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Abstract: The introduction of new technologies and increased penetration of renewable
resources is altering the power distribution landscape which now includes a larger numbers of
micro-generators. The centralized strategies currently employed for performing frequency control
in a cost efficient way need to be revisited and decentralized to conform with the increase of
distributed generation in the grid. In this paper, the use of Multi-Agent and Multi-Objective
Reinforcement Learning techniques to train models to perform cost efficient frequency control
through decentralized decision making is proposed. More specifically, we cast the frequency
control problem as a Markov Decision Process and propose the use of reward composition
and action composition multi-objective techniques and compare the results between the two.
Reward composition is achieved by increasing the dimensionality of the reward function, while
action composition is achieved through linear combination of actions produced by multiple
single objective models. The proposed framework is validated through comparing the observed
dynamics with the acceptable limits enforced in the industry and the cost optimal setups.

Keywords: Multi-Agent Reinforcement Learning, Multi-Objective Reinforcement Learning,
Frequency Control, Economic Dispatch, Deep Deterministic Policy Gradient

1. INTRODUCTION

Over recent years, the field of electrical power systems
has been experiencing the beginning of what may prove
to be a structural transformation. Renewable resources
have been increasing their penetration in the marketplace,
which may displace traditional sources. Decreasing costs
of solar panels lead to increased adoption in households,
to the extent that there are already legal provisions for
household customers to sell stored energy back into the
electrical grid as mentioned in Ambrose (2019). Vehicle
to grid and smart charging technologies are posed to
enable electric cars to contribute to balancing the power
grid see, e.g., Steitz (2019), and Ali et al. (2017). In
Leggett (2017) it is mentioned that by 2030 there will be
nine million electric vehicles that need to be charged by
National Grid transmission system. The aforementioned
event will lead to an increment in the diversity and
quantity of sources which are able to inject power into the
electrical grid. This represents a significant increase in the
complexity of the grid, shifting away from a small number
of large scale producers to include an ever increasing
number of micro-sized sources in the form of individual
households, electric cars, etc. Such manifold structure, in
turn, will intensify the need for intelligent, automated and
decentralized control solutions.

Modern electrical energy distribution is largely done by
means of wide-ranging synchronous grids. Being syn-
chronous means the entirety of the grid is electrically
connected and thus every element attached to the grid
share the same observed operating frequency. This is true

for both the consumers as well as the producers (genera-
tors). In these systems the observed operating frequency
changes over time according to i) the total power being
injected into the system by all the generators; ii) the total
power being consumed by all loads. To electrically balance
the system, independent system operators (ISOs) send
signals to generators to modify their output such that load
and generation are balanced and the system frequency is
nominal.

The primary objective of this paper is to investigate
the feasibility of leveraging Reinforcement Learning (RL)
techniques for training autonomous, decentralized agents
able to perform frequency control in an electric power
system according to two distinct hierarchical objectives: i)
maintain the system frequency within predefined tolerated
limits; ii) minimize the cost of production.

Multiple techniques have already been proposed to achieve
frequency control decentralization. From a traditional con-
trol standpoint, Apostolopoulou, et al propose methods for
approximating the automatic generation control (AGC)
algorithm while solving the economic dispatch in semi-
decentralized fashion by restricting the Balancing Au-
thority (BA) areas communication and, thus, avoiding
congestion associated with the exponential increase of
connections in the network (see Apostolopoulou et al.
(2015a) and Apostolopoulou et al. (2015b)). Additionally,
Model Predictive Control (MPC) techniques have been
proposed to perform decentralized frequency control whilst
satisfying predetermined constraints (see Ali et al. (2017),
Kumtepeli et al. (2016) and Heydari et al. (2019) ). In the



Reinforcement Learning realm, Rozada (2018) proposes
the use of Multi-Agent Reinforcement Learning (MARL)
techniques, more specifically, the MADDPG algorithm,
which proved able to successfully perform primary and
secondary control but failed to perform tertiary control.
Despite being separate layers of control, both primary and
secondary control share a common overarching objective
related to frequency deviation. Tertiary control, however,
is associated with a slightly different objective: to minimize
the total cost of electricity production. These differences
in objective alignment could explain why the MAADPG
algorithm, as implemented in said paper, successfully per-
formed primary and secondary controls but failed with
tertiary control. For this end, this paper proposes the
addition of MORL techniques to the algorithm.

In this paper we i) frame the frequency control problem
as a Markov Decision Process to allow for the use of rein-
forcement learning techniques (Section 2); ii) propose the
incorporation of two distinct multi-objective reinforcement
learning techniques to the MADDPG algorithm to perform
frequency control in a cost-efficient way (Section 3); iii)
compare the performance of both techniques through nu-
merical studies (Section 4); and iv) draw conclusions from
the observed behaviours (Section 5).

2. BACKGROUND

In this section, the frequency control problem is formulated
and the reinforcement learning techniques employed to
perform such control are presented.

2.1 Load frequency control and Economic Dispatch

Frequency control can be divided into three hierarchical
layers: Primary, Secondary and Tertiary control.

Primary control acts to counterbalance changes in the
total system load by adjusting the output levels of all
generators attached to the grid by an amount propor-
tional to the difference between the observed and nominal
frequency. Droop Control would be the most commonly
applied form of primary control, see Miller and Malinowski
(1994). Primary control has the benefit of being completely
decentralized as each generator is able to observe individ-
ually the current frequency in the system. However, this
technique has its limitations as it results in steady state
errors and ignores any economical implications.

Secondary control aims to further balance the power grid
by acting upon the steady state error resulted by the lim-
itations in primary control. To this end, Automatic Gen-
eration Control (AGC) algorithms are often employed, see
Miller and Malinowski (1994). However, these algorithms
are often centralized to some extent, with an individual
entity overseeing the entire grid and issuing commands
for the individual generators. When performing secondary
control, the following set of equations apply to the fre-
quency deviation problem:

P (t+ 1) = P (t) +
Ztotal(t)− 1

RD
∆ω(t)− P (t)

TG
, (1)

ω(t+ 1) = ω(t) +
P (t+ 1)− L(t)−D ·∆ω(t)

M
, (2)

Ztotal(t) =

I∑
i=1

Zi(t), (3)

Ltotal(t) =

J∑
j=1

Lj(t), (4)

∆ω(t) = ω(t)− ωnominal, (5)

where P (t) is the total power injected into the grid at time
t, Z(t) is the secondary control action, Zi(t) is the control
action of generator i at time t, L(t) is the load at time t,
Lj(t) is the load by consumer j at time t, ω(t) is the system
frequency at time t, RD is the droop control coefficient
selected for the system, D is the damping coefficient of
the system, M is the electrical inertia of the grid, I is
the number of generators, J is the number of loads in the
system, and ωnominal is the nominal frequency.

Also referred to as Economic Dispatch, the objective of
tertiary control is to minimize the total production costs
of the grid. Doing so requires a centralized entity with
knowledge of each generating power output and cost of
production curve, as well as relevant physical limits with
regards to minimum and maximum output levels. For
estimating the cost associated with reaching a given power
output, a typically quadratic or piecewise linear function
is used to express the operating cost as a function of power
output as shown below:

Ci(t) = αi + βipi(t) + γip
2
i (t), for i = 1, . . . , I, (6)

where for generating unit i at time t, pi(t) is the power
output, Ci(t) is the cost of production, and αi, βi, γi are
constants.

Traditionally, a multitude of iterative techniques may be
employed for dealing with Economic Dispatch, as seen in
Wood et al. (2013). All such techniques require a central-
ized controller to calculate the optimal setup and issue
commands to every generator in the network. In a scenario
with increasing numbers of generators attached to the grid,
the centralized approach to Economic Dispatch becomes
ever more complex due to the increase in computational
power necessary to find the optimal arrangements. For a
power system with I generators and J loads, the following
set of equations apply at time t:

minimize
pi(t)

Ctotal(t) =

I∑
i=1

Ci(t),

such that

I∑
i=1

pi(t) =

J∑
j=1

Lj(t),

pmin
i ≤ pi(t) ≤ pmax

i , for i = 1, . . . , I,

(7)

where Ctotal(t) is the total cost of production at time t,
Ci(t) is the cost of production of generator i at time t,
pi(t) is the output level of generator i at time t, pmin

i
and pmax

i are, respectively, the minimum and maximum
output levels for generator i, and Lj(t) is the power
consumption of load j at time t. Solving tertiary con-
trol entails finding the power output combination set
{p?1(t), p?2(t), p?3(t), . . . , p?I(t)} that minimizes the global



Fig. 1. Actor/Critic relationship in MADDPG

cost Ctotal(t) while respecting the constraints of keeping
the system balanced and every generator output within its
operational limits, i.e., satisfying the constraints of (7). As
seen in (1)-(5), the system reaching steady state operation
entails that ∆ω(t) = 0 and, therefore, P (t) = Ztotal(t) =∑I

i=1 p
?
i (t).

2.2 Reinforcement Learning

Reinforcement Learning can be defined as a family of tech-
niques used to train agents based on their interactions with
the environment and the associated rewards/punishments
observed. Given enough observations the trained agent
becomes able to issue commands so as to find an opti-
mal policy. The problem approached in this paper can
be classified as fully cooperative as the agents work to-
gether to reach two objectives: i) electrically balance the
system within the tolerated range indicated by the fre-
quency deviation; ii) minimize the total cost of production.
Multi-Objective Reinforcement Learning (MORL) relates
to RL problems with multiple, sometimes conflicting, ob-
jectives. Successfully trained MORL agents should be able
to perform tradeoffs, intentionally sacrificing adherence
to one objective while advancing towards a more desired
global state. To this end, there are a number of different
techniques that can be employed, ranging from weighted-
sum to Pareto dominating policies see, e.g., Liu et al.
(2015), and Moffaert and Nowé (2014). The choice of which
approach to take becomes an integral part of the design
process of the solution.

The technique used in this paper is named Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) and is
considered an extension of Deep Deterministic Policy
Gradient (DDPG), combined with some elements of actor-
critic RL techniques see, e.g., Lowe et al. (2017a), Lowe
et al. (2017b). The MADDPG algorithm applies the actor-
critic concept to multi-agent scenarios by centralizing
learning whilst decentralizing execution, see Fig. 1. Once
trained, the agents rely solely on their actors to take
actions in the execution environment. Actors, therefore,
remain decentralized in nature, having access only to the
same information said agent would have in execution time.
The critics, however, are centralized and have additional
information in the form of the actions taken by all the
other actors in the system.

3. PROPOSED FRAMEWORK

In this section, the details of the proposed implementation
are described. This includes the neural networks archi-
tectures, the guidelines used for determining the reward

Fig. 2. Actor and Critic neural networks, where LSTM
refers to long short-term memory cells and ReLU
refers to the rectified linear unit

functions used, and the approaches taken to incorporate
multi-objective capabilities in the trained agents.

3.1 Neural Networks

The MADDPG algorithm leverages fully connected deep
neural networks to model both the actor and the critic. In
this study, both networks follow the same schema, with
slight changes in the input/output layers. Additionally,
this study employs the same algorithm to learn different
policies to achieve different objectives. Often this requires
changes in both the reward function and the set of vari-
ables that compose the Si(t) input, i.e., the state observed
by agent i at time t. These changes are further described
in Section 4 on a case by case basis. Common among
all case studies are the output layers. The actor network
outputs the action, in the form of change in total secondary
action (∆Zi(t)), where Zi(t) = ∆Zi(t) + Zi(t − 1), to
be taken by its respective generator at time t. The critic
network takes as input the outputs from all actor networks
(∆Z0(t), . . . ,∆ZI(t)) and outputs the estimated quality,
in the form of a Q-value, for that state-action for its
respective generator. The base neural networks used are
depicted in Fig. 2.

3.2 Reward Function Design

The reward function plays a pivotal role in the success
of a Reinforcement Learning model. In multi-objective
scenarios, the proportion between each reward component
has increased importance. With these characteristics in
mind, a collection of guiding principles shaped the design
process of the reward functions used, namely: Finite upper
and lower bounds act as points of reference for comparing
given rewards, thus becoming easier to assess their quality.
Individual reward functions are determined for each objec-
tive and the global reward is a composition of all individual
functions. Such compositions are usually done by either



Fig. 3. Plot of a sample multi-objective reward function

r(x, y) = 2−x2 · 2−10·(y2)

multiplication or addition. While keeping the adherence
to all other objectives constant, increasing adherence to
a given objective should monotonically increase the total
reward. This is only possible if the objectives are not
intrinsically contradictory. Having the global maxima of all
individual objectives reward functions coincide means that
the state which provides the maximum reward globally is
the same which maximizes rewards for all individual objec-
tives. For the purpose of streamlining the design process of
the reward functions, all individual reward functions share
the same base function:

f(x) = a · 2−b·x2

, (8)

where x is the input of the reward function, which varies
according to the objective (e.g. ∆ω for balancing fre-
quency), and a and b are parameters in R+. This function
provides some useful traits: It is symmetric with respect
to the y-axis, which is instrumental if the objective is to
minimize deviation. Besides, the base function has one sin-
gle maximum at the origin, which means that composition
by either multiplication or addition retains a single global
maximum at the same point. Finally, parameters a and b
can be used ad hoc for deforming the function while keep-
ing the symmetry and maximum location characteristics.

3.3 Multi-Objective

This investigation sets out to test two distinct strate-
gies for obtaining multi-objective optimization: reward-
composition and action-composition. The former strives to
accomplish the overall objective by learning a single policy
that is able to fulfill multiple objectives. This is achieved
by consolidating multiple objectives and their hierarchical
relationship into a single reward function. An example of
a multi-objective reward function can be seen in Fig. 3.
Conversely, the action-composition approach trains one
single-purpose set of agents per objective. During execu-
tion, actions from all sets of agents are consolidated into
individual final actions. For a system with K agents and
M objectives this composition is expressed as:

Ak(t) =

M∑
m=1

ρm · Ãm
k (t), (9)

M∑
m=1

ρm = 1, 0 ≤ ρm ≤ 1, (10)

where Ak(t) is the action to be taken by agent k at time

t, ρm is the weight given to objective m, Ãm
k (t) is the

action assigned to agent k, at time t, by the model aimed
at optimizing objective m.

When performing action-composition, the reward func-
tions used for each overarching objective does not intrin-
sically carry information regarding such preferences, these
are declared in the form of the weights ρm, form = 1, ...,M
used in runtime. One prerequisite for performing action
composition is for the action-space to be quantitative.
In categorical action environments, action consolidation
cannot be done via arithmetic operations.

3.4 Reward Composition vs Action Composition

We propose two different methods of achieving multi-
objective learning, reward composition and action compo-
sition. Besides observed performance, there are multiple
factors that are taken into account when choosing a tech-
nique to be used in an industrial setting. In that sense,
it can be argued that the action composition approach
is superior from a systems design standpoint. Among the
benefits provided by this strategy, one can single out the
following: Breaking down the global model into a single ob-
jective ones decreases coupling between the models, facil-
itates reuse, and simplifies debugging (Separation of Con-
cerns). Crafting bespoke multi-objective reward functions
is a time-consuming enterprise. Breaking down into single
objective rewards could speed up development as single ob-
jective reward functions behave in a more predictable way
(Simplified Modeling). Declaring the objective priorities at
the runtime means that these priorities can be seamlessly
changed. Furthermore, finding the optimal priorities ratio
can be done faster as the test feedback loop is tighter
(Variable Priorities). Individual models can have different
inputs. If different objectives of the system are associated
with different Service Level Agreements (SLAs), the infor-
mation sources which provide the inputs can be designed
to match these SLAs. In a single model, all inputs are
necessary to sample the actions, therefore have to provide
an SLA that is compatible with the most critical objective.
Using the studied scenario as an example, balancing the
system frequency is critical at all times while optimizing
for cost albeit still important is something that can be
overlooked in critical situations. If those objectives are
tackled by individual models, the inputs for balancing the
system should be kept available and with minimum delay
at all times. Conversely, the inputs for optimizing the cost
can have their requirements relaxed — if they become
offline, the system still can be operated at a degraded
level by relying only on the frequency balancing model
(Separate Data Sources).

3.5 Decentralization

We are using Multi-Objective RL techniques to solve pri-
mary, secondary, and tertiary control in a multi-agent-
based model. The system designed in this analysis, albeit
decentralized from the decision-making standpoint, still re-
lies on some centralized information regarding the current
state of the system, in particular Ztotal(t) the secondary
control action at each time t. Although not completely
fulfilling the decentralization requirement, this marks an
important step towards full decentralization, as it changes
the nature of the centralized entity from a fully-fledged
decision maker to an information broker.



4. NUMERICAL STUDIES

The software developed for performing these case studies
is fully configurable and allows for further experimentation
with different configurations for electrical systems with
any number of loads and generators electrical constants,
and even reward functions and state inputs. The source
code is open for future use and can be found at https://
github.com/melloflavio/2019-MSc_Thesis.

4.1 Electrical System

We performed a multitude of experiments aimed at assess-
ing the feasibility of leveraging multi-objective techniques
to perform primary, secondary and tertiary control in an
electrical power system. In order to perform the control
experimentation, an electrical system simulator was im-
plemented according to the equations described in Section
2.1. A consistent system topology was used across all
experiments: three generators (G1, G2, and G3) and one
single load (L1). The electrical constants were also kept
the same for all the experiments and are shown in Table
1. In this context, pu refers to the 100 MVA base power
used throughout this paper.

Table 1. Electrical System Constants

Term Name Value

RD Droop coefficient 0.1 pu
TG Time constant 30 s
d Damping coefficient 0.0160 pu
M Electrical inertia 0.1 pu

Being frequency control a continuous matter, each sim-
ulation begins at t = 0 considering that the system is
fully balanced (P (0) = L(0), ∆ω(0) = 0) and a per-
turbation occurs at t0 in the form of a change in the
total load. The task being performed then is to balance
the system after this initial perturbation. In the interest
of increasing the robustness of the models trained, the
application developed is able to introduce noise in the
simulated environment in the form of changing the initial
values for the loads and generators power levels. The noise
takes the form of a uniform distribution with magnitude
of 0.5% of the initial value.

For each generator, a distinct cost profile was selected
with the purpose of ensuring that the optimal setup is
such that no generator is in either minimum (0.5 pu)
or maximum (3.0 pu) output values. This helps evaluate
the ensuing results as successful models should be able
to steady the outputs around given values, rather than
relying on the enforcement of minimum/maximum limits.
Table 2 indicates the cost profiles of all generators:

Table 2. Generator Cost Profiles

Generator α [$/h] β [$/(h · MVA)] γ [$/(h · MVA2)]

G1 510.0 7.7 0.00142
G2 310.0 7.85 0.00194
G3 78.0 7.55 0.00482

4.2 Case Study I - Frequency Control

The first experiment was ran to minimize the frequency
deviation from nominal on an initially unbalanced electri-
cal system. The only state input is the frequency deviation

Fig. 4. Case I: Observed frequency

Fig. 5. Case I: Generator output

from the nominal setpoint (∆ωt) at each time t as defined
in (5). The reward function, shown in (11), conforms to
the guidelines set in Section 3.2 and is defined as follows:

rI(∆ωt) =

(
9 · 2−

∆ω2
t

2 + 2−
∆ω2

t
100

)
1

10
. (11)

The results are depicted in Figs 4 and 5. After approxi-
mately 20 seconds, the load was successfully balanced and
the power output and system frequency oscillates within
0.05 Hz (0.1%) of the nominal setpoint, which falls inside
the accepted range of 0.5 Hz (1%) established by National
Grid Electricity Transmission (2017). Overall, the results
indicate that the implementation of the MADDPG algo-
rithm works as expected.

In this case study we may see that the learned strategy
is to have two generators reach their minimum output
as fast as possible, while the third generator controls
its output to stabilize the system gradually reducing the
steady-state error. This cooperation by omission approach
does not appear to be the most efficient way to balance
the system. One possible reason for this behaviour could
be that reaching the maximum/minimum limits may be
the best way to ensure stable output for the other gen-
erators, as these limits are enforced in the simulation,
and not in the modelled neural networks themselves (i.e.,
once the secondary action reaches whichever limit, the
neural network may still issue commands to go beyond
such limits, but they are disregarded by the electrical
system simulation). Perhaps training with more diverse
loads that better cover the full spectrum of the systems
total power capacity would lead to more complex and
robust cooperative strategies. On a further note regarding
this cooperation by omission, it should be observed that
the generator which is elected to effectively perform the
balancing seems to be arbitrary. Rerunning the exact same
experiment multiple times results in different generators
being elected to perform this role. This is expected as
all generators are identical with respect to their output



capabilities. While the impact of this choice is nonexistent
for frequency control, this characteristic has repercussions
when this model is combined with a cost optimization one
to perform action composition, as will be shown in case
study III.

4.3 Case Study II - Reward Composition: Cost and
frequency deviation minimization

This experiment follows the reward-composition strategy
described in Section 3.3. To this end, the state used as
input in the algorithm is a triplet containing ∆ω(t), Zi(t)
and Ztotal(t). Additionally, a single reward function that
reflects both objectives was crafted following the guidelines
set in Section 3.2 and may be written as follows:

rII(∆Ptotal(t),∆ω(t)) = f(∆Ptotal(t)) · g(∆ω(t)), (12)

f(∆Ptotal(t)) = 2
−∆P2

total
(t)

4 , (13)

g(∆ω(t)) =

(
9 · 2−

∆ω2(t)
2 + 2−

∆ω2(t)
100

)
1

10
. (14)

The frequency component — g(∆ω(t)) — is similar to
the function used in case study I. The cost component —
f(∆Ptotal(t)) — is expressed in terms of the total power
deviation from the cost optimal setup with a normalization
component denoted by

∆Ptotal(t) =

I∑
i=1

∣∣∣∣ pi(t)p?i (t)
− 1

∣∣∣∣, (15)

where pi(t) is the power produced by generator i at time
t, and p?i (t) is the power output of generator i at time
t which minimizes the total cost for the total output of
all generators observed at time t (i.e., the output for
generator i which is the solution to the minimization
problem described in (7)).

Defining the cost component in terms of the deviation
from optimal was performed with the intent of breaking
an indirect relationship between both goals. For decreasing
the total cost of production, there are two possible meth-
ods: 1) Change the operating output of all generators to
achieve a lower cost of production while keeping the same
total output — this keeps the system balanced and can
be done until the optimal setup is reached. 2) Lower the
total output — this can be done indefinitely at the cost
of breaking the electrical balance. The reward function
should remove the option of increasing the earned reward
by simply lowering the total output.

The results of the experiment can be seen in Figs 6 and 7.
Generators G1 and G2 follow closely their optimal outputs
for the given total output at any given point. While G3
moves directly to and remains at the minimum output.
Such behaviour could be interpreted as being associated
with G3’s optimal output being close enough to the
minimum value that the model as a whole benefits more
by having G3 remain at a flat level, and thus providing
more certainty to G1 and G2, than by actively attempting
to follow its optimal value.

Regarding frequency control, it still performs worse than
the single-objective model seen in case study I. In this

Fig. 6. Case II: Observed frequency

Fig. 7. Case II - Generator output vs cost optimal

case, the frequency remains within 0.12 Hz the nominal
value, and exhibits a consistent downward shift of approx-
imately 0.05 Hz. This falls inside the the accepted range
of 0.5 Hz (1%) established by National Grid Electricity
Transmission (2017).

4.4 Case Study III - Action Composition: Cost and
frequency deviation minimization

This experiment is aimed at testing the action-composition
strategy described in Section 3.3. To this end, for each
overarching objective, one set of agents is trained. Set 1,
aimed at balancing the system load, is in fact the same
model trained in case study I. In Set 2, the state input
is composed by the duple Zi(t), Ztotal(t). The model is
trained with a single objective reward function aimed at
finding the minimum cost of production for every total
output as seen below:

rIII−2(∆Ptotal(t)) =

(
9 · 2−

∆P2
total

(t)

2 + 2−
∆P2

total
(t)

100

)
1

10
.

(16)

Training was performed by beginning episodes with dif-
ferent output combinations and finding the output set
that minimizes the cost of production while keeping the
total output level constant. This is done by calculating
the individual power levels that minimize the cost for
the total output observed at t = 0 for every episode,
i.e., p?i (0) for each generator i. Those values are then
used throughout the episode to calculate the total power
deviation (∆Ptotal(0)), as shown in (15). The objective of
the model trained in Set 2 is then to minimize the sum
of the individual generators’ output deviation from the
cost optimal setup, given a total output. One important
point to note is that while Set 2 is trained using a target
power that is constant per episode (the total power at
the beginning of the episode), during execution the value



Fig. 8. Case Study III (Cost Model) - Per generator output
vs target

used as target power is the current total output observed
at every step. This is by design to minimize interference
between the actions from both sets. While actions from Set
1 change the total output towards balancing the system,
actions from 2 redistribute the total power towards the
then optimal output.

The initial results, depicted in Fig. 8, indicate that the
cost model is able to perform somewhat as desired. As
can be observed, G3 relies on the enforced limits to keep
its output constant at the minimum value. G2 show some
oscillation but is centered around its desired optimal value.
Finally, G1 has an oscillatory pattern similar to G2,
but offsets above its desired value. These deviations as
oscillatory patterns are too large for use in a production
system. However, it should also be noted that, as was
the case in case study I, further tuning of the reward
function constants and prolonging the training period had
an observable effect in mitigating these behaviours.

Even though the individual models’ performances can be
used to inform the final results, the action composition
approach should be ultimately evaluated with respect
to the joint performance of combining both models. In
that regard, a few tests were performed with different
combinations of weights assigned to the frequency and cost
models, as shown in Table 3.

Table 3. Action Composition Weights

Setting ρfrequency ρcost
Frequency Dominant 0.7 0.3

Cost Dominant 0.3 0.7

In the frequency dominant study the weight of the fre-
quency action is higher as may be seen in Table 3. Initially,
one would expect this composition to result in a harmo-
nious balance between both models. However, this is not
the case. As observed in case study I, the trained frequency
model relies basically on a single generator to provide most
of the output and change its output to gradually balance
the system. Furthermore, in this particular instance of
the trained model, the generator elected for that role was
G3, which also has the characteristic of being the least
cost-efficient generator among the set. Together, these
characteristics result in a clashing behaviour between both
models, as can be seen in Figs 9 and 10.

For generators G1 and G2, the frequency model simply
acts to reduce the power indefinitely, relying on the en-
forcement of the minimum floor. The mixing weights are
such that the frequency model continuously overrides the

Fig. 9. Case Study III (Frequency Dominant): Observed
frequency

Fig. 10. Case Study III (Frequency Dominant): Generator
output vs cost optimal

actions issued by the cost model, resulting in a behaviour
much like in the frequency only model discussed in Section
4.2. Generator G3, however, has a uniquely interesting
behaviour. Initially, it rises much like in the frequency
model. As it approximates the output which would balance
the system, the frequency model issues increasingly smaller
actions to perform the fine-grained balance of the system.
Meanwhile, the cost model continues to issue actions to
dramatically lower G3’s by virtue of it being the least
cost-effective generator and having an output significantly
above its optimal value. These divergent actions eventually
reach an equilibrium at a point in which the frequency is
far enough from the nominal so that the magnitude of
the frequency and cost actions are counterbalanced. The
final result is a downward shift in the observed frequency.
The system displays a steady-state with an oscillatory
amplitude similar to the one produced in case study I,
but centered around 0.03 Hz below the nominal frequency.

In the cost dominant study, the weight of the cost action
is higher as can be seen in Table 3. This test is a mirrored
version of the previous one. This change in weights results
in the system performing largely as intended, as can be
seen in Figs 11 and 12. The final result is such that
the system is balanced within 0.03 Hz of the nominal
setpoint, while the power output levels approach those
that lead to the minimum cost of production. In this case,
the downward shift in frequency seen in the frequency
dominant test is no longer observed.

5. CONCLUSIONS

In this paper, we formulated the load frequency control
problem as a Markov Decision Process and employed rein-
forcement learning techniques to train autonomous agents
able to perform semi-decentralized primary, secondary and
tertiary control. We then propose two strategies for dealing
with the tradeoffs associated with multiple objectives,



Fig. 11. Case Study III (Cost Dominant): Observed fre-
quency

Fig. 12. Case Study III (Cost Dominant): Generator out-
put vs cost optimal

each with its own benefits and disadvantages. Reward
Composition consolidates multiple objectives into a sin-
gle reward function used to train a single set of models,
whereas Action Composition trains one set of models per
objective and then consolidates the actions issued by all
sets. Both methodologies decentralize decision making, but
retain some degree of centralization in the form of the
total secondary action used in the state input for the
models. Overall both approaches were able to restore the
system frequency in a cost efficient way, although more
work would be required for tuning the solutions, demon-
strating its generalizable capabilities and applying it to in-
dustrial scenarios. Additionally, the codebase implemented
was designed with the explicit intent to allow for further
experimentation and expansion.

Future research would include the introduction of more
objectives, such as ecological impact of powering the grid,
as the methodology employed and codebase developed
have no restriction regarding the number of objectives
being pursued. Regarding decentralization, one possibility
would involve the use of accessory metadata such as
timestamps associated with the total secondary action.
Intuitively, this could help relax the real-time constraint
of the information centralization by enabling agents to
rely on stale information for approximating the desired
behaviour.
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