

nenTL
h
n has a basis of diagrams

containing only propagating lines. However, this is isomorphic to the semisimple algebra
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K(hn). Therefore TLh
n/TL

h
nenTL

h
n is semisimple.

The proof of the second part of Axiom (A2) is now very similar to the corresponding

proof for the contour algebras in [13, Proposition 2.10].

Definition 2.1.7. For m ≤ n we define Λm
n to be those elements in Λn which first appeared

in the indexing set Λm.

Example 2.1.8. If we take the algebra as TL2
4 then the indexing set Λ4 and the Λ2

4 are given

by

Λ4 = {(4, 0), (2, 2), (0, 4), (2, 0), (1, 1), (0, 2), (0, 0)},

Λ2
4 = {(2, 0), (1, 1), (0, 2)}.

Example 2.1.9. For our algebra TLh
n the indexing sets Λn and Λm

n are given by

Λn = {(a1, a2, . . . , ah) : 0 ≤ ai ≤ n, 1 ≤ i ≤ h, a1 + . . .+ ah = n− 2t, 0 ≤ t ≤ n

2
},

Λm
n = {(a1, a2, . . . , ah) : 0 ≤ ai ≤ n, 1 ≤ i ≤ h, a1 + . . .+ ah = m}.

The following Axiom is equivalent to Axiom (A2) by [16, Statement 7] or [51, Defini-

tion 3.3.1 and the remarks following].

Axiom 2.1.10. (A2’) For each n ∈ N the algebra An is quasi-hereditary, with heredity

chain of the form

0 ⊂ · · · ⊂ Anen,iAn ⊂ · · · ⊂ Anen,0An = An.

As An is quasi-hereditary, there is for each λ ∈ Λn a standard module ∆n(λ), with

simple head Ln(λ). If we set λ ≤ µ if either λ = µ or λ ∈ Λr
n and µ ∈ Λs

n with r > s, then

all other composition factors of ∆n(λ) are labeled by weights µ with µ < λ. Note that for
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λ ∈ Λn
n, we have that ∆n(λ) ∼= Ln(λ), and that this is just the lift of a simple module for

the quotient algebra An/AnenAn. We have [48, Proposition 3] that

Gn(∆n(λ)) ∼= ∆n+2(λ). (2.1.2)

Similarly (see for example [18, A1]) we have

Fn(∆n(λ)) ∼=

∆n−2(λ) if λ ∈ Λn−2,

0 if λ ∈ Λn.
(2.1.3)

If λ ∈ Λn then the cell module defined in the previous chapter coincides with the

standard module ∆n(λ). We can find the necessary explanation to this in [14, Corollary

C.36., notes C.6:]. Now by repeated use of (2.1.2) it is easy to verify that we have for all

λ ∈ Λ that

∆n(λ) ∼= Cλ.

Lemma 2.1.11.

∆n(λ)en ∼= ∆n−2(λ), (2.1.4)

where λ = (a1, a2, . . . , ah) and ∆n(λ) is a TLh
n −module and a1 + a2 + . . .+ ah ≤ n− 2.

Proof. LetD be a diagram in ∆n(λ). We define the linear map ϕ as in Figure 2.20. The left-

hand side of the diagram in ∆n(λ)en maps to the right-hand side in ∆n−2(λ) by removing

the arc at the southern edge of en in the left diagram.

Map ϕ is a module homomorphism

If we want to show ϕ is a module homomorphism, we need to show

ϕ(Denenaen) = ϕ(Den)θ(enaen).

However, this proof is very similar to the proof we have just done to show that θ a homo-

morphism. Therefore, we ignore the proof here.
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D

. . .

D

. . .

∑
enarc and propagating line colour −→

Figure 2.20:

ϕ is injective

Now we will show ϕ is injective. Suppose that

. . .

D

. . .

E

=

Figure 2.21:

ϕ(Den) = ϕ(Een)

is given by Figure 2.21. For ϕ to be injective we need

Den = Een

as in Figure 2.22. This is obvious because if the diagram in Figure 2.22 are different we

cannot get Figure 2.21.
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D

. . .

E

. . .

=

Figure 2.22:

Figure 2.23:

ϕ is surjective

Now we will show that ϕ is surjective. Suppose that X ∈ ∆n−2(λ); we want an element

Y en of ∆n(λ)en such that

ϕ(Y en) = X

We will see how to make Y from X ∈ TL2
5 in the following cases. If X is as in Fig-

Figure 2.24:

ure 2.24, pull the green propagating line as in Figure to get the diagram on the right. The

diagram inside the box is Y . If X as in Figure 2.25 pull the red arcs as in Figure to get the

diagram on the right. In this case the diagram inside the box is Y . If we take our X as in
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Figure 2.25:

= ϕX = =

Figure 2.26:

Figure 2.24, then Figure 2.26 shows the way to write X as the multiplication of a diagram

and a half-diagram. We call Y the top middle diagram. Let us choose same half diagram

formed earlier for northern and southern edge which given an algebra element in en. We

can replace for the algebra element by en as in far right bottom diagram in Figure 2.27 be-

cause except one diagram in en all the others give 0 when we multiply with Y . Therefore,

we can say

ϕ(Y en) = X.

Y =

Figure 2.27:
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By using this technique for any X ∈ ∆n(λ) there is a Y en ∈ ∆n(λ)en such that

ϕ(Y en) = X.

Therefore, ϕ is surjective. We have shown that ϕ is injective and surjective and so

∆n(λ)en ∼= ∆n−2(λ).

Axiom 2.1.12. (A3) For each n ∈ N, the algebra An can be identified with a subalgebra

of An+1.

Algebra satisfies the third Axiom (A3)

Consider a diagramD ∈ TLh
n. We add a propagating line to the front ofD as in Figure 2.28.

This notation represents the replacement of D by h copies of D each with a different

coloured propagating line at the front. Now this is an element in TLh
n+1. If we multiply

two such elements we will get a third such element in TLh
n+1. From this we can see that

An can be identified with a subalgebra of An+1.

D

Figure 2.28:
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Restriction of a module and induced module

Definition 2.1.13. Let B be a subalgebra of an algebra A. If V is an A-module, then V is

also a B-module. This can be denoted by

resBV or V ↓ B

and is called the restriction of V to B.

Definition 2.1.14. Let B be a subalgebra of an algebra A. If V is a B-module then we

denote by

indAV or V ↑ A

the induced A-module.

These two operations are functorial. We have the restriction functor

resn : An-mod → An−1-mod

and the induction functor

indn : An-mod → An+1-mod.

indn(M) =M ⊗An An+1.

Theorem 2.1.15. (Frobenius Reciprocity) Assume that B is a subalgebra of an algebra A.

Let U be a B-module and V be an A-module. Then we have

HomA(indAU, V ) ∼= HomB(U, resBV ) (2.1.5)

Axiom 2.1.16. (A4) For all n ≥ 1 we have that

An−1
∼= enAn

as a left An−2-, right An−1-bimodule.
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Note that the left action An−2 on enAn used here is given via the isomorphism in 2.1.3.

We can immediately deduce from Axiom 2.1.16 that for each λ ∈ Λn we have that

resn+2(Gn(∆n(λ))) ∼= indn∆n(λ). (2.1.6)

Algebra satisfies the fourth Axiom

We next show that An = TLh
n satisfies Axiom 2.1.16. The left action of An−2 on enAn

comes from the fact that An−2
∼= enAnen via Axiom 2.1.3 and the right action of An−1 on

enAn comes from restriction to An−1 as a subalgebra of An. Similarly, the left action of

An−2 on An−1 comes via restriction.

n − 1nodes

An−2acts here

n − 2nodes

An−1acts here

this arc never change

this end of the string is unchanged

Figure 2.29:

An−1acts here

An−2acts herethis end of the string is fixed

n − 1nodes

n − 2nodes

Figure 2.30:

In Figure 2.29, we illustrate a general diagram in enAn. As we have shown, An−2 acts

at the northern edge of this diagram. Therefore, the arc on the northern left side of the
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edge never changes. Similarly, An−1 acts at the southern edge of this diagram as shown.

Therefore, the southern leftmost string will not be seen by An−1 action.

If we look at Figure 2.30 that gives a diagram in An−1. As we have shown on the

diagram, An−2 acts at the northern edge. For this reason, the node at the northern edge left

corner string will not be seen by An−2 action. Southern edge of the diagram’s nodes will

be involved on the action of An−1.

Now we will define the linear map θ from enAn toAn−1 as in Figure 2.31. The left-hand

x xθ :

Figure 2.31:

side is a diagram in enAn. We obtain the second diagram by deleting the arc at the northern

edge of the first diagram and sliding the node at the southern edge of the first diagram to

the northern edge of the diagram. Now the diagram obtained is a diagram in An−1.

We will show that θ is bijective. It is injective by the way it is defined. Let us prove θ is

surjective. Let us take an arbitrary element y ∈ An−1. We will find an x in enAn such that

θ(x) = y.

We will obtain a diagram from y by sliding the top left-hand corner string to the left-hand

corner of the southern edge. Now we have n nodes at the southern edge. At this point, the

northern edge has (n−2) nodes. We add a same colour arc to the northern edge as the sided

string. Therefore at the northern edge we now have n nodes. This diagram is a diagram in

70



enAn. If we take this as x then we will get

θ(x) = y.

From this, we can say θ is surjective. We have shown θ is injective and surjective. Therefore

θ is bijective.

n − 1nodes

An−1acts here

An−2acts here

n − 2nodes

m =

Figure 2.32:

n − 1nodes

An−1acts here

An−2acts here

n − 2nodes

x

mx =

Figure 2.33:

We will show θ is a homomorphism from enAn to An−1 when the algebra An−1 acts

from the right. Let m ∈ enAn as in Figure 2.32. Let x be a diagram in An−1. If we find

mx, the diagram will look like the Figure 2.33. If you see the bottom diagram, we have

added an extra line to make a diagram in An. We did this to make the multiplication mx

meaningful.
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n − 1nodes

An−1acts here

An−2acts here

n − 2nodes

x

θ(mx) =

Figure 2.34:

n − 1nodes

An−1acts here

An−2acts here

n − 2nodes

x

θ(m)x =

Figure 2.35:
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If we calculate θ(mx), we will get Figure 2.34 because in mx the northern edge arc at

m has been removed and the string at the southern edge of x has been slid up to the northern

edge of m by the map θ. If we find θ(m)x we will get the Figure 2.35. Let us look at the

reason. In θ(m), the arc at the northern edge of m has been removed and the string at the

southern edge of m has been moved to the northern edge by the linear map θ. After that,

when we apply x to that, we will get θ(m)x. By looking at Figure 2.34 and Figure 2.35 we

see that

θ(mx) = θ(m)x

as required. Now we will show θ is a homomorphism when the algebra elements act on the

n − 1nodes

An−2acts here

n − 2nodes
ym =

y

An−1acts here

Figure 2.36:

left. Let y be a diagram in An−2. If we find ym we will get the diagram in Figure 2.36. In

front of the northern and southern edge of diagram y we need to add two propagating lines

to match the arc colour of the bottom diagram. If we find θ(ym) we will get Figure 2.37.

Now we will find yθ(m). This is given by Figure 2.38. We have added an extra prop-

agating line in front of y to match the bottom string. By looking at Figure 2.37 and Fig-

ure 2.38 we see that

θ(ym) = yθ(m)
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n − 1nodes

An−2acts here

n − 2nodes

y

θ(ym) =

An−1acts here

Figure 2.37:

n − 1nodes

An−2acts here

n − 2nodes

y

yθ(m) =

An−1acts here

Figure 2.38:
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as required.

Linear map θ is a homomorphism, when the algebra acts on the right or left, and bi-

jective. From this we can say θ is an isomorphism. From this we have shown our algebra

satisfies the Axiom (A4).

Definition 2.1.17. A filtration of a module with successive quotients isomorphic to some

∆(λ)s is called a ∆-filtration.

Definition 2.1.18. Let M in An have a ∆n-filtration. The support of M is the set of labels

λ for which ∆(λ) occurs in this filtration. It is denoted by suppn(M).

Exact sequences and short exact sequences

We recall the definition of an exact sequence and short exact sequence as in [1].

Definition 2.1.19. Suppose A is an abelian category. Take an index set of consecutive

integers. For each i in the index set, let Ai be an object in the category and let fi be

a morphism from Ai to Ai+1. This defines a sequence of objects and morphisms. The

sequence is exact at Ai if the image of fi−1 is equal to the kernel of fi. The sequence itself

is exact if it is exact at each object except at the very first and very last object.

Definition 2.1.20.

A short exact sequence is an exact sequence of the form

0 → A
f−→ B

g−→ C → 0 (2.1.7)

By the above, we know that for any such short exact sequence, f is a monomorphism

and g is an epimorphism. Furthermore, the image of f is equal to the kernel of g. It is

helpful to think of A as a subobject of B with f being the embedding of A into B, and C
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as the corresponding factor object B/A,with the map g being the natural projection from

B to B/A (whose kernel is exactly A).

Axiom 2.1.21. (A5) For each λ ∈ Λm
n we have that res(∆n(λ)) has a ∆-filtration and

supp(res(∆n(λ))) ⊆ Λm−1
n−1 ⊔ Λm+1

n−1

Lets use the same argument as in [13] after the Axiom(A5). Equation (2.1.6) now

implies the analogue of 2.1.21 for induction. Using (2.1.2) we deduce from Axiom 2.1.21

and 2.1.6 that for each λ ∈ Λm
n the module ind(∆n(λ)) has a ∆-filtration, and

supp(ind(∆n(λ))) ⊆ Λm−1
n+1 ⊔ Λm+1

n+1 (2.1.8)

Algebra satisfies the fifth Axiom (A5)

Let λ = (t1, t2, . . . , th) ∈ Λm
n . From Claim 2.1.22 and Claim 2.1.23, that we are going to

discuss soon, we will deduce Lemma 2.1.24 (which we are going to discuss after the two

Claims). This Lemma says that we have a short exact sequence

0 −→ ⊕h
i=1∆n−1(t1, t2, . . . , ti − 1, . . . , th)

−→ resnn−1∆n(t1, t2, . . . , ti, . . . , th)

−→ ⊕h
i=1∆n−1(t1, t2, . . . , ti + 1, . . . , th)

−→ 0

where the modules in the sum ⊕h
i=1∆n−1(t1, t2, . . . , ti − 1, . . . , th) are taken to be zero

when they are not defined. From this, we can say the support of res(∆n(λ)) is going to be

inside Λm−1
n−1 and Λm+1

n−1 . Therefore

supp(res(∆n(λ))) ⊆ Λm−1
n−1 ⊔ Λm+1

n−1 .

Hence we have shown that our algebra satisfies the fifth Axiom.
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Let us prove the Claims and the Lemma mentioned above. Let ∆n(t1, t2, . . . , th) be a

TLh
n-module. We restrict to TLh

n−1 using the embedding

TLh
n−1 ⊂ TLh

n

via the map as in Figure 2.39. We can add colour C1 or colour C2 or . . . or colour Ch

D 7−→ D

Figure 2.39:

propagating line at the front. Basis elements of ∆n(t1, t2, . . . , th) are of the form of a

rectangle where there are n nodes at the southern edge and ti propagating lines of colour

Ci from north to south edge. Let X ⊆ ∆n(t1, t2, . . . , th) be the subspace spanned by

Figure 2.40:

diagrams with leftmost southern node propagating as in Figure 2.40. This line has some

colour Ci, where i can take the values from 1 to h.

Claim 2.1.22.

X is a submodule of resnn−1∆n(t1, t2, . . . , th) and

X ∼= ⊕h
i=1∆n−1(t1, t2, . . . , ti − 1, . . . , th)
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Proof. For the first part, it is enough to show that if x ∈ X and d is a diagram in TLh
n−1 ⊂

TLh
n then xd ∈ X . We take x and d as in Figure 2.41. Here x has leftmost line colour

Ci propagating and diagram d in TLh
n−1 a sum of diagrams in TLh

n by adding the ex-

tra strings to the front as shown. In this particular situation the ith diagram of d will

match with the front propagating line colour Ci of x. Therefore xd will be given by Fig-

ure 2.42. This has front line propagating, therefore xd ∈ X. Thus X is a submodule of

resnn−1∆n(t1, t2, . . . , th).

x =

+d = · · · +

colourCipropagating line

colourC1propagating line

colourChpropagating line

Figure 2.41:

∈ Xxd =

Figure 2.42:

Now TLh
n−1 acts on X as shown in Figure 2.43. The front propagating line cannot be

seen by TLh
n−1. Now we will show that

X ∼= ⊕h
i=1∆n−1(t1, t2, . . . , ti − 1, . . . , th).
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TLh
n−1acts here

Figure 2.43:

Let the module element x ∈ ⊕h
i=1∆n−1(t1, t2, . . . , ti − 1, . . . , th) and the algebra element

d ∈ TLh
n−1. We want an isomorphism

ϕ : ⊕h
i=1∆n−1(t1, t2, . . . , ti − 1, . . . , th) → X

as in Figure 2.44. Here we add an extra line to the front of x. If x has ti − 1 colour Ci

ϕ(x) =

Figure 2.44:

propagating lines then add one colour Ci propagating line at the front. Therefore, it is clear

to see that ϕ is an isomorphism of vector spaces.

We will show that ϕ is a homomorphism of TLh
n−1-modules. Element x has n − 1

nodes at the southern edge and t1, . . . , ti − 1,. . . , th number of colour C1, . . ., colour Ci,

. . ., colour Ch propagating lines from northern edge to southern edge and d has n−1 nodes

at the northern and southern edge. If the southern edge of x and the northern edge of d do

not match then xd = 0. This implies that ϕ(xd) = 0. In this situation ϕ(x)d is also zero

because of the colour sequence does not match. Therefore, we can say,

ϕ(xd) = ϕ(x)d.
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x

d

x

d

xd = ϕ(xd) =

Figure 2.45:

If the colour sequence of the nodes match up then Figure 2.45 gives us xd, ϕ(xd). We add

a colour Ci line if x has t1 colour C1 . . . ti − 1 colour Ci . . . th colour Ch propagating lines,

where i can take the values from 1, . . . , h. Figure 2.46 gives us ϕ(x)d. We draw the front

d

ϕ(x)d =

Figure 2.46:

colour Ci propagating line to d to match with the bottom diagram ϕ(x) front propagating

line. Therefore we can say

ϕ(xd) = ϕ(x)d.

This implies that ϕ is a homomorphism of modules. Thus ∆n(t1, t2, . . . , th) has a TLh
n−1-

submodule.

X ∼= ⊕h
i=1∆n−1(t1, t2, . . . , ti − 1, . . . , th) (2.1.9)
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Claim 2.1.23. If we set

Y = resnn−1∆n(t1, t2, . . . , th)/X (2.1.10)

then

Y ∼= ⊕h
i=1∆n−1(t1, t2, . . . , ti + 1, . . . , th) (2.1.11)

Proof. The subspace X is spanned by the set of diagrams whose leftmost southern node is

propagating. If we find the quotient as in (2.1.10) then the leftmost southern node of Y will

be on an arc as shown on Figure 2.47. Therefore, TLh
n−1 cannot see the front node. Let us

try a map

TLh
n−1acts here

Figure 2.47:

7−→

Figure 2.48:

ϕ : Y −→ ⊕h
i=1∆n−1(t1, t2, . . . , ti + 1, . . . , th)

as in Figure 2.48. We slide the node round the frame to the northern edge. First diagram

has n nodes and second diagram has n − 1 nodes at the southern edge. This map ϕ is a

vector space isomorphism.
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d ∈ TLh
n−1

y = d =

Figure 2.49:

d

d

yd = ϕ(yd) =

ϕ(y)d =

Figure 2.50:
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We will show ϕ is a homomorphism. The cases we going to be discussed are based on

what happens to the propagating arc which begins at the front part of the southern boundary.

Let y ∈ Y and d ∈ TLh
n−1 as in Figure 2.49. Propagating line of d at the northern edge

front to southern edge front is chosen to match with the southern edge arc colour at the

front of y. Therefore, yd and ϕ(y)d are given by the Figure 2.50.

If the colour of y’s southern edge and colour of d ’s northern edge do not match then yd

become 0. Therefore ϕ(yd) also become 0. In this situation colour of ϕ(y) and d also do

not match. Therefore ϕ(y)d is 0. From these we can say ϕ(yd) = ϕ(y)d.

There are two cases to consider depending on whether the arc that begins at the front of

the southern boundary of yd is propagating or not. First suppose yd /∈ X , that is yd ∈ Y .

Then yd, ϕ(y)d and now ϕ(yd) are given by the Figure 2.50, and it is clear that ϕ(yd) =

ϕ(y)d.

d = yd =

Figure 2.51:

Now suppose that yd ∈ X . An example of this case is shown in Figure 2.51. Here,

we are considering the arc with an end in the south west corner on the right hand side of

Figure 2.51, and figure assumes that the other end of the arc is on the northern edge of the

diagram. The diagram yd will have t1 number of colour C1 propagating, . . . , ti number of

colour Ci propagating, . . . th number of colour Ch propagating. Therefore, we can say,

yd ∈ ∆n(t1, t2, . . . , th).
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Since yd ∈ X , we have implies

yd = 0 in resnn−1∆n(t1, t2, . . . , th)/X = Y.

From this we can say

ϕ(yd) = 0.

But ϕ(y)d is given by the Figure 2.52. This has t1 colour C1, . . . , ti − 1 colour Ci, . . . and

ϕ(y)d =

Figure 2.52:

th colour Ch propagating lines. It does not have t1 colour C1, . . . , ti + 1 colour Ci, . . . and

th colour Ch propagating lines, where i take the values from 1, . . . , h. Therefore, ϕ(y)d is

0. From these we can say ϕ(yd) = ϕ(y)d.

From above cases we can say ϕ is a homomorphism. It is easy to see that ϕ is an

isomorphism of vector spaces, and so gives a module isomorphism.

Lemma 2.1.24. The module resnn−1∆n(t1, t2, . . . , ti, . . . , th) has a submodule isomorphic

to

⊕h
i=1∆n−1(t1, t2, . . . , ti − 1, . . . , th)

and the quotient by this is isomorphic to

⊕h
i=1∆n−1(t1, t2, . . . , ti + 1, . . . , th).
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Proof. Claims 2.1.22 and 2.1.23 proves this Lemma.

Axiom 2.1.25. (A6) For each Λ ∈ Λn
n there exist µ ∈ λn−1

n−1 such that

λ ∈ supp(ind∆n−1(µ)).

Algebra satisfies the sixth Axiom (A6)

Let λ = (a1, a2, . . . , ah) ∈ Λn
n. Therefore,

∑h
i=1 ai will be n. We need to find a µ ∈ Λn−1

n−1

such that λ ∈ supp(ind∆(µ)).

For the value of µ = (x1, x2, . . . , xh) ∈ Λn−1
n−1, so that

∑h
i=1 xi = n − 1, the module

ind(∆n−1(µ)) has the ∆-filtration

0 −→ ⊕h
i=1∆n(x1, x2, . . . , xi − 1, . . . , xh)

−→ indn
n−1∆n(x1, x2, . . . , xi, . . . , xh)

−→ ⊕h
i=1∆n(x1, x2, . . . , xi + 1, . . . , xh)

−→ 0.

Therefore, supp(ind∆n−1(µ)) is in Λn−2
n ⊔ Λn

n. However, λ ∈ Λn
n. Therefore, λ does not

belong to Λn−2
n . From this, we can say

λ = (x1, x2, . . . , xi + 1, . . . , xh)

for some i ∈ {1, 2, . . . , h}. If ai ̸= 0 take xi = ai − 1 and xk = ak for k take the values

from 1 to h except i. For these values of x1, x2, . . . , xh there is a µ ∈ Λn−1
n−1 such that

λ ∈ supp(ind∆(µ)).

The following Axiom is equivalent to the Axiom (A6).

Axiom 2.1.26. (A6’) For each Λ ∈ Λn
n there exist µ ∈ λn−1

n+1 such that

λ ∈ supp(res∆n+1(µ)).
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Lets use the same argument as in [13] after the Axiom(A6’) For a quasi-hereditary

algebra we have that Ext(∆(λ),∆(µ))) ̸= 0 implies that λ < µ. Therefore, 2.1.25 is

equivalent to the requirement that for each λ ∈ Λn there exists µ ∈ Λn−1 such that there is

a surjection.

ind∆n−1(µ) → ∆n(λ) → 0 (2.1.12)

The axiomatic framework introduced so far in [13] is sufficient to reduce the study of

various general homological problems. This broadly combines ideas from [9, 19].

The following Theorem is very helpful to understand the homological problem by re-

ducing the size of the modules.

Theorem 2.1.27. [13]

(i) For all pairs of weights λ ∈ Λm
n and µ ∈ Λl

n we have

Hom(∆n(λ),∆n(µ)) ∼=


Hom(∆m(λ),∆m(µ)) if l ≤ m,

0 otherwise.

(ii)Suppose that for all n ≥ 0 and pairs of weights λ ∈ Λn
n and µ ∈ Λn−2

n we have

Hom(∆n(λ),∆n(µ)) = 0.

Then each of the algebras An is semisimple.

We will see how to find the homomorphism from a first module with no arcs to the

second module with some arcs, if it exists, in Chapter 4 and 6. By using Theorem 2.1.27

we can find the homomorphism, if it exists, from the give first module with arcs in it to the

given second module by reducing the size of the first module to all lines propagating.
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2.2 Other algebras satisfy the axiomatic frame work

We list some of the algebras which satisfy the axiomatic framework to illustrate the utility

of the tower of recollement theory. We have obtained the following from [13, Example

1.2].

(i) Temperley-Lieb algebra TLn(δ): We can get more details about this algebra from [12,

45]. Temperley-Lieb algebra is the bubble algebra with one colour. In this case, indexing

set Λn = {n, n− 2, n− 4, . . . , 0 or 1} and Λn = {n}. We also have

0 → ∆n−1(i− 1) → res∆n(i) → ∆n−1(i+ 1) → 0

for 0 ≤ i < n and res∆n(n) ∼= ∆n−1(n− 1), and similar sequences for ind(∆n(i)).

(ii) Blob algebra bn(δ, δ′): This was introduced in [49]. In this case Λn = {n, n − 2, n −

4, . . . , 2− n,−n} with Λn = ±n. We have a short exact sequence

0 → ∆n−1(i∓ 1) → res∆n(i) → ∆n−1(i± 1) → 0.

for 0 ≤ i < n respectively −n < i < 0, and res∆n(±n) ∼= ∆n−1(±n ∓ 1). There are

similar sequences for ind∆n(i).

(iii) Partition algebra: This was introduced in [46]. In this case application of the theory

is a little more involved as the tower of algebras interleaves partition algebras with auxiliary

intermediates. Details can be found in [47].

(iv) The Brauer and walled Brauer algebras and in characteristic zero with δ ̸= 0:

These satisfies Axioms (A1)-(A6) according to [11] and [10]. They calculate when the

Hom-spaces considered in Theorem 2.1.27(ii) are non-zero, and hence we can say when

these algebras are semisimple [57].

If characteristic p > 0 the Brauer algebra is not quasi-hereditary. As the quotient
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algebras in (A2) are not semisimple. Apart from this, all of the other axioms (A1)-(A6) can

be verified.

(v) Contour algebras: These were introduced in [13, Section 2]. It has been shown in [13,

Section 2,3] that contour algebras satisfy the axiomatic framework of towers of recolle-

ment.
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Chapter 3

Tensor products and Gram matrices

In this Chapter we will discuss certain special idempotent subalgebras of the bubble alge-

bra, and show that they are isomorphic to products of Temperley-Lieb algebras. This also

extends to the structure of the cell modules for these algebras.

We will then consider Gram matrices for cell modules, and show how these can be

written as tensor products of Gram matrices for the Temperley-Lieb algebra. More details

about the Gram matrix can be obtained from [49, 45].

Our main research goal is to find exactly when there are homomorphisms between two

given cell modules. We will discuss this more in Chapters 4 and 6. If our first module

has no arcs and the second module has one arc then the matrix responsible for the homo-

morphism (we will introduce this for the first time in Chapter 4) is some part of the whole

Gram matrix. We will get non-zero homomorphisms for some special values of δ that are

some of the roots of the Gram matrix determinant. These values of δ that give non-zero

homomorphism are solutions of the part of the matrix we mentioned earlier.
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3.1 An idempotent subalgebra of the bubble algebra

In this section we will discuss certain special idempotent elements in the bubble algebra.

Idempotent elements plays a key role in our research. We also obtain certain results which

will make our calculations easier in the Gram matrix.

3.1.1 Standard results associated with idempotent elements

Lemma 3.1.1. If A is an algebra, M is a right A-module and e ∈ A such that e2 = e then

(a) eAe is an algebra

(b) Me is a right eAe-module.

It is easy to check the following Lemma.

Lemma 3.1.2. Φ : M −→ N is an A-module homomorphism then Φ : Me −→ Ne is an

eAe-module homomorphism.

3.1.2 Idempotent element with all lines propagating

In this section we will consider a special idempotent element e. We take e to be the diagram

with all strings propagating (and no crossings) where the first nC1 nodes are colour C1, the

next nC2 nodes are colour C2 and so on up to the last nCh
nodes which are colour Ch. We

will obtain some interesting results relating eTLh
ne and ∆n(λ)e to classical Temperley-Lieb

theory.

Definition 3.1.3. Let A and B be algebras. Then A⊗B is also an algebra where multipli-

cation is componentwise. If M is an A-module and N is a B-module then M ⊗ N is an

A⊗B-module via

(m⊗ n)(a⊗ b) = ma⊗ nb,
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where m ∈M,n ∈ N, a ∈ A, b ∈ B.

The main result of this section is the following.

Theorem 3.1.4. With e defined as above we have that

eTLh
n(δC1 , . . . , δCh

)e ∼=
h⊗

k=1

TLnCk
(δCk

)

Proof. Let us denote the algebra TLh
n(δC1 , . . . , δCh

) by A. Any diagram from eAe has first

nC1 nodes colour C1, next nC2 nodes colour C2 and so on up to last nCh
nodes colour Ch

because all of the other elements of A will be killed by e. Now we define a linear map ψ

from eAe to
⊗h

k=1 TLnCk
(δCk

) such that

ψ : eAe −→
h⊗

k=1

TLnCk
(δCk

)

as in Figure 3.1.

Let a1 ∈ A be as in Figure3.2, where bk ∈ TLnCk
for 1 ≤ k ≤ h. Therefore

ψ(ea1e) = b1 ⊗ b2 ⊗ . . .⊗ bh.

We will show ψ is an algebra homomorphism.

. . . . . . . . . . . .

. . . . . . . . . . . .

. . .b1 b2 bh −→ b1 ⊗ b2 ⊗ . . . bh

Figure 3.1:
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. . .b1 b2 bha1 =

Figure 3.2:

. . .b1 b2 bha1 =

. . .b′1 b′2 b′ha2 =

Figure 3.3:

Let a1 and a2 be as in Figure 3.3. Here bk ∈ TLnCk
and b′k ∈ TLnCk

for each 1 ≤ k ≤

h. We need to show that

ψ((ea1e)(ea2e)) = ψ(ea1e)ψ(ea2e).

We have (ea1e)(ea2e) = ea1ea2e because e2 = e. If a1, a2 has the same northern and

southern edge colour sequence as e then ea1ea2e can be given by a1a2, otherwise 0. If

a1a2 ̸= 0 then a1a2 can be given by Figure 3.4 which can be simplified into Figure 3.5.

This can be written as

ψ((ea1e)(ea2e)) =

 b1b
′
1 ⊗ . . .⊗ bhb

′
h, if a1a2 ̸= 0;

0, otherwise.
(3.1.1)

If we find ψ(ea1e)ψ(ea2e) we will get

ψ(ea1e)ψ(ea2e) = (b1 ⊗ . . .⊗ bh)(b
′
1 ⊗ . . .⊗ b′h)

= b1b
′
1 ⊗ . . .⊗ bhb

′
h
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or ψ(ea1e)ψ(ea2e) is 0. This can be written as

ψ(ea1e)ψ(ea2e) =

 b1b
′
1 ⊗ . . .⊗ bhb

′
h, if a1, a2 same colour sequence as e;

0, otherwise.
(3.1.2)

. . .b1 b2 bh

. . .b′1 b′2 b′h

a1a2 =

Figure 3.4:

. . .b1b′1 b2b′2 bhb
′
h

Figure 3.5:

From (3.1.1) and (3.1.2) we can say

ψ((ea1e)(ea2e)) = ψ(ea1e)ψ(ea2e).

This implies that ψ is an algebra homomorphism. At the same time, ψ is injective by the

way it is defined.

We will show ψ is surjective. Let y ∈
⊗h

k=1 TLnCk
(δCk

) be a diagram. Therefore,

y = b1 ⊗ b2 . . .⊗ bh for some bk ∈ TLnCk
. However, ψ of Figure 3.6 gives us y. Choose

a ∈ A as in Figure 3.7. Therefore, eae given by the diagram in Figure 3.6, belongs to eAe.

Now ψ(eae) = y and so ψ is surjective.
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. . . . . . . . . . . .

. . . . . . . . . . . .

. . .b1 b2 bh

Figure 3.6:

. . .b1 b2 bh

Figure 3.7:

We have shown ψ is homomorphism injective and surjective. Therefore, ψ is an algebra

isomorphism. This implies that

eTLh
n(δC1 , δC2 . . . , δCh

)e ∼=
h⊗

k=1

TLnCk
(δCk

).

Definition 3.1.5. Given A and B are algebras. Suppose that A ∼= B via ϕ : A −→ B

and that M is an A-module and N a B-module. If there is a vector space isomorphism

θ :M −→ N and

θ(ma) = θ(m)ϕ(a)

then we can say M ∼= N , where m ∈M and a ∈ A.

Lemma 3.1.6.

∆n(a1, a2, . . . , ah)e ∼=
h⊗

k=1

∆nCk
(ak),

where e is the idempotent defined above.
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Proof. We are only going to prove this for two colours red and green. However, it is quite

easily generalise into h colours. The diagrams become more complicated for h colours

which is the reason we are doing it for 2 colours. Let us prove the following

∆n(r, g)e ∼= ∆n−i,R(r)⊗∆i,G(g),

where e has n − i red and i green propagating lines and r ≤ n − i and g ≤ i. We have

proved in Lemma 3.1.4 that

eTL2
n(δR, δG)e

∼= TLn−i(δR)⊗ TLi(δG).

By using the function ψ as in Figure 3.1.

β γ=α

Figure 3.8:

Let αe be an element in ∆n(r, g)e. Here α is given by Figure 3.8. Let θ be a linear map

such that

θ : ∆n(r, g)e −→ ∆n−i,R(r)⊗∆i,G(g)

as in Figure 3.9. Therefore we can say

θ(αe) = β ⊗ γ.

Clearly θ is a vector space isomorphism. Let αe ∈ ∆n(r, g)e and eae ∈ eTL2
n(δR, δG)e.

Now we will check the condition

θ((αe)(eae)) = θ(αe)ψ(eae)
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. . . . . .

β γ

−→ β ⊗ γ

Figure 3.9:

=(αe)(eae)

β γ

b c

. . . . . .

β γ

. . . . . .

. . . . . .

b c

. . . . . .

βb γc

. . . . . .

==

Figure 3.10:
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Consider (αe)(eae), which is illustrated in Figure 3.10. From this Figure we can say

θ((αe)(eae)) = βb⊗ γc

if the southern edge colour sequence of α and the northern edge colour sequence of amatch

with e, or 0 otherwise. We can write this as

θ((αe)(eae)) =

 βb⊗ γc, colour sequence of α, a and e same;

0, otherwise.
(3.1.3)

On the other hand

θ(αe)ϕ(eae) = (β ⊗ γ)(b⊗ c)

= βb⊗ γc

if the southern edge colour sequence of α and the northern edge colour sequence of amatch

with e, or 0 otherwise. This can be written as

θ(αe)ϕ(eae) =

 βb⊗ γc, colour sequence of α, a and e same;

0, otherwise.
(3.1.4)

From (3.1.3) and (3.1.4) we can say

θ((αe)(eae)) = θ(αe)ϕ(eae)

and hence

∆n(r, g)e ∼= ∆n−i,R(r)⊗∆i,G(g).
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3.2 Gram matrix and its application

In this section we are going to discuss the Gram matrix and an application for finding the

special values of δ for which a given cell module is not simple. The Gram matrix is named

after Jorgen Pedersen Gram [21].

Definition 3.2.1. The Gram matrix of the module ∆n(λ) is given by

M(∆n(λ)) = (Mij), (3.2.1)

where

Mij = ⟨Cλ
i , C

λ
j ⟩ (3.2.2)

andCλ
i , Cλ

j are cellular basis elements of the module ∆n(λ). The inner product was defined

earlier in 1.1.3 and given by (1.1.12).

When we calculate ⟨Cλ
i , C

λ
j ⟩ only the southern half diagrams of Cλ

i and Cλ
j are in-

volved. Therefore, it is enough to consider the southern half diagram basis elements of

∆n(λ) to find the Gram matrix M(∆n(λ)).

Lemma 3.2.2.

(a) Mij is 0, 1 or a monomial in δCk
’s.

(b) The degree of Mii equals the number of arcs in Cλ
i .

(c) If i ̸= j then the degree of Mij is strictly less than the number of arcs in Cλ
i .

Proof. First of all we consider Mij , where i ̸= j. It is given by the inner product of Cλ
i

and Cλ
j . According to (1.1.12) it can be calculated by multiplying Cλ

i followed by the

multiplication of the upside down version of Cλ
j . From this we can say Mij is 0 if the
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colours do not match or there are the wrong number of propagating lines, 1 if all the lines

are propagating lines, and a monomial in δ’s otherwise. This proves Lemma 3.2.2(a). The

number of closed loops is less than number of arcs in Cλ
i and Cλ

j when i ̸= j, because

not all the arcs of Cλ
i will match with the arcs of Cλ

j exactly and some may end up with

propagating lines or forming a single loop out of more than two arcs. Therefore, Mij is a

monomial of degree less than the number of arcs. This proves Lemma 3.2.2(c).

Now we consider Mii. If we draw Cλ
i followed by the up side down of Cλ

i , then the

number of closed loops obtained is equal to the number of arcs in Cλ
i . Therefore, Mii is a

monomial of degree equal to the number of arcs. This proves Lemma 3.2.2(b).

3.2.1 Finding the Gram matrix of a given module

Consider TLh
n(δC1 , . . . , δCh

) and the module ∆n(a1, a2, . . . , ah). We can find the special

values of δCi
for which module become not simple. We can find this by solving

detM(∆n(a1, a2, . . . , ah)) = 0, (3.2.3)

where i in δCi
can take the values 1 to h. These special values are very important when

we find the homomorphism between given two modules. We will discuss this in a later

Chapter.

Example 3.2.3.

Let us find the Gram matrix M for the module ∆3(1, 0). This is a TL2
3(δR, δG)-module

with red and green colour nodes. Here the module has 3 nodes and 1 red propagating line

and no green propagating line. Half diagrams of the basis elements of the module ∆3(1, 0)

are in Figure 3.11.
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c
(1,0)
1 c

(1,0)
2 c

(1,0)
3

c
(1,0)
4 c

(1,0)
5

Figure 3.11: Half diagrams of the basis elements of the module ∆3(1, 0)

δR

δR

δG

δG

1

1

0 0 0 0 δG

0000

0 0 0 0

000

0 0 0

Figure 3.12: Gram matrix of the module ∆3(1, 0)

100



From Figure 3.12 the Gram matrix M of the module ∆3(1, 0) can be calculated as

M(∆3(1, 0)) =



δR 1 0 0 0

1 δR 0 0 0

0 0 δG 0 0

0 0 0 δG 0

0 0 0 0 δG


.

If we find the determinant of the Gram matrix we obtain

detM(∆3(1, 0)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δR 1 0 0 0

1 δR 0 0 0

0 0 δG 0 0

0 0 0 δG 0

0 0 0 0 δG

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (δ2R − 1)δ3G.

We can find the special values of δR and δG by solving

detM(∆3(1, 0)) = 0.

Therefore the special values of δR are ±1 and of δG is 0.

Gram matrix with organised half diagram of the module according to colour sequence

We have seen how to find the Gram matrix and the special value of δ for a given module

∆n(a1, a2, . . . , ah). However, if we increase the value of n then our Gram matrix will

become very large very quickly. Therefore, it will be very hard to find the determinant. To

avoid this problem, we organise the diagrams into collections by looking at half diagram

organised by the colour sequences of their nodes. We define this as follows.
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Definition 3.2.4. The list of colours of the nodes in a half diagram written as a sequence

from left to right is called the colour sequence of the nodes. We denote this by

Xt1...tn

where ti denotes the colour of node i.

Usually we will use the first letter of the colours in such a sequence, as in the following

example.

Example 3.2.5. Let Xrrgrggg be a set of half diagrams with nodes colour sequence red, red,

green, red, green, green and green. If we look at Figure 3.13 the first half diagram belongs

to Xrrgrggg. However, the second half diagram does not belong to Xrrgrggg.

Figure 3.13:

Let X1, X2, . . . Xp be the southern half diagram colour sequences of the module

∆n(a1, a2, . . . , ah). If we organise the half diagrams according to the colour sequence our

Gram matrix M of the module ∆n(a1, a2, . . . , ah) may look as in Figure 3.14. We get

non-zero matrices on the diagonals as shown and zero matrices in the other places, as we

get non-zero entries in the Gram matrix if the colour sequences match, otherwise zero. If

we find the determinant of this matrix, that is actually the product of the determinant of the

diagonal matrices. This is summarised in the following Lemma.

Lemma 3.2.6. The determinant of the Gram matrix of ∆n(λ) is given by

det(M(∆n(λ)) =
∏
i

det a(Xi), (3.2.4)
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=M

X2

X3

Xp

X1

...

a(X1)

a(X3)

a(Xp)

X1 X2 X3 Xp. . .

a(X2)0

0 0

0 0 0 0

0 0 0

0 0

0

...
...

...
...

. . .

. . .

. . .

. . .

Figure 3.14: Appearance of the Gram matrix according to colour sequence

where a(Xi) is the sub-matrix comes from the collection of half diagrams of the module

∆n(λ) whose southern edge colour sequence is Xi.

3.2.2 Tensor Product of Matrices

We are going to discuss tensor products of matrices, known as the Kronecker product. This

product is very useful in our Gram matrix calculation. We can write the Gram matrix as

the tensor product of more than one matrix. By using the properties of tensor products we

can then find the determinant of the Gram matrix quite easily.

Definition 3.2.7. Let A = (aij)1≤i,j≤m,n and B = (bkl)1≤k,l≤p,q be two matrices. The
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tensor product of matrices A and B is given by

A⊗B =



a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB


mn×np

.

Some basic properties of tensor products of matrices

We recall some well-known properties of the tensor product of matrices.

(i) Suppose that A,A′, B,B′ are matrices where the usual matrix products A.A′ and

B.B′ make sense. Then

(A⊗B).(A′ ⊗B′) = (A.A′)⊗ (B.B′) (3.2.5)

(ii) For all A and B we have

(A⊗B)T = AT ⊗BT (3.2.6)

(iii) If A and B are invertible then

(A⊗B)−1 = A−1 ⊗B−1 (3.2.7)

(iv) For any scalar d and matrices A and B we have

d(A⊗B) = dA⊗B = A⊗ dB (3.2.8)

(v) Let A,B,C and D be matrices and c, d, e and g be scalars. Then

(cA+ dB)⊗ (eC + gD) = ceA⊗ C + cgA⊗D + deB ⊗ C + dgB ⊗D (3.2.9)

(vi) If B and C are square matrices then

det(B ⊗ C) = det(B)dimC × det(C)dimB

=
(
det(B)

1
dimB det(C)

1
dimC

)dimB×dimC (3.2.10)
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We will use this final property quite frequently.

Lemma 3.2.8. Let A1, A2, . . .Ah be square matrices. Then the determinant of the tensor

product of these matrices is given by

detA1 ⊗ A2 ⊗ . . .⊗ Ah =

(
h∏

i=1

detA
1

dimAi
i

)∏h
i=1 dimAi

. (3.2.11)

Example 3.2.9. Let us consider the module ∆6(1, 1) of the algebra TL2
6(δR, δG). This

has one red and one green propagating line and two arcs of either colour. There are many

possible colour sequence for our module.

We can divide the half diagrams of the module into the following three cases.

Case (i): One red propagating line, one green propagating and two red arcs: half diagrams

in this case have five red nodes and one green node. Therefore, 6!
5!
= 6 number of possible

colour sequences in this case.

Case (ii): One red propagating line, one green propagating line, one red arc and one green

arc: half diagram in this case have three red nodes and three green nodes. Therefore, there

will be 6!
3!3!

= 20 number of possible colour sequences.

Case (iii): one red propagating line, one green propagating line and two green arcs: half

diagram in this case has five green nodes and one red node. Therefore, there will be 6!
5!
= 6

number of possible colour sequences in this case.

From these three cases, we can see that there will be 32 different possible colour se-

quences for the module ∆6(1, 1).

If we work out the matrix a(Xgrrrgg) we will get as in Figure 3.15. We call this matrix
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δRδG

δRδG

δRδG

δRδG

δR

δR

δG

δG

1

1

1

δG

δG

δR

δR

1

Figure 3.15: Matrix by considering the half diagrams with colour sequence Xgrrrgg

A.

A =



δR.δG δR.1 1.δG 1.1

δR.1 δR.δG 1.1 1.δG

1.δG 1.1 δR.δG δR.1

1.1 1.δG δR.1 δR.δG


(3.2.12)

If we look at this carefully we can observe the following.

A =


δR

 δG 1

1 δG

 1

 δG 1

1 δG


1

 δG 1

1 δG

 δR

 δG 1

1 δG




(3.2.13)

This matrix A can be written

A =

 δR 1

1 δR

⊗

 δG 1

1 δG


=B ⊗ C,
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where B and C are the first and second matrix respectively. By using the property of the

tensor product determinant in (3.2.10) we can say

det(A) = det(B)dimC × det(C)dimB.

However, we know

det(B) = δ2R − 1 dimB = 2

det(C) = δ2G − 1 dimC = 2

Therefore, we can say

det(A) = (δ2R − 1)2(δ2G − 1)2.

However, a(Xgrrrgg) is the matrix A. Therefore we can say

det(a(Xgrrrgg)) = (δ2R − 1)2(δ2G − 1)2.

Application of tensor products in the Gram matrix calculation

We are going to find the determinant of the Gram matrix M(∆n(a1, . . . , ah)) by using one

colour facts, which means by considering certain Temperley-Lieb modules. As in (3.2.4)

we know detM(∆n(a1, . . . , ah)) can be given as the product of det a(Xi). However, we

are going to see very soon matrix a(Xi) can be written as the tensor product of matrices as

in Lemma 3.2.10. Each matrix in 3.2.14 correspond to a one colour module.

Lemma 3.2.10. For ∆n(a1, . . . , ah) the matrix a(Xi) in

detM(∆n(a1, . . . , ah)) =
∏
i

det a(Xi)

can be given by

a(Xi) =
h⊗

k=1

M(∆nCki
(ak)), (3.2.14)

where nCki is the number of colour Ck nodes in Xi.
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Proof. By using Lemma 3.1.6 we have

∆n(a1, . . . , ah)ei ∼=
h⊗

k=1

∆nCki
(ak),

where ei is the idempotent element with all propagating lines and colour sequence i. There-

fore we have

M(∆n(a1, . . . , ah)ei) =
h⊗

k=1

M(∆nCki
(ak)).

Now M(∆n(a1, . . . , ah)ei) is precisely the matrix a(Xi) and hence we have proved the

Lemma.

Application of the above results in Gram-matrix

We can construct the Gram matrix of ∆n(a1, a2, . . . , ah) by grouping the half diagrams with

the same colour sequence. Each colour sequence i corresponds to an idempotent element

ei. If we say there are s colour sequences then

detM(∆n(a1, a2, . . . , ah)) =
s∏

i=1

det(a(Xi))

=
s∏

i=1

det(M(∆n(a1, a2, . . . , ah)ei))

Example 3.2.11. Let us work out the determinant of the Gram matrix of the module

∆6(1, 1). If we use the above Lemma we will get

detM(∆6(1, 1)) =
32∏
i=1

det a(Xi).

HereX1, X2, . . . , X32 are the possible southern edge colour sequence of the module ∆6(1, 1).

Among these, six of them have the determinant δ2R(δ
2
R − 1)4, twenty of them have the de-

terminant (δ2R − 1)2(δ2G − 1)2 and another six of them have the determinant δ2G(δ
2
G − 1)4.

Therefore

detM(∆6(1, 1)) =
(
δ2R(δ

2
R − 1)4

)6 (
(δ2R − 1)2(δ2G − 1)2

)20 (
δ2G(δ

2
G − 1)4

)6
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Lemma 3.2.12. The determinant of the Gram matrix of ∆n(a1, a2, . . . ah) is given by

detM(∆n(a1, a2, . . . , ah)) =
s∏

i=1

[
h∏

k=1

detM(∆nCki
(ak))

1
dCki ]

∏h
k=1 dCki , (3.2.15)

where nCki denotes the number of Ck colour nodes in the colour sequence Xi, dCki denote

the dimension of the matrix M(∆nCki
(ak)) and s denotes the number of colour sequences.

Proof. We prove this by induction on the number of colours h.

When we consider h = 1, that means one colour, result is obvious because there will

be only one colour sequence.

When we consider h = 2, that means two colours C1 and C2. From (3.2.14) and (3.2.4) we

get

detM(∆n(a1, a2)) =
s∏

i=1

detM(∆nC1i
(a1))

dC2i detM(∆nC2i
(a2))

dC1i

=
s∏

i=1

(
detM(∆nC1i

(a1))
1

dC1i detM(∆nC2i
(a2))

1
dC2i

)dC1i
dC2i

=
s∏

i=1

(
detM(∆nC1i

(a1))
1

dC1i detM(∆nC2i
(a2))

1
dC2i

)dC1i
dC2i

Suppose this is true for h = p colours. Therefore,

detM(∆nC1i
+nC2i

+...+nCpi
(a1, a2, . . . , ap)) =

s∏
i=1

[

p∏
k=1

detM(∆nCki
(ak))

1
dCki ]

∏p
k=1 dCki .

(3.2.16)

Let us say ei is the idempotent element with the colour sequence Xi at this stage.

Now we will prove this for h = p+1 colours. Consider the idempotent element e′i with

the colour sequence X ′
i. This can be obtained by adding nCp+1i colour nodes to the end of

the idempotent in the case with p colours. Therefore, we can say

∆n(a1, a2, . . . , ap+1)e
′
i
∼=∆nC1i

+nC2i
+...+nCpi

(a1, a2, . . . , ap))

⊗∆nCp+1i
(ap+1))
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M(∆n(a1, a2, . . . , ap+1)e
′
i) =M(∆nC1i

+nC2i
+...+nCpi

(a1, a2, . . . , ap))

⊗M(∆nCp+1i
(ap+1))

From this we can say

detM(∆n(a1, a2, . . . , ap+1)e
′
i) =[detM(∆nC1i

+nC2i
+...+nCpi

(a1, a2, . . . , ap))]
dCp+1i

detM(∆nCp+1i
(ap+1))

∏p
k=1 dCki

(3.2.17)

If we substitute (3.2.16) in (3.2.17) this implies

detM(∆n(a1, a2, . . . , ap+1)) =
s∏

i=1

(
[

p∏
k=1

detM(∆nCki
(ak))

1
dCki ]

∏p
k=1 dCki

)dCp+1i

detM(∆nCp+1i
(ap+1))

∏p
k=1 dCki

We can simplify this as

M(∆n(a1, a2, . . . , ap+1)) =
s∏

i=1

[

p+1∏
k=1

detM(∆nCki
(ak))

1
dCki ]

∏p+1
k=1 dCki

and so the Lemma holds.
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Chapter 4

Homomorphism between modules: the
one arc case

In this chapter, we will show how to find the non-zero homomorphisms between two given

modules where the number of arcs differs by one. By Theorem 2.1.27 we can assume that

the first module has all line propagating and the second module has only one arc. We will

generalise this to h colours and allow the second module to have more than one arc in

Chapter 6. Figure 4.1 denotes the labeling for the red, green and black propagating lines

and arc colour of the figures in the remaining Chapters.

: red colour

: green colour

: black colour

Figure 4.1: Colour labeling
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4.1 Finding homomorphisms

Let ∆n(a, b) and ∆n(c, d) be the two given modules of the algebra TL2
n(δR, δG). We would

like to find the non-zero homomorphisms, θ : ∆n(a, b) −→ ∆n(c, d), so as to gain a better

understanding of the relationship between the modules ∆n(a, b) and ∆n(c, d). It should

satisfy the homomorphism condition

θ(mx) = θ(m)x, (4.1.1)

for m ∈ ∆n(a, b) and x ∈ TL2
n(δR, δG).If there is a non-zero homomorphism, then

a ≥ c, b ≥ d and both a− c and b− d are divisible by two. (4.1.2)

However, (4.1.2) alone does not imply that there is a non-zero homomorphism because this

will also depends on the values of δR and δG. Therefore, we need to find these special

values of δR and δG.

4.1.1 Introduction to the notation for modules and algebra elements

Our modules and algebra have two colour nodes. Therefore, more than one colour sequence

is possible for the nodes. We denote the ith colour sequence byXi. Module ∆n(a, b) has all

nodes propagating, a+ b = n. Therefore, there will be only one basis element possible for

each colour sequence. We call that basis element mi. If we consider the module ∆n(c, d)

there will be more than one basis element for each colour sequence. Therefore, we label

the basis elements by nij where i represents the colour sequence Xi and j represents the

label for the southern edge half diagram of the basis element. We label the colour sequence

as X1 if it has first a nodes red colour and the next b nodes green colour. Please see the

beginning of Example 4.1.2 for the labeling of the basis elements of the modules.
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Lemma 4.1.1. Let θ be a non-zero homomorphism from ∆n(a, b) to ∆n(c, d). Then we can

write

θ(mi) =
∑
j

sjnij,

where nij is a basis element of the second module with the southern edge colour sequence

Xi and sj is the coefficient of nij which is independent of i.

Proof. First consider the case i = 1. Let x be an element of the algebra. We know θ should

satisfy the homomorphism condition

θ(m1x) = θ(m1)x.

However, m1x becomes 0 if the southern edge colour sequence of m1 and northern edge

colour sequence of x are different. We may get non-zero value for m1x, unless multipli-

cation gives the wrong number of propagating lines as m1, if the southern edge of m1 and

northern edge of x are same. Therefore, the colour sequence of θ(m1) should have the

same colour sequence as the northern edge of x. From this we see that the southern edge

colour sequences of m1 and θ(m1) are the same. Therefore, we can say θ(m1) is a linear

combination of the second module basis elements with the same southern edge colour se-

quence as m1. Let n1j be the second module basis element with the southern edge colour

sequence as m1. Therefore, we can write

θ(m1) =
∑
j

sjn1j.

Now consider the case i ̸= 1. By using diagrams with one crossing and all lines propa-

gating, the position of the colour nodes can be moved. (These diagrams are some of the

generators of the algebra. We will see more of this kind of diagrams in Chapter 5.) First

module basis elements mi and m1 have the same number of each colour propagating line.
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However, the colour sequence of the nodes is different. Therefore, we can write mi as the

multiplication of m1 with a sequence of diagrams of the algebra TL2
n with one crossing.

Let us say

mi = m1gi1 . . . gik .

We have

θ(mi) = θ(m1gi1 . . . gik).

and hence as θ is a homomorphism we have

θ(mi) = θ(m1)gi1 . . . gik .

If we substitute for θ(m1) we will get

θ(mi) = (
∑
j

sjn1j)gi1 . . . gik =
∑
j

sjn1jgi1 . . . gik .

Multiplication of n1j by the sequence of diagrams gi1 . . . gik cannot change the shape of

each colour because crossing of same colour is not allowed in our algebra even though, it

changes the colour sequence of the nodes. However, the southern edge colour sequence of

mi and θ(mi) should be the same. Therefore, n1jgi1 . . . gik colour sequence should be same

as mi. For this reason, we can write n1jgi1 . . . gik as nij . From this we can say

θ(mi) =
∑
j

sjnij.

Example 4.1.2. Let us find a non-zero homomorphisms between ∆4(3, 1) to ∆4(1, 1). We

114



list the possible color sequences of the half diagrams of the modules, which are

X1 = Xrrrg X5 = Xrggg

X2 = Xrrgr X6 = Xgrgg

X3 = Xrgrr X7 = Xggrg

X4 = Xgrrr X8 = Xgggr.

Module ∆4(3, 1) has three red and one green propagating lines. Therefore, its basis el-

ements colour sequences can be X1, X2, X3 and X4. However, module ∆4(1, 1) basis

elements can have the colour sequenceX1, X2, . . . , X8. Basis elements of ∆4(3, 1) are dis-

played in Figure 4.2 and basis elements of ∆4(1, 1) are displayed in Figure 4.3. According

to our labeling system, we call the first module ∆4(3, 1) basis elements as m1, m2, m3 and

m4. There is only one basis element possible for each colour sequence. However, if we

consider the second module ∆4(1, 1), it has two basis elements possible for each colour

sequence. Therefore, basis elements of ∆4(1, 1) can be labeled as n11, n12, . . . , n82.

m1

m3

m2

m4

Figure 4.2: Basis elements of ∆4(3, 1)

By Lemma 4.1.1, each basis element in ∆4(3, 1) maps to a linear combination of two
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n52 n61 n62

n71 n72 n81

n82

n11 n12 n21

n22 n31 n32

n41 n42 n51

Figure 4.3: Basis elements of ∆4(1, 1)
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basis elements in the second module ∆4(1, 1), because there are exactly two basis elements

in the second module ∆4(1, 1) with the same colour sequence. Therefore, by Lemma 4.1.1

we can say

θ(m1) = s1n11 + s2n12 (4.1.3)

θ(m2) = s1n21 + s2n22 (4.1.4)

θ(m3) = s1n31 + s2n32 (4.1.5)

θ(m4) = s1n41 + s2n42 (4.1.6)

for some s1, s2 ∈ C.

Finding a necessary condition

In order to obtain a necessary condition for a non-zero homomorphism to exist, we choose

algebra elements with the same northern edge half diagram as the southern edge half dia-

gram of the second module basis element. After that by taking a basis element of the first

module and applying the homomorphism condition (4.1.1) we get a system of equations.

By solving these we can find the solution for the unknown constants s1 and s2.

a

Figure 4.4:

We choose an algebra element awith the same northern and southern edge half diagram

as the southern edge half diagram of n11 as in Figure 4.4. If we apply the homomorphism
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condition (4.1.1) for m1 and the algebra element a we need

θ(m1a) = θ(m1)a.

If we multiply m1 by a we will get Figure 4.5. From this we can say m1a is 0 which in

turn gives us θ(m1a) is 0. We have already obtained an expression for θ(m1) and by

m1a =

Figure 4.5:

n11a = n12a =

= δRn11 = n11

Figure 4.6:

substitution we obtain

θ(m1)a =0

(s1n11 + s2n12)a =0

s1n11a+ s2n12a =0.
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By using Figure 4.6 we can get n11a = δRn11 and n12a = n11. This gives us

s1δRn11 + s2n11 =0

(s1δR + s2)n11 =0.

However, we know n11 ̸= 0. Therefore, we can say

s1δR + s2 = 0. (4.1.7)

m1b =

Figure 4.7:

n11b = n12b =

= n12 = δRn12

Figure 4.8:

We choose algebra element b with the northern and southern edge half diagram as the

southern edge half diagram of n12. If we apply the homomorphism condition (4.1.1) by
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choosing m as m1 and x as b we will get

θ(m1b) = θ(m1)b.

If we multiply m1 by b we will get Figure 4.18. From this we can say m1b is 0 which

in turns gives us θ(m1b) is 0. We have already obtained an expression for θ(m1) and by

substitution we obtain

θ(m1)b =0

(s1n11 + s2n12)b =0

s1n11b+ s2n12b =0.

By using Figure 4.8 we can get n11b = n12 and n12b = δRn12. This gives us

s1δRn12 + s2n12 =0

(s1δR + s2)n12 =0.

However, we know n12 ̸= 0. Therefore, we can say

s1 + s2δR = 0. (4.1.8)

Forming matrix equation

We can write (4.1.7) and (4.1.8) as δR 1

1 δR


 s1

s2

 =

 0

0

 (4.1.9)

which we write as  δR 1

1 δR

S = 0.
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Solving matrix equation

We get non-zero solutions to S only if the determinant is zero. This gives us δ2R − 1 = 0,

so δR = ±1. If we substitute this into (4.1.9) we will get

s2 = ∓s1.

Finding the homomorphism

From the above equation and (4.1.3) we can say

θ(m1) = s1n11 ∓ s1n12.

Similarly, we can find θ(m2), θ(m3) and θ(m4). These can be written as

θ(mi) = s1(ni1 ∓ ni2).

Let m be an arbitrary element of the first module. Therefore, we can write

m =
4∑

i=1

cimi

where ci ∈ C. If we apply θ to both sides and simplify, we get

θ(m) =
4∑

i=1

ciθ(mi).

Therefore, we can write the above equation as

θ(m) = s1

4∑
i=1

ci(ni1 ∓ ni2).

This is our non-zero homomorphism for δR = ±1.
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Special value of δR and δG and involvement with the Gram matrix

In order to investigate the link between the determinant of the Gram matrix and the con-

ditions δ2R − 1 = 0, which is derived from the matrix equation (4.1.9 ), we look at the

Gram matrix of the module ∆4(1, 1). This is a 16 × 16 matrix and to find its determinant,

detM(∆4(1, 1)), we will use the knowledge we got earlier from the Gram matrix determi-

nant. As a first step we find the matrix associated with each colour sequence. The matrix

a(X1) is constructed by the half diagrams with 3 red nodes and 1 green node, such that

among these there should be 1 red propagating line, 1 green propagating line and 1 red arc.

By (3.2.14) we have

a(X1) =M(∆3R(1))⊗M(∆1G(1)).

The matrix M(∆3R(1)) is given by Figure 4.9. Matrix M(∆1G(1)) is constructed by the

1

1

δR

δR

Figure 4.9:

half diagram with one green propagating line. This diagram has only one green propagating

line, and hence M(∆1G(1)) is the identity matrix. It follows that the determinant of a(X1)

is given by

det a(X1) = (δ2R − 1)1 × 12 = δ2R − 1.
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Similarly, we can derive the determinant of a(X2), a(X3) and a(X4) as shown below

det a(X2) = (δ2R − 1),

det a(X3) = (δ2R − 1),

det a(X4) = (δ2R − 1).

We use the same procedure to derive the determinant of a(X5), a(X6), a(X7) and a(X8),

thus obtaining

det a(X5) = (δ2G − 1)1 × 12 = δ2G − 1,

det a(X6) = (δ2G − 1),

det a(X7) = (δ2G − 1),

det a(X8) = (δ2G − 1).

Therefore, by using (3.2.4), the determinant of M(∆4(1, 1)) can be written as

detM(∆4(1, 1)) =
8∏

i=1

det a(Xi)

= (δ2R − 1)4(δ2G − 1)4.

Example 4.1.3. Let us find the possible first module when the second module is ∆6(2, 2).

First we obtain the Gram matrix of the module ∆6(2, 2) and find the determinant of the

Gram matrix. Upon solving

detM(∆6(2, 2)) = 0

we are able to derive the conditions for the possible homomorphisms from first module

in terms of δR and δG. The possible first modules are ∆6(4, 2) and ∆6(2, 4) because the

partial ordering in Λ of the algebra TL2
6(δR, δG) is

(2, 2) ≥ (4, 2) and (2, 2) ≥ (2, 4)
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and there are no more branches below (4, 2) and (2, 4). To derive the Gram matrix determi-

nant of ∆6(2, 2) we group the half diagrams according to the colour sequence as follows.

X1 = Xrrrrgg X2 = Xrrrggr X3 = Xrrggrr X4 = Xrggrrr X5 = Xggrrrr

X6 = Xrrrgrg X7 = Xrrgrrg X8 = Xrgrrrg X9 = Xgrrrrg X10 = Xrrgrgr

X11 = Xrgrrgr X12 = Xgrrrgr X13 = Xrgrgrr X14 = Xgrrgrr X15 = Xgrgrrr

X16 = Xrrgggg X17 = Xgrrggg X18 = Xggrrgg X19 = Xgggrrg X20 = Xggggrr

X21 = Xrgrggg X22 = Xrggrgg X23 = Xrgggrg X24 = Xrggggr X25 = Xgrgrgg

X26 = Xgrggrg X27 = Xgrgggr X28 = Xggrgrg X29 = Xggrggr X30 = Xgggrgr.

We obtain the matrix a(X1) by considering the half diagrams of the module ∆6(2, 2) shown

in Figure 4.10. We can simplify a(X1) as

δR 1 0

1 δR 1

0 1 δR

1⊗

Figure 4.10:

a(X1) =


δR 1 0

1 δR 1

0 1 δR


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and then

det a(X1) =

∣∣∣∣∣∣∣∣∣∣
δR 1 0

1 δR 1

0 1 δR

∣∣∣∣∣∣∣∣∣∣
= [δR(δ

2
R − 1)]− δR = [δR(δ

2
R − 2)]

We find that each matrix a(Xi) for 1 ≤ i ≤ 15 is the same since each half diagrams

to construct a(Xi) has colour sequence Xi for 1 ≤ i ≤ 15, has two red and two green

propagating lines and one red arc. Hence, we have det a(Xi) = δR(δ
2
R−2) for 1 ≤ i ≤ 15.

Similarly, we find matrix a(X16) as we did for a(X1). Figure 4.11 illustrates how we found

the matrix a(X16) which can be simplified as

δG 1 0

1δG

1

1

0 δG

1 ⊗

Figure 4.11:

a(X16) =


δG 1 0

1 δG 1

0 1 δG

 .

If we find the determinant of a(X16) we get

det(a(X16)) = [δG(δ
2
G − 2)].
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We find that each matrix a(Xi) for 16 ≤ i ≤ 30 is the same since each colour sequence has

two red and two green propagating line and one green arc. Therefore, we have det a(Xi) =

δR(δ
2
R − 2) for 16 ≤ i ≤ 30.

We can write the determinant of our Gram matrix M(∆6(2, 2)) by using (3.2.4) as

detM(∆6(2, 2)) =
30∏
i=1

det a(Xi)

= [δR(δ
2
R − 2)]15[δG(δ

2
G − 2)]15.

Therefore, we are able to obtain the solution to detM(∆6(2, 2)) = 0 from which we derive

the condition δR(δ2R − 2) = 0 which will give the non-zero homomorphism from ∆6(4, 2)

to ∆6(2, 2) and the condition δG(δ2G− 2) = 0 which will give the non-zero homomorphism

from ∆6(2, 4) to ∆6(2, 2).

Definition 4.1.4. Let Rn be the n× n matrix

δR 1 0 0 · · · 0

1 δR 1 0 · · · 0

0 1 δR 1 · · · 0

...
...

...
...

. . .

0 0 0 · · · · · · δR


, (4.1.10)

where δR is a scalar.

We can find detRn by using the following difference equation.

Lemma 4.1.5. The determinant of Rn can be obtained by the difference equation

|Rn+2| = δR|Rn+1| − |Rn|, (4.1.11)

where |R1| = δR and |R2| = δ2R − 1.
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Proof. Let us consider the determinant of Rn+2.

We can find the determinant of any matrix by expanding any of the row or column. If

we expand |Rn+2| by using the first row, then we will get

|Rn+2| = δR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δR 1 0 0 · · · 0 0

1 δR 1 0 · · · 0 0

0 1 δR 1 · · · 0 0

0 0 1 δR · · · 0 0

0 0 0 1 · · · 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · 1 δR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 · · · 0 0

0 δR 1 0 · · · 0 0

0 1 δR 1 · · · 0 0

0 0 1 δR · · · 0 0

0 0 0 1 · · · 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · 1 δR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

According to our notation in (4.1.10), the first determinant in the above equation can be

written as |Rn+1|. Let us label the second determinant |M |. Therefore, we can say

|Rn+2| = δR|Rn+1| − |M |. (4.1.12)

127



We can expand |M | as follows

|M | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δR 1 0 · · · 0 0

1 δR 1 · · · 0 0

0 1 δR · · · 0 0

0 0 1 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 1 δR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 · · · 0 0

0 δR 1 · · · 0 0

0 1 δR · · · 0 0

0 0 1 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 1 δR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

In the above equation, the first determinant is |Rn| and the second is 0 because the first

column of this matrix has all entries 0. Thus

|Rn+2| = δR|Rn+1| − |Rn|

as required.

Lemma 4.1.5 will have a variety of applications later on.

4.1.2 Introducing the matrix corresponding to the homomorphism

Example 4.1.6. We find a homomorphism from ∆6(4, 2) to ∆6(2, 2), where m1 in Fig-

ure 4.12 is a basis element of ∆6(4, 2). By using the permutation of 4 red and 2 green
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m1

Figure 4.12:

propagating lines we can say there are 15 basis elements for ∆6(4, 2). Basis elements of

∆6(2, 2), which have the same colour sequence as southern edge of m1, is displayed in

Figure 4.13. Therefore, we write the map θ(m1) as the linear combination of the basis

element of n11, n12 and n3 thus obtaining

θ(m1) = s1n11 + s12n12 + s3n13,

where s1, s2 and s3 are unknown constants needed to find. Suppose we choose the algebra

n11 n12

n13

Figure 4.13:

elements a, b and c as in Figure 4.14 to find the conditions for non-zero homomorphism.

We use the condition that

θ(m1a) = 0
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a b

c

Figure 4.14:

along with θ(m1)a which is given by

θ(m1)a = (s1n11 + s2n12 + s3n13)a

= s1n11a+ s2n12a+ s3n13a.

From Figure 4.15 we can say n11a = δRn11, n12a = n11 and n13a = 0. From this we can

say

θ(m1)a = s1δRn11 + s2n11

= (s1δR + s2)n11.

However, with θ(m1a) = θ(m1)a and n11 ̸= 0 we can explicitly derive

s1δR + s2 = 0. (4.1.13)

By considering m1b and m1c we see in a similar way that

s1 + s2δR + s3 = 0. (4.1.14)

and

s2 + s3δR = 0. (4.1.15)
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= δRn11 = n11

= 0

n11a = n12a =

n13a =

Figure 4.15:

If we solve (4.1.14) and (4.1.15) we obtain

s1δR + s2δ
2
R − s2 = 0 (4.1.16)

which can be simplified to

s1δR + s2(δ
2
R − 1) = 0. (4.1.17)

By solving (4.1.13) and (4.1.17) we obtain

−s2 + s2(δ
2
R − 1) = 0

which can be simplified to

s2(δ
2
R − 2) = 0. (4.1.18)

If δ2R − 2 ̸= 0 then (4.1.18) implies s2 = 0 and if δR ̸= 0 then (4.1.17) implies s1 = 0

and (4.1.14) implies s3 = 0. Therefore, θ(m1) = 0 and we can show that θ(mi) = 0 for
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all i = 1, 2, ..., 15. Since all the basis elements are mapped to 0, we can say there is no

non-zero homomorphism from ∆6(4, 2) to ∆6(2, 2). If δ2R − 2 ̸= 0 and δR = 0 then s2 = 0

and (4.1.14) implies that s1 + s3 = 0. Therefore, s3 = −s1 and thus

θ(m1) = s1n11 + s2n12 + s3n13

= s1n11 − s1n13

= s1(n11 − n13).

Similarly, we can show

θ(mi) = s1(ni1 − ni3)

for all i taking the values 1, 2,...,15. Where ni1 and ni3 are the basis element of ∆6(2, 2)

with the same colour sequence as the southern edge of mi.

Let m be an arbitrary element of the first module

m =
15∑
i=1

cimi.

Then when δR = 0 the homomorphism can be written as

θ(m) = s1

15∑
i=1

ci(ni1 − ni3).

If δR = ±
√
2 then

s2 = ∓
√
2s1

s3 = − 1

δR
s2

s3 = s1

and we can deduce that

θ(m) = s1

15∑
i=1

ci(ni1 ∓
√
2ni2 + ni3). (4.1.19)
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Formation of matrix equation

Equations (4.1.13), (4.1.14) and (4.1.15) can be written as
δR 1 0

1 δR 1

0 1 δR




s1

s2

s3

 =


0

0

0

 . (4.1.20)

Therefore, the matrix equation (4.1.20) can be written as

R3S = 0, (4.1.21)

where R3 is the matrix in (4.1.10). We have derived this matrix when calculating the

determinant of the Gram matrix of ∆6(2, 2). This is actually the matrix a(Xi), for 1 ≤ i ≤

15. There is a connection between the basis elements of ∆6(4, 2) and the half diagrams

used to construct a(Xi). Those half diagrams with four red nodes and two green nodes are

the basis elements of ∆6(4, 2) and the Xi’s colour sequence is fixed. For example, consider

the matrix constructed by choosing a basis element m1 in Figure 4.12 of ∆6(4, 2) and

multiply by the selected algebra elements. We get a set of equations which can be written

as in (4.1.21) and the matrix form at the front R3 is same as choosing one of the colour

sequence with same number of red and green nodes as m1, for example X1, and finding the

matrix of it. We call the matrix a(X1) the matrix corresponding to the homomorphism.

We can use the Gram matrix to work out the homomorphism between two modules. The

following result will explain how we can find the homomorphism between two modules.

Definition 4.1.7. Let ∆n(λ) and ∆n(µ) be two modules, where λ and µ are h tuples. If X

is a common colour sequence for both modules then let

a(X)S = 0 (4.1.22)
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be the matrix equation needed to be solved to find the non-zero homomorphism, where S is

the column vector which contain all the coefficients of the basis element map. Matrix a(X)

being the part of the Gram matrix of the module ∆n(µ) for the colour sequence X . We call

this the matrix corresponding to the homomorphism. In this chapter our modules can

have two colour arcs or strings. Therefore, h takes the value two.

The matrix corresponding to the homomorphism

θ : ∆n+1(n+ 1, 0) −→ ∆n+1(n− 1, 0) (4.1.23)

can be written as a(X) = Rn, where X is the colour sequence and Rn is given by (4.1.10).

In this example all the nodes are red.

Finding the special coefficient by using the Gram matrix

Let the homomorphism be

θ : ∆n(a, b) −→ ∆n(a− 2, b)

where a+b = n. First we find the matrix corresponding to this homomorphism. Therefore,

look at the colour sequence X1 = Xr...rg...g in ∆n(a − 2, b), which is a collection of half

diagrams with first a red nodes and last b green nodes. These half diagrams have a− 2 red

propagating lines, b green propagating lines and one red arc in it. Therefore, matrix a(X1)

can be given by

a(X1) = Ra−1 ⊗ (1). (4.1.24)

This can be simplified into

a(X1) = Ra−1.

When we construct the matrix a(X1) by using the half diagrams, we can see only the red

bit matches together and the green bit matches together. Therefore, we can separate the red

134



part and green part which leads to writing the matrix as tensor product in (4.1.24). Ra−1 is

normally the Gram matrix of the module ∆a(a − 2) where all the basis elements have red

nodes.

Determinant a(X1) = 0 gives the value of δR for which we get non-zero homomor-

phism. When δR take a value other than this value we cannot find the non zero homomor-

phism.

Replace the δR value by those special value in Ra−1 and solve

Ra−1S = 0. (4.1.25)

Here, S is the column vector of the special coefficients. By row reducing Ra−1 we can

calculate S quite easily.

Example 4.1.8. Let us find a non-zero homomorphism θ : ∆6(4, 2) −→ ∆6(2, 2) again

by using the matrix corresponding to the homomorphism idea. First we find the matrix

correspond to the above homomorphism. Actually, it is one of the matrices which comes

in the calculation of the determinant of the Gram matrix ∆6(2, 2). We need a colour se-

quence with four red and two green nodes because it should be common for both modules.

Therefore, we look at the colour sequence X1 = Xrrrrgg. Matrix associated with this

colour sequence, a(X1), given by the tensor product of two matrices as below. Figure 4.10

illustrate this formation.

a(X1) =


δR 1 0

1 δR 1

0 1 δR

⊗ (1)

= R3 ⊗ (1)

= R3.
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We know that R3 is a function of δR. Suppose determinant of a(X1) = 0, this will give

the possible values of δR for which we get non-zero homomorphism, that is determinant of

R3 = 0 which gives us

δR(δ
2
R − 1)− 1.δR = 0

This can be simplified into

δR(δ
2
R − 2) = 0.

Therefore,

δR = 0 or δR = ±
√
2

When δR = 0 matrix R3 becomes as

R3(0) =


0 1 0

1 0 1

0 1 0


R3(0)S3 = 0.

According to (4.1.22), matrix equation can be given by
0 1 0

1 0 1

0 1 0




s1

s2

s3

 = 0.

If we simplify this we will get

s2 = 0, s1 + s3 = 0.

This implies that

s2 = 0, s3 = −s1.
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Therefore, by using Lemma 4.1.1, we can say,

θ(mi) = s1(ni1 − ni2),

for all i = 1, 2, . . . , 15. Let m be an arbitrary element of the first module

m =
15∑
i=1

cimi,

where ci ∈ C. Then

θ(m) = s1

15∑
i=1

ci(ni1 − ni2).

When δR = ±
√
2 matrix R3 becomes

R3(±
√
2) =


±
√
2 1 0

1 ±
√
2 1

0 1 ±
√
2

 .

If we row reduce this, we will get 
1 0 −1

0 1 ±
√
2

0 0 0

 .

Therefore, our matrix equation becomes
1 0 −1

0 1 ±
√
2

0 0 0




s1

s2

s3

 = 0,

which gives us

s2 ±
√
2s2 = 0, s1 − s2 = 0.

This implies that

s2 = ∓
√
2s1, s3 = s1.

137



From this, we deduce that the homomorphism can be written as

θ(m) = s1

15∑
i=1

ci(ni1 ∓
√
2ni2 + ni3).

4.1.3 Verifying that the matrix corresponding to the homomorphism

and the matrix coming from the matrix equation are the same

Example 4.1.9. Equations we get by choosing the algebra element multiplied with the

basis element could be written in the matrix equation format and the matrix corresponding

to the homomorphism which appears in the Gram matrix calculations are the same. We

investigate this statement through the following homomorphism

θ : ∆4(3, 1) −→ ∆4(1, 1).

We found this non zero homomorphism in Example 4.1.2. In this Example we obtained

s1δR + s2 = 0 (4.1.26)

s1 + s2δR = 0 (4.1.27)

We can write (4.1.26) and (4.1.27) as δR 1

1 δR


 s1

s2

 =

 0

0

 = 0. (4.1.28)

This can be written as

R2S = 0

Now we look at the module ∆4(1, 1). When we work out the Gram matrix of ∆4(1, 1), we

look at the following major groups of half diagrams.

X1 = Xrrrg
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X2 = Xrggg

First module ∆4(3, 1) has basis element with three red and one green nodes. Therefore,

the colour sequence corresponds to the homomorphism is X1. Let us find the matrix a(X1)

which is displayed in Figure 4.16. We obtain

δR 1

1 δR

Figure 4.16:

a(X1) =

 δR 1

1 δR


This is the matrix in (4.1.28). Therefore,

a(X1)S = 0.

Let us see why we end up with the same equations in both ways

Half diagrams correspond to the basis element n11 and n12 are in Figure 4.17. Similarly, the

same half diagrams correspond to the top edge of the algebra elements a and b respectively.

First module basis element m1 mapped to s1n11 + s2n12. Here s1 and s2 are unknown

constants in C. Multiplication of m1 and a become 0 because of the wrong number of
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Figure 4.17: Half diagrams of the basis elements n11 and n12

propagating lines. Therefore, θ(m1a) also 0. This gives θ(m1)a = 0. However,

θ(m1)a = s1n11a+ s2n12a

From Figure 4.18 we know n11a = δRn11 and n12a = n11. From this we can get

n11a = n12a =

= δRn11 = n11

Figure 4.18:

θ(m1)a = (s1δR + s2.1)n11.

From this and θ(m1)a = 0 we can say

s1δR + s2.1 = 0 (4.1.29)

If you look at the middle line of n11a and n12a in Figure 4.18, it corresponds to the first

row of our matrix a(X1) in Figure 4.16.

Similarly,

θ(m1)b = s1n11b+ s2n12b
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n11b = n12b =

= n12 = δRn12

Figure 4.19:

By using Figure 4.19 we can get n11b = n12 and n12b = δRn12. If you look at the middle

line of n11b and n12b, it corresponds to the second row of our matrix a(X1) in Figure 4.16.

Multiplication of m1 and b become 0 because of the wrong number of propagating lines.

Therefore, θ(m1b) also 0. This implies that θ(m1)b = 0. However,

θ(m1)b = (s1.1 + s2δR)n12

Therefore, we can say

s1.1 + s2δR = 0. (4.1.30)

Equations (4.1.29) and (4.1.30) gives us δR 1

1 δR


 s1

s2

 =

 0

0

 .

Both methods lead to the same equation.

Finding the homomorphism in the general case

How can we find a non-zero homomorphism θ from the module ∆n(a, b) with no arcs to

the module ∆n(c, d) with one arc as listed in (4.1.31)?

θ : ∆n(a, b) −→ ∆n(c, d), (4.1.31)
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where a+ b = n and either a− c = 2 or b− d = 2.

First we list all possible colour sequences which help to find the determinant of the

Gram matrix ∆n(c, d). After that, we choose the colour sequence from this list with first a

nodes red and last b nodes green and call itX1. The colour sequenceX1 has c number of red

and d number of green propagating lines. We construct the matrix a (X1) by considering the

half diagrams in order, which have the colour sequence X1, and drawing one half diagram

up and the other half diagram down. This is exactly the same way that we calculate the

Gram matrix. The matrix a (X1) can be seen inside the Gram matrix of ∆n(c, d).

We find the determinant of a (X1) and solve det a (X1) = 0, which gives the special

values of either δR or δG for which ∆n(c, d) is reducible. For each of these special values

of δ solve the equation

a (X1)S = 0. (4.1.32)

Let m1 be a basis element of ∆n(a, b) with colour sequence X1, and n1j be the basis

elements of ∆n(c, d) with the same colour sequence. Therefore, we can write

θ(m1) =
t∑

j=1

sjn1j.

Here sj for all j = 1, . . . , t are solution of (4.1.32) for each special value of either δR or δG.

From Lemma 4.1.1, we can say all the basis elements of ∆n(a, b) also map in the same way

as m1 to the basis element of the module ∆n(c, d). Therefore, if m is an arbitrary element

of the module ∆n(a, b):

m =
∑
i

cimi

then we claim that

θ(m) =
∑
i

ci

t∑
j=1

sjnij.

is a non-zero homomorphism from ∆n(a, b) to ∆n(c, d).
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We will prove this claim in the next section.

4.1.4 Proving the constructed map is a homomorphism

We would like to use the following notation for modules and algebra basis elements to

prove the Theorem 4.1.10. At this instance, we need to thank Prof.Robert Marsh, who

helped us to improve the notation of modules and algebra basis elements and the proof of

the Theorem. Introduction to the notation for modules and algebra elements

Our modules and algebra have two colour nodes. Therefore, more than one colour sequence

is possible for the nodes. We denote the ith colour sequence by Xi. Module ∆n(a, b) has

all nodes propagating. Therefore, there will be only one basis element possible for each

colour sequence. We call that basis element mi. If we consider the module ∆n(c, d) there

will be more than one basis element for each colour sequence. Therefore, we label the

basis elements by nij where i represents the colour sequence Xi and touple j represent a

collection of uncoloured half-diagrams, one for each colour (with the number of nodes in

the half diagram associated to colour Cr equal to the number of nodes coloured Cr in the

colour sequence i). We label the colour sequence as X1 if it has first a nodes red colour

and the next b nodes green colour.

A basis diagram of the bubble algebra can be regarded as a pair of half diagrams. (by

cutting in two along a horizontal line). Each half-diagram has its own colour sequence

along the boundary. Such a half-diagram can in turn be regarded as a pair, consisting of

its colour sequence together with a tuple of uncoloured half-diagrams, one for each colour-

obtained by restricting to the lines of that fixed colour.

Thus an algebra basis diagram can be written in the form xu,u′ where u, u′ are half-

diagrams. In turn, u and u′ can be written u = (α, k) where Xα is the colour sequence
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of u and k is its tuple of uncoloured half diagrams (i.e. one for each colour). Similarly

u′ = (α′, k′). Thus we have xu,u′ = xα,k,α′,k′ .

Theorem 4.1.10. Suppose that the sk satisfy the matrix equation

a (X1)S = 0 (4.1.33)

where S = (sk) and S ̸= 0, and a (X1) is the “matrix corresponding to the homomor-

phism” between the two given modules. Then, the linear map

θ(
∑
i

cimi) =
∑
i

ci
∑
k

skni,k (4.1.34)

is a non-zero homomorphism from ∆n(a, b) to ∆n(c, d).

Proof. Let us show that the constructed map is a non-zero homomorphism. Let m be

an arbitrary element of the module ∆n(a, b) and x be an arbitrary element of the algebra

TL2
n(δR, δG). We can write x as the linear combination of the basis element of the algebra

as follows

x =
∑

α,k,α′,k′

dα,k,α′,k′xα,k,α′,k′ +
∑
α,α′

eα,α′yα,α′ +
∑
u,v

fu,vzu,v. (4.1.35)

Here xα,k,α′,k′ represents the bubble algebra basis element with colour sequence Xα on

the northern edge and tuple k of uncloured half-diagrams and colour sequence Xα′ on

the southern edge and tuple k′ of uncoloured half-diagrams. The first sum runs over ba-

sis elements xα,k,α′,k′ for which Xα is the colour sequence of some basis element mα in

∆n(a, b) and (α, k), representing the (coloured) northern half-diagram, is a basis element

of ∆n(c, d).

The second sum runs over basis elements yα,α′ = xα,k0,α′,k0 where k0 is the tuple of un-

coloured half-diagrams which have all lines propagating and Xα is again a colour sequence
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of some basis element of ∆n(a, b). Thus yα,α′ is an algebra basis element with all lines

propagating and colour sequence Xα at the northern edge and colour sequence Xα′ at the

southern edge.

Finally, zu,v is the bubble algebra basis element with northern (coloured) half-diagram

u and southern (coloured) half-diagram v. The third sum is over such elements with the

property that either the northern edge colour sequence does not occur in ∆n(a, b) or, if it

does, then either the northern half diagram (u) is not a basis element of the module ∆n(c, d)

or it is not the case that all lines in zu,v are propagating.

We know mi is a basis element of ∆n(a, b), which has the colour sequence Xi. There-

fore, if we find mix we will get

mix = mi

( ∑
α,k,α′,k′

dα,k,α′,k′xα,k,α′,k′ +
∑
α,α′

eα,α′yα,α′ +
∑
u,v

fu,vzu,v

)
,

=
∑

α,k,α′,k′

dα,k,α′,k′mixα,k,α′,k′ +
∑
α,α′

eα,α′miyα,α′ +
∑
u,v

fu,vmizu,v.

Consider the sum
∑

α,k,α′,k′ dα,k,α′,k′mixα,k,α′,k′ . When α = i, mixα,k,α′,k′ = 0 since it

gives the wrong number of propagating lines. When α ̸= i, the colour sequences do not

match, so mixα,k,α′,k′ = 0. Hence∑
α,k,α′,k′

dα,k,α′,k′mixα,k,α′,k′ = 0.

Next consider the sum
∑

α,α′ eα,α′miyα,α′ . Since, if α ̸= i, miyα,α′ = 0 (as the colour

sequences do not match). Hence∑
α,α′

eα,α′miyα,α′ =
∑
α′

ei,α′miyi,α′ .

The last sum,
∑

u,v fu,vmizu,v is zero, since either mi and zu,v do not match colour se-

quences or the concatenation has the wrong number of propagating lines.(Since, if the

colour sequences match, zu,v does not have all propagating lines.)
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From these we can say

mix =
∑
α′

ei,α′miyi,α′ .

Since, yi,α′ has all lines propagating (and so does mi), we see that miyi,α′ = mα′ . Hence

mix =
∑
α′

ei,α′mα′ =
∑
α

ei,αmα.

If m =
∑

i cimi is an arbitrary element of ∆n(a, b), we have

mx =
∑
i

cimix

=
∑
i

ci
∑
α

ei,αmα

=
∑
α,i

ciei,αmα.

We have

θ(mx) =
∑
α,i

ciei,αθ(mα)

=
∑
α,i

ciei,α
∑
k

sknα,k

=
∑
i,k,α

ciei,αsknα,k.

On the other hand, we have

θ(m)x = θ(
∑
i

cimi)x

=
∑
i

ciθ(mi)x

=
∑
i

ci
∑
k

skni,kx

=
∑
i,l

cislni,lx
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(changing name of variable k)

Substituting for x, we have:

θ(m)x = θ(m)
∑

α,k,α′,k′

dα,k,α′,k′xα,k,α′,k′

+ θ(m)
∑
α,α′

eα,α′yα,α′

+ θ(m)
∑
u,v

fu,vzu,v.

The first term is

θ(m)
∑

α,k,α′,k′

dα,k,α′,k′xα,k,α′,k′ =
∑
i,l

cislni,l

∑
α,k,α′,k′

dα,k,α′,k′xα,k,α′,k′

=
∑

i,l,α,k,α′,k′

cisldα,k,α′,k′ni,lxα,k,α′,k′

=
∑

i,l,k,α′,k′

cisldi,k,α′,k′ni,lxi,k,α′,k′ .

(Since the colours must match). From Proposition 1.1.4(iii) we can write the above sum as

∑
i,l,k,α′,k′

cisldi,k,α′,k′ni,lxi,k,α′,k′ =
∑

i,l,k,α′,k′

cisldi,k,α′,k′⟨ni,l, ni,k⟩nα′,k′ .

Note thatX1 andXi are both colour sequences for ∆n(a, b). So, there is an algebra element

u1i with all lines propagating such that m1u1i = mi. We then have n1lu1i = ni,l and

n1,ku1,i = ni,k. Hence

⟨ni,l, ni,k⟩ = ⟨n1lu1i, n1,ku1,i⟩.

From Proposition 1.1.4(ii)

⟨n1lu1i, n1,ku1,i⟩ = ⟨n1l, n1,ku1,iu
∗
1i⟩.

But u1,iu∗1i has all lines propagating and no crossings, with northern and southern colour
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sequence X1. Hence n1,ku1,iu
∗
1i = n1k. Therefore

⟨ni,l, ni,k⟩ = ⟨n1,l, n1,k⟩

= a(X1)lk

= a(X1)kl.

Note ⟨, ⟩ is symmetric by Proposition 1.1.4(i). Thus we have

∑
i,l,k,α′,k′

cisldi,k,α′,k′⟨ni,l, ni,k⟩nα′,k′ =
∑

i,l,k,α′,k′

cidi,k,α′,k′

(∑
l

sla(X1)kl

)
nα′,k′ .

Since a(X1)S = 0, ∑
l

sla(X1)kl = 0.

So, this reduce to zero. That is

θ(m)
∑

α,k,α′,k′

dα,k,α′,k′xα,k,α′,k′ = 0.

The second term is

θ(m)
∑
α,α′

eα,α′yα,α′ =

(∑
i

ci
∑
l

slni,l

)(∑
α,α′

eα,α′yα,α′

)

=
∑

i,l,α,α′

cisleα,α′ni,lyα,α′ .

Since the colours must match

∑
i,l,α,α′

cisleα,α′ni,lyα,α′ =
∑
i,l,α′

cislei,α′ni,lyi,α′ .

As yi,α′ has all lines propagating

∑
i,l,α′

cislei,α′ni,lyi,α′ =
∑
i,l,α′

cislei,α′nα′,l.
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Changing the names of the summation variables∑
i,l,α′

cislei,α′nα′,l =
∑
i,k,α

ciskei,αnα,k.

That is

θ(m)
∑
α,α′

eα,α′yα,α′ =
∑
i,k,α

ciskei,αnα,k.

The third term is

θ(m)
∑
u,v

fu,vzu,v =
∑
i

ci
∑
l

slni,l

∑
u,v

fu,vzu,v

=
∑
i,l,u,v

cislfu,vni,lzu,v.

But ni,lzu,v is always zero since either the colour sequences do not match or if they do the

concatenation does not give a basis element of ∆n(c, d). Let us discuss the last statement. If

it did, every propagating lines in ni,l would have to match with a propagating line in zu,v , so

zu,v would have c red propagating lines and d green propagating lines, with c+ d = n− 2,

leaving two nodes at the top and bottom. If the two nodes at the top were joined in an

arc, the northern half-diagram would be a basis diagram of ∆n(c, d). This contradict since

such elements are excluded in the sum. Hence every line in zu,v is propagating. This also

contradict. From this we can say ni,lzu,v does not give a basis element of ∆n(c, d). From

this we can say third term is zero. That is

θ(m)
∑
u,v

fu,vzu,v = 0.

Hence,

θ(m)x =
∑
i,k,α

ciskei,αnα,k

= θ(mx).

It follows that θ is a homomorphism. Since S ̸= 0 by assumption we can say θ ̸= 0.
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4.2 Finding non-zero homomorphism for fixed δ

In this section we will find families of modules which give non-zero homomorphisms. We

know the matrix corresponding to the homomorphism

θ : ∆n+1(n+ 1, 0) → ∆n+1(n− 1, 0)

can be written as a(X1) = Rn. From Lemma 4.1.5 we can find det a(X1) by using the

difference equation (4.1.11). If we find |Rn|, then by solving |Rn| = 0 we can find all the

possible δR values for which the homomorphism become non-zero.

4.2.1 Solving the difference equation

The difference equation (4.1.11) can be written as in (4.2.1). We will use this to find the

special value of δR to have a non-zero homomorphism from ∆n+1(n + 1, 0) to ∆n+1(n −

1, 0).

Proposition 4.2.1. Suppose δR ̸= ±2. The solution to the difference equation

|Rn+2| − δR|Rn+1|+ |Rn| = 0 (4.2.1)

can be given by

|Rn| =
(

α2

α2 − 1

)
αn +

(
β2

β2 − 1

)
βn, (4.2.2)

where

α =
δR +

√
δ2R − 4

2
, (4.2.3)

β =
δR −

√
δ2R − 4

2
.. (4.2.4)
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Proof. Let us solve the difference equation

|Rn+2| − δR|Rn+1|+ |Rn| = 0.

The characteristic equation of the above difference equation can be given by

m2 − δRm+ 1 = 0.

If we solve this equation we will get the solutions α and β as follows

α =
δR +

√
δ2R − 4

2
,

β =
δR −

√
δ2R − 4

2
.

Therefore, the general solution of the difference equation can be given by

|Rn| = Aαn +Bβn. (4.2.5)

We know matrix R1 and R2 are given by

R1 = (δR) and R2 =

 δR 1

1 δR

 .

From this we can get |R1| = δR and |R2| = δ2R − 1. These imply that

Aα +Bβ = δR, (4.2.6)

Aα2 +Bβ2 = δ2R − 1. (4.2.7)

By solving (4.2.6) and (4.2.7) we can obtain

Aα2 + (δR − Aα)β = δ2R − 1,

A(α2 − αβ) = (δ2R − 1)− δRβ.
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From this, if we make A the subject and simplify, we will obtain

A =
(δ2R − 1)− δRβ

α2 − αβ
,

=

(δ2R − 1)− δR

(
δR−

√
δ2R−4

2

)
(

δR+
√

δ2R−4

2

)2

− 1

,

=

(
δR +

√
δ2R − 4

)2
(
δR +

√
δ2R − 4

)2
− 4

,

=
α2

α2 − 1
.

If we find (4.2.7)- (4.2.6)×α, we will obtain

B
(
β2 − αβ

)
= (δ2R − 1)− δRα,

B =
(δ2R − 1)− δRα

β2 − αβ
.

By looking at the value we found for A above, we can deduce B as being

B =
β2

β2 − 1
.

By substituting for A and B in (4.2.2), we have proved the result.

For the value of α and β as in (4.2.3) and (4.2.4) we can get the following result.

Proposition 4.2.2. We have

α+ β = δR, (4.2.8)

αβ = 1. (4.2.9)

Proof. By adding and multiplying (4.2.3) and (4.2.4) we can easily prove this proposition.
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This proposition has been discussed in [30, Subsection 2.2]. They denote α and β by q

and q−1 respectively, where q is an invertible indeterminate.

Example 4.2.3. Let us verify the Proposition 4.2.1 for n = 3. If we substitute n = 3

in (4.2.2), we will obtain

|R3| =
(

α2

α2 − 1

)
α3 +

(
β2

β2 − 1

)
β3,

=
α2β2(α3 + β3)− (α5 + β5)

(α2 − 1) (β2 − 1)
.

Let us find the sum α5 + β5 by writing it in a form in which we can easily substitute the

results in (4.2.8) and (4.2.9). This will give us

α5 + β5 = (α+ β)[(α+ β)4 − 5αβ
(
(α+ β)2 − αβ

)
],

= δR[δ
4
R − 5(δ2R − 1)],

= δR
(
δ4R − 5δ2R + 5)

)
.

Similarly, let us find the sum of α3 + β3. This will give us

α3 + β3 = (α+ β)3 − 3αβ(α+ β),

= δ3R − 3δR.

Now we find the product (α2 − 1)(β2 − 1). This will give us

(α2 − 1)(β2 − 1) = α2β2 − (α2 + β2) + 1,

= (αβ)2 − [(α+ β)2 − 2αβ] + 1,

= 1− (δ2R − 2) + 1,

= 4− δ2R.
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|R3| =
1(δ3R − 3δR)− δR (δ4R − 5δ2R + 5))

4− δ2R
,

=
δ5R − 6δ3R + 8δR

δ2R − 4
,

= δR(δ
2
R − 2).

If we find |R3| by substituting n = 1 in (4.1.11) we can get

|R3| = δR|R2| − |R1|,

= δR(δ
2
R − 1)− δR,

= δR(δ
2
R − 2).

By substituting n = 3 in (4.2.2) we obtained |R3|. From the difference equation (4.1.11),

we obtained |R3|. Both values are the same. Therefore, this verifies our Proposition 4.2.1

when n = 3.

4.2.2 Finding the value of δR for which determinant of Rn = 0

Solution of |Rn| = 0 give the special value of δR for which we get the non zero homomor-

phism from ∆n+1(n + 1, 0) to ∆n+1(n − 1, 0). We know Rn is the matrix corresponding

to the homomorphism, a(X), between the modules. By solving a(X)S = 0 for the special

value of δR we can find the non-zero homomorphism.

Proposition 4.2.4. We again assume that δR ̸= ±2. Determinant ofRn becomes zero when

δR = 2 cos

(
kπ

n+ 1

)
, (4.2.10)

where k ∈ {1, 2, · · · , n} ∪ {n+ 2, · · · , 2n+ 1}.

Therefore, non-zero homomorphism exists from ∆n+1(n+1, 0) to ∆n+1(n−1, 0) when

δR takes the values as in (4.2.10) for each value of k.
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Proof. Let us solve |Rn| = 0. From (4.2.2) we can get(
α2

α2 − 1

)
αn +

(
β2

β2 − 1

)
βn = 0.

This implies (
α

β

)n

=
−β2(α2 − 1)

α2(β2 − 1)

=
−β2α2 + β2

α2β2 − α2
.

However, we can simplify this by using αβ = 1 from (4.2.9) as follows(
α

β

)n

=
β2 − 1

1− α2
.

By multiplying the numerator and denominator of the right-hand side by α2 we can obtain(
α

β

)n

=
α2β2 − α2

α2(1− α2)
.

By substituting αβ = 1, we can get(
α

β

)n

=
1− α2

α2(1− α2)
.

This can be simplified into (
α

β

)n

=
1

α2
.

By substituting αβ = 1 followed by the simplification we can get(
α2

αβ

)n

=
1

α2
,

α2n =
1

α2
.

From this we can get the equation

α2n+2 = 1.
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We can find the solutions to the above equation by using the roots of unity. This gives us

α = cos

(
πk

n+ 1

)
+ i sin

(
πk

n+ 1

)
, (4.2.11)

where k = 0, 1, 2, . . . , 2n+ 1. We know from (4.2.9) that αβ = 1. Therefore,

β = cos

(
πk

n+ 1

)
− i sin

(
πk

n+ 1

)
, (4.2.12)

where k = 0, 1, 2, . . . , 2n+ 1. We know from (4.2.8) α+ β = δR therefore,

2 cos

(
πk

n+ 1

)
= δR.

That is,

δR = 2 cos

(
kπ

n+ 1

)
,

where k = 0, 1, 2, . . . , 2n + 1. From Proposition 4.2.1 we know that α2 ̸= 1. This implies

that α ̸= ±1. However, we know from (4.2.3)

α =
δR +

√
δ2R − 4

2
.

By substituting this into α ̸= ±1 and simplifying we can get

δR +
√
δ2R − 4

2
̸= ±1,√

δ2R − 4 ̸= ±2− δR,

δ2R − 4 ̸= 4∓ 4δR + δ2R,

±4δR ̸= 8,

δR ̸= ±2.

Therefore, we can say

δR = 2 cos

(
kπ

n+ 1

)
,

where k ̸= 0, k ̸= n+ 1.
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Example 4.2.5. If we choose the value of n = 3, from Proposition 4.2.4 we will get

δR = 2 cos

(
kπ

4

)
where k ∈ {1, 2, 3} ∪ {5, 6, 7}. This gives us

δR =
√
2, 0 and −

√
2.

From this we can say, we have non-zero homomorphism from ∆4(4, 0) to ∆4(2, 0) from (4.1.23)

for the value of δR =
√
2, 0 and −

√
2. Similarly, if we choose n = 5 we will get

δR = 2 cos

(
kπ

6

)
where k ∈ {1, 2, 3, 4, 5} ∪ {7, 8, 9, 10, 11}. This gives us δR =

√
3, 1, 0,−1 and −

√
3.

From this we can say, we have non-zero homomorphism from ∆6(6, 0) to ∆6(4, 0) for the

values of δR =
√
3, 1, 0,−1 and −

√
3.

4.2.3 Families of modules giving non-zero homomorphisms

For a given value of δR we find a family of non-zero homomorphism of the form

θ : ∆n+1(n+ 1, 0) −→ ∆n+1(n− 1, 0). (4.2.13)

By adding the same number of green propagating lines to both modules we can get more

non-zero homomorphism for the same value of δR.

Example 4.2.6. Let us find the values of n for which (4.2.13) will give non-zero homo-

morphism when δR = ±
√
2. From (4.2.10) we can say

2 cos

(
kπ

n+ 1

)
= ±

√
2,
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where k ∈ {1, 2, . . . , n} ∪ {n+ 2, . . . , 2n+ 1}. Therefore, we can say

cos

(
kπ

n+ 1

)
= ±

√
2

2
,

0 <
k

n+ 1
< 1 or 1 <

k

n+ 1
< 2. (4.2.14)

When cos
(

kπ
n+1

)
= +

√
2
2

we get kπ
n+1

= π
4

or 7π
4

because of (4.2.14). Consider the case

kπ
n+1

= π
4
. This implies that n = 4k − 1. In this situation we can obtain the table as below.

k 1 2 3 4 5 · · ·

n 3 7 11 15 19 · · ·

If we consider kπ
n+1

= 7π
4

we get n = 4k
7
− 1. Therefore, the table becomes as follows.

k 7 14 21 28 35 · · ·

n 3 7 11 15 19 · · ·

When cos
(

kπ
n+1

)
= −

√
2
2

we get kπ
n+1

= 3π
4

or 5π
4

because of (4.2.14). Consider the case

kπ
n+1

= 3π
4

Therefore, n = 4k
3
− 1. In this situation the table becomes as follows.

k 3 6 9 12 15 · · ·

n 3 7 11 15 19 · · ·

If we look at the case kπ
n+1

= 5π
4

we will get n = 4k
5
− 1. Therefore,

k 5 10 15 20 25 · · ·

n 3 7 11 15 19 · · ·

From these cases we can say for the value of δR = ±
√
2 we can get non-zero homomor-

phism of the form in (4.2.13) for n = 3, 7, 11, 15, 19 and etc. This implies the following

result.
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Proposition 4.2.7.

θ : ∆n(r + 1, g) −→ ∆n(r − 1, g),

where n = r + g + 1, will give a non-zero homomorphism when δR = ±
√
2 and r =

3, 7, 11, 15, 19 etc.

We can verify the above result by choosing g = 2, r = 3 and n = 6. Therefore, we are

looking at the homomorphism

∆6(4, 2) −→ ∆6(2, 2). (4.2.15)

Matrix corresponding to the homomorphism can be obtained as

a (X1) =


δR 1 0

1 δR 1

0 1 δR


= R3

Therefore, determinant of a(X1) becomes

det a(X1) = |R3|

= δR(δ
2
R − 1)− δR

= δR(δ
2
R − 2)

From this, we can say that δR = ±
√
2 will give us the non-zero homomorphism as

in (4.2.15).

If we ask the question is that the Proposition 4.2.7 gives us the only possible homomor-

phism of that form for the value of δR = ±
√
2? At this stage we are not quite sure.
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Example 4.2.8. Let us find the n values for which (4.2.13) will give non-zero homomor-

phism when δR = ±
√
3.

2 cos

(
kπ

n+ 1

)
= ±

√
3

Where k ∈ {1, 2, · · · , n} ∪ {n+ 2, · · · , 2n+ 1}. Therefore,

0 <
k

n+ 1
< 1 or 1 <

k

n+ 1
< 2

When cos
(

kπ
n+1

)
= +

√
3
2

we get kπ
n+1

= π
6

or 11π
6

because of (4.2.14). Consider the case

kπ
n+1

= π
6
. This implies that n = 6k − 1 so we can obtain the table as below.

k 1 2 3 4 5 · · ·
n 5 11 17 23 29 · · ·

If we consider kπ
n+1

= 11π
6

we get n = 6k
11

− 1. Therefore,

k 11 22 33 44 55 · · ·
n 5 11 17 23 29 · · ·

When cos
(

kπ
n+1

)
= −

√
3
2

we get kπ
n+1

= 5π
6

or 7π
6

because of (4.2.14). Consider the case

kπ
n+1

= 5π
6

Therefore, n = 6k
5
− 1

k 5 10 15 20 25 · · ·
n 5 11 17 23 29 · · ·

If we look at the case kπ
n+1

= 7π
6

we will get n = 6k
7
− 1. Therefore,

k 7 14 21 28 35 · · ·
n 5 11 17 23 29 · · ·

From these cases, we can say that δR = ±
√
3 will give a non-zero homomorphism of the

form in (4.2.13) for n = 5, 11, 17, 23, 29 and etc. This implies the following result.
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Proposition 4.2.9.

θ : ∆n(r + 1, g) −→ ∆n(r − 1, g),

where n = r + g + 1, will give a non-zero homomorphism when δR = ±
√
3 and r =

5, 11, 17, 23, · · ·

We can verify the above proposition by choosing g = 0, r = 5 and n = 6. Therefore,

we are looking at the homomorphism

∆6(6, 0) −→ ∆6(4, 0). (4.2.16)

Matrix corresponding to the homomorphism is a(X1) = R5 Therefore,

det a(X1) = |R5|

= δR|R4| − |R3|

= δR(δR|R3| − |R2|)− |R3|

= δR(δ
2
R − 1)(δ2R − 3)

We have obtained this by substituting |R3| = δR(δ
2
R − 2) and |R2| = δ2R − 1. From the

determinant, we can say δR = ±
√
3 will give a non-zero homomorphism (4.2.16).
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Chapter 5

Generators

In this chapter we will introduce a simple set of generators for our algebra. These will be

useful when we return to determining homomorphisms in the following chapters. We also

determine the number of generators in our generating set. We illustrate our methods by

considering the cases of 2 and 3 colours before moving to the general case.

5.1 Finding generators of TL2
n(δR, δG)

The above algebra consists of two colours which are red and green. We are going to find a

generating set for this algebra by taking the diagrams with (i) all (non-crossing) propagating

lines, (ii) diagrams with exactly one crossing of red and green propagating lines but no

arcs, and (iii) diagrams with one arc at the northern and southern edge and all other lines

noncrossing and propagating .

Given any diagram in our algebra, it can be regarded as a superposition of two single-

colour Temperley-Lieb diagrams. By considering a crossing generator and the same di-

agram with the crossing reversed, we can generate all diagrams with propagating lines.

These generators and those of type (iii) are well-known (from the Temperley-Lieb case) to
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generate all ordinary Temperley-Lieb diagrams. The diagrams with one crossing can now

be used to overlay one colour on top of the other in the required configuration. Thus these

diagrams will generate, Theorem 5.3.2, the bubble algebra.

Based on the above, we attempt to derive at all possible generators as follows. We

should have 2 generators, one with all red propagating lines and the other with all green

propagating lines. The simple reason is that we cannot derive these algebra elements by

any of the one cross diagrams or diagrams with one arc. Any algebra element with all lines

propagating with both colours can be written as the multiplication of the generators with

one cross as in Figure5.1.

Figure 5.1: Generators with one cross

First, we find the generators with the cross as in Figure 5.1 and the remaining n − 2

nodes with all green propagating lines. In this situation, we can have (n−1)!2!
(n−2)!

arrangements

which results in 2(n− 1). In addition to the illustration within Figure 5.1, if we have a red

propagating line and the rest of the (n − 3) are green propagating lines then we can get

(n−1)!2!
1!(n−3)!

generators which results in 2(n − 1)(n − 2). This can be generalised by letting a

cross, r number of red propagating lines (excluding the red propagating lines in the cross),

and n− (r + 2) green propagating lines (excluding the green in the cross) given by

(n− 1)!2!

r!(n− (r + 2))!
. (5.1.1)

By using the generators with the cross lines we can not make the algebra elements with

arcs. Therefore, we need generators with arcs in them. Here we are going to find the
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. . . . . . . . .. . .

Figure 5.2:

. . .. . .. . . . . .

Figure 5.3: Generators with one red propagating line and one pair of green arcs

generators with on the left of the diagram all red nodes and the right of the diagram with

all green nodes. Fixing one colour to a side with propagating lines and the other side with

the other colour consisting an arc on that side. In addition, if there are any unused nodes

left on the same side as the arc, this will result in additional propagating lines of the same

colour as the arc appearing on the same side.

First we fix the number of red propagating lines and allow the green side to have an arc:

If there are no red propagating lines we can have generators in the form as in Figure 5.2.

Here there are n − 2 + 1 = n − 1 generators. If there is one red propagating line we can

list the green as in Figure 5.3. There are n− (1 + 2) + 1 = n− 2 generators. This can be

generalised by assuming that there are r number of red propagating lines and allowing the

arc to be on the green side as in Figure 5.4. This will result with

n− (r + 2) + 1 = n− r − 1 (5.1.2)
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generators.

. . . . . .. . . . . .. . . . . . . . .

Figure 5.4:

. . . . . . . . . . . . . . . . . .. . .

Figure 5.5:

Red Green Red Green

Figure 5.6:

Secondly, we fix the number of green propagating lines and allow red side to have an

arc: Assuming there are g number of green propagating lines and allowing the arc to be on

the red side as in Figure 5.5 will result with

n− (g + 2) + 1 = n− g − 1 (5.1.3)

generators.
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. . . . . . . . . . . .

Figure 5.7:

There are algebra elements which have different numbers of red and green nodes at the

northern edge and southern edge. Generators we have created so far have the same number

of red and green nodes in both edges. Therefore, we need generators as in Figure 5.6. In

this Figure the number of red and green nodes are not the same. For this illustration we

need generators as in Figure 5.7. In this Figure, the number of red and green nodes at the

northern edge and southern edge differ by 2 . If there are r number of red and g number of

green propagating lines then we can get two generators where

r + g = n− 2. (5.1.4)

Within the above illustrations we have identified all necessary generators of our algebra.

Proposition 5.1.1. The algebra TL2
n(δR, δG) may be generated by

2n−1(n− 1) + n(n+ 1) (5.1.5)

elements.

Proof. Let us find this by analysing the possibilities of the generators. The number of

generators with all red or all green propagating lines is 2.

From (5.1.1) we can say that the total number of the generators with one red and one

green crossing is given by
n−2∑
r=0

(n− 1)!2!

r!(n− (r + 2))!
.
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This can be simplified as

n−2∑
r=0

(n− 1)!2!

r!(n− (r + 2))!
=

n−2∑
r=0

(n− 1)(n− 2)!2!

r!(n− (r + 2))!

= (n− 1)2!
n−2∑
r=0

(n− 2)!

r!(n− (r + 2))!

= (n− 1)× 2
n−2∑
r=0

(n− 2)!

r!(n− 2− r)!

= (n− 1)× 2× (1 + 1)n−2

= (n− 1)× 2× 2n−2

= 2n−1(n− 1)

From (5.1.2) we can say that the total number of generators with 1 green arc and r red

propagating lines is given by
n−2∑
r=0

n− (r + 2) + 1,

which is

n−2∑
r=0

n− (r + 2) + 1 =
n−2∑
r=0

n− r − 1

= (n− 1) + (n− 2) + . . .+ 1

=
(n− 1)((n− 1) + 1)

2

=
n(n− 1)

2
.

From (5.1.3) we can say that the total number of generators with 1 red arc and g green

propagating lines is given by
n−2∑
g=0

n− (g + 2) + 1,
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which is

n−2∑
g=0

n− (g + 2) + 1 =
n−2∑
g=0

n− g − 1

= (n− 1) + (n− 2) + . . .+ 1

=
(n− 1)((n− 1) + 1)

2

=
n(n− 1)

2
.

From (5.1.4) we can say that the total number of generators with 1 arc but northern edge

and southern edge differing by 2 red and 2 green nodes are given by

∑
r+g=n−2

2 = 2(n− 1).

If we add all of these we will get

2 + 2n−1(n− 1)+
n(n− 1)

2
+
n(n− 1)

2
+ 2(n− 1)

= 2 + 2n−1(n− 1) + n(n− 1) + 2(n− 1)

= 2n−1(n− 1) + n2 − n+ 2n− 2 + 2

= 2n−1(n− 1) + n2 + n

= 2n−1(n− 1) + n(n+ 1)

Hence, we have proved the proposition.

Example 5.1.2. Let us find our generating set for the algebra TL2
4(δR, δG).

First we find the generators with all lines propagating by the same colour. There are 2

diagrams possible as in Figure 5.8.

Now we find the generators with one cross in them. In this case, first we find the gener-

ators with 0 red propagating and 2 green propagating(excluding the red, green propagating

lines in the cross). There are (4−1)!2!
2!

arrangements possible. This gives us 6 generators.
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Figure 5.8: Generators for all same colour propagating

Figure 5.9: 0 red and 2 green propagating lines excluding the ones in the cross

These generators are given by the Figure 5.9. Let us look at the generators with 1 red prop-

agating and 1 green propagating(excluding the red, green propagating lines in the cross).

There are (4−1)!2!
1!1!

arrangements possible. This gives us 12 generators. These generators

are given by Figure 5.10. Similarly if we look at the generators with 2 red propagating

and 0 green propagating(excluding the red, green propagating lines in the cross). There are

(4−1)!2!
2!1!

arrangements possible. This gives us 6 generators. These generators are given by

Figure 5.11.

Let us find the generators with one same colour arc at the northern edge and southern

edge. As discussed earlier, first we fix the red colour strings and allow the green colour

strings and to move around on the edges . If we say there are 0 red propagating lines then

we can have 4− (0+2)+1 generators, this gives us 3 generators. These are in Figure 5.12.

If there is 1 red propagating lines, then we can have 4− (1 + 2) + 1 generators. This gives

us 2 generators. These are in Figure 5.13. Similarly, if we say there are 2 red propagating

lines then we can have 4− (2 + 2) + 1 generators, this gives us only 1 generator, which is

in Figure 5.14. Now we fix the green bit and generate the red bit as follows. If we say there
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Figure 5.10: 1 red and 1 green propagating lines excluding the ones in the cross

Figure 5.11: 2 red and 0 green propagating lines excluding the ones in the cross

are 0 green propagating lines then we can have 4 − (0 + 2) + 1 generators, that is, there

are 3 generators possible. These are in Figure 5.15. If we say there is 1 green propagating

line, then we can have 4 − (1 + 2) + 1 generators. This gives us 2 generators. This is in

Figure 5.16.If we say there are 2 green propagating lines, then we can have 4− (2+ 2)+ 1

generators. This gives us only 1 generator. This is in Figure 5.17.

Let us find the generators with different colour arcs at the northern edge and southern

edges. If we say there are 0 red propagating lines, we could have 2 generators as in Fig-

ure 5.18. If there is 1 red propagating line, we could have 2 generators as in Figure 5.19.
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Figure 5.12: 0 red propagating lines

Figure 5.13: 1 red propagating lines

Similarly if there are 2 red propagating lines we could have 2 generators as in Figure 5.20.

From these we can say our generating set for the TL2
4(δR, δG) has 44 generators.

Let us verify the Proposition 5.1.1. We have found in Example 5.1.2 that algebra

TL2
4(δR, δG) has 44 generators.

When n = 4, (5.1.5) implies that

2n−1(n− 1) + n(n+ 1) = 24−1(4− 1) + 4(4 + 1)

= 23 × 3 + 4× 5

= 24 + 20

= 44

Therefore, TL2
4(δR, δG) has 44 generators, which is true. Thus our proposition has been

verified in this case.

5.2 Finding the generators of TL3
n(δR, δG, δB)

The above algebra has red, green and black colour nodes. Same colour lines are not allowed

to cross in this algebra. Therefore, we should have 3 generators with all red propagating
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Figure 5.14: 2 red propagating lines

Figure 5.15: 0 green propagating lines

lines, all green propagating lines and all black propagating lines.

Any algebra element with all lines propagating can be written as the multiplication of

the generators with one red and green crossing or green and black crossing or black and

red crossing. These generators help to move the propagating lines where we wanted.

Let us find the number of generators with one red and green cross, r number of red

propagating lines, g number of green propagating lines and b number of black propagating

lines. Here the red and green propagating lines in the cross are not counted as the propa-

gating lines. Therefore, the number of generators are (n−1)!2!
r!g!b!

, where r + g + b = n − 2.

Similarly, we find the number of generators with one green and one black cross given by

(n−1)!2!
r!g!b!

and one black and one red cross also given by (n−1)!2!
r!g!b!

.

By using the generators with the cross lines we cannot make the algebra elements with

arcs in them. Therefore, we need generators with arcs. Here, we find the generators with

a pair of same colour arcs at the northern and southern edge. We fix the left side of the

northern and southern edge with red nodes, right side of the northern and southern edge

with black nodes and middle of the northern and southern edge by green nodes. By fixing

any two sides by all propagating and third side generating we can find the generators of this

type. Let us find the generators which generate(allow to have arc) a black bit with r number
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Figure 5.16: 1 green propagating lines

Figure 5.17: 2 green propagating lines

of red propagating lines, g number of green propagating lines. There are n− (r+g+2)+1

generators that is n − 1 − (r + g). Where r + g ≤ n − 2. If we find the generators

which generate(allow to have arc) the green bit with r number of red and b number of black

propagating lines given by n− (r+ b+2)+1 that is n− 1− (r+ b), where r+ g ≤ n− 2.

Similarly if we find the generators which generate(allow to have arc) the red bit with g

number of green and b number of black propagating lines are given by n − (g + b) + 1

generators that is n− 1− (g + b), where g + b ≤ n− 2.

There are algebra elements which have different numbers of red, green and black nodes

at the northern edge and southern edge. Generators we found so far have same number of

red, green and black nodes at the northern edge and southern edge. Therefore, we find the

generators in the form as in Figure 5.21. By using these generators and generators with

one cross, we can get any diagram with different number of colour arcs at the northern

and southern edge. Here, generators with one cross help to move the nodes to the desired

positions. If we look at the top left and bottom left diagrams in Figure 5.21, they have red

and green nodes at the northern edge and southern edge differ by 2. If there are r number

of red, g number of green and b number of black propagating lines then we can get those

two as the generators in this case. If the number of green and black nodes differ by 2
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Figure 5.18: 0 red propagating line

Figure 5.19: 1 red propagating line

at the northern and southern edges then middle diagrams in Figure 5.21 are the possible

generators. Similarly if the red and black nodes differ by 2, then top right and the bottom

right diagrams in Figure 5.21 are the possible generators. Here we put the black nodes at

the front, red at the middle and green at the back.

Proposition 5.2.1. The algebra TL3
n(δR, δG) may be generated by

2(n− 1)3n−1 +
n(n+ 1)(n− 1)

2
+ 3n(n− 1) + 3 (5.2.1)

elements.

Proof. Number of generators with all red or all green or all black propagating lines is 3.

According to the third paragraph in Section 5.2, we can say the total number of gener-

ators with 2 colours crossing is given by(
3

2

)
×

∑
r+g+b=n−2

(n− 1)!2!

r!g!b!
.
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Figure 5.20: 2 red propagating lines

Red Green Black GreenRed Black

GreenRed BlackRed Green Black GreenBlack Red

Black Red Green

Figure 5.21:

This can be written as 3

2

∑ (n− 1)!2!

r!g!b!
where r + g + b = n− 2

= 3
n−2∑
r=0

n−2−r∑
g=0

(n− 1)!2!

r!g!(n− r − g − 2)!

= 3
n−2∑
r=0

n−2−r∑
g=0

(n− 1)!2!

r!g!(n− 2− r − g)!

= 3
n−2∑
r=0

n−2−r∑
g=0

(n− 1) . . . (n− 1− r)(n− 2− r)!2!

r!g!(n− 2− r − g)!

= 3
n−2∑
r=0

(n− 1) . . . (n− 1− r)

r!

n−2−r∑
g=0

(n− 2− r)!2!

(n− 2− r − g)!g!

= 3
n−2∑
r=0

(n− 1) . . . (n− 1− r)

r!

n−2−r∑
g=0

(
n− 2− r

g

)
× 2.
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This can be further simplified as follows by using the binomial expansion

3
n−2∑
r=0

(n− 1) . . . (n− 1− r)

r!

n−2−r∑
g=0

(
n− 2− r

g

)
× 2

= 3
n−2∑
r=0

(n− 1) . . . (n− 1− r)

r!
(1 + 1)n−2−r × 2

= 3
n−2∑
r=0

(n− 1) . . . (n− 1− r)

r!
2n−2−r × 2

= 3× 2
n−2∑
r=0

(n− 1) . . . (n− 1− r)(n− 2− r)!

(n− 2− r)!r!
2n−2−r

= 3× 2
n−2∑
r=0

(n− 1)!

(n− 2− r)!r!
2n−2−r

= 3× 2(n− 1)
n−2∑
r=0

(n− 2)!

(n− 2− r)!r!
2n−2−r

= 3× 2(n− 1)
n−2∑
r=0

(
n− 2

r

)
2n−2−r1r

= 2× 3(n− 1)× 3n−2

= 2(n− 1)3n−1.

According to the fourth paragraph in Section 5.2, we can say the total number of generators

with 1 black arc at the northern edge and southern edge, red (r) and green (g) propagating
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lines fixed given by∑
r+g≤n−2

n− (r + g + 2) + 1 =
∑

r+g≤n−2

n− 1− (r + g)

=
n−2∑
r=0

n−2−r∑
g=0

n− 1− r − g

=
n−2∑
r=0

(n− 1− r) + (n− 2− r) + . . .+ 1

=
n−2∑
r=0

(n− 1− r)(n− r)

2

=
1

2

n−2∑
r=0

(n− r − 1)(n− r)

=
1

2

n−2∑
r=0

(n− r)2 − (n− r)

=
1

2
[(n2 + (n− 1)2 + . . .+ 22)− (n+ (n− 1) + . . .+ 2)]

=
1

2
[(n2 + . . .+ 22 + 12)− (n+ . . .+ 2 + 1)]

=
1

2
[
n(n+ 1)(2n+ 1)

6
− n(n+ 1)

2
]

=
n(n+ 1)

12
[(2n+ 1)− 3]

=
n(n+ 1)(2n− 2)

12

=
n(n+ 1)(n− 1)

6
.

Similarly, we can show that the total number of generators with 1 green arc at the northern

and southern and red (r) and black (b) propagating lines fixed is given by∑
n− (r + b+ 2) + 1 =

n(n+ 1)(n− 1)

6
,

and the total number of generators with 1 red arc at the northern and southern and green

(g) and black (b) propagating lines fixed is given by∑
n− (g + b+ 2) + 1 =

n(n+ 1)(n− 1)

6
.
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According to the fifth paragraph in Section 5.2, we can say that the total number of

generators with 1 arc but northern edge and southern edge differ by 2 red and 2 green

nodes is given by ∑
r+g+b=n−2

2 =
n−2∑
b=0

∑
r+g=n−2−b

2

=
n−2∑
b=0

2(n− 2− b+ 1)

=
n−2∑
b=0

2(n− 1− b)

= 2
n−2∑
b=0

n− 1− b

= 2[(n− 1) + (n− 2) + . . .+ 1]

= 2× (n− 1)(n− 1 + 1)

2

= n(n− 1).

Similarly, the total number of generators with 1 arc but northern edge and southern edge

differing by 2 green and 2 black nodes is given by∑
r+g+b=n−2

2 = n(n− 1)

and that the total number of generators with 1 arc but northern edge and southern edge

differing by 2 black and 2 red nodes is given by∑
r+g+b=n−2

2 = n(n− 1).

If we find the total of all of these generators we will get

3 + 2(n− 1)3n−1+
n(n+ 1)(n− 1)

6
× 3 + n(n− 1)× 3

= 2(n− 1)3n−1 +
n(n+ 1)(n− 1)

2
+ 3n(n− 1) + 3.
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Let us verify this result for a very small algebra TL3
2(δR, δG, δB).

According to (5.2.1), the total number of generators of the algebra TL3
2(δR, δG, δB) is

given by

2(2− 1)32−1 +
2(2 + 1)(2− 1)

2
+3× 2(2− 1) + 3

= 2× 1× 3 +
2× 3× 1

2
+ 3× 2× 1 + 3

= 18.

Algebra TL3
2(δR, δG, δB) has diagrams with two nodes. Let us find the total number of

generators by analysing the possibilities of both nodes.

(i) Number of generators with both nodes propagating with the same colour
(
3
1

)
= 3

(ii) Number of generators with both nodes involved in different colour propagating line

crossing is given by
(
3
1

)
2! = 6

(iii) Number of generators with both nodes involved in same colour arc given by
(
3
1

)
= 3

(iv) Number of generators with both nodes involved in different colour arcs is given by(
3
1

)
2! = 6

Total number of generators is 3 + 6 + 3 + 6 = 18. From this we can say, Proposition 5.2.1

is true for n = 2.

5.3 Finding the generators of TLhn(δC1, δC2, . . . , δCh
)

In the previous sections, we found formulas to find the total number of generators of the

algebra which has 2 or 3 colours. Now we are going to generalise the result. Suppose our

algebra has h colours, then following the Proposition gives the total number of generators

in this case.
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Proposition 5.3.1. The algebra TLh
n(δC1 , . . . , δCh

) may be generated by

(h− 1)(n− 1)hn−1 + h

(
n+ h− 2

h

)
+ h(h− 1)

(
n+ h− 3

h− 1

)
+ h (5.3.1)

elements.

Proof. To prove this we need the Claims 5.3.3, 5.3.4 and 5.3.5 that we are going to discuss

soon. We provide the interpretation of these Claims at the beginning of the proof of each

Claim.

First we find the number of generators with all lines propagating with the same colour.

Algebra has diagrams with h colour nodes. Therefore, there are h generators in this case.

Let us find the generators with one cross. A cross could be made by choosing 2 colours

from h in
(
h
2

)
ways. If we say there are c1 colour 1 propagating lines and c2 colour 2 prop-

agating lines and so on up to ch colour h propagating lines, then by using the permutation

we can say there are (
h

2

)∑ (n− 1)!2!

c1!c2! . . . ch!
(5.3.2)

generators with one cross, where c1+c2+ . . .+ch = n−2. If you see the above expression

there is a number 2!. This says a cross could be drawn in two ways. Let us simplify the

above expression. (
h

2

)∑ (n− 1)!2!

c1!c2! . . . ch!

=

(
h

2

) ∑
c1+c2+...+ch=n−2

(n− 1)(n− 2)!2!

c1!c2! . . . ch!
.

We can simplify the right-hand side as 2
(
h
2

)
(n−1)hn−2 by using the Claim 5.3.5. Therefore,
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we will get (
h

2

)∑ (n− 1)!2!

c1!c2! . . . ch!
(5.3.3)

= 2

(
h

2

)
(n− 1)hn−2 (5.3.4)

= 2× h!

(h− 2)!2!
(n− 1)hn−2 (5.3.5)

= 2× h(h− 1)

2
(n− 1)hn−2 (5.3.6)

= (h− 1)(n− 1)hn−1. (5.3.7)

From this we can say there are (h− 1)(n− 1)hn−1 generators with one cross.

Let us find the number of generators with one arc at the northern and edge and one at

the southern edge. First we consider the case in which both arcs are the same in colour.

If we say that both are coloured with colour ch then we can have ch + 1 generators. Total

number of generators with arc colour ch is given by∑
∑h

i=1 ci=n−2

ch + 1.

However we can choose the colours in h ways. Therefore, the total number of generators

with one arc with same colour given by

h
∑

∑h
i=1 ci=n−2

ch + 1. (5.3.8)

We can write the above sum as follows.

h

 ∑
∑h

i=1 ci=n−2

ch +
∑

∑h
i=1 ci=n−2

1

 (5.3.9)

By using the Claim 5.3.4 and Claim 5.3.3 respectively we can simplify it as

h

((
n− 2 + h− 1

h

)
+

(
n− 2 + h− 1

h− 1

))
.
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This can be simplified into

h(

(
n+ h− 3

h

)
+

(
n+ h− 3

h− 1

)
).

By using (
n

r

)
+

(
n

r − 1

)
=

(
n+ 1

r

)
.

we can further simplified into

h

((
n+ h− 3

h

)
+

(
n+ h− 3

h− 1

))
= h

(
n+ h− 2

h

)
. (5.3.10)

Lastly, we look at the case with one arc at the northern edge and southern edge with dif-

ferent colour arcs. We can choose two colours in
(
h
2

)
ways. In particular choice of colours

and propagating lines we can have 2 generators. Therefore, as a total we can get(
h

2

) ∑
∑h

i=1 ci=n−2

2. (5.3.11)

We can simplify this by using Claim 5.3.3 as follows.

2

(
h

2

) ∑
∑h

i=1 ci=n−2

1 = 2× h(h− 1)

2

(
n− 2 + h− 1

h− 1

)
(5.3.12)

= h(h− 1)

(
n+ h− 3

h− 1

)
. (5.3.13)

Let us find the total number of generators from (5.3.7), (5.3.10) and (5.3.13). This is given

by

h+ (h− 1)(n− 1)hn−1 + h

(
n+ h− 2

h

)
+ h(h− 1)

(
n+ h− 3

h− 1

)
= (h− 1)(n− 1)hn−1 + h

(
n+ h− 2

h

)
+ h(h− 1)

(
n+ h− 3

h− 1

)
+ h.

Hence we are done.

Theorem 5.3.2. Algebra TLh
n elements can be generated by our generating set.
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Proof. Let x be an arbitrary element of the algebra TLh
n. Therefore x can be written as the

linear combination of the basis elements of the algebra. Therefore

x =
∑

dD,

where d is a scalar in C and D is a basis element of the algebra. Basis elemnt D can have

colours mixed. For our convenient, we seperate the colours. This could be done by using

our generators with one cross. Therefore

D = kD′k′,

where k and k′ are product of sequence of bubble algebra generators with one cross and

D′ is the diagram with all colour seperated. Purpose of seperate colours is to avoid cross-

ing. For example, if D as in left hand side of Figure 5.22 then D′ is the diagram in right

hand side of Figure 5.22. If we igonore the colours of D′ we get a Temperley-Lieb dia-

D D′

Figure 5.22:

gram. Therefore, we can write D′ as a sequence of product of Temperley-Lieb generators.

Therefore

D′ = U1U2 . . . Up,

whereUi is a Temperley-Lieb generator. Now we through the colours back intoD′, U1, U2, . . . , Up.

For example, if we take right hand side of Figure 5.22 and ignore the colours then we get

the left hand side of Figure 5.23. That diagram can be given by the product of Temperley-

Lieb generators as in the right hand side of Figure 5.23 when we ignore the colour. That
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=

Figure 5.23:

diaram can be given by products of Temperley-Lieb generators as in the right hand side of

Figure 5.23. If we through the clours back into Figure 5.23, then we get the Figure 5.24.

By using the toplogical argument, stretch the strings in a way to slice easily, we can say

=

Figure 5.24:

U1, U2, . . . , Up with colours generate D′. These generators with colours are actually ele-

ments of bubble algebra generators with one arc. If we do not want to use the topological

argument, colours could be anywhere in each slice Ui, then we need to seperate the colours

of each Ui as follows.

Ui = kiU
′
ik

′
i.
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Here U ′
i has all colours seperated according to colour order, and ki and k′i are products of

sequence of generators of the bubble algebra with a cross. For example, if Ui is a diagram

U ′
iUi

Figure 5.25:

as in the left hand side of Figure 5.25 then U ′
i become as the right hand side of Figure 5.25.

We can write each U ′
i as

U ′
i = TViB,

where Vi is a generator of the algebra with one pair of arc, T andB are product of sequence

of permutation generators with a pair of same colour arc or different colour arc. We can

understand this by taking U ′
i as in Figure 5.26. In the right hand side of the Figure 5.26 top

=

Ui
Vi

Figure 5.26:

two diagrams product is T and third diagram is Vi and fourth diagram is B. Each U ′
i can be
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written as the product of generators in our generating set. Therefore Ui, D
′ and D follows

this. From this we can say each and every basis elements can be written as the product of

generators. This implies taht every algebra elment x can be generated by our generating

set.

Claim 5.3.3. ∑
∑h

i=1 ci=n

1 =

(
n+ h− 1

h− 1

)
(5.3.14)

You can find this claim in [59, section 1.2, page15]

Proof. The sum in the lefthand side of the above Claim can be interpreted as counting the

number of different combinations we could make with h colour strings in such a way that

total number of strings in each diagram is n. Allow that there are ci number of colour i

strings, where i take the values from 1 to h and ci can take the values from 0 to n. We

make the diagrams as in Figure 5.27. First we draw c1 strings of colour 1 then c2 strings

of colour 2 and so on up to ch strings of colour h. Here permutation is not allowed and

only combination is possible. Now we need to count the number of possible different first

diagrams which could be made. Note that we could have diagrams without a particular

colour string. This is quite hard to count. Therefore, we make the second diagram by

adding one extra string of each colour. That is

di = ci + 1.

Therefore, our second diagram will look like Figure 5.28. Therefore, all bands have positive

length. That is, every colour string appears in the diagram. Number of first diagram equal

to the number of second diagram because there is a bijection between them. Now we

construct the third diagram by adding dots to the second diagram between each consecutive
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colour 2 colour hcolour 1 . . .

. . .

. . .c1 c2 ch

Figure 5.27:

c2 + 1 ch + 1. . .c1 + 1

. . .colour 1 colour 2 colour h

. . .

Figure 5.28:

pair of strings as in Figure 5.29. If we look at Figure 5.29 that shows the dots between the

strings. By choosing the position of h − 1 of the dots we can separate the colour strings.

Actually, the number of third diagram (Figure 5.29) is the same as the number of second

diagrams (Figure 5.28) because there is a bijection between these diagrams. There are

d1 + d2 + . . .+ dh number of strings. This can be simplified as

d1 + d2 + . . .+ dh = (c1 + 1) + (c2 + 1) + . . .+ (ch + 1)

= (c1 + c2 + . . .+ ch) + h

= n+ h

Therefore, the number of dots between these nodes is n + h − 1. The number of ways

to choose the h colour strings is the same as choosing the h − 1 dots. Therefore, there

are
(
n+h−1
h−1

)
number of third diagrams we could make. The number of ways to make first

diagrams (Figure 5.27) is the same as the ways to make the second diagram and the number

of ways to make the second diagram is the same as the way to make the third diagram.
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h-1th colour

•
change

•
change

second colour

•

change
first colour

d1321 d1 + 1 d1 + d2 d1 + d2 + . . . dh• • •• • ••

Figure 5.29:

Therefore, we can make
(
n+h−1
h−1

)
first diagrams. Hence, we have proved the claim.

Claim 5.3.4. ∑
∑h

i=1 ci=n

ch =

(
n+ h− 1

h

)
(5.3.15)

Proof. By modifying the previous proof we can prove this claim. The sum in the left hand

side of the above claim could be interpreted as finding the total of colour h strings ch in

each different combination, we could make with h colour strings in such a way that total

number of strings in each diagram is n.

Each first diagram (Figure 5.27) in Claim 5.3.3’s ch copy should be counted. This is

the same as counting the second diagram in Figure 5.28’s ch copies. Similarly, the number

of second diagram’s ch copy is the same as counting the third diagram in Figure 5.29’s ch

copies. We can find the ch copies of the third diagram by choosing one more dot from

Figure 5.29. Let us see the reason. After the string d1+d2+ . . .+dh−1 there are dh number

of colour h strings until the string d1+d2+ . . .+dh. Actually, there are dh number of gaps

after the string d1 + d2 + . . . + dh−1. Therefore, dh number of dots, that is ch + 1 string,

between the strings. If we need to count the third diagram in Figure 5.29 ones, we need to

choose the dot between the string d1 + d2 + . . .+ dh−1 + 1 and d1 + d2 + . . .+ dh−1 + 2.

Similarly, if we need to count it twice, we need to choose the dot between the string d1 +

d2+ . . .+ dh−1+2 and d1+ d2+ . . .+ dh−1+3. Similarly, if we choose the node between

the string d1+ d2+ . . .+ dh− 1 and d1+ d2+ . . .+ dh as in Figure 5.30, we will count the
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Figure 5.30:

third diagram in Figure 5.29 ch times. We need to choose h− 1 dots to separate the colour

string and 1 more dot to count the number of ch string. That is, we need to choose h dots

from n + h − 1 dots. Therefore, there are
(
n+h−1

h

)
number of ch copies of first diagram

there. Hence, we have proved the claim.

Claim 5.3.5. ∑
∑h

i=1 ci=n

n!

c1!c2! . . . ch!
= hn (5.3.16)

This claim follows from the Multinomial theorem [59, section 1.2, page16 and 17]

Proof. Sum in the left-hand side of the above claim could be interpreted as the number of

different arrangements we could make with h colour strings in such a way that the total

number of strings in each diagram is n. Allow that there are ci number of colour i strings,

where i takes the values from 1 to h. Therefore, the number of arrangement we could make

with these propagating lines is (number of diagrams)

n!

c1!c2! . . . ch!
.

If we consider the colour i which can have 0, 1, . . . , n propagating lines, that is ci can take

the values 0, 1, . . . , n, the total number of propagating lines is n. That is

n∑
i=1

ci = n.
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h h h

. . .1st 2nd nth

Figure 5.31:

Therefore, the total number of different diagrams we could get from colour 1, colour 2,

colour h propagating lines is given by

∑
∑h

i=1 ci=n

n!

c1!c2! . . . ch!
.

Let us find the total number of different diagrams we could get from the colour 1, colour

2, colour h propagating lines in a different way. First propagating line could be colour 1

propagating or colour 2 propagating or, . . . colour h propagating. Similarly, the second

propagating line could be filled in h ways and so on up to nth propagating lines can be

filled in h ways as in Figure 5.31. Therefore, total number of different diagrams is given by

h× h× . . .× h = hn.

Hence, we have proved the Claim.

Let us verify this result. For the value of h = 2, that is two colour case, total number of

generators is given by substituting h = 2 in the Proposition 5.3.1. This gives us

(2− 1)(n− 1)2n−1 + 2

(
n

2

)
+ 2(2− 1)

(
n− 1

1

)
+ 2

= (n− 1)2n−1 +
2n(n− 1)

2
+ 2n− 2 + 2

= (n− 1)2n−1 + n(n+ 1).
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From Proposition 5.1.1 we can this is true.

For the value of h = 3, that is three colour case, total number of generators is given by

substituting h = 3 in the Proposition 5.3.1. This gives us

(3− 1)(n− 1)3n−1 + 3

(
n+ 1

3

)
+ 3× 2

(
n

2

)
+ 3

= 2(n− 1)3n−1 +
3(n+ 1)!

(n− 2)!3!
+

6n!

(n− 2)!2!
+ 3

= 2(n− 1)3n−1 +
n(n+ 1)(n− 1)

2
+ 3n(n− 1) + 3

From Proposition 5.2.1, we can see this is true.
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Chapter 6

Homomorphism between modules: the
general case

In this chapter, we will show how to find the non-zero homomorphisms between cell mod-

ules with no arcs to a general cell module by using the hypercuboid. We will discuss

this method in Section 6.2 in great detail. This is our first general way to find the ho-

momorphism between two modules. We do this by finding the homomorphism between

Temperley-Lieb algebra modules and gluing these together to find the homomorphism be-

tween any given two cell modules.

We will introduced the new convention of notation in Section 6.1 to label our module

basis elements and generators of the algebra. This will help us to extend our investigation

compared with Chapter 4 to more than two colours, and more than one arc in the second

module.

Basic condition for existence of a non-zero homomorphism

Suppose that

θ : ∆n(a1, . . . , ah) −→ ∆n(b1, . . . , bh)
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is our desired homomorphism. Therefore, it should satisfy the homomorphism condition

θ(mx) = θ(m)x,

where m is an element of the first module and x is an element of the second module. As

we saw earlier θ(m) must be a linear combination of basis elements of the second module

with northern edge having the same colour sequence as x. Therefore, the second module

should have basis elements with the same colour sequence of nodes as the first module basis

element otherwise non-zero homomorphism is not possible to define. From this we can say

that , if there is a non-zero homomorphism between the two modules, then the difference

between the number of propagating lines of the first module and the second module of each

colour will be twice the number of arcs of the same colour. That is

ai = bi + 2ti, (6.0.1)

Our module and algebra have more than one colour. We mainly use red, green and black

colour strings in this chapter. We follow the same labeling as in Chapter 4(Figure 4.1).

6.1 A new notation for module and algebra elements

Suppose that ∆n(a1, a2, . . . , ah) and ∆n(b1, b2, . . . , bh) are the given two modules. We give

a convenient notation for basis elements of the module and algebra. We gave a notation in

Chapter 4 as in subsection 4.1.1. However, this notation is quite messy to handle if we deal

with more than one colour.

In the new notation, we write the basis elements of the modules and algebras as h + 1

tuples. Let us denote the first module basis element by mu, second module basis element

by nv and the algebra element by gw. Here, u, v and w are the h+ 1 tuples. The first place
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of the tuple represents the colour sequence, the second place represents the colour C1 half

diagram, the third place represents the colour C2 half diagram and so on up to h+1th place

which represents the colour Ch half diagram.

Labelling the basis elements of the modules and the generators

The module ∆n(a1, a2, . . . , ah) has all lines propagating by assumption. Therefore, there

will be n!
a1!a2!...ah!

arrangements we can make of the propagating lines. Each arrangement

gives a colour sequence. We label the colour sequence of the nodes by numbers. If a colour

sequence has first nC1 nodes colour C1, next nC2 nodes colour C2 and so on up to last nCh

nodes colour Ch then we call that colour sequence X1. In this situation, the first place of

the tuples take the value 1. Similarly, we label each colour shape half diagram by numbers.

If a particular colour shape has all nodes propagating lines then we label it 0.

We know that the first module does not have any arcs. Therefore, nCi
is equal to ai for

all i from 1 to h. We label all the possible shapes which could arrive from each colour Ci

by the numbers 0 to pi. 0 represents the shape which has all lines propagating. If we take

a basis element of the module ∆n(a1, a2, . . . , ah) then this can be written as mi,α1,α2,...,αh
.

Here i represents the colour sequence, α1 represents the shape of the colour C1, α2 rep-

resents the shape of the colour C2 and so on. Similarly, if we take a basis element of the

module ∆n(b1, b2, . . . , bh), that can be written as ni,β1,β2,...,βh
.

If we take a generator of the algebra, with the same colour arc at the northern and south-

ern edge, that can be written as gi,γ1,γ2,...,γh . If the northern edge and southern edge of the

generator have different colour sequences then we can write the generator as gj,γ
′
1,γ

′
2,...,γ

′
h

i,γ1,γ2,...,γh
.

Here i, γ1, γ2, . . . , γh represents the northern edge colour sequence and j, γ′1, γ
′
2, . . . , γ

′
h rep-

resents the southern edge colour sequence. However, we do not need the generators with
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the different colour arc at the northern and southern edge to find the non-zero homomor-

phism between the modules according to Lemma 6.1.2. Therefore, the colour sequence of

the generators at both places is same. For this reason, we do not really show the southern

edge colour sequence.

With this new notation Lemma 4.1.1 becomes

Lemma 6.1.1. Suppose that θ is a non-zero homomorphism from ∆n(a1, a2, . . . , ah) to

∆n(b1, b2, . . . , bh). If mi,0,0,...,0 is a basis element of the first module with the southern edge

colour sequence as Xi then we can write

θ(mi,0,0,...,0) =
∑

sβ1,β2,...,βh
ni,β1,β2,...,βh

, (6.1.1)

where ni,β1,β2,...,βh
is a basis element of the second module with the southern edge colour

sequence as Xi and sβ1,β2,...,βh
is the coefficient of ni,β1,β2,...,βh

which is independent of i.

Lemma 6.1.2. In the process of finding the non-zero homomorphism from one module to

another it is enough to consider the generators with same colour arc at the northern edge

and southern edge.

Proof. Let θ be the non-zero homomorphism between the given two modules. So, it should

satisfy the homomorphism condition

θ(ma) = θ(m)a. (6.1.2)

It is enough to check the above condition by choosing m as a basis element of the module

and a as a generator of the algebra. In Chapter 5 we have classified the generators of the

algebra in to following five categories. They are generators with all same colour propagat-

ing, generators with a cross, generators with same colour arc and generators with different

colour arcs.
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If we choose the generators with all the same colour propagating we will get 0 on both

sides of (6.1.2) if the colours do not match. If the southern edge colour sequence of m and

the northern edge colour sequence of generator match the homomorphism the condition

in (6.1.2) will be satisfied because generator does not do anything; it behaves as an identity.

If we use the generators with one cross, two different colour propagating lines crossing,

we will not get any condition because this type of generator only moves the position of the

nodes. Therefore, homomorphism condition in (6.1.2) is satisfied.

If we consider the generators with same colour arcs we will get 0 in the left-hand side

of (6.1.2) because ma has wrong number of propagating lines. Therefore, the right-hand

side of (6.1.2) should be 0. This gives us the necessary condition to find the non-zero

homomorphism.

However, if we consider the generators with different colour arcs at the northern edge

and southern edge we get conditions which already arose from considering generators with

the same colour arcs. Further, as we have seen in cellular algebra, the southern edge of

the module element and the northern edge of algebra element are alone responsible for the

formation of the constant which arises in any condition. For this reason, we get the same

equation as we obtain by considering the same colour arc at the northern and southern edge

of a generator and the same colour arc at the northern edge and different colour arc at the

southern edge of another generator.

6.2 Using one colour fact to construct the hypercuboid

In this section we are going to find the non-zero homomorphism between the two given

modules with more than one colour, just by finding the non-zero homomorphism between
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each colour of the modules separately. In the process of finding the non-zero homomor-

phism, we should know how the basis element of the first module maps to a linear combi-

nation of the second module basis elements. In this linear combination, the relationship be-

tween the coefficients of the second module basis element can be represented by a straight

line segment if the modules have only one colour. On the other hand, if the modules have

two colours, then we will get a rectangle, three colours then a cuboid and n-dimensional

hypercuboid.

Definition 6.2.1. A hypercuboid is a set of the form

H = [1, . . . , n1]× [1, . . . , n2]× . . . [1, . . . , nh]

inside Rh. Elements x = (x1, . . . , xh) and y = (y1, . . . , yh) in H are connected if there

exist t with 1 ≤ t ≤ h such that

xi = yi if i ̸= t

xt = yt ± 1.

We would like to thank Prof.Joseph Chuang to improve the following theorem.

Theorem 6.2.2. Suppose there exists non-homomorphisms from ∆nCk
(ak) to ∆nCk

(bk), as

k varies from 1 to h, such that

θCk
(
(k)
m0) =

∑
βk

sβk
nβk

(6.2.1)

where ak = nCk
,

(k)
m0 is the basis element of ∆nCk

(ak), and nβk
is a basis element of

∆nCk
(bk) and sβk

is the coefficient of nβk
. Then there exists a non-zero homomorphism

from ∆n(a1, a2, . . . , ah) to ∆n(b1, b2, . . . , bh) such that

θ(
∑
i

cimi,0,0,...,0) =
∑
i

ci
∑

β1,β2,...,βh

sβ1,β2,...,βh
ni,β1,β2,...,βh

, (6.2.2)
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where n =
∑h

k=1 nCk
, and sβ1,β2,...,βh

is a coefficient of ni,β1,β2,...,βh
and which is given by

sβ1,β2,...,βh
= sβ1 × sβ2 × . . .× sβh

. (6.2.3)

Proof. We need to show θ should satisfy the homomorphism condition

θ(mx) = θ(m)x

for all m in ∆n(a1, a2, . . . , ah) and x in TLh
n(δC1 , . . . , δch). If we can show above homo-

morphism condition hold for any m and each generators of the algebra then it will be true

for any m and any element x of the algebra.

We have classified the generators of the algebra into four cases in Chapter 5. They are

(i)generators with all same colour propagating lines, (ii)generator with one cross, (iii)generator

with one pair of arcs of the same colour at the northern and southern edge and (iv)generator

with one pair of arcs with different colour at the northern and southern edge.

From (6.2.2) and (6.2.3) we can write

θ(
∑
i

cimi,0,0,...,0) =
∑
i

ci
∑

β1,β2,...,βh

sβ1 × sβ2 × . . .× sβh
ni,β1,β2,...,βh

, (6.2.4)

Let g be a generator of type(i) with all same colour j propagating lines. If we multi-

ply (6.2.4) by g we get zero when ai ̸= 0 and aj ̸= 0 for some value of i, j ∈ {1, . . . , h}

because colour sequence do not match. On the other hand, if ai ̸= 0 and aj = 0 for

all j ∈ {1, . . . , h} except i then modules ∆n(a1, a2, . . . , ah) and ∆n(b1, b2, . . . , bh) are

Temperley-Lieb algebra modules. In this situation g behave as identity. Therefore, homo-

morphism condition

θ(mg) = θ(m)g

is satisfied.
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Now let gj
′,0,0,...,0

j,0,0,...,0 be a generator of the algebra of type(ii), with colour k and colour k′

crossing. If we multiply (6.2.4) by gj
′,0,0,...,0

j,0,0,...,0 we get

θ(
∑
i

cimi,0,0,...,0)g
j′,0,0,...,0
j,0,0,...,0 =

∑
i

ci
∑

β1,β2,...,βh

sβ1 × sβ2 × . . .× sβh
ni,β1,β2,...,βh

gj
′,0,0,...,0

j,0,0,...,0

= cj
∑

β1,β2,...,βh

sβ1 × sβ2 × . . .× sβh
nj,β1,β2,...,βh

gj
′,0,0,...,0

j,0,0,...,0

= cj
∑

β1,β2,...,βh

sβ1 × sβ2 × . . .× sβh
nj′,β1,β2,...,βh

.

Multiplication of nj,β1,β2,...,βh
by gj

′,0,0,...,0
j,0,0,...,0 , generators with all propagating lines with one

cross , gives us nj′,β1,β2,...,βh
because this multiplication does not change the labels of each

colour(crossing of same colour not allowed) but, the colour sequence j of nj,β1,β2,...,βh
is

changed to j′.

On the other hand(∑
i

cimi,0,0,...,0

)
gj

′,0,0,...,0
j,0,0,...,0 = cjmj,0,0,...,0g

j′,0,0,...,0
j,0,0,...,0

= cjmj′,0,0,...,0.

Therefore,

θ

(
(
∑
i

cimi,0,0,...,0)g
j′,0,0,...,0
j,0,0,...,0

)
= θ(cjmj′,0,0,...,0)

= cjθ(mj′,0,0,...,0)

= cj
∑

β1,β2,...,βh

sβ1 × sβ2 × . . .× sβh
nj′,β1,β2,...,βh

.

From these we can say

θ

(
(
∑
i

cimi,0,0,...,0)

)
gj

′,0,0,...,0
j,0,0,...,0 = θ

(
(
∑
i

cimi,0,0,...,0)g
j′,0,0,...,0
j,0,0,...,0

)
.

That means homomorphism condition is satisfied.
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Now let us take a generator of the algebra of type(iii), generator with a pair of colour Ck

arcs at the northern edge and southern edge. We call it as gj,0,...,0,γk,0,...,0j,0,...,0,γk,0,...,0
. For our convenient

we define

gj,e1,...,ek−1,xk,ek+1,...,eh = gj,0,...,0,γk,0,...,0j,0,...,0,γk,0,...,0

where eα has all propagating lines for α takes the values 1 to h except k and eα’s dimension

can be obtained from the colour sequence j and xk is a diagram(generator of the algebra) in

TLnCk
and it has the northern and southern edge half diagrams γk. Letm be

∑
i cimi,0,0,...,0.

Therefore

θ(m)gj,e1,...,ek−1,xk,ek+1,...,eh

=

(∑
i

ci
∑

β1,β2,...,βh

sβ1 × sβ2 × . . .× sβh
ni,β1,β2,...,βh

)
gj,e1,...,ek−1,xk,ek+1,...,eh

= cj
∑

β1,β2,...,βh

sβ1 × sβ2 × . . .× sβh
nj,β1,β2,...,βh

gj,e1,...,ek−1,xk,ek+1,...,eh

= cj
∑

β1,...,βk−1,βk+1,...,βh

sβ1 × . . .× sβk−1
× sβk+1

× . . .× sβh

∑
βk

sβk
nj,β1,β2,...,βh

gj,e1,...,ek−1,xk,ek+1,...,eh

= cj
∑

β1,...,βk−1,βk+1,...,βh

sβ1 × . . .× sβk−1
× sβk+1

× . . .× sβh

∑
βk

sβk
nj,β1e1,...,βk−1ek−1,βkxk,βk+1ek+1,...,βheh .

Here we say

nβx =


0 ifβx has wrong number of propagating lines

λnβ′ if βx = λβ′ and β′ has correct number of propagating lines.
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Therefore we can say

θ(m)gj,e1,...,ek−1,xk,ek+1,...,eh

= cj
∑

β1,...,βk−1,βk+1,...,βh

sβ1 × . . .× sβk−1
× sβk+1

× . . .× sβh

∑
βk

sβk
nj,β1,...,βk−1,βkxk,βk+1,...,βh

.

(6.2.5)

But we know there is a homomorphism from ∆nCk
(ak) to ∆nCk

(bk) as k varies from 1 to

h, and from (6.2.1)

θCk
(
(k)
m0) =

∑
βk

sβk
nβk

.

Our xk is a generator of TLnCk
and it has a pair of arcs at the northern and southern edge.

Therefore
(k)
m0xk = 0 . From this we can say θnCk

(
(k)
m0xk) = 0. But θCk

is a homomorphism.

Therefore

θnCk
(
(k)
m0xk) = θnCk

(
(k)
m0)xk

0 =
∑
βk

sβk
nβk

xk

0 =
∑
βk

sβk
nβkxk

.

But
∑

βk
sβk

nβkxk
and

∑
βk
sβk

nj,β1,...,βk−1,βkxk,βk+1,...,βh
has one to one correspondence.

From this we can say ∑
βk

sβk
nj,β1,...,βk−1,βkxk,βk+1,...,βh

= 0.

If we substitute this in (6.2.5) gives us

θ(m)gj,e1,...,ek−1,xk,ek+1,...,eh = 0. (6.2.6)
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If we find

mgj,e1,...,ek−1,xk,ek+1,...,eh =
∑
i

cimi,0,0,...,0gj,e1,...,ek−1,xk,ek+1,...,eh

= cjmj,0,0,...,0gj,e1,...,ek−1,xk,ek+1,...,eh

Our generator gj,e1,...,ek−1,xk,ek+1,...,eh has one pair of colour Ck arcs. But mj,0,0,...,0 has all

propagating lines. Therefore product of these two will give wrong number of propagating

lines. Therefore

mgj,e1,...,ek−1,xk,ek+1,...,eh = 0.

Therefore

θ(mgj,e1,...,ek−1,xk,ek+1,...,eh) = 0.

From this we can say

θ(mgj,e1,...,ek−1,xk,ek+1,...,eh) = θ(m)gj,e1,...,ek−1,xk,ek+1,...,eh .

Therefore, homomorphism condition is satisfied.

At last we take a generator of the algebra with a pair of arcs (northern edge colour Ck

and southern edge colour Ck′). Let the generator as gj
′,0,...,0,γk′ ,0,...,0

j,0,...,0,γk,0,...,0
. We can write

g
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

=
1

δCk

gj,e1,...,ek−1,xk,ek+1,...,ehg
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

.

If we find

θ(m)g
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

= θ(m)
1

δCk

gj,e1,...,ek−1,xk,ek+1,...,ehg
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

=
1

δCk

θ(m)gj,e1,...,ek−1,xk,ek+1,...,ehg
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0
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From (6.2.6) we can say

θ(m)g
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

=
1

δCk

× 0× g
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

= 0.

Now we find

mg
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

= m
1

δCk

gj,e1,...,ek−1,xk,ek+1,...,ehg
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

=
1

δCk

mgj,e1,...,ek−1,xk,ek+1,...,ehg
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

=
1

δCk

× 0× g
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

= 0.

Therefore

θ(mg
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

) = 0.

These implies

θ(mg
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

) = θ(m)g
j′,0,...,0,γk′ ,0,...,0
j,0,...,0,γk,0,...,0

.

That is, homomorphism condition satisfied.

Therefore, all four types of generators of the algebra satisfy the homomorphism condi-

tion. This implies that θ(mx) = θ(m)x for all module element m and the algebra element

x. Hence we have proved the theorem.
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