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ABSTRACT

The thesis provides a novel contribution to the literature of microstructural theory and
discovery models. The main contributions are twofolds. First, we move from price
to liquidity discovery and explicitly study the dynamic behavior of a direct measure
of liquidity observed from the foreign exchange markets. We extend the framework
presented by Hasbrouck (1991) and Dufour and Engle (2000) by allowing the coefficients
of both liquidity and trade activity to be time dependent. We find that liquidity time is
characterized by a strong stochastic component and that liquidity shocks tend to have
temporary effects when transactional time is low or equivalently when trading volatility
is high.

We then analyze the contribution of liquidity to systemic risk and contagion and,
in particular, assess the price impact of liquidity shocks. We extend the approach
in Dumitru and Urga (2012) and present a co-jump testing procedure, robust to mi-
crostructural noise and spurious detection, and based on a number of combinations
of univariate tests for jumps. The proposed test allows us to distinguish between
transitory-permanent and endogenous-exogenous co-jumps and determine a causality
effect between price and liquidity. In the empirical application, we find evidence of con-

temporaneous and permanent co-jumps but little signs of exogenous co-jumps between
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the price and the available liquidity of EUR/USD FX spot during the week from May
3 to May 7, 2010.
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INTRODUCTION

The analysis and the composition of market liquidity plays an important role in price
discovery and miscrostructural theory. Kyle (1985) provides a very general definition
of market liquidity in terms of tightness, resiliency and depth. Tightness is typically
measured as the spread between the bid and the ask price, directly observed from the
market. This particular measure of liquidity is used in the empirical work of Amihud
and Mendelson (1980), Bessembinder (1994) and Chordia et al. (2000). Resiliency and
depth are often measured in terms of price impact functions. In particular, following
a shock or an unexpected trade, impulse response functions are used to determine the
speed of convergence of prices towards their pre-shock equilibrium level. This is the
approach followed by Hasbrouck (1991), Dufour and Engle (2000) and Large (2007).
Banti et al. (2012) propose a measure of liquidity based on the notion of expected return
reversal as in Pastor and Stambaugh (2003). Order flow data, defined as difference
between the number of buy and sell market transactions, is used instead as an indirect
measure of market liquidity and related to the dynamics of asset pricing in Evans and
Lyons (2002), Berger et al. (2008), Evans (2010) and Chen et al. (2012).

The purpose of the dissertation is not to provide a theoretical model for order driven

markets alongside the work produced by Rosu (2009), Goettler et al. (2005), Foucault
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et al. (2005), Cont et al. (2010), nor to present a framework in the context of optimal
order execution strategies as in Harris and Hasbrouck (1996), Almgren and Chriss (1999,
2000), Kissell and Malamut (2005), Frey and Sandas (2008). Our motivation is to model
the behavior of a direct measure of liquidity, not inferred nor derived from prices or
order flow data and use the particular structure and the high information content of
the limit order book. There are some important differences between the approach used
here and the methodology followed by previous studies to measure market liquidity.
First, we employ a direct measure of liquidity defined as the sum of the limit orders
at a given distance from the best displayed price in a limit order book. We refer to
this particular measure of liquidity as available liquidity throughout Chapter 1 and 3.
Available liquidity on the bid (ask) side represents the real amount of orders that can be
executed on the buy (sell) side of a limit order book. Second, from the behavior of this
direct measure of liquidity we construct a number of additional liquidity variables. In
particular, we define market orders and new limit and cancelled orders at different price
levels in the order book. We also introduce a measure of order book resiliency and of
net order imbalance to use the information content of asymmetric structure of the order
book. We also define and study the behavior of transactional and liquidity duration
measured, respectively, as the time between consecutive market orders and changes
in available liquidity. Liquidity time, in particular, provides an additional, indirect,
measure of order book and market liquidity. Finally, we present an alternative and
more informative measure of the order flow indicator, commonly used in microstructural
theory as an indirect measure of liquidity. In our model, we construct the order flow

indicator as the sum of market and new limit orders. We refer to this variable as trading



INTRODUCTION 6

activity throughout the dissertation. Trading activity on the buy (sell) side of the order
book is measured as the sum of sell (buy) market orders and new incoming buy (sell)
limit orders and used to capture important features of the behavior of market liquidity.

We then analyze the contribution of liquidity to systemic risk and contagion and, in
particular, assess the price impact of liquidity shocks. Jumps and co-jumps are typically
studied in relation to price dynamics and most of the literature on jumps focuses on the
discontinuous and extremely large price returns caused by a trading or a macroeconomic
shock. We instead propose a co-jump testing procedure used to distinguish between
transitory-permanent and endogenous-exogenous jumps between liquidity and price.
Finally, we use a data-set, collected at a very high frequency, motivated by the interest
to understand the influence of high speed trading on liquidity and prices. The results
presented are particularly relevant also in the context of the recent debate on high
frequency trading and the need to impose a set of operational rules in the interest of
financial stability.

The dissertation is divided in three chapters. In Chapter 1, we propose a com-
prehensive liquidity discovery model which is used to analyze the behavior of a direct
measure of liquidity and the interaction of a number of microstructural variables. In
particular, we extend the vector autoregressive representation of Hasbrouck (1991) and
Dufour and Engle (2000) and establish an explicit relationship between changes in the
available liquidity and a measure of trading activity observed from a representative
EUR/USD FX spot limit order book during the week from May 3 to May 7, 2010.
The dynamic behavior of liquidity is estimated by allowing time to have a deterministic

and a stochastic component. Time plays a very important role and, in our study, we



INTRODUCTION 7

distinguish between two very specific time measures. We first identify transactional
time as the duration between consecutive market orders, and then define liquidity time
as the interval between changes in the liquidity variable. The distinction is particularly
relevant and enables to better understand the role of time in a high frequency trading
framework. For this purpose, we allow the autoregressive conditional duration model
to switch across different trading volatility regimes. The use of a regime switching
model allows us to capture changes in the liquidity behavior and in the relationship
with other microstructural variables due to time-varying trading intensities. Moreover,
we use impulse response functions to measure the speed at which liquidity moves to the
equilibrium level following an exogenous shock.

In Chapter 2, we introduce a co-jump testing procedure based on the combination of
univariate tests for jumps as an extension of Dumitru and Urga (2012). The combina-
tion of tests allows us to address some of the issues with the existing tests for co-jumps
and extend the notion of a co-jump event. In particular, the proposed tests are shown
to be robust to microstructural noise and can be adjusted to take into account for non-
synchronous trading. Also, in the common notion of a co-jump used in the literature
two or more variables are characterized by a simultaneous and discontinuous path over
a given time interval. The jumps are traditionally both exogenous and no causality be-
tween the two can be inferred. We identify instead a causality effect between different
jumps observed over a fixed time horizon and distinguish between contemporaneous,
permanent and lagged or exogenous co-jump events. Finally, we assess the behavior of
the proposed co-jump tests under different levels of jump intensity, volatility, correlation

and microstructural noise.
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In Chapter 3, we present an empirical application where we explicitly assess the
transmission mechanism between the price of EUR/USD FX spot and the associated
liquidity displayed in a representative limit order book. Our estimates are based on
observations measured at a very high frequency. We use the co-jump testing procedure,
based on the combination of univariate tests for jumps presented in Chapter 2, to
measure the impact and assess the effects of liquidity jumps on prices. We also use two
distinct liquidity measures to take into account the information content of transactional
time. Finally, we determine the type of co-jump event observed and establish an explicit
causality effect between liquidity and the EUR/USD FX spot price during the week

from May 3 to May 7, 2010.






CHAPTER 1

MOVING FROM PRICE TO LIQUIDITY DISCOVERY

1.1 Introduction

Following the abrupt events experienced by financial markets in recent years, the behav-
ior of liquidity has started to play an important role in microstructural theory. Liquidity
shocks and the associated systemic risks have led to an increasing interest from regu-
latory bodies, policymakers and market participants who are in the process of defining
new rules and risk management practices with a specific focus on liquidity (Goodhart
2007, Farhi et al. 2007, Rochet 2008, Espinoza et al. 2008, Cao and Illing 2010, Perotti
and Suarez 2011, Hafeez 2011). The introduction of precise liquidity requirements for
financial institutions has also been prompted by the need to properly assess the risks
related to the presence of liquidity externalities. Moreover, trading agents are defining
execution rules to better manage and offer liquidity at an increasing high frequency and
reduce the issues related to latency, defined as the time between the submission and
the consequent execution of an order (Mahanti et al. 2008, Riordan and Storkenmaier
2011). Neoclassical economists have also shown that liquidity, order flows and trade

activity have a deep influence on price discovery. Liquidity in particular is described

10
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as the result of the interaction of a number of agents who reveal and exchange private
information respectively through prices and trading activity.

The seminal contribution of Hasbrouck (1991) has generated a huge body of lit-
erature dealing with price discovery models using transactional data. A number of
extensions and empirical applications have followed. Kempf and Korn (1998) measure
the price impact of unexpected financial transactions using data on the DAX futures
and highlight the informational content of trades of different size and type. Dufour and
Engle (2000) use the autoregressive conditional duration (ACD) model of Engle and
Russell (1998) to accommodate for stochastic transactional time and explain the role of
time in the price formation process of a number of stocks quoted on the NYSE. Evans
and Lyons (2002) introduce a microstructural model, based on a vector autoregressive
representation, to study the relationship between order flows and exchange rate dynam-
ics and to show the superior forecasting ability of microstructural variables as opposed
to the more traditional fundamental models based on macro variables. The importance
of order flows and trading volumes in price discovery models is also highlighted in Per-
raudin and Vitale (1996), Breedon and Vitale (2004), Moberg and Sucarrat (2007), and
Berger et al. (2008). Payne (2003) studies the informational content of trades executed
in foreign exchange markets and measures the relationship between trading activity,
performed at different times of the day, and price changes. A similar approach is used
by Floegel (2006) who identifies various levels of informational asymmetry among trades
performed by different types of dealers.

A common feature to all these studies on price discovery is that liquidity is indirectly

measured through the use of price impulse functions or through the notion of price
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spread. The concept of a liquid market is either related to the speed at which prices
converge to an equilibrium level following an informational shock in the system or to the
absolute distance of bid and offer prices, with a lower (higher) spread being associated
to higher (lower) levels of liquidity. Danielsson and Payne (2010) provide an important
contribution to the analysis of the behavior of liquidity in foreign exchange markets.
In their study, liquidity is measured both indirectly and directly through spreads and
depth. However, most of the leading literature on discovery models has not focused
specifically on liquidity dynamics and no direct measure had been proposed despite
the recognition of the importance of liquidity in microstructural theory (Copeland and
Galai 1983, Kyle 1985, Hasbrouck 1993, Burghardt et al. 2006, Hafeez 2007).

The main objective of Chapter 1 is to propose a comprehensive liquidity discovery
model which allows us to analyze the behavior of a direct measure of liquidity and the
interaction of a number of microstructural variables. Our contribution to the litera-
ture is three-fold. First, we move from price to pure liquidity discovery and study the
dynamics of available liquidity. This is particularly relevant given the little reference
that the literature on price discovery gives to a direct measure of liquidity. We define
liquidity in terms of depth, as in Kyle (1985) and Danielsson and Payne (2010), us-
ing an high observation frequency. We measure liquidity as the cumulative units of a
currency that a dealer can purchase or sell, in a limit order book, at a given distance
from the best price. We refer to available liquidity throughout the chapter. Second, we
extend the vector autoregressive representation of Hasbrouck (1991) and Dufour and
Engle (2000) by allowing all the coefficients of the vector autoregressive model to be

time dependent and establish an explicit relationship between changes in liquidity and
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market transactions. The dynamic behavior of liquidity is estimated by allowing time
to have a deterministic and a stochastic component. We also distinguish between two
very specific time measures. We first identify transactional time as the duration be-
tween consecutive market orders, and then define liquidity time as the interval between
changes in the liquidity variable. The distinction is particularly relevant and enables to
better understand the role of time in a high frequency trading framework. For this pur-
pose, we allow the ACD model to switch across different trading volatility regimes. The
use of a regime switching model allows us to capture changes in the liquidity behavior
and in the relationship with other microstructural variables due to time-varying trading
intensities. Moreover, we use impulse response functions to measure the speed at which
liquidity moves to the equilibrium level following an exogenous shock. The framework
provides an important contribution to the analysis of high frequency trading. Third, we
use a data-set which contains transactional information from the main reference cash
market in foreign exchange, observed and re-sampled at a very high frequency. Our
empirical study is based on one week of data observed from a representative EUR/USD
FX spot limit order book and recorded at a millisecond level. Our dataset contains time
stamped, tick-by-tick data on available liquidity, prices and quotation times from May 3
to May 7, 2010, subsequently re-sampled over a frequency of 10 seconds. Limit, market
orders and a number of transactional variables and liquidity measures have also been
constructed from the data. The analysis of the series at such high frequency enables us
also to measure the impact of high speed trading on liquidity.

Our main results are as follows. In our analysis, we find strong predictability and

feedback effects between available liquidity, changes in trading activity and time dura-
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tions. As in Easley and O’Hara (1992) and in Dufour and Engle (2000), trade durations
have a significant informational content and are characterized by a strong stochastic
component. However, we also find that liquidity durations are statistically significant
over a number of lags and that the impact of latency on the liquidity behavior varies
across different trading regimes. The use of two distinct measures of stochastic times
and the assumption of two trading regimes, that our model allows to identify, provides
also additional insights on how liquidity is affected by a non-homogeneous trade inten-
sity. In particular, we first identify an inventory effect of time, where, in the absence
of external shocks, the available liquidity at % ticks from the best price tends to dry
up with time and with an increase in market order activity. A greater time at which
liquidity moves from one state to another is typically associated to a lower trading
activity and to a smaller liquidity decay at a given price level. In our empirical ap-
plication, we relate our measure of liquidity to the concept of inventory as described
in Avellaneda and Stoikov (2008). In particular, we find that the available liquidity,
measured as the sum of limit orders, can provide a direct measure of the inventory of a
trading agent. We also find that a greater time between changes in available liquidity,
which translates into a more static structure of the order book, is typically associated
to a larger inventory or opportunity cost faced by a trading agent when a limit order is
selected as opposed to a market order. This result highlights the issue of optimal order
execution, and, in particular, the trade-off between the opportunity cost of a limit order
and the transactional cost of a market order as also discussed in Harris and Hasbrouck
(1996), Almgren and Chriss (1999, 2000), Kissell and Malamut (2005), Frey and Sandas
(2008), Cont et al. (2010) and Kratz and Schoneborn (2011). The relationship between
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liquidity, measured in terms of bid-ask spread, and trading inventory is also discussed
in Bessembinder et al. (1996).

Moreover, we find that trade durations are negatively correlated with available lig-
uidity and incoming limit orders. During times of intense trading activity the level of
available liquidity at a given price is in fact negatively affected. These results are due
to the fact that liquidity, offered by a dealer at a given price or distance from the best
available price, is not infinite and decreases as market orders, on the opposite side of
the book, are matched in the absence of fresh liquidity introduced in the order book.
Second, we identify an informational effect of time, where, following an external shock,
the rate of adjustment of liquidity is greater during times of high volatility or, equiv-
alently, low transactional and liquidity durations. We also find evidence of a negative
relationship between the information content of trades and both trade and liquidity
durations. In particular, the initial and the final hours of the day tend to be character-
ized by lower volatility and market activity and hence by a worse information content,
the duration between consecutive transactions tends to be higher, the liquidity impact
of a trade more persistent and the liquidity decaying process weaker. This finding is
consistent with the empirical result of Easley and O’Hara (1992), Lyons (1995), Dufour
and Engle (2000), Payne (2003) who show that prices tend to adjust faster and that
the informational content of trades is greater during periods of higher trading inten-
sity. Moreover, during times characterized by a higher trading intensity, market making
agents tend to tighten price spreads, defined as the difference between the ask and the
bid price, and increase the amount of displayed liquidity. This result shows that high

speed trading allows liquidity to adjust quicker to the equilibrium level following an
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exogenous shock and that the level of information content provided by trading activity
increases with a decrease in transactional time. In particular, high speed trading seems
to facilitate the flow of private information in the market and to reduce the negative
effects of unexpected trading activity. Further, there is evidence of temporal clustering
and of a decaying pattern in the liquidity process and a strong relationship between
trading intensity, volatility and liquidity. Liquidity is drained by matching market or-
ders, on the opposite side of the book, with the drained liquidity not being immediately
supplied at the same price level. We find no correlation between available liquidity or
trading activity on different sides of the book and this highlights a different trading
behavior and motivation among trading agents on the bid and ask side of the market.
Finally, both trade and liquidity durations show a M-shaped pattern during the trading
day similar to the realized volatility of the underlying asset price. The same pattern is
highlighted in Engle and Russell (1998) and in Dufour and Engle (2000).

The chapter is organized as follows. In Section 1.2, we first introduce the price
discovery model as in Hasbrouck (1991) and Dufour and Engle (2000), and then we
present an alternative vector autoregressive model specification enriched with regime
switching stochastic time. In Section 1.3, we describe the data and the main features of
the trading venue and of order book structure. In Section 1.4, we present the estimation
results and study the impact of both liquidity and transactional durations on liquidity
and trade activity. Some final remarks and proposals for further research are discussed

in Section 1.5.
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1.2 The Model

In standard price discovery models, vector autoregressive (VAR) representations are
used to capture the joint behavior of price changes and trades. Mid-quote prices, g,
are measured as the average of the bid and the offer price at time ¢ and just after a trade
x;. Given the non-stationary nature of the process, price changes, Ag;, are considered
in the dynamic model and studied jointly with the behavior of trades. Trading activity,
Xy, is typically measured by the sign of the underlying transaction and expressed by a
dummy variable, which takes a value equal to one if the initiated trade is a buy order

or minus one if the initiated trade is a sell order instead.
1.2.1 The Price Discovery Model proposed by Hasbrouck (1991) and Du-
four and Engle (2000)

Hasbrouck (1991) and Dufour and Engle (2000) propose the following VAR represen-

tation:

Aqt = Zfil aiAQt—i + zzoi() bxi—; + U1t

Ty = 221 CiAQt—i + 221 d;xi_; + Vgt

(1.1)

to model the relationship between mid-quote price changes, Ag;, and a trade indi-
cator variable, x;, which takes a value equal to one if a buy-trade is initiated or minus
one otherwise. v;; and vy, are i.i.d processes measuring shocks, determined by public
and private information, to the price and the trade equation respectively. Unlike in the
original model set up described by Hasbrouck (1991), Dufour and Engle (2000) allow

the trade coefficient to vary with time in both the price and the trade equations. Time
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is considered, in this context, a variable with both deterministic and stochastic compo-
nents. The coefficients of the trade variable in the price equation are time dependent

and given by:

J
bi=7+ Y ALDj i+ 0 (i) (1.2)

J=1

and, similarly, the coefficients of the trade equations are given by:
J
j=1

where D, ;_; represents a time-of-day dummy variable while v, A and 4 the estimation
coefficients. In particular, v represents a constant component, A and § capture the
impact of deterministic and stochastic components of the time process respectively.
The duration between consecutive transactions, measured by 7', enters non-linearly in
the VAR representation. In a more general set-up, the equation for the mid-quote price

change can be expressed as:

N N
AQt = Z OéiAQtfi + Z ['}/g + thiég] Ty + U1, (14)

i=1 i=0

where z;_; represents a row vector of observations for different transactional vari-
ables and where ¢; provides the column vector of corresponding coefficients. The signifi-
cance of time in the dynamic system (1.4) is verified by testing the statistical significance
of the coefficients ¢;. In particular, intraday periodicities can be found when the ¢} are

jointly zero and at least one of the A! is not zero at the same time.
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Given the stochastic nature of the time process, ACD models are used to model
the dynamic behavior of diurnally adjusted trade durations and to compute impulse
response functions. The conditional duration mean is modelled using an ARMA-type

specification:

p q
$r=w+ Y piTij+ Y Gori+ADiy (1.5)
j=1 i=1

where T represents the diurnally adjusted duration between consecutive transac-
tions, T = T,/®, (t — 1), with ®; (¢ — 1) being the deterministic component of time and
D, ;1 diurnal dummy variables which measure the time-of-the day effects while p, ¢
and A represent the estimation coefficients. The conditional density of T is given by
g(T) =0/ eap [— (ﬁ/@)a] for 0, ¢ > 0.

In Hasbrouck (1991), conditional impulse response functions are represented as:

k
Iy = Agiyy, = Z Biva s (1.6)
i=0

Dufour and Engle (2000) propose an extension assuming a joint distribution of marks

and arrival times conditional on their past values and represented as follows:

Iq (kavtaTtawtfl) =K [Qt+k ‘/U2,t =1,1T, =, wtfl] =FEr [E (q, z |T)] (1-7)

where w;_; indicates the information content of all the variables in the model up to
time ¢ — 1.
The framework presented by Dufour and Engle (2000) allows to measure the impact

of transactional time and also to capture diurnal versus stochastic components in the
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time process. Not surprisingly, during times of high trading activity, prices converge
to the full information value, after a shock, at a faster pace. Also, standardized trade
durations are found to be non strongly exogenous and mainly dependent on past volume
and past standardized durations. Authors finally show that the effect of time durations
on price changes tends to be marginal if compared to the same effect produced by volume
dynamics and spread when these are introduced as additional independent variables in
a more general model specification.

In the traditional framework of price discovery models, liquidity is measured indi-
rectly through the use of price impact functions, price spreads or as a function of some
microstructural or trading variables. The concept of a liquid market is often related
to the speed at which prices convergence to an equilibrium level following an informa-
tional shock in the system. In this chapter, however, we directly measure and construct
a number of liquidity variables by looking at the available liquidity displayed on one side
of a limit order book from the foreign exchange markets. Moreover, in our model, the
available liquidity is characterized by a deterministic and a stochastic time component,

and analyzed under different trading regimes.

1.2.2 Moving from Price to Liquidity Discovery

Let AgF express the logarithmic changes in the cumulative liquidity displayed at k ticks
from the best price in a limit order book. The measure of liquidity is very similar to
Kyle’s (1985) definition of market depth and is computed as in Danielsson and Payne
(2010).

In our model, we introduce and model different types of durations. First a trans-
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actional duration which measures the time interval between consecutive market orders
and a liquidity duration which measures the time interval at which changes in available
liquidity occur. This important distinction enables us to isolate the role played by the
time at which liquidity moves from one state to another.

In addition to available liquidity, we also study the behavior of a transactional
variable, w;, which measures the overall trading activity on one side of order book and
defined as the sum of market and new incoming limit orders. More specifically, trading
activity on the bid (ask) side of the market is recorded when a buy (sell) limit order
is matched by a sell (buy) market order, under the assumption that market orders can
only be executed against the best limit orders available at a certain price (i.e. market
orders cannot “walk the book”) and also when a new limit order (i.e. new additional
available liquidity) is added to existing orders at the same price priority in the book.
This particular measure of trading activity is more informative than the trade indicator
variables used in previous studies on price discovery.

We propose the following VAR representation to model the joint behavior of changes
in the available liquidity observed on one side of the order book and the proposed

measure of trading activity:

Aqf = Z?:l [73,2‘ + thi(sg,i} Ath—i + Z?:l [73),1' + ht*i(sgvi} T UL

Wy = Z?:l [72} + Zt—i‘;ﬁ;,z‘} AQf—i + Z?:l [%sz + ht—i(szj,i] + Vg

(1.8)

In the dynamic system described in (1.8), z¢_; and h¢_; are row vectors of observa-
tions and ¢; represents a column vector with the correspondent coefficients. Model (1.8)

extends the original model (1.1) by allowing both the liquidity and the trade coefficients
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to vary with time, where time is again characterized by a deterministic and a stochastic
component. In the case where the variables in z;_; and h;_; are current and past time
durations, with D;,_; being a set of n time-of-day dummy variables, we can re-write

the liquidity impact coefficients as:

a; = |7, + 0aln (TL,)]
¢ = [0 + 03tn (TL5)]

(1.9)

where T} . measures the observed time for a change in available liquidity (liquidity

duration). Analogously, we can express the trade impact coefficients as:

b= [l Sy XD+ Lt (T2 o)

d; = [%sz + Z?:l )‘;'J,w,z'Dj,t—i + 55,z‘ln (Tt‘izﬂ

where T}, measures the time between consecutive market orders on the opposite
side of the order book (transactional duration).

Equations (1.9) and (1.10) nest a special case of the model presented by Dufour and
Engle (2000) and referenced in (1.1)-(1.3). Model (1.8) is also flexible to accommodate
other transactional variables in the z;_; and h;_; vectors like price spreads or net order
imbalance for example. The framework presented above is also quite convenient from
an estimation point of view. The liquidity and the trade equations are in fact modeled
as a conditional process of both liquidity and transactional durations which allows to
estimate the VAR system directly.

In order to capture state dependent trade intensities, i.e. regime shifts, in the

series, the ARMA-type conditional expected durations are modeled using a regime
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switching threshold ACD (TACD) model introduce by Russell et at. (2001). The

model is represented as:

T; = el

P = Wk + ZT:l Oéfl’i—j + 23:1 @W%—j

(1.11)

with ¥ being an i.i.d. vector with positive and regime specific intensities. The
vector k denotes the number of regimes with 0 = rp < 1 < 1y < ... < 1y = ©
being the threshold values. The model allows us to deal with non-linearity and to
accept a number of different trading volatility regimes. In our empirical application, we
identify two regimes. A regime characterized by low trading intensity (or equivalently
by high time durations) is denoted with Ry—; while a regime characterized instead
by a high trading intensity (or equivalently by low time durations) is denoted with
Ry—5. The threshold indicators are computed as a function of the rolling mean and

standard deviations of liquidity time. In particular, given the vector of liquidity time

x = {x1,...,2,}, the model moves from Ry_; to Ry—o when z; < {x,, + o} for
i = l..n, where z,, = (1/m)>_", (z;) and o, = \/1/ (m—1)27, (2, — 2,,)° with
m = [1,...,n]. The choice of the number of threshold levels, the size of the rolling

sample m and the form of the threshold function is obtained by fitting the threshold
function to the empirical data. In particular, we find that £ = 6 provides a good fit to
the data set used in the empirical application when two trading regimes are considered.

The use of a TACD model in our empirical analysis is motivated by the observed
behavior of liquidity and transactional durations and, in particular, by the M-shaped

pattern displayed in proximity of the opening and closing hours of a trading session. The
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regime switching model allows us to isolate the diurnal effects caused by the opening and
closing hours of the trading day and highlight the different behavior observed during the
central hours of the day which are characterized instead by high transactional volatility.
De Luca and Zuccolotto (2006) also identify two trading regimes across which the shape
of the underlying distribution can vary while Iordanis and Maher (2011) use a threshold
switching model to allow the shape parameter of different distributions to vary across
regimes characterized by non homogeneous trading intensities. In Appendix A, we
report a comprehensive family of ACD models commonly used to estimate stochastic
arrival times.

In the context of discovery models, it is particularly relevant to use response func-
tions in order to measure the permanent or transitory impact on available liquidity of
exogenous shocks generated by unexpected trading activity. The results can be very
important to distinguish between informative and non-informative trade activity. We
identify the informational shocks using two white noise processes, vy ; and vo;. In partic-
ular, vy is associated to the liquidity shocks caused by publicly available information,
while vy, measures the impact of private information mainly driven by unexpected
trades. In order to compute impulse response functions we can follow two different
methodologies. The first approach follows from Dufour and Engle (2000) in the case
where > 0,; # 0. Alternatively, in the case where > " d,,; = 0, we can directly
compute the impulse functions from the VAR model as in Hasbrouck (1991). We use
a modified representation of the impulse response function which is dependent on both

liquidity and transactional durations:
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Ing (0, T9,T% I, _1) = E (Aq)  [vay = 1, T = 79T = 7%, I,_4) (1.12)

where 77 and T measure the liquidity and the transactional time respectively.

In the empirical application presented in this chapter, we also assume that time du-
rations are non strongly exogenous and that the arrival of trade shock hits the equilib-
rium level for liquidity and trading activity. In particular, we start from a steady-state
equilibrium level where Aw; = 0 and A¢Y = 0 with ¢? = ¢* at ¢t = 0. We then introduce
a shock in the trade activity equation equal to vo; = 1 and measure the impact on
the liquidity process through the impulse response function as in (1.12). Given that we
model changes in liquidity, conditional on both transactional and liquidity durations,
we need to compute the joint density of liquidity and durations in order to determine
the output of the impulse response function. The joint density is, in this case, given
by the product of the conditional density of liquidity times the marginal density of
transactional durations which are modelled using the TACD specification as in (1.11).

Finally, we use Monte Carlo simulations to estimate the impulse response function.

1.3 The Data

The data used in the empirical application consist of five time series: the available
liquidity on the bid and the ask side of a representative EUR/USD FX spot limit order
book, expressed in EUR millions; the bid and ask price associated to the available

liquidity in the order book, expressed as units of US Dollars for 1 EUR; quotation time,
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expressed in milliseconds. The data spans over an entire trading week, from May 3 to
May 7, 2010. The time frame considered is particularly interesting given that, during
this time horizon, EUR/USD FX spot displayed a large move, opening on Monday
at around 1.3250 and closing the session on Friday just above 1.2750. Despite the
short time interval, in our empirical application, we use data observed at a very high
frequency to obtain a large sample.

The behavior of the mid-quote price for EUR/USD spot is shown in Figure 1.1.
The vertical dotted line shows the end of the NY trading session and the open of the
Australian trading session. Figures 1.2 shows the available liquidity observed, on the
bid side of the order book, at £k = 0, 1 and 2 ticks from the best displayed price in the
book during the week from May 3 to May 7, 2010. The greatest amount of liquidity
is observed during the central hours of the trading day, while liquidity tends to dry
up in proximity to the opening and the closing of the trading session. Figures 1.3-1.4
show the returns of liquidity, market and new limit orders during the first hours of the
trading session and the London opening respectively on May 3, 2010. The combination
of market and new limit orders define the trading activity in the order book. We notice
that the level trading activity becomes more intense and regular during the London

opening hours compared to the initial hours of the Asian trading session.
| Insert Figures 1.1 - 1.4 |

Summary statistics for the variables in the data are presented in Table 1.1. An
average of 245,000 orders were actively traded on a daily basis during the reference
period considered in the analysis, with almost twice as many limit than market orders.

Approximately 17% of the orders have been inputed as new limit orders close to the
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best price, around 15% of the total overall limit orders have been cancelled and almost
one fourth of the total limit orders were filled completely. The size of both new limit
and cancelled orders shows the tendency to decrease away from the best price. Limit
and market orders appear also to be more frequent on the bid side of the market as

opposed to new limit and cancelled orders.
[ Insert Table 1.1 |

In what follows, we present details of the data and how these have been adjusted
and sampled, a description of the variables, and finally a preliminary empirical analysis

based on descriptive statistics of the series.

1.3.1 Preparation of the Data

The data is initially recorded to the one thousandth of a second over irregular time
intervals and subsequently resampled over equally spaced intervals of 10 seconds. The
conversion from tick to calendar time is done by selecting a fixed time grid {t = 1,...T'}
of equally spaced time intervals and using the most recent mark at the end of the
selected interval as the observation for that particular interval.

The decision to re-sample the data over fixed size time intervals is motivated by
two main arguments. First, as discussed in Engle and Russell (2004), issues of extreme
discreteness and micro-structural noise, typical of high frequency data, can lead to
spurious estimations, impact the volatility of the series and generate a high degree of
kurtosis in the data. Converting the data from an irregular space grid to regularly
spaced intervals, combined with pre-averaging, can also reduce the autocorrelation in

the series returns and limit the effects of temporal dependence. Second, re-sampling
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over fixed intervals of 10 seconds can substantially reduce the computational efforts
of the modelling framework used to produce the estimation results. Similar empirical
results would have also been obtained using a re-sampling frequency of 5 seconds.
Given the virtual continuity of the currency markets, as opposed to equity and fixed
income markets, we do not discard the opening and the overnight transactions, despite
the lower liquidity and the consequent higher volatility in the series, but we do eliminate
the reporting errors observed during the very last trading day in proximity of the NY
closing. In order to take into account the so called diurnal effects in the series, we
adjust both the transactional and the liquidity durations following the same procedure
as in Engle and Russell (1998) and in Dufour and Engle (2000). First, we fit the time
series of the unadjusted durations using a polynomial equation, we then compute the
ratio between actual and fitted trade durations. To improve the fitting accuracy we
transform the predictors, in this case represented by the unadjusted trade durations,
by normalizing their center and scale. The predictors have a zero mean and standard

deviation equal to one.

1.3.2 Variables

From the original data set we derive a number of microstructural variables. We define
AqF as the change in the natural logarithm of cumulative available liquidity at k = 2
ticks from the best displayed price on the bid side of the order book. In the original
dataset, the available liquidity in the order book is recorded at three different price
levels: the available liquidity on the bid (ask) side at the best displayed bid (ask) price

in the order book which represents the total amount of buy (sell) limit orders with the
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highest priority in terms of execution, followed by the available liquidity on the bid
(ask) side of the order book, observed at different price levels, and, in particular, at
k =1 and k = 2 ticks away from the best displayed price where the tick is measured as
0.0001 US Dollars per 1 EUR. Cumulative available liquidity is a direct measure of the
displayed depth in the order book. In the empirical application, presented in Chapter
1, we take into account only the liquidity observed on the bid side of the market.

Unlike in previous studies, two measures of time durations are introduced here: a
transactional duration, 7%, which indicates the time interval between two consecutive
market orders and a liquidity duration, 79, which indicates instead the time at which
available liquidity changes from previous levels. Both time durations are expressed in
milliseconds.

The trading activity, w;, on the bid (ask) side of the order book is measured in terms
of market and new limit orders. More specifically trading activity on the bid (ask) side
of the order book is recorded when a buy (sell) limit order is matched by a sell (buy)
market order, under the assumption that market orders can only be executed against
the best limit orders available at a certain price (i.e. market orders cannot “walk the
book”) and also when a new limit order (i.e. new additional available liquidity) is added
in the order book. Market orders, m;, are measured in EUR millions and represent the
amount of liquidity drained from the market either on bid (market orders sell) or on
the offer (market orders buy).

Cancelled and new limit orders, here indicated as clim; and nlim;, are again ex-
pressed in EUR millions and represent respectively the amount of liquidity firstly dis-

played and subsequently withdrawn from the order book (i.e. not filled) or fresh new
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liquidity inputed in the order book at k-ticks from the best available price.

Figure 1.5 shows the methodology used to derive market, cancelled and new limit
orders from the original time series. In particular, the first box shows that a sell
market order is identified either when the best displayed bid price in the order book
decreases and computed as the difference between the available liquidity, on the bid
side of the order book, over the time interval [t — 1,t] or when the best displayed bid
price remains constant but available liquidity drops. In particular, the best bid price
in the book drops from 1.3310 to 1.3309 between 4th and th 5th observation. Available
liquidity drops from 22 to 7 over the same time interval. We identify a sell market order
and we quantify the order in 22 units. The second box shows that a new limit order
is identified when the best displayed bid price remains constant over the time interval
[t — 1, t] but available liquidity increases over the same time interval. In particular, the
best bid price in the book remains constant between the 7th and the 8th observation
but the available liquidity at £ = 0 ticks from the best price increase by 1 unit. We
identify a new limit order and quantify the order in 1 unit. Finally, the third box shows
that a cancelled limit order is identified at £ = 1 or £ = 2 ticks from the best displayed
price in the order book in the event where the price does not change over the time
interval [t — 1,t] but available liquidity drops. In particular, the bid price at k = 2
ticks from the best displayed price in the order book remains constant between the
15th and the 16th observation at 1.3306 but the available liquidity drops from 9 to 8
units. We identify a cancelled limit order and quantify the order in 1 unit. Sell market
orders and cancelled orders will have a negative effect while new buy limit orders a

positive effect on the available liquidity on the bid side of the order book.
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| Insert Figure 1.5 |

The spread, represented by the variable s;, is measured as the difference between
the best ask and the bid price and expressed in pips of the domestic currency (USD).

We also introduce a very important transactional variable, often used in price dis-
covery models and represented by the net order imbalance, denoted with noi;, which is
here measured as the excess amount of available liquidity displayed on the bid over the
ask side of the order book. This variable is very similar to the net order imbalance in
Cao et al. (2009). We can interpret the net order imbalance as a ex-ante measure of
the trade indicator variable used by Hasbrouck (1991) and Evans and Lyons (2002) in
their models. Both the net order imbalance and the trade indicator variables express
the willingness of market participants to enter the buy or the sell side of the market.
The net order imbalance can be used, in this context, to forecast trading activity with a
higher number of buy (sell)-side trades being expected following an increase (decrease)
in the net order book imbalance.

Finally, we introduce a variable that measures the market impact of trading activity,
denoted as moi;, that can be used as a proxy of market resilience. We compute this
particular measure of liquidity as the ratio of relative mid-price variation over the level
of previous trading activity defined as the sum of market and new limit orders at £ =0
ticks from the best displayed price in the order book.

In Appendix B, we report part of the Matlab code used to re-sample the data over
fixed time intervals and to construct the micro-structural variables presented in the

chapter.
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1.3.3 Preliminary Analysis

In Tables 1.2 - 1.3, we report some preliminary analysis of the transactional variables
introduced above. In line with previous studies, we find that both changes in trading
activity and liquidity show a strong autocorrelation. In particular, the autocorrelation

tends to increase at a lower distance from the best mid-point price.

[ Insert Tables 1.2 - 1.3 |

We also note negative autocorrelation in both the trade and liquidity equations. No
signs of cross-correlations can be find when looking at the different sides of the order
book, with changes in trading activity on the bid side being completely unrelated to
changes in trading activity on the offer side of the order book. Not surprisingly changes
in the liquidity displayed at the best price in the order book tend to have a greater
impact on the overall liquidity dynamics. Strong autocorrelation is again detected in

the series of the raw and adjusted time durations as shown in Table 1.4.

| Insert Tables 1.4 |

The autocorrelations and the partial autocorrelations are far from zero and all the
signs are positive. The Ljung-Box statistic is examined to test the null hypothesis that
the first 15 autocorrelations are jointly equal to zero. We perform the test on the raw
and the adjusted time series. The null is rejected in both cases with a chi-squared
statistic of 126.70 (125.00) and 76.84 (58.54) for both raw (adjusted) liquidity and
transactional durations respectively. Figure 1.6 reports a plot of the histogram and

the distribution for the liquidity and the transactional durations respectively. Trade
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durations also display a M-shaped pattern typical of many financial series. The initial
and the final hours of the day tend to be characterized by lower volatility and trading
activity and hence by a worse liquidity. The duration between consecutive transactions

tends to be higher and the overall liquidity turnover lower as shown in Figure 1.7.
[ Insert Figures 1.6 - 1.7 |

Not surprisingly logarithmic trade durations are overall negatively correlated with
the level of trade activity (both on the bid and on the offer side) and with the level
of incoming limit orders which is probably driven by an informational asymmetry in
the market. This result shows volatility clustering, where periods characterized by high
trading intensity and volatility are usually followed by a number of consecutive periods
of high and slowly decaying volumes. In line with Dufour and Engle (2000), we also find
some evidence of a negative correlation between trade durations and available liquidity
at the best price. The greater the time between two consecutive transactions and the
lower the level of available liquidity displayed on one side of the market. The spread,
defined as the difference between the ask and the bid price, is also negatively correlated
with the current and the lag liquidity duration but shows signs of positive correlation
with both the current and the lag transactional duration. A market maker tends to
reduce the spread if available liquidity remains stable and does not change suddenly.
Also, due to inventory effects and to the fact that liquidity, in the form of limit orders,
has an intrinsic cost, spreads are tighten in order to give a greater incentive to trade and
absorb non utilized quantities of liquidity. However, an increase in the time between
consecutive trades gives a market making agent the incentive to widen the spread as

the informational asymmetry increases and the price discovery process becomes less
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transparent. Changes in available liquidity are also found to be associated with large
shifts in trading activity. This very last result ties well with the observation of a M-
shaped pattern in trade and liquidity durations during the trading day. An increase
in market orders, associated with a lower trade duration, tends to drain an increasing
amount of liquidity which again motivates market making agents to widen spreads and

reduce the number of additional trades.

1.4 Estimation and Results

In this section, we report and comment the results from the estimation of the VAR
system defined in (1.7)-(1.10) and and study the impact of both liquidity and transac-
tional durations on liquidity and trade dynamics. In this context, time durations can
be characterized by intraday deterministic or stochastic components. In order to cap-
ture possible diurnal effects in time durations, we introduce a set of dummy variables,
Dj_;, one for the first trading hour, one for the middle part of the day and a final
one for the last trading hour of the day. A Wald test of the null that all the lagged
diurnal dummies are jointly zero is performed. The null is rejected at a five percent
confidence interval with a p-value of 0.0375. The Ljung-Box statistic is also examined
to determine the proper lag structure in the VAR model specification and we identify

a structure with five lags.

The final VAR model specification is:
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Agf = Z?:l [7;],i + (SZ,iln(thfi)] Agf; + Z?:o [731,2‘ + (53)71'177’(7;0)—1‘)] Awrit .
+ Z?:l DjytAwt + (%
Awy = 30y s+ Spiln(TE)] Adfs + 320 [ + 65,0n(T2)] Aws + .

+ Z:;-:l D 1Awiq + vy
(1.13)

1.4.1 The Relevance of Time in the VAR System

The estimated VAR coefficients are shown in Tables 1.5-1.7 where the bold format is
used to indicate the values of the coefficients that are statistically significantly different
from zero at a five percent confidence level. We use White’s heteroscedasticity and

autocorrelation consistent standard errorsto compute the Wald and the t-statistics.
[ Insert Tables 1.5 - 1.7 |

We initially run three different models with slightly different specifications. In Model
1 (see Table 1.5) we study the joint behavior of cumulative liquidity changes and levels
of trade activity. We notice again strong signs of autocorrelation in both the liquidity
and the trade activity equations. In the liquidity equation, we also detect a negative
relationship between changes in cumulative liquidity and the overall level of trading
activity. Liquidity and transactional time are significant but only at the very first lags,
while there seems to be no deterministic component in transactional time. In the trade

equation, we immediately observe a positive relationship between trading activity and
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liquidity. Time is again statistically relevant but only at the first lag showing, in this
case, both a stochastic and a deterministic component. These very first results tend to
confirm our initial findings. Due to inventory effects, liquidity tends to dry up with time
and with an increase in trade activity. Also, the greater the time between consecutive
transactions and the lower the associated liquidity. This result can be explained with
the risk-adverse behavior of a market making agent who, in the absence of fresh and
incoming information, channelled through trades, is less inclined to provide liquidity.
Looking at the size of the coefficient, liquidity time seem to have a stronger impact
than transactional time in both the equations, being positively related to changes in
liquidity and negatively related to trade activity. This again can be explained looking
at the decaying-pattern of liquidity. A greater time at which liquidity moves from one
state to another is typically associated to a lower trading activity which, at the same
time, allows liquidity to accumulate at a faster pace at given price level.

Very similar results are obtained in Model 2 (see Table 1.6), where changes in cu-
mulative liquidity are related also to changes in the liquidity displayed at the best price
in the order book. The coefficients for the trade time durations are still negative, in
both the equations, as in Dufour and Engle (2000), despite being statistically signifi-
cant only at the first two lags. The negative correlation can be explained by the fact
that liquidity dries up slowly as transactions become less frequent. A lower number of
transactions may be associated with a higher degree of informational asymmetry in the
market and this explains why the liquidity posted by a market maker is automatically
reduced due to a higher risk aversion. The coefficients of the dummy variables in the

trade equation are particularly significant unlike in the liquidity equation where no sign
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of diurnal deterministic effects can be observed. The estimation results also point to a
strong autocorrelation in both the available liquidity and the trade activity equations.
The negative autocorrelation in the liquidity process can be explained through an in-
ventory analysis of limit order books. The existence of feedback strategies can instead
explain the positive autocorrelation in the trade activity equation. The presence of
a greater number of informed trading agents, initially responsible for an increase in
trading activity, may also be used to supports this result.

In Model 3 (see Table 1.7), we relate changes in cumulative liquidity to variations
in trading activity. Unlike in the previous cases, we immediately observe a negative
autocorrelation in the trade process and a positive and statistically significant impact
of trade durations in both the equations. We also notice a strong presence of diurnal
effects in transactional time in the first equation, despite only in the first hour of the
trading day, while again the three dummies seem to be all statistically significant in
the trade equation.

We test the stochastic and diurnal effects of time and report the results in Table

1.8.
| Insert Table 1.8 |

The first column of Table 1.8 shows Wald statistics for the hypothesis that the time
coefficients, including the coefficients of the dummy variables, are jointly zero. The null
is rejected in both the liquidity and the trade equations. In the second column, we test
if the diurnal dummy alone is statistically significant and, also in this case, we reject
the null of hypothesis in the case of the trade equation. Finally, in the third column, we

test the significance of the stochastic component and we find strong stochastic effects
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in the time process in the two equations considered in the analysis. The sum of the
time coefficients is positive and also statistically different from zero.

The estimation results for the TACD model are presented in Table 1.9. Quasi-
maximum likelihood is used under the assumption of an exponential distribution for
the standardized durations. In particular, as discussed in Pacurar (2008), the standard
exponential distribution is often used given that provides quasi-maximum likelihood
(QML) estimators for the ACD parameters. Consistent and asymptotically normal es-
timates of the ACD model are obtained by maximizing the quasi-likelihood function,
even if the distribution of the standardized durations z; = x;/1;¢ (t;_1) is not expo-
nential. In the TACD model, we use two different regimes, Rp—; and Rp—o, with the
threshold indicators being a function of the rolling mean and standard deviation of
both liquidity time. The first trading regime, Ry—;, is characterized by low trading
volatility or, equivalently, by high time durations. Conversely, a high trading intensity
and short time durations can be observed in the second trading regime, Ry—o. Figure
1.8 shows the threshold indicators during May 6, 2010. In particular, we plot the lig-
uidity time for the available liquidity at & = 0 ticks from the best displayed price in
the order book (dark blue line) together with the threshold indicators (light blue line).
Low volatility, or alternatively, high liquidity durations can be observed during the first
and the last hours of the trading session. The trading hours where liquidity displays
the highest turnover are between 6:00 am and 9:00 am and between 12:00 and 15:00 pm
during London time. Liquidity time shows the tendency to increase as we approach the
London close and peaks at around 18:00 before moving lower again due to the higher

liquidity exchanged during the NY hours.
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| Insert Table 1.9 and Figure 1.8 |

From the estimation results, we can observe a high statistical significance in the au-
toregressive parameter (beta coefficient) in all the different models used. Both the trade
and liquidity time processes are weakly stationary given that > 7 a; + >0 G < 1
despite being close to unity showing a certain degree of persistence. In Table 1.9 we
also show that the autoregressive parameter is more significant and of greater relevance
in the second regime characterized by a higher trading intensity. A number of misspec-
ification tests for the TACD model are presented in Tables 1.10-1.11. We report a set
of normality tests, a Box-Pierce test for serial correlation in the standardized residuals
with lags equal to 5, 10, 20 and 50 and finally a Box-Pierce tests for serial correlation
in the squared standardized residuals again with lags equal to 5, 10, 20 and 50. We find
evidence of strong serial correlation in both the liquidity and trade duration equations

and strong signs of non-normality across the different regimes.
| Insert Tables 1.10 - 1.11 |

In Tables 1.12-1.13 we show the autocorrelations and the Ljung-Box tests for stan-
dardized and squared standardized time durations in the two trading regimes. Testing
the assumption of independence in the standardized time durations provides an addi-
tional diagnostic check on the model. For the TACD (1,1), the Ljung-Box is much less
then the statistic for the raw and adjusted durations shown in Table 1.13 across the
different regimes. The statistics strongly exceeds the 5% critical value in the case of
liquidity durations and in the second regime. The autocorrelation is otherwise very

weak particularly in the first regime. Similar results are obtained in the case of squared
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standardized durations where the autocorrelation is even weaker. These statistics show
that, despite the initial misspecification tests, the TACD (1,1) model is still able to pro-
vide satisfactory results and account for the intertemporal dependence in transaction
arrival times.

For completeness, in Appendix C, we report the results of the estimation for the
general exponential ACD (EACD) and EXponential ACD (EXACD) models as shown

in Tables 1.16-1.17 respectively where QML has also been used.

| Insert Tables 1.12 - 1.13 |

1.4.2 Analysis of the Model’s Dynamics

In this section, we measure the impact of an exogenous shock, due to unexpected
trading activity, on available liquidity using impulse response functions. Given that
Yo 0ui # 0, we use a Montercarlo experiment to construct an estimator for the
impulse response function where liquidity is conditional on both transactional and lig-
uidity time durations. We follow a similar approach as in Dufour and Engle (2000)
where we first filter out time-of-day effects from both the transactional and liquidity
duration series by fitting a piece-wise linear spline to obtain a diurnally adjusted series
with unit mean. We then fit an exponential TACD (1,1) model on the adjusted time
series and estimate the conditional time durations. The estimated coeflicients of the
TACD model, used to construct the impulse response functions, are presented in the
first columns of the bottom panel of Table 1.9. The QML estimates of the TACD co-

efficients are obtained using standard GARCH software where the dependent variable

is set equal to y/x(i) and the conditional mean equal to zero.We use the exponential
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TACD to simulate the conditional durations n = 60 steps forward, we then compute the
impulse response function for each of the n steps using the estimated VAR coefficients
from Table (1.5), we repeat the procedure over 5,000 times, and finally average the
outcome of the impulse response function at each time step.

We consider three models based on alternative specifications for the impulse func-
tions. We use the representation in (1.6), introduced by Hasbrouck (1991), where
v = 1 represents an exogenous shock in the trade activity equation. We indicate the
first model with the notation HS. We then use the same approach as in Dufour and
Engle (2000) and compute impulse response functions as in (1.7) where trade durations
are assumed non-constant. We indicate the second model with the notation DE. We
finally run model (1.12) where both liquidity and time durations are assumed to be
non-constant. We indicate the third model with the notation UM. We run the three
models across different trading regimes and we report the results in Table 1.14. We first
consider the entire trading day without any distinction between high and low trading
volatility regime. We then analyze a regime, indicated with R1, characterized by low
trading volatility and high trade durations. We finally consider a regime, indicated
with R2, characterized by high trading volatility and low trade durations. In all these
scenarios, we start from a steady-state equilibrium where Aw; = 0 and Ag; = 0 with
¢ = ¢* at time ¢t = 0. We introduce a shock in the trade activity equation equal to

vg = 1 and measure the subsequent impact on the liquidity process.
[ Insert Table 1.14 |

The plot of the different function outputs are reported in Figure 1.9. The adjustment

time for liquidity to converge to the equilibrium level tends to be quicker and smoother
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when only the central and most liquid hours of the trading day are considered. In the
first row of the graph we show the adjustment process of cumulative available liquidity
adjusts when the entire trading sample is considered. It takes an average of 90 - 100
seconds for cumulative available liquidity at £ = 0—2 ticks from the best displayed price
to recover from the exogenous shock. The second row shows the adjustment process
during the most illiquid times of the trading day, where transactions are less frequent
and trading volatility low. The adjustment process is much more erratic and noisy and
it takes an average of 250 seconds for liquidity to absorb the shock. The third row
shows the liquidity adjustment process during the most liquid part of the day where it
takes an average of 60 - 80 seconds for liquidity to move back towards equilibrium.

A comparison between impulse response functions across different trading volatility
regimes is shown in Figure 1.10. We can observe that the liquidity adjustment process is
much slower and erratic in the first regime (R1) characterized by lower trading volatility
and higher time durations compared to the second regime (R2). Figure 1.11 shows
instead a comparison between different models across the two trading regimes. In
particular, we compare the model where only trading durations are non-constant (model
DE), with the model where both the liquidity and the transactional time are non-
constant (model UM). The impulse response functions obtained from the two models
converge at the same time. However, model UM shows larger shock waves around the
equilibrium level in the two trading regimes considered in the analysis. Not surprisingly
the size of the liquidity jump is also bigger, on average, in the first trading regime due
to the lower trading volatility and liquidity depth and in the second model due to

fact that liquidity time is assumed to be non-constant. Moving across regimes, we can
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observe that positive liquidity shocks are more persistent and of greater size in the

second model.

[ Insert Figures 1.9 - 1.11 |

It is interesting to note that liquidity experiences an initial negative jump following
unexpected trading activity only in the first model across the different trading regimes
considered. A negative jump is recorded in the second and in the third model only in the
first trading regime. However, in the second regime, the liquidity jump is positive for
both model two and three. We believe that this liquidity behavior is due to a different
risk aversion level across the two trading regimes considered. In the second regime a
market making agent is clearly less risk-adverse and more inclined to provide liquidity
even in the event of unexpected trading due to a higher level of market activity and
greater transparency. The ability of the market maker to distinguish between informed
vs. uninformed trading activity, in the first regime, is much lower due to the lack of
flows and informational content. This explains a negative liquidity jump following an
unexpected trade.

We confirm the previous estimation results presented as in Kasley and O’Hara
(1992), Lyons (1995), Dufour and Engle (2000) and Payne (2003) and conclude that,
following an external shock, liquidity adjusts at a higher rate during times of high
volatility and low transactional durations. The convergence towards an equilibrium
level becomes slower during times of low volatility and high transactional durations.
The negative relationship between information content of trades and durations indi-

cates that, during times-of-day characterized by lower volatility and market activity,
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the duration between consecutive transactions tends to be higher, the liquidity impact

of a trade more persistent and the liquidity adjusting process slower.

1.4.3 Model Sensitivity to Microstructural Variables

A final important step in our analysis is to investigate the significance of a number
of microstructural variables to address not only the possible additional contribution in
explaining market liquidity but also to evaluate the degree of correlation with stochastic
time.

We extend model (1.13) as follows:

b’i |:7wz+Zj 1 szDJt 'L+6 l ( )+91wzn02t ’L+e2wzm02t Z+83wz ]

di |:’sz+zj /\;uwz Jyt— l+6 ln( )+61wzn02t Z+02wzm07’t 1+63w2 i|
(1.14)

The extended model allows the time dependent coefficients to be a function of three
additional transactional variables; noi; represents the net-order imbalance given by the
difference between new limit orders on the bid and on the ask side of the order book at
k = 0 — 2 ticks from the best price, moi; a market impact variable given by the ratio
between price change and the level of trading activity at time ¢ — 1; and s; the price
spread measured as the difference between the bid and the ask price at time ¢ expressed
in units of the domestic currency.

From a comparison of the results reported in Table 1.15 with those reported in Table

1.5, we notice that the coefficients, ~;, §; and \; are substantially the same which favors
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the conclusion that the three additional variables complement the explanatory power
of the original stochastic time model. Strong autocorrelation at all lags is still evident
in both the equations. The different set of coefficients in the four columns of Tables
1.5-1.15 are of the same size and sign. In particular we observe from the second column
of the Tables that changes in trade activity negatively impact the available liquidity
even if the effect tends to fade quickly soon after the first lags. Liquidity duration
remains positively related to liquidity as shown in the third column of the Table 1.15
while there are still signs of a strong negative relationship between trade durations and
both changes in trade activity and liquidity as shown in the four column of Table 1.15.
The coefficients for the diurnal dummy are statistically significant only in the trading
equation of both models as shown in the fifth column of Tables 1.5 and 1.15.

Looking at the three additional transactional variables, we observe a strong signif-
icance in the price spread in both the liquidity and the trading equations (65;) while
both the net order imbalance (6;;) and the market impact of a trade (6,;) show a
poor explanatory power in both the equations. Not surprisingly an increase in price
spread is responsible for a decrease in volumes and in the displayed liquidity especially
at lags greater than one. Net order imbalance is statistically significant in the liquidity
equation even if the net effect is close to zero, while it fails to show any significance in
the trade activity equation. The sign of the market impact variable is in line with the
one of the lagged trade activity and indicates the presence of a high degree of trading
volatility clustering. Trading activity seems to become more frequent during periods
of high market volatility and when the market impact of a trade is large potentially

pointing to informed trading. This is particularly relevant looking at the sign and the
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size of the coeflicients of the trading equation in the seventh column of Table 1.15.

[ Insert Table 1.15 ]

1.5 Final Remarks

In Chapter 1, we extended the vector autoregressive model with time dependent coeffi-
cients introduced by Hasbrouck (1991) and Dufour and Engle (2000) in order to study
the relationship between available liquidity and trading activity in foreign exchange
markets. The main novelties of our study can be summarized as follows. First, we use
a specific measure of liquidity directly observed from the foreign exchange markets as
opposite to a liquidity proxy measured by transactional volumes and trade frequency.
Second, the dynamic behavior of liquidity is estimated by allowing time to have a
deterministic and a stochastic component. Third, we make a further distinction by
identifying a stochastic liquidity and transactional time. Finally, we model conditional
expected durations using a regime switching threshold representation in order to incor-
porate a state dependent trading intensity. We use transactional, time stamped, data
for EUR/USD spot over the trading week, from May 3 to May 7, 2010.

There is robust empirical evidence of a strong negative relationship between both the
levels and the changes in trading activity and the changes in the amount of available
liquidity in a limit order book, strong and persistent autocorrelation effects and a
significant impact of time durations in both the liquidity and in the trade activity
process especially at the first lags. No deterministic component could be found in the
liquidity time process. Strong diurnal effects were instead found in the transactional

time process. Impulse response functions were used to study the impact of exogenous
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shocks, in the form of unexpected trade activity, on liquidity. We found that unexpected
trade activity has an initial but only temporary negative impact. The use of regime
switching threshold models allowed us to identify and capture different sensitivities
of liquidity between two trading regimes. During times of high volatility and intense
turnover, liquidity adjusted quickly to the equilibrium level reached in the previous
state. During times of low volatility and poor market activity, instead, the adjustment
process became slower and more erratic. In addition to time dependence, we have also
evaluated the impact of a number of microstructural variables. A strong statistically
significant negative relationship between price spreads and market activity and changes
in displayed liquidity was observed, while other variables like net order imbalance and
market impact showed weak if not insignificant relationships.

The results presented in Chapter 1 have interesting practical implications and can
be particularly relevant in the analysis of dynamic order-allocation strategies or in the
construction of high frequency algorithmic trading programmes. The most common
issues for a market making trading agent are to identify at what price levels liquidity is
available and for what size, to understand how liquidity evolves through time and under
different trading regimes and to measure the speed at which liquidity can converge back
to the equilibrium level following an external shock to the system. We believe that the
framework presented in this study gives an important contribution to address these
issues. The impulse response functions derived from the regime switching model also
allow to distinguish between temporary and permanent shocks in the liquidity process
and to isolate the information content of a trade. In this chapter we have also measured

the impact of an exogenous shock, caused by unexpected trading activity, on an en-
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dogenous liquidity process. However, we did not address the transmission mechanism
between liquidity and prices and considered the causality effects of a liquidity shock.
The significance of a liquidity jump can be tested using combinations of conventional
nonparametric tests for jumps as shown in Dumitru and Urga (2012). This step will
not only allow us to exploit the information content of genuine jumps but also the
possibility to forecast and measure the price impact of a liquidity jump. This exercise
is even more relevant when considering a data set characterized by high volatility. This

line of research is developed in Chapter 2.
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Table 1.2: Estimated coefficients for trade equation.

The Table reports the coefficient estimates for the trade equation. AwF represents changes in the
trading activity, where k represents a binary variable assuming values equal to 0 if the trade activity is
performed on the bid side of the market and values equal to 1 if the trade activity is performed on the
offer side of the market. More specifically a transaction on the bid (offer) side of the market is recorded
when (i) a buy (sell) limit order is matched by a sell (buy) market order, under the assumption that
market orders can only be executed against the best limit orders available at a certain price and also
(ii) when a new limit order is added to the order book. The standard errors are corrected by using
White’s heteroskedasticity consistent covariance estimator to construct Wald and t—statistics. Bold
denotes significance at the 5 percent level.

AwF =c+ 35 alAuf | +30  alAw!

Bid - Equation Offer - Equation
af -0.7708 o} 0.0086 af -0.7851 ol 0.0048
a) -0.6100 of 00125 o} -0.6232 of -0.0009
o -0.4583 aof 0.0059 af -0.4724 ol -00042
o] -0.3130 of 00072 ol -0.8157 o} -00104
of -0.1656 ol 0.0018 of -0.1604 ol 00182
Ljung-Bax (5) 4T27.2 Ljung-Bax (5) 4896.6

Sample Size 30060 Sample Size 30060
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Table 1.3: Estimated coefficients for liquidity equation.

The Table reports the coefficient estimates for the liquidity equation. AgF represents changes in
cumulative available liquidity, observed on the bid side of the order book, at k = 0 — 2 ticks from the
best displayed price. Aqf, Ag? and Ag} represent the available liquidity, observed on the bid side of
the order book, at £ = 0, 1 and 2 ticks respectively from the best displayed price in the book. The
standard errors are corrected by using White’s heteroskedasticity consistent covariance estimator to
construct Wald and t-statistics. Bold denotes significance at the 5 percent level.

Adk=ct+ 32 akAgk , + T3 alAgl T a2Agk, + 35 adAd)

Cumulative 1 Price Lewel 2 Price Level 3 Price Level
af  -0.3740 o} -0.0508 o] -0.0430 o] -0.0857
af  -0.2036 ol -0.05183 o -0.0471 of -0.0326
af  -0.1311 ol -0.0389 of -0.0362 of -0.0191
af  -0.0872 o} -0.0262 o] -0.0241 of -0.0104
af  -0.0489 ol -0.0171 of 00124 of 00218

Ljung B (5) 166.15

Sample Size 39960
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Table 1.4: Autocorrelations of time durations.

The Table reports the autocorrelations of both liquidity and transactional durations measured in
millisecond. Liquidity duration is the time, measured in milliseconds, between changes in cumulative
available liquidity at kK = 0 — 2 ticks from the best displayed price. Transactional duration is the time,
measured in milliseconds, between two consecutive market orders. Bold denotes significance at the 5
percent level.

Raw Durations Adjusted Durations

Lag Structure Liquidity Transactional Liguidity Transactional
Lag 1 0.0411 0.0369 0.0349 0.0363
Lag 2 0.0601 0.0535 0.0424 0.0298
Lag 3 0.0670 0.0177 0.0912 0.0144
Lag 4 0.0361 0.0258 0.0438 0.0204
Lag & 0.0538 0.0647 0.0367 0.0401
Lag 6 0.0340 0.0242 0.0356 0.0359
Lag 7 0.0394 0.0179 0.0274 0.0212
Lag 8 00116 0.0276 0.0140 0.0309
Lag 9 00060 0.0306 00024 0.0359
Lag 10 00130 0.0160 0.0149 0.0188
Lag 11 00156 0.0227 0.0278 0.0288
Lag 12 0.0206 0.0252 0.0152 0.0292
Lag 13 0.0567 0.0474 0.0392 0.0302
Lag 14 0.0586 0.0288 0.0793 0.0349
Lag 15 0.0250 0.0224 0.0258 0.0253
Lijung-Bax (15) 126.70 T6.84 125.00 58.54

Sample Size 39960 39960 30960 30960
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Table 1.5: Model 1 - Estimated coefficients for liquidity and trade equation.

The Table reports the coefficient estimates for both the liquidity and the trade activity equations as
in 1.13 (Model 1). Ag; represents changes in cumulative available liquidity at & = 0 — 2 ticks from
the best displayed price, w; represents instead the level of trading activity on the buy side of the order
book. More specifically a transaction on the bid (ask) side of the market is recorded when (i) a buy
(sell) limit order is matched by a sell (buy) market order, under the assumption that market orders
can only be executed against the best limit orders available at a certain price and also (ii) when a new
limit order is added in the order book. T} is the time observed for changes in cumulative available
liquidity at & = 0 — 2 ticks from the best displayed price while the variable T}’ represents the duration
between two consecutive market orders both expressed at a millisecond level. Finally, D; represents
the diurnal dummy variable used to indicate the time of the day. The standard errors are corrected
by using White’s heteroskedasticity consistent covariance estimator to construct Wald and t-statistics.
Bold denotes significance at the 5 percent level.

Constant Lag Liguidity Lag Trade Activity Lag Liguidity Lag Trade Activity Lag Trade R?
Lag Duration Lag Duration Diurnal Dummy
Panel A: Liquidity Equation
c 00120 v,1 -0.49T0 g -0.0036 dg1  0.0218  d.g -0.0034 A 0.0029 0.24
Yoo -0.3365 . -0.0015 dg0  DO0B3 4. 0.0005 Ag -0.0003
Vg3 -0.2258 w2 -0.0014 dg.8 00047 O 2 00000 A3 00027
Vg4 -0.1528 w3 -0.0008 dg.4 -0.0018 O 3 -0.0001
Vo5 -0.0859 7.4 -0.0014 dg5 00020 4y -0.0001
Ve, 5 -0.0013 O 8 -0.0001

Panel B: Trade Activity Fquation

¢ 1.4482 v,y L4856 .0 0.0743 dg1  -D.4605 4. -0.0230 A 0.6748 015
Vg2  1.3096 w1 0.0630 dg2 00021 du -0.0065 Aa 0.7182
Vg3  0.8410 w2 0.0527 dga  -DOTI0  fu2 -0.0051 Aa 0.6719
Yo O.TL40  7oa 0.0539 dgq 00494 b -0.0029

Yos  0.3914 44 0.0654 dg5 00332 4y 0.0017
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Table 1.6: Model 2 - Estimated coefficients for liquidity and trade equation.

The Table reports the coefficient estimates for both the liquidity and the trade activity equations as
in 1.13 (Model 2). Ag; represents changes in cumulative available liquidity at & = 0 — 2 ticks from
the best displayed price, w; represents instead the level of trading activity on the buy side of the order
book. More specifically a transaction on the bid (ask) side of the market is recorded when (i) a buy
(sell) limit order is matched by a sell (buy) market order, under the assumption that market orders
can only be executed against the best limit orders available at a certain price and also (ii) when a new
limit order is added in the order book. Ag} represents changes in the available liquidity at the best
displayed price in the order book also referred as liquidity at best. T} is the time observed for changes
in cumulative available liquidity at £ = 0 — 2 ticks from the best displayed price while the variable T}
represents the duration between two consecutive market orders both expressed at a millisecond level.
Finally, D; represents the diurnal dummy variable used to indicate the time of the day. The standard
errors are corrected by using White’s heteroskedasticity consistent covariance estimator to construct
Wald and t-statistics. Bold denotes significance at the 5 percent level.

Constant Lag Liquidity Lag Trade Activity Lag Liquidity At Best Lag Trade Activity Lag Trade n?
Lag Duration Lag Duration Diurnal Dummy
Panel A: Liquidity Equation
¢ 0.0119 g1 -0.5008 .0 -0.0031 dg,1 0.0098 LN -0.0033 A1 0.0028 0.24
Vg2 -0.3334 -0.0016 dg2 0.0062 S 1 0.0005 Aa -0.0003
Ygs  -0.2262 7.2 -0.0015 dg3 0.0032 §u 0 0.0000 As 0.0026
Vg1 -0.1508 7. _0.0009 8.1 0.0007 S5 -0.0001
Vg5  -0.0964 7,4 -0.0014 dg5 0.0015 S a -0.0001
Voo & -0.0014 St -0.0001
Panel B: Trade Activity Equation
c 14293 7,1 L2158 g 0.0808 dg1 -0.3686 S -0.0198 A1 0.6686 0.15
Vg2 10970 ., 0.0679 dg2 -0.1312 S 1 -0.0073 Aa 0.7050
Ygs O.BTI6 7.0 0.0528 dg3 _0.0263 §u 0 -0.0056 As 0.6680
Yga 06511 . 0.0548 8.1 -0.0024 S5 _0.0026
Va5 0.3664 Ve, 4 0.0646 Oq,5 0.0032 B d 0.0014
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Table 1.7: Model 3 - Estimated coefficients for liquidity and trade equation.

The Table reports the coefficient estimates for both the liquidity and the trade activity equations as
in 1.13 (Model 3). Ag; represents changes in cumulative available liquidity at k = 0 — 2 ticks from the
best displayed price, Aw; represents instead changes in trading activity on the buy side of the order
book. More specifically a transaction on the bid (ask) side of the market is recorded when (i) a buy
(sell) limit order is matched by a sell (buy) market order, under the assumption that market orders
can only be executed against the best limit orders available at a certain price and also (ii) when a new
limit order is added in the order book. Ag} represents changes in the available liquidity at the best
displayed price in the order book also referred as liquidity at best. T} is the time observed for changes
in cumulative available liquidity at k& = 0 — 2 ticks from the best displayed price while the variable T}
represents the duration between two consecutive market orders both expressed at a millisecond level.
Finally, D; represents the diurnal dummy variable used to indicate the time of the day. The standard
errors are corrected by using White’s heteroskedasticity consistent covariance estimator to construct
Wald and t-statistics. Bold denotes significance at the 5 percent level.

Constant Lag Liguidity Lag Trade Activity Lag Liquidity At Best Lag Trade Activity Lag Trade R?
Lag Duration Lag Duration Diurnal Dummy
Panel A: Liquidity Equation
¢ 00006 v,y -0.5038 4, -0.0011 Bg1 0.0101 Bt 0.0003 A1 0.0044 0.23
Vg2 -0.3351 7.0 -0.0012 8.0 0.0064 B2 0.0001 Aa 0.0004
Vg3  -0.2201  ywo3 -0.0009 dg.a 0.0034 O 3 0.0000 A3 0.0027
Tgd  -0L152T  ywa -0.0006 LI 00005 e 4 0.0001
Vo5 -0.0998 -0.0011 b5 0.0018 Bk 00003

Panel B: Trade Activity Equation

¢ -0.1966 7,y 14825 .9 -0.TRO8 b4 -0.4146 B0 0.0033 Ay 0.6836 044
Vg2 1.30T6 7wt -0.5979 g0 -0.1398 Bl 0.0100 A2 0.6214
Vg3 09823 oo -0.4483 g3 -0.0214 Bur,2 0.0084 Az 0.7042
Yo  0.T385 7.3 -0.2017 g4 -0.0014 B3 0.0127

Vo5  0.4189 74 -0.1431 b5 -0.0067 B 0.0114
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Table 1.8: The significance of time in the liquidity and trade activity equations.

The Table reports the statistical significance of the diurnal and the stochastic component in both the
liquidity and transactional duration equations. The standard errors are corrected by using White’s
heteroskedasticity consistent covariance estimator to construct Wald and t-statistics. Bold denotes

significance at the 5 percent level.

Diurnal and Stochastic Diurnal Stochastic Component
Equation Components Dummy
Aj =8 =0(i=1..5-7=3) MN=0(i=123 4&=0(=1..,5 34=0

Liguidity T49.84 36442 401.75 4.78
Transactional Time 396.66 - 3T72.68 69.66
Liquidity Time 108.18 - 11.91 5.71
Trade Activity 4373.2 3928.0 56.91 27.50
Transactional Time 3854.9 - 21.23 28.69

Liquidity Time 4324.2 - 31.82 17.48
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Table 1.12: Autocorrelations of standardized time durations in TACD model.

The Table reports the autocorrelations of standardized liquidity and trade durations measured
in millisecond in the two regimes considered R = [1,2]. Standardized durations are defined as
Z; = x1/Y16 (t;—1) where z; represents either liquidity or transactional durations, v; the respec-
tive conditional durations and ¢ (¢;—1) the diurnal adjustment factor. Liquidity duration is the time,
measured in milliseconds, between changes in cumulative available liquidity at k = 0 — 2 ticks from the
best displayed price. Trade duration is the time, measured in milliseconds, between two consecutive
market orders. Bold denotes significance at the 5 percent level.

Standardized Durations R:1  Standardized Durations R:2

Lag Structure Liquidity Transactional Liquidity Transactional
Lag 1 0.1824 000459 0.0424 0.0428
Lag 2 0.0492 -0.0132 0.0185 -0.0086
Lag 3 0.0718 00461 0.0184 0.0042
Lag 4 0.0194 0.0312 0.0146 0.00989
Lag 5 00358 0.0122 0.0179 0.0098
Lag 6 0.0341 0.0295 0.0152 -0.0062
Lag 7 0.0340 -0.0243 0.0122 -0.0012
Lag 8 0.0202 -0.0320 00178 -0.0012
Lag 9 0.0016 -0.0277 0.0074 0.0051
Lag 10 0.0340 0.0402 00117 0.0078
Lag 11 -0.0098 0.0217 0.0178 -0.0009
Lag 12 0.0242 0.0415 00116 -0.0007
Lag 13 0.0154 -0.0521 0.0111 -0.0032
Lag 14 0.0522 0.0152 00054 -0.0038
Lag 15 -0.0181 0.0276 00096 -0.0029

Ljung B (15) 5.219 0811 15.28 5.755

Sample Size 919 919 38004 38004
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Table 1.13: Autocorrelations of squared standardized time durations in TACD model.

The Table reports the autocorrelations of squared standardized liquidity and trade durations mea-

sured in millisecond in the two regimes considered R = [1,2]. Standardized durations are defined as

ZT; = x1/116 (t;—1) where x; represents either liquidity or transactional durations, ; the respective

conditional durations and ¢ (¢;—1) the diurnal adjustment factor. Liquidity duration is the time, mea-

sured in milliseconds, between changes in cumulative available liquidity at £ = 0 — 2 ticks from the

best displayed price. Trade duration is the time, measured in milliseconds, between two consecutive

market orders. Bold denotes significance at the 5 percent level.

Sq Standardized Durations R:1

Sq Standardized Durations R:2

Lag Structure Liquidity Transactional Liquidity Transactional
Lag 1 0.1136 00165 0.0292 0.0022
Lag 2 00344 -0.0220 0.0118 -0.0037
Lag 3 00366 0.1429 0.0116 -0.0020
Lag 4 -0.0042 0.0155 0.0083 00007
Lag 5 0.0211 00039 0.0116 00023
Lag 6 00112 -0.0205 00056 -0.0007
Lag 7 00136 -0.0278 0.0075 -0.0002
Lag & 0.0245 -0.0391 0.0293 -0.0002
Lagz 9 -0.0129 -0.0221 0.0050 0.0006
Lag 10 0.0185 00202 0.0028 00004
Lag 11 -0.0108 00467 0.0122 -0.0004
Lag 12 -0.0056 00309 0.0042 -0.0004
Lag 13 00014 -0.0429 0.0044 -0.0001
Lag 14 01092 00155 0.0020 -0.0006
Lag 15 -0L0266 00057 0.0060 -0.0002

Ljung-Box (15) 1.980 2.461 5.308 0.075

Sample Size a19 219 358004 38004
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Figure 1.6: Histogram of time durations.

The Figures show the histogram and respective distribution of adjusted liquidity and transactional
durations. Liquidity time is the time, measured in milliseconds, between changes in available liquidity
at k = 2 ticks from the best displayed price. Transactional time is the time, measured in milliseconds,

between two consecutive market orders.
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Figure 1.9: Impulse response functions for available liquidity.

The Figures show a number of impulse response functions for cumulative available liquidity at different
point in time during the trading week and assuming different model specifications. We run three models
under different market regimes. We start from the model presented by Hasbrouck (HS), we then add
time variant coefficient as in Dufour and Engle (DE) and finally study the behavior of liquidity as
described in this chapter (UM). We also analyze three different trading scenarios. We first consider
the entire trading day without any distinction between high and low trading volatility regimes (M:
Tot). We then analyze a regime characterized by low trading volatility and high time durations (M:
R1). We then analyze a regime characterized instead by high trading volatility and low time durations
(M: R2). In all the scenarios, we start from a steady-state equilibrium level where Aw; = 0 and
Aq) = 0 with ¢ = ¢* at t = 0. We then introduce a shock in the trade activity equation equal to

v+ = 1 and measure the impact on the liquidity process through the impulse response functions.
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Figure 1.10: Impulse response functions: comparison across regimes.

The Figure shows a comparison between impulse response functions across different trading volatility
regimes using model UM. We first analyze a regime characterized by low trading volatility and high
time durations (M: R1). We then analyze a regime characterized instead by high trading volatility
and low time durations (M: R2). In all the scenarios, we start from a steady-state equilibrium level
where Aw; = 0 and Ag) = 0 with ¢ = ¢* at t = 0. We then introduce a shock in the trade activity
equation equal to va; = 1 and measure the impact on the liquidity process through the impulse

response functions.
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Figure 1.11: Impulse response functions: comparison across regimes.

The Figures show a comparison between impulse response functions obtained from different models and
across two trading volatility regimes. The two models considered are the time variant coefficient model
introduced by Dufour and Engle (DE) and the model presented in this chapter (UM). We analyze two
different trading scenarios. We first analyze a regime characterized by low trading volatility and high
time durations (M: R1). We then analyze a regime characterized instead by high trading volatility
and low time durations (M: R2).
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1.6 Appendix A: A Family of Models for Stochastic Trade Arrival Times

In Appendix A we provide a brief overview of the most common models for trade arrivals
which can be considered a general extension of the ACD model introduced by Engle
and Russell (1998) and Dufour and Engle (2000). A more comprehensive analysis of
the theoretical and empirical literature on ACD models can be found in Pacurar (2008).

Given a series of trade durations x; = t;—t; 1, where t; represents the time at which

an event has occurred, the conditional expected durations are represented by:

Vi = E(r [Fio1) = Yi(@io1, 2i1) (1.15)

where x;_; and z;_; show the past value of the trade durations and trade marks re-
spectively and F;_; the information set available at time ¢;_;. An important assumption
of ACD models is that the standardized durations &, = x;/1;¢(t;_1) are independent
and identically distributed with E(g;) = 1 and higher order moments also independent.

Different specifications of the process for the expected durations v; and different
distributional assumptions for ¢; will produce a number of models for trade durations.
In the original ACD model proposed by Engle and Russell (1998), conditional expected

durations are described using a linear ARMA-type representation:
p q
Yy =w+ Z a;r—j + Zﬁﬂﬂtﬂ‘ (1.16)
j=1 i=1

where, in order to ensure positive conditional durations, sufficient but not necessary
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conditions impose that w > 0, a > 0 and § > 0. (1.16) can be rewritten as

maz(p,q)

=@t Z (aj +5)) 21 — Zﬁﬂ?t]"‘nt (1.17)

by letting n = x; — 1y . The sufficient condition in order to have a covariance-
stationary stochastic process imposes that Z;n:l ozj—l—zgzl B; < 1. The density function
p(e, 0.) is instead defined on a non-negative support, the most common choice being
either the Exponential (EACD) or the Weibull (WACD) distribution. The parameters
of this first class of models, § = (w, «, 3), are estimated by maximizing the following

log-likelihood function:

N

L) = Z [log (7v/xi) + vlog (xi/vi) — (z:/i)"] (1.18)

i=1

which, in the Exponential case, when v = 1, becomes:

- Z [ /i + logiy] (1.19)

In the case of EACD models, consistent and asymptotically normal estimates of
f are obtained by maximizing the quasi-likelihood function described in (1.19) even
if the distribution of ¢ is not exponential and provided that the conditional mean
is correctly specified and that the standard errors are adjusted for heteroskedasticity
and autocorrelation. An important limitation of EACD models relates, however, to a
constant hazard function while WACD models allow an increasing (decreasing) hazard

function by assuming v > 1 (y < 1).
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Despite being the most common models for time durations, several extensions to
the EACD and WACD representations have been recently proposed. The Fractionally
Integrated ACD (FIACD) model has been introduced to handle the high persistence and
the significant autocorrelation up to a good number of lags of many financial duration

series. In the FIACD model the conditional expected duration is defined as
1= B(L))t =@+ [1 = B(L) — [1 = $(L)](1 — L)) (1.20)

where ¢(L) = a(L)+3(L) and where (1—L)* = >3  T'(k—d)I'(k+1)"''(—d)'L*
with I being the gamma function. When d = 1 the FIACD model becomes an Inte-
grated ACD (IACD).

In order to avoid negative expected durations Logarithmic ACD (LACD) models
are instead introduced where the logarithm of the conditional expected duration is

represented as:
m q
log (1) = @ + Y _ ajlog (z;;) + Y _ Blog (¢i-) (1.21)
j=1 j=1
or equivalently using the standardized durations:
log (V) = w+ Za]log €i—j) + Z a;)log (Vi_;) (1.22)

where the following condition is imposed |a + | < 1 in order to ensure covariance
stationary coefficients. The estimation is still performed by maximum likelihood (ML)

with the Exponential or the Weibull distributions being the most used representations
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for the density p(e;6.).

The EXponential ACD (EXACD) models are introduced to deal with a potential
nonlinear dependence between the conditional duration and past trade durations and
to measure the asymmetric impact of short vs. long durations. In particular, the

conditional duration is modelled using an asymmetric function of past durations:

lOg wt = Z QjE¢— ]+5 |5t —j E gt ] +ZﬁJOg wt z) (123)

=1

The regression slope in (1.23) depends on the trade duration being greater or lower
than the conditional mean.

An alternative non-linear ACD modelling specification assumes the existence of a
certain number of trading regimes each characterized by different dynamics and distri-

butional features. A k-regime Threshold ACD (TACD) model is given by

= el
P, = Wk + > ofr ;i + > i B

(1.24)

where ¥ is an i.i.d vector with positive and regime specific intensities. The vector
k = {1,2,..., K} denotes the number of regimes with 0 = rg < 1 < ... < rg = ©
being the threshold values often identified with the presence of structural breaks in
the time series. Again stationarity conditions impose the following restrictions on the

parameters: w* > 0, Oz;? > (0 and ﬁ]"? > 0.
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1.7 Appendix B: Data re-sampling - Matlab Code

In Appendix B we show the Matlab code used to re-sample the original dataset and to

create the microstructural variables from the liquidity data from the limit order book:

Calendar time conversion and resampling

while r < length(k) for i = 1:length(TRCN)

if k(r) < TRCN(i)
Q_ bid 1(x+1) = Q1(i); P_bid 1(x+1) = L1(i);
Q_bid_2(x+1) = Q2(i); P_bid_2(x+1) = L2(i);
Q_bid 3(x+1) = Q3(i); P_bid 3(x+1) = L3(i);
Time T(x) = TRC(i); Time T R(x+1) = T1(i);
r =r+l; x = x+1;

elseif k(r) > TRCN(i)

Q_bid_1(x+1) = Q1(i); P_bid_1(x+1) = L1(i);

Q_bid_2(x+1) = Q2(i); P_bid_2(x+1) — L2(i);

Q_bid_3(x+1) = Q3(i); P_bid_3(x+1) = L3(i);
Time_T(x) — TRC(i); Time T R(x+1) — T1(i);
r=rx =X

end

end

end

Q bid T=Q bid 1+Q bid 2+Q bid 3
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Determination of market orders and new limit orders for the bid side of the

order book

for i = 1:dii-1
if P_bid_1(i+1) == P_bid_1(i)

if Q bid 1(i+1)-Q bid 1(i) <0
MO_Sell(i+1) = Q_bid _1(i) - Q_bid_1(i+1);
NLim bid 1(i+1) = 0;

elseif Q_bid_1(i+1) - Q_bid_1(i) >=0
MO _ Sell(i+1) = 0;
NLim bid 1(i+1) = Q_bid 1(i+1) - Q_ bid 1(i);

end

elseif P bid 1(i+1) < P_bid 1(i)
MO _Sell(i+1) = Q_bid_1(i);
NLim bid 1(i+1) = 0;

elseif P_bid_1(i+1) > P_bid_1(i)
MO _ Sell(i+1) = 0;
NLim bid 1(i+1) = 0;

end

end

Determination of new limit orders and cancelled orders at second price level

of the bid side of the order book

for 1 = 1:dii-1

if P_bid 2(i+1) == P_bid_2(i)
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if Q bid 2(i+1) - Q_bid_2(i) <0
CLim_bid 2(i+1) = Q_bid_2(i) - Q_bid 2(i+1);
NLim bid 2(i+1) = 0;
elseif Q bid 2(i+1) - Q_bid 2(i) >=0
CLim_bid 2(i+1) = 0;
NLim_bid_2(i+1) = Q_bid_2(i+1) - Q_bid_2(i);
end
elseif P_bid_2(i+1) < P_bid_2(i)
CLim_bid 2(i+1) = 0; NLim_bid 2(i+1) = 0;
elseif P_bid_2(i+1) > P_bid_2(i)
CLim_bid 2(i+1) = 0;
NLim bid 2(i+1) = 0;
end

end

81

1.8 Appendix C: Estimation Results for the EACD and the EXACD Model

In Appendix C we provide the estimation results for the EACD and the EXACD Models

respectively.
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The Table below shows the parameter estimates for Exponential Autoregressive Conditional Dura-
tion (EACD) models on both liquidity and transactional durations, expressed in milliseconds, and
after removing the diurnal effects through a polynomial interpolation. The terms w, and w, refer
to the constant terms in the conditional mean and variance equations respectively. The standard er-
rors are corrected by using White’s heteroskedasticity consistent covariance estimators. Bold denotes

significance at the 5 percent level.

Table 1.16: EACD Model Estimations.

EACD (1,1) EACD (2,2) EACD (1,1) EACD (2,2)
Liquidity Duration Coeflicient Trade Duration Coefficient
wy 0.5739 0.5729 wy 0.5316 0.5317
Wo - 0.0004 Wo 0.0002 0.0004
ol 0.0181 0.0204 al 0.0152 0.0150
a2 - 0.0212 a2 - 0.0152
b1 0.9819 -0.0173 b1 0.9848 -0.0143
B2 - 0.9756 B2 - 0.9841
Likelihood -33150 -33089 Likelihood -40376 -33150
AIC 1.6593 1.6564 AIC 2.0210 2.0210
BIC 1.6597 1.6574 BIC 2.0216 2.0220
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Table 1.17: EXACD Model Estimations.

The Table below shows the parameter estimates for EXponential Autoregressive Conditional Duration
(EXACD) models on both liquidity and transactional durations, expressed in milliseconds, and after
removing the diurnal effects through a polynomial interpolation. Conditional durations depend on
m past durations and ¢ past expected durations. The model allows to measure the different impact
on conditional duration of asymmetric time durations in the case where the durations are shorter or
longer than the conditional mean. In the event where €; < 1 the slope factor equals 6; — 6, while
g; > 1 is associated to a slope factor equal to ; + 3. The terms w, and w, refer to the constant
terms in the conditional mean and variance equations respectively. The standard errors are corrected
by using White’s heteroskedasticity consistent covariance estimators. Bold denotes significance at the
5 percent level.

EXACD (1,1) EXACD (2,2) EXACD (1,1) EXACD (2,2)
Liquidity Duration Coefficient Trade Duration Coefficient

@, 0.5767 0.5765 @, - 0.5331

Wo - - Wo - -

aq -0.5775 0.4254 aq -0.9025 0.2743

az - -0.5945 o2 - -0.7372

J611 0.9975 -0.0018 61 1.0023 -0.0009

Ba - 0.9969 Ba - 0.9953

01 0.0418 0.0424 01 0.0558 0.0507

02 0.1071 0.1090 02 0.2206 0.1217
Likelihood -33094 -33081 Likelihood -53146 -40575

AIC 1.6566 1.6560 AIC 2.6601 2.0311

BIC 1.6577 1.6575 BIC 2.6610 2.0362







CHAPTER 2

A TESTING PROCEDURE FOR CO-JUMPS

2.1 Introduction

Chapter 2 presents a co-jump testing procedure based on the combination of univariate
tests for jumps. Statistical tests that combine independent p-values using the union
of rejections decision rule are discussed in Neuhauser (2003) and Harvey et al. (2009,
2011), while Loughin (2004) and Cheng and Sheng (2010) use combinations of p-values
combinations. Dumitru and Urga (2012) propose a testing methodology, robust to spu-
rious detection and microstructural noise, based on combinations of jump tests mea-
sured at different frequencies. The combination of tests allows to detect a lower number
of spurious jumps or, equivalently, a greater percentage of truly-identified jumps. We
extend this methodology to a multivariate context in order to identify common jumps
between different stochastic processes.

The contribution of this chapter to the literature on co-jumps is threefold. First, we
present a testing procedure alternative to the existing tests for co-jumps. The approach
used here allows us to address some of the issues with the existing tests, to extend

the notion of a co-jump event and to identify a lower number of spurious co-jumps.

85



CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS 86

The existing literature on non-parametric tests for co-jumps has only been recently
developed mainly as an extension of the univariate tests for jumps. Barndorff-Nielsen
and Shephard (2004a, 2004b) introduce the concept of realized bi-power covariation in
order to test for co-jumps in multivariate price process as a natural evolution of the
work on quadratic variation in the univariate case. Brandt and Diebold (2006) use a
range based measure of the volatility of a portfolio of assets to estimate the covariance
of the portfolio components. Bollerslev et al. (2008) focus on the covariance structure
of intraday returns to construct a more robust test statistic for co-jumps where the
notion of a cross product statistic, defined as normalized sum of individual returns,
is used to measure the covariation of a portfolio of stocks. Bannouh et al. (2009)
use a realized corange measure to estimate quadratic covariation which also captures
important feature of microstructural models. Jacod and Todorov (2009) propose a test
for co-jumps using a higher order power variation. Gobbi and Mancini (2012) allow both
finite and infinite jump activity between two semimartingale processes and present an
efficient and robust estimator of the diffusion part of the integrated covariation and
of the co-jumps. Liao and Anderson (2011) introduce the notion of first-high-low-last
which also provides a more efficient covariance estimator by using the full intraday price
history of the asset price. In the common notion of a co-jump used in the literature two
or more stochastic processes are characterized by a simultaneous and discontinuous path
over a given time interval. The jumps are traditionally both exogenous and no causality
between the two can be inferred. In this chapter, instead, we identify a causality
effect between different jumps observed over a fixed time interval. We also present

different types of co-jumps, and in particular we distinguish between contemporaneous,
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permanent and lagged or erogenous co-jump events. We finally assess the performance
of the proposed co-jump testing procedure under different levels of the jump intensity
factor, jump size, correlation and microstructural noise. The issue of microstructural
noise becomes particularly relevant and could severely affect the performance of the
jump and co-jump tests especially when the data are collected and observed at a high
frequency. We show that the proposed testing procedure is robust in power to different
types of microstructural noise and can be easily adjusted to take into account the issue
of non-synchronous trading highlighted in Bannough et al. (2009).

The chapter is organized as follows. Section 2.2 introduces the proposed co-jump
testing procedure when the data are either re-sampled over equally spaced time intervals
or observed at a tick-by-tick level. Section 2.3 describes the results of the Monte Carlo
experiment used to evaluate the performance of a number of univariate tests for jumps
and to analyze the size and the power of the various tests for co-jump. Section 2.4

concludes.

2.2 A Co-Jump Testing Procedure

The co-jump testing procedure presented in this chapter is based on a number of com-
binations of univariate tests for jumps for different stochastic processes and observation
frequencies. In particular, we propose two distinct testing methodologies.

With the first set of tests, we combine univariate tests for jumps, computed at
different observation frequencies, to define contemporaneous, permanent and lagged co-
jump events. The tests can be used when the data are observed over regular time

intervals of equal size and at different frequencies.
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With the second set of tests, we combine univariate tests for jumps, computed over
non-overlapping time intervals, to define contemporaneous, permanent and exogenous
co-jump events. The tests can be used when the data are observed at a tick-by-tick
level and not necessarily re-sampled over intervals of equal size.

Figure 2.1 shows the different jump and co-jump tests presented in the chapter for
data re-sampled over equally spaced time intervals (left panel) and tick-by-tick data

(right panel) respectively.

| Insert Figure 2.1 |

Re-sampled data. In the presence of a data set, re-sampled over equally spaced
time intervals, and in the case of three main re-sampling frequencies, where a time unit
corresponds to one second, we identify three distinct temporary jump events, observed
at a frequency of 1, 5 and 10 time units respectively over the time interval [0, 7.
In a multivariate context, a contemporaneous co-jump event is observed when two
or more jump events occur over the same time interval. In particular, we identify a
contemporaneous co-jump event at a frequency of 1, 5 and 10 time units when two
or more temporary jump events, observed at a frequency of 1, 5 and 10 time units
respectively, occur simultaneously over the time interval [0, T]. A permanent co-jump
event occurs when a co-jump, observed at a certain frequency over the time interval
[0, 77, is also observed at a lower frequency over the same time interval. In particular,
we identify a permanent co-jump event when a co-jump event at a frequency of 1 time
unit is also observed at a frequency of 5 time units or alternatively when a co-jump

event at a frequency of 5 time units is also observed at a frequency of 10 time units
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over the same time interval. Finally, a lagged co-jump event occurs when the jump
of one asset, observed at a certain frequency, is followed, over the same time interval
[0, 77, by the jump of a second asset at a lower frequency under the condition of no
contemporaneous co-jumps between the two assets. In particular, in the presence of
two stochastic processes, we identify a lagged co-jump event when the following jump
events are simultaneously observed over the same time interval [0, T]: a jump in asset
one, at a frequency of 1 time units, is detected together with a jump in asset two, at a

frequency of either 5 or 10 time units, but not at the same frequency of 1 time unit.

Tick-by-tick data. In the presence of a data set observed at a tick-by-tick level, we
identify a temporary and a permanent jump event. In particular we define a temporary
jump event, over two non overlapping time intervals |7 — ¢, T] and |T,T + t], when a
jump observed over the interval |T'— ¢, T is not observed over the interval |7, T + ¢].
A temporary jump is also called exogenous as no temporal causality can be established
between consecutive jumps. Alternatively, a permanent jump event is defined when a a
jump observed over the interval |T' — ¢, T is also observed over the interval |7, T + t|. In
this context, a permanent jump is also defined as endogenous as the likelihood to detect
a jump over the time interval |T,T + t] may be influenced by the presence of a jump
over the time interval |7 — ¢, 7). Similarly, in a multivariate context, a contemporane-
ous (permanent) co-jump event is identified when two temporary (permanent) jump
events are observed over two non overlapping time intervals. Finally, we identify an
exogenous co-jump event when two consecutive exogenous jumps are observed, over two
non overlapping time intervals, or, alternatively, an endogenous co-jump event when

two consecutive endogenous jumps are observed or when one endogenous jump occurs
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together with an exogenous jump. It follows that a permanent co-jump will always also
be endogenous and that an exogenous co-jump will always be contemporaneous.

In the next section we provide a more formal set of definitions for the different
types of jump and co-jumps events together with the methodology used to construct
the various tests proposed in this chapter and used in the empirical applications in

Chapter 3.

2.2.1 Jump and Co-Jump Test Indicator Functions

Let X be a random vector of returns generated from a probability distribution P,. Let
J be a subsample of X representing a random vector of extreme returns or jumps with
J = [j(l)..., j(n)]. The null hypothesis Hy :j;) € €1 is tested against the alternative
hypothesis of Hy : j;) € € for i = 1...n and with Q and €); being disjoint subsets of
Q. Qg represents the subset of non-statistically significant jumps and €2; the subset of
statistically significant jumps in the jump space 2. Alternatively €y defines the region
of acceptance of Hy while the subset €2; defines the rejection or critical region. The
univariate jump test statistics, ¢(j), determines whether to reject Hy, accepting H as

true, or alternatively accept Hy.

Definition 1. Let p(j) be a univariate jump test statistic characterized by a known
statistical distribution. We define JTjo 1) as a jump test indicator function which as-
sumes values equal to one when the null of no-statistically significant jumps is rejected

at a significance level av over the time interval [0, T] and values equal to zero otherwise.

More formally, for a pre-specified significance level v and critical value c(,), we define



CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS 91

the jump test indicator function as:

{JToy = 1|Q(a) : ©(j)o1) > o) } (2.1)

The definition provided in (2.1) can be used to identify both temporary and perma-
nent jump events.

Moving to the multivariate case, we denote with X ; a matrix of correlated returns,
generated from a multivariate probability distribution, and J;, J; and CJ; ; sub-samples
of X ; representing a random matrix of extreme returns or jumps for the stochastic
process i and j and the extreme simultaneous returns or co-jumps respectively with
CcJ = [cj(l)...c,j(n)]. We define the null hypothesis as Hy :cj;) € ®o against the
alternative hypothesis of H; : ¢j;) € ®; for i = 1...n and with ®; and ®; being disjoint
subsets of . &\ represents the subset of non-statistically significant co-jumps and &,
the subset of statistically significant co-jumps in the co-jump space ®. Alternatively,
®, defines the region of acceptance of Hy while the subset ®; defines the rejection or

critical region.

Definition 2. Let p1(j) and po(j) be the univariate jump test statistics charac-
terized by a known statistical distribution for the returns of two correlated stochastic
processes Sy and S(zy. We define (a) o(cj) a multivariate co-jump test statistic char-
acterized by a given statistical specification and given by the product of p1(j) and ws(j)
and (b) CJTo1 a co-jump test indicator which assumes values equal to one when the

null of no-statistically significant co-jumps is rejected at a significance level o over the
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time interval [0,T] and values equal to zero otherwise.

More formally, for a pre-specified significance level o and critical value ¢,y we define

the contemporaneous co-jump test indicator as:

{CITo 1y == 1]®1() : 9(c)mjor] > Ca) } (2.2)

In particular, for d-assets whose returns are computed over an observation frequency

m, the contemporaneous co-jump test indicator is computed as:

CJTom = HI P)ismfo1]) (2.3)

where [ (-) is a unit step function which assumes values equal to one for positive
defined arguments and m denotes the observation frequency. A similar definition is
also used in Lahaye et al. (2011). The definition, provided in (2.2), is used to identify
contemporaneous co-jump events when the data are both re-sampled over equally spaced
time intervals and observed at a tick-by-tick level. The combination of (2.1) and (2.2)

allows us to define also permanent and exogenous co-jump events. In particular:

Definition 3.1 Let ©(j)1,m(n), ©(J)2.mmn) and ©(cj)mm) be the univariate jump and
co-jump test statistics respectively for the returns of two correlated stochastic processes
Say and Sy at two different observation frequencies m and n with m < n. We define
PCJT 1 a co-jump test indicator which assumes values equal to one when the null of
no-statistically significant permanent co-jumps is rejected at a significance level o over

the time interval [0,T) and values equal to zero otherwise.

More formally, for a pre-specified significance level o and critical value ¢,y we define



CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS 93

the permanent co-jump test indicator as:

{PCJT[OT =1 |(I>1 m q)l n( ) @(Cj)m,[O,T] N @(Cj)n,[O,T] > C(a)} (24)

with m < n. In particular, for d-assets whose returns are computed over observation
frequencies m and n, when the data are re-sampled over equally spaced time intervals,

the permanent co-jump test indicator is computed as:

z=m \ i=1

PCJT[QT] = H {HI zzOT] } (25)

In the case where the data are observed at a tick-by-tick level, we introduce the

following definition:

Definition 3.2 Let p(j)1.1,,,, ()21, ©(Ci)1y, be the univariate jump and co-
Jump test statistics respectively for the returns of two correlated stochastic processes S(y)
and Sy over two non overlapping time intervals Ty = |T —t,T] and Ty = |T,T + 1]
where [Ty T5) € [0,T] with Ty, > Ty . We define PCJTip_y 144 a co-jump test indicator
which assumes values equal to one when the null of no-statistically significant permanent
co-jumps 1is rejected at a significance level a over the time interval [T —t,T +t| and

values equal to zero otherwise.

More formally, for a pre-specified significance level o and critical value ¢,y we define

the permanent co-jump test indicator as:

{PCITr_t 714 = 1P () P17 () p(ch)ry N p(ch)r, > o) } (2.6)

The permanent test, when the data are observed at a tick-by-tick level, is computed
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as:

Ti+1 d
PCITr = || { [(ﬁp(j)z’,z)} (2.7)
=1

z=T} =

Finally, we introduce the following definitions for the lagged and exogenous co-jump

events respectively.

Definition 4.1 Let ©(j)1.m, ©(J)2n, ©(¢i)mn be the jump and the co-jump test
statistics respectively for the returns of two correlated stochastic processes S(1y and S(z)
at two different observation frequencies m and n with m < n. We define LC JTjo 1) a co-
Jump test indicator which assumes values equal to one when the null of no-statistically
significant lagged co-jumps is rejected at a significance level v over the time interval

[0,T] and values equal to zero otherwise.

More formally, for a pre-specified significance level o and critical value ¢,y we define

the lagged co-jump test indicator as:

{LCJT[QT] =1 }@Lm,n(@) : (So(cj>m,n \ (P(Cj)m > C(Oé)) } <2’8)

In particular, for d-assets whose returns are computed over observation frequencies
{mq,...,m,} with m; < m,, and when the data are re-sampled over equally spaced

time intervals, the lagged co-jump test indicator is computed as:

d d
LCJCT[(),T] = max 0, [HI (¢z,z(z)[0,T])] - [HI (Soi,z[O,T})] (29)
z=[mi,...,mn] Z=m,...,n

i=1 =1

7777

where z = [my,...m,] is a vector of size d. Similarly, when the data are observed at
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a tick-by-tick level, the exogenous co-jump event is defined as:

Definition 4.2 Let p17,,), P21, ©(c)) be the univariate jump and co-jump

Ty (2)
test statistics respectively for the returns of two correlated stochastic processes S(1y and
S(2) over two non overlapping time intervals Ty = [T —¢,T| and T, = |T,T + t] where
11, T>] € [0,T] with Ty > Ty . We define ECJTir_y 1y a co-jump test indicator which
assumes values equal to one when the null of no-statistically significant exogenous co-

Jumps is rejected at a significance level o over the time interval [T — t,T + t| and values

equal to zero otherwise.

More formally, for a pre-specified significance level o and critical value c¢(,) we define

the exogenous co-jump test indicator as:

{ECJT[T—th‘f‘t] =1 |CI)1(Oz) : SD(Cj)T2 \Qp(cj)T2,T1 > C(a)} (2'10)

In particular, for d-assets whose returns are computed over two non overlapping

time intervals, the exogenous co-jump test indicator is computed as:

d Tit1
ECJT‘[T,t’Tﬂ} = max O, H 1 (Soi,[Tth]) - [H 1 (gpzyz)] (211)
i=1,..,d

=1 z=T}

IS ]

The idea of an endogenous vs. exogenous jump together with the notion of a tem-
porary vs. permanent co-jump between two stochastic processes is new and provides
an interesting contribution to the literature. It also allows us to extend the common
notion of co-jump from portfolio theory and to better understand the individual con-
tribution of different stochastic processes to the co-jump event. For convenience, Table

2.1 reports the full set of jumps and co-jump test indicators. In particular, the top
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panel shows the test indicators used when the data are re-sampled over equally spaced
time intervals and for frequencies of 1, 5 and 10 time units. The bottom panel shows
instead the test indicators used when the data are observed at a tick-by-tick level over

two non-overlapping time intervals.

[ Insert Table2.1 |

2.3 Monte Carlo Experiment

2.3.1 Simulation Design

The reference model for all the simulations reported in this chapter is a jump diffusion
model with compound Poisson jumps as described in Brigo et al. (2009). The stochastic

differential equation (SDE) for the stochastic process S(t) is given by:

dS(t) = uS(t)dt + o SE)dW (t) + S(t)dJ(t) (2.12)

where W (t) is a univariate Wiener process and J(¢) a univariate jump process which

is represented as:

dJ(t) = (Yne — 1) dN(2) (2.13)

where N(T') represents a counting process which follows a homogeneous Poisson
process characterized by an intensity factor A and distributed like a Poisson distribution
with parameter AT with Y; being the size of the j-th jump. The Y}’s are i.i.d. log-

normal variables, distributed with with mean py and variance 0%, independent from
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both the Brownian motion W and the Poisson process N. Applying Ito’s lemma to

f(S) =log (S) we can re-write (2.12) as:

1
dlogS(t) = (u + Ay — 502> dt + odW (t) + [log (Yng) AN (t) — py Adt]  (2.14)

The solution to (2.14) is given by:

2 N(T)
S(T) = S(O)exp((u— )T+ oW (D) [ v; (2.15)

We define X (t) := Alog(S(t)) and apply a Euler-discretization of (2.15) to obtain:

X(t) = Alog(S(t)) = p* At + oV Ate, + AJ; (2.16)

where ¢ ~ N(0,1), AJ; = Y70 log(Yj) — Ay At with n, = N, — N;_a¢ and
pr= (4 Ay — 1/20%).
In a multivariate set-up, where two correlated stochastic processes are modelled, we

re-write (2.15) as:

o2 Ny (T)
Suy(T) = Sy (0)exp((pay — 52T + oyWay(T) [T,27 Yoy,
2
(

4 Ny (T)

2
(2.17)
Se)(T) = Sy (0)exp((puz) — <2)T 4+ o)Wy (T) T2 Yoy

where the quadratic instantaneous covariation of the two Wiener processes is given
by < WyWe) >= o(t)dt so that W(z)(t) = Q(t)W(l)t + /(1 — Q(t))W(g) with W)
and W(3) being independent. As in the univariate case, Y{;); and Y(y); are i.i.d. log-

normal variables, distributed with mean gy (1) and py (o) and variances 012/(1) and 052/(2)
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independent from both the Brownian motion processes W) and W(y) and the Poisson
processes N(1)(T") and Ny(T). The processes N(1)(T") and Noy(T') are characterized by
a correlation structure implied by o(t)dt.

In order to simulate two correlated stochastic processes, we use a Cholesky decom-
position where we first compute Z ~ MN(0,1) and then we set V.= CTZ with C being
the Cholesky decomposition of the variance-covariance matrix of the two processes de-
noted with 3. The algorithm introduced by Yahav and Shmueli (2011) is used, instead,
to simulate the two correlated Poisson processes, under the assumption of a constant
rate vector where A\(;) = A(2). In particular, we first simulate two correlated and nor-
mally distributed Wiener processes W(]f) (t) and W(];’) (), and then calculate the normal
cumulative density functions (CDF) for each value W(%, with 7 = 1,2. We denote the
CDF with & (W{:S) We finally compute the Poisson inverse CDF, with rate A, as
W(f) == {CD (W{;g) } The vector W(f) will be a two-dimensional Poisson vector with
correlation matrix 3. The Matlab code and the algorithm used in the simulation can

be found in Appendix A.

We initially simulate m = 2,000 returns over a frequency of dt = 1 time unit,
we then re-sample the simulated data over intervals of dt = 5 and 10 time units and
finally re-run the simulation n = 1,000 times. In particular, we denote with r¢) 1, 74:) 5
and r; 10 the simulated returns at a frequency of one, five and ten time units for the
stochastic process Sy for i = 1,2. The simulated time series consists of r; = 2,000,
r5 = 400 and 719 = 200 returns for each simulation. Table 2.2 reports the value of the

parameters used in the Monte Carlo simulation.

| Insert Table 2.2 |
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Figure 2.2 shows the simulated path, across n = 1, 000 simulations, of the stochastic
process S(1y under the assumption of jumps (blue line) and zero jumps (red line). The
jumps have been simulated using A(1)dt = 0.25%, or, equivalently, k = 5 total number
of jumps over the time horizon considered. Figure 2.3 shows instead the simulated path,
across n = 1,000 simulations, of the stochastic processes S(1) and S() again under the
assumption of jumps (blue line) and zero jumps (red line) and the combined path of
the processes under the assumptions of jumps. The jumps have been simulated using
Amydt = Agydt = 0.05% and ¢ = 0.50. Finally, the first two panels of Figure 2.4 show
the quadratic variation of S(;y and S() respectively under the assumption of jumps (blue
line) and zero jumps (red line) while the bottom panel shows the quadratic covariaton
of Suy and S(z) again under the assumption of jumps (blue line) and zero jumps (red
line). The jumps have been simulated using A@)dt = Agydt = 0.05% and 9a1,2) = 0.50.
Not surprisingly, we notice that, in the presence of jumps, the quadratic variation and
the quadratic covariation show a greater number of spikes and are both characterized
by a higher level of clustering compared to the case where jumps are assumed to be

Zero.

[ Insert Figures 2.2 - 2.4 |

2.3.2 Monte Carlo Findings

We divide our Monte Carlo analysis in three distinct parts. First, we perform a com-
prehensive evaluation of the most common univariate tests for jumps. In particular, we
estimate the linear and the ratio Barndorff-Nielsen and Shephard (2005) tests (LBNS

and RBNS respectively), the Andersen et al. (2012) MinRv and MedRV test (MinRV
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and MedRV respectively), the Jiang and Oomen (2008) test (JO), the Andersen, Boller-
slev and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) test (ABD-LM), the
Corsi et al. (2010) test (CPR) and the Podolskij and Ziggel (2010) test (PZ). We com-
pute the size and the size corrected power of the univariate tests under different levels
of jump intensity, jump size and microstructural noise using a 5% significance level.

Second, we compute the first battery of co-jump tests based on combinations of uni-
variate tests for jumps measured and estimated at different frequencies. In particular,
we consider a frequency of 1, 5 and 10 time units over a fixed time interval of m = 2,000
observations. We evaluate the size and the power of the test presented again under dif-
ferent levels of jump intensity, jump size, correlation and microstructural noise using a
5% significance level.

Finally, we compute the second battery of co-jump tests on simulated data which is
observed at a tick-by-tick level over non-overlapping time intervals and not re-sampled
over a fixed observation frequency. As in the previous case, we evaluate the size and
the power of the tests under different levels of jump intensity, jump size, correlation

and microstructural noise using a 5% significance level.

2.3.2.1 An Evaluation of the Univariate Tests for Jumps

SIZE. In order to evaluate the size of the univariate tests for jumps we use the jump
diffusion model specified in (2.12). We also indicate with JT3, JT5 and JT3 the jump
test indicators measured at a frequency of 1, 5 and 10 time units. The top-left section
of Table 2.3 reports the size of the univariate tests for jumps under the assumption of

pay = py(y = 0.00, 01y = oy) = 0.10 and zero microstructural noise (v = 0.00). We



CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS 101

immediately notice a big size distorsion in the case of the ABD-LM test at different
sampling frequencies, with a size of 2.40% at a frequency of one, five and ten time
units. We also find evidence of a slight oversize in the case of the LBNS, the RBNS,
the MinRV and the PZ tests at a frequency of one and five time units. The MedRV
and the JO test are slightly undersized especially at a frequency of five time units.

POWER. We use the jump diffusion model specified in (2.12) to evaluate the power
of the tests by adding a continuous jump process characterized by a different intensity
factor and jump size.

Varying jump intensity. Under the alternative hypothesis of discontinuous price
paths, and in order to examine the performance of the univariate tests for jumps as
the number of jumps increase, we allow \dt = {0.05%,0.25%, 0.50%, 2.50%, 5.00%}
over the time frame considered in the analysis. The power refers, in this case, to the
ability of the tests to detect a jump when the jump intensity factor is different from
zero. For different values of the lambda factor, we consider a jump size that is normally
distributed with py(1) = 0.00 and oy ;) = 0.10. The level of the microstructural noise
is again set at zero (w = 0.00). Table 2.3 reports the size corrected power of the
univariate tests for jumps. We notice that the frequency of correctly identified jumps
increases as the jump intensity raises. In particular, all the tests considered display a
strong power at a frequency of 1 and 5 time units. A slightly lower power is observed
as the sampling frequency decreases. This is particular evident in the case of the JO
test and for high levels of lamdba. The best tests in terms of power are the LBNS,
the RBNS, the ABD-LM and the CPR while the PZ and the JO test display, on a

average, a weaker power especially at lower frequencies. The LBNS, the RBNS and the
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CPR tests are again ranked high in terms of power also at low frequencies. A similar

behavior was also observed in Dumitru and Urga (2012).

| Insert Table 2.3 |

Varying jump size. We also study the power of the jump tests by letting the
jump size vary. In particular, we draw the jump size from a normal distribution with
zero mean and a standard deviation that varies from oy (1) = 0.10 to oy (1) = 1.25. We
assume that the jump intensity factor remains constant and equal to Adt = 0.25%.
Table 2.4 reports the size corrected power of the univariate tests for jumps. The LBNS
and the RBNS display again the best power together with the JO and the CPR tests.
The MinRV and the MedRV tests display a lower power when the observation frequency
decreases and the jump volatility increases. The PZ test is the worst in terms of power
among all the tests considered in the analysis when the jump volatility is low. The
ability of the test to detect jump increases and converges to the power of the other
tests when the jump volatility increases. Finally, the ABD-LM test displays a very
consistent powers across different levels of jump volatilities but ranks slightly lower

compared to the LBNS, the RBNS and the JO tests.

| Insert Table 2.4 |

Impact of Microstructural Noise. The size and the size corrected power of the
univariate tests for jumps is also assessed under different levels of micro-structural noise.
We consider two types of noise. First, as in Dumitru and Urga (2012), we simulate an

i.i.d. microstructural noise normally distributed with mean zero and a varying variance.
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We add the simulated noise to the jump diffusion model described in (2.12) and study
the statistical properties of the jump tests when the variance of the noise increases.
We then analyze the microstructural noise caused by rounding effects and discreteness
of the observations. This type of noise can be particularly relevant when the data are
conditionally heteroskedastic or serially correlated. The issue of heteroskedasticity and
serial correlation becomes even more relevant when data are observed at a very high
frequency.

Table 2.5 reports the size of the univariate tests for jumps under different sampling
frequencies and noise variances for the first type of noise. In particular, we let the noise
volatility o, vary from o, = 0.10 to o,, = 1.25 under the assumption of o) = oy () =
0.10, gy = pyay = 0.00 and Apydt = 0.00%. With the exception of the PZ test, the
remaining tests suffer from undersize at a frequency of 1 time unit. While the size of the
other tests tends to converge to the nominal size at lower frequencies, the JO and the
ABD-LM tests are still affected by undersize at a frequency of 5 and 10 time units. The
degree of undersize is particularly evident as the noise variance increases as shown with
the ABD-LM test. The PZ test suffers from oversize when the noise variance moves to
0, = 0.50 with the size distorsion being particularly severe at high levels of noise and,
in particular, at o,, = 1.25. The oversize of the test shows also the tendency to increase
with lower re-sampling frequencies. Table 2.6 reports the size corrected power of the
tests under the presence of the first type of microstructural noise. In particular, we
simulate the process under the assumption of o) = oy ) = 0.10, pay = pya) = 0.00
and Aq)dt = 0.25% and a noise volatility again ranging from ¢, = 0.10 to o,, = 1.25.

The power of the various tests is only moderately affected by an increase in the noise
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variance. The best performing test is the LBNS, followed by the RBNS and the ABD-
LM. The MinRV and the MedRV also rank high. Among all the tests considered, the
PZ test shows the smallest power especially at lower frequencies. However, the loss in
power does not seem to be caused by an increase in noise volatility. The power of the
test varies between 77% and 92% when o, = 0.10 and falls to a range of 77% to 89%
when o, = 1.25. It is interesting to notice that, across the various tests, a decrease in
power is associated to lower frequencies and tends to be more evident at high levels of
noise. As a final remark, we observe that, while the power of the univariate tests for
jumps seems to be only moderately affected by the presence of microstructural noise,
the size distorsion is particularly evident when data are re-sampled at a high frequency.
Pre-averaging or noise reducing techniques may be necessary to limit the effects of
microstructural noise especially when dealing with empirical data observed at a high

frequency.
[ Insert Tables 2.5 - 2.6 |

Table 2.7 reports the size (top panel) and the size corrected power (bottom panel)
of the univariate tests for jumps in the presence of noise caused by rounding effects.
In particular, we use three different rounding rules and run the tests at different re-
sampling frequencies. In order to evaluate the size of the tests, we simulate the process
under the assumption of o1y = oy )y = 0.10, pay = pyy = 0.00 and Apydt = 0.00%
and an imposed rounding of rnd = 3, 2 and 1 decimal places respectively. The biggest
size distorsion is observed in the case of the LBNS, the RBNS and the CPR tests when
1 decimal place is used in the rounding and at a frequency of 1 time unit. The ABD-

LM test appears undersized in particular at a frequency of 1 time units and when 3
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decimal places are used in the rounding. With the exception of the ABD-LM test, we
observe, on average, a slight oversize of the various tests which increases as the number
of decimal places used in the rounding decreases. The power of the tests is evaluated
under the assumption of o1y = oyq)y = 0.10, pay = pyy = 0.00 and Apydt = 0.25%
and an imposed rounding of rnd = 3, 2 and 1 decimal places respectively. As in the
case of a white noise with varying variance, we do not find evidence of major effects
on the power of the tests when rounding is introduced. The best power is displayed
by the LBNS, the RBNS, the MinRV and the MedRV tests followed by the JO test
when 3 decimal places are used in the rounding. A similar ranking can be observed
when 2 decimal places are used while the CPR test displays the best power after the
LBNS and the RBNS when 1 decimal place is used. The power of the ABD-LM test
is stable across frequencies and rounding levels but tends to rank lower compared to
the other tests. The worst performance in terms of power is displayed by the PZ test.
Not surprisingly, and in line with previous results, we observe a decreasing power with

lower re-sampling frequencies.

[ Insert Table 2.7 |

Conclusions. The presence of microstructural noise can affect the size and the
ability of the tests to detect jumps especially when the data are observed and measured
at a high frequency. The best performing tests, under different types of microstructural
noise, are the LBNS, the RBNS, the MinRV and the MedRV. The JO test also shows
a good performance especially when the degree of discreteness in the data is not too

extreme unlike the CPR test which tends to be robust in power also when data are
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affected by rounding effects. Among the various tests the weaker performance is shown
by the ABD-LM and the PZ test which is severely affected by the types of noise consid-
ered at lower frequencies. The power of the ABD-LM test tends to remain stable across

different frequencies and increasing levels of noise but ranks lower than the other tests.

2.3.2.2 Co-Jump Tests I: re-sampled data

In order to compute the first battery of co-jump tests we consider data generated by
the multivariate jump diffusion model specified in (2.17) and subsequently re-sampled
at a frequency of 1, 5 and 10 time units. The log-returns, at different frequencies, are
computed over the same time interval [0, 7.

We indicate with CJT}, CJT, and C'JT3 the contemporaneous co-jump test indi-
cators measured at a frequency of 1, 5 and 10 time units. We indicate with PCJT7,
PCJT, and PCJT; the co-jump test indicators for permanent co-jumps observed re-
spectively at a frequency of 1 and 5, 5 and 10 and 1 to 5 and 5 to 10 time units combined
over the same time interval. We finally denote with LCJT,, LCJT; and LC JT3 the
co-jump test indicator for lagged co-jumps observed respectively at a frequency of 1 to
5,1to 10, and 1 to 5 and 1 to 10 time units combined over the same time interval. The
size and the power of the co-jump tests are evaluated at a 5% significance level.

SIZE. The top-left section of Table 2.8 reports the size of the co-jump test indicators
CJTy, PCJT, and LCJT; under the assumption of pay = ey = pya) = pye) = 0,
o) = 0@2) = 0y(1) = 0y(2) = 0.10, 01,2y = 0.50 and zero microstructural noise (ww =
0.00). The full set of results, for different observation frequencies, is available upon

request. The best performing contemporaneous co-jump test, in terms of size, is the
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PZ followed by the MinRV and the MedRV tests. The biggest size distorsion is observed
in the case of the RBNS, the ABD-LM and the CPR test where the average size is 6.8%.
The size of the permanent co-jump tests are very close to the nominal size of 5.00% even
we notice a slight undersize in the case of the PZ, the CPR and ABD-LM tests. The
lagged co-jump tests show signs of oversize and in particular in the case of the MedRV,
the LBNS and the ABD-LM tests. The best performing test is the CPR followed by
the PZ test.

POWER. In order to study the power of the co-jump tests, we again consider the
case of a varying jump intensity, correlation between the two stochastic processes and
different types of microstructural noise.

Varying jump intensity. We consider, for the two correlated stochastic pro-
cesses, a jump size that is normally distributed with mean zero and standard devi-
ation equal to 0.10 and let the jump intensity A vary. In particular, we let Adt =
{0.05%, 0.25%, 0.50%, 2.50%, 5.00%} and assume that the jump intensities of the two
processes are the same, i.e. A\qydt = Apydt. Table 2.8 reports the size corrected power
of the co-jump test indicators C'JTy, PCJT; and LCJT; under the assumption of
py = ) = Hya) = Hye) = 0, 0q) = 0p) = oyq) = oy@) = 0.10, 94,2y = 0.50 and
zero microstructural noise (co = 0.00). The full set of results, for different observation
frequencies, is available upon request. In line with the univariate case, we observe that
the frequency of correctly identified co-jumps increases as the jump intensity factor
raises. The best contemporaneous co-jump test in terms of power is the JO followed
by the LBNS test. The corrected power for these tests is greater than 80% in the case

where Aq)dt = Ag)dt = 0.05% (e.g. average number of 1 jump over the time interval
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considered) and increases to an average of 99.9% when A\jydt = A\9)dt = 0.25% (e.g.
average number of 5 jumps over the time interval considered). The worst contempora-
neous co-jump test in terms of power is the PZ, followed by the CPR and the MinRV.
A similar ranking is also observed in the case of the permanent and lagged co-jump
tests with the JO and the RBNS displaying the greatest power. The power of all the
co-jump tests shows the tendency to converge to 1.00 as the jump intensity factor Adt

moves to values equal to 0.50%. In particular, the best improvement, in terms of power,

is shown by the PZ, the CPR, the MinRV and the ABD-LM tests.
| Insert Table 2.8 |

Varying correlation factor. Table 2.9 reports the size corrected power of the co-
jump test indicators CJT,, PCJT, and LC JT| under different levels of the correlation
variable o(12) and, in particular, when we allow g(; 2) to vary from 0.00 to 0.95 under
the assumption of i1y = p2) = py) = tye) = 0, 0q) = 0@@) = oy@) = oy = 0.10
and Adt = 0.05%. In the absence of correlation, we notice that the contemporaneous
co-jump tests rank higher than the permanent and the lagged co-jump tests across the
different test statistics used to construct the co-jump tests with the exception of the
ABD-LM and the PZ tests. We also notice that, on average, all co-jump tests show the
tendency to decrease in power when the correlation factor raises while the difference
in power between contemporaneous, permanent and lagged is not as marked at higher
levels of correlation compared to the case where correlation is zero. In the absence of
correlation, the best performing test is the JO followed by the LBNS tests. A similar

ranking is also observed at different correlation levels and across the different co-jump
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tests. The worst performance is shown by the PZ test which shows an average corrected

power of 67% compared to an average of 75% across the different co-jump tests.

Impact of Microstructural Noise. The top panel of Table 2.10 shows the size
and the size corrected power of the co-jumps tests in the presence of an i.i.d. mi-
crostructural noise with mean zero and varying variance o,,. In particular we allow two
different noise regimes. In the first regime, o,, assume values equal to 0.10 (low noise)
while in the second regime o,, = 1.00 (high noise). The fist six columns of the Table
report the size while the last six columns the size corrected power under the assumption
of pay = pe) = pyay = kyve) =0, 00) = o) = oy() = oy(2) = 0.10, 91,2y = 0.50 and
Adt = {0.00%,0.05%}. We notice that the average size of the various co-jump tests
tends to be much higher than the average size of the test in the absence of noise. This
is also true when we compute the test under a regime characterized by low noise. In
particular, we notice a big size distorsion in the case of the contemporaneous co-jumps
tests constructed from the LBNS, the MinRV and the MedRV tests. The size of the
tests is very close to the nominal size of 5% in the case of the permanent co-jump tests
even if we observe still a slight oversize in the case of the MinRV and the MedRV tests.
Similar issues of oversize are also observed in the case of lagged co-jump tests and in
particular when the PZ, the MinRV and the MedRV test are used. The size of the PZ
test overshoots under a regime characterized by high noise. This result is in line with
the univariate case where we also observed a very large size distorsion from the PZ test
for high levels of noise. The best performing test in terms of power and under a low
noise regime is the JO test followed by the LBNS and the RBNS. The PZ and the CPR

tests are instead characterized by a lower power especially in the case of high structural
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noise. In particular, the lagged CPR test suffers from very little power together with
the MedRV compared to the other tests.

The bottom panel of Table 2.10 shows the size and the size corrected power of the co-
jump tests in the presence of noise caused by rounding effects. As in the previous case,
we first introduce a regime where the noise is low and where we impose a rounding of rnd
= 3 decimal places and, subsequently, introduce a regime where the noise is high and
where we impose a rounding of rnd = 1 decimal place. The size and the size corrected
power of the test is computed under the assumption of pi1)y = p2) = py ) = py ) =0,
o) = 02y = 0y(1) = Oy(2) = 0.10, o192y = 0.50 and Adt = {0.00%,0.05%}. As in the
univariate case, rounding effects can affect the size of the co-jump tests as shown, in
particular, when only 1 decimal place is used. We notice that the average size of the co-
jump tests tends to be slightly higher in the case of low noise compared to the size of the
test in the absence of noise. This is particularly relevant in the case of contemporaneous
and lagged co-jump tests. The size of the LBNS, the RBNS, the MinRV and the CPR
is severely affected by the rounding noise. Even if the size of the tests gets closer to the
nominal level in the case of permanent co-jumps, we can still observe a high degree of
oversize for the permanent LBNS and CPR tests and the lagged LBNS and the RBNS
tests. The power of the co-jump tests seems to be less affected by noise. The best
performance is shown by the contemporaneous JO test, followed by the LBNS and the
MedRYV tests. The power tends to decrease as we move from the contemporaneous to
the lagged case. Also, with the exception of the LBNS, the RBNS and the CPR test
we notice that the power of the various tests decreases slightly as we move from a low

to a high noise regime.
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| Insert Tables 2.9 - 2.10 |

2.3.2.3 Co-Jump Tests II: tick-by-tick data

In order to compute the second battery of co-jump tests we generate tick-by-tick data
and compute the log-returns over non overlapping time intervals of fixed size. The sim-
ulations are generated from the multivariate specification of the jump diffusion model
described in (2.12). The size and the power of the co-jump tests are evaluated at a 5%
significance level. In particular, we compute three co-jump test indicators in order to
detect contemporaneous, permanent and exogenous co-jump events denoted with C'JT,
PCJT and ECJT respectively.

SIZE. The top-left section of Table 2.11 reports the size of the co-jump test indi-
cators under the assumption of )y = pe) = pya) = pye) = 0, o) = 0@g) = oyq) =
oy(2) = 0.10, 91,2y = 0.50 and zero microstructural noise (w = 0.00). We notice a size
distorsion in the case of the contemporaneous co-jump tests which appears, on average,
greater then the one observed with the first battery of tests. The oversize is particularly
evident in the case of the contemporaneous PZ, the MinRV and the MedRV tests. The
permanent co-jump tests are also affected by size issues with the LBNS, the RBNS, the
CPR and the PZ tests displaying oversize while the JO and the ABD-LM tests being
slightly undersized compared to the nominal size of the tests. The exogenous co-jump
tests are are also characterized by a higher size compared to the case of the first battery
of tests. The biggest size issue can be observed in the case of the CPR and the PZ
tests.

POWER. In order to study the power of the second battery of co-jump tests,
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we again consider the case of a varying jump intensity, correlation between the two
stochastic processes and different types of microstructural noise.

Varying jump intensity. Table 2.11 reports the size corrected power of the co-
jump test indicators under under the assumption of py = ppE) = pya) = pye) =
0, o) = 0@y = oya) = oy@) = 0.10, 9q,2) = 0.50 and zero microstructural noise
(w = 0.00) where Adt = {0.05%, 0.25%, 0.50%, 2.50%, 5.00%}. The rate of correctly
identified co-jumps shows the tendency to increase as the jump intensity factor moves
from 0.05% to 5.00%. In particular, we notice that, while the power of the second
battery of contemporaneous co-jump tests is smaller then the power displayed by the
first battery of tests, this is not the case for the permanent and the exogenous co-jump
tests. The exogenous co-jump tests, computed from the second battery of tests, also
show a greater power than the permanent co-jump tests. The power of tests converge
to 99% — 100% as we move to Adt = 0.25%. The speed of convergence is slightly higher

than in the case of the first battery of tests.
[ Insert Tables 2.11 |

Varying correlation factor. Table 2.12 shows the power sensitivity of the co-
jump tests when we allow g1 2y to vary from 0.00 to 0.95 under the assumption of ji(1) =
) = My = My = 0, 0q) = 0@) = oya) = oy(2) = 0.10 and Adt = 0.05%. The
power of the various co-jump tests increases with higher correlation levels and also when
we move from the contemporaneous to the exogenous case. The best contemporaneous
co-jump test is the JO, followed by the LBNS and the RBNS tests. As in the previous

case, the worst performance is shown by the PZ and the CPR tests.
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Impact of Microstructural Noise. The top panel of Table 2.13 shows the size
and the size corrected power of the co-jumps tests in the presence of an i.i.d. mi-
crostructural noise with mean zero and varying variance o,,. In particular we allow two
different noise regimes. In the first regime, o,, assume values equal to 0.10 (low noise)
while in the second regime o,, = 1.00 (high noise). The fist six columns of the Table
report the size while the last six columns the size corrected power under the assumption
of w1y = pe) = tya) = pye) =0, o) = 0(@2) = oy (1) = oy(2) = 0.10, 91,2y = 0.50 and
Adt = {0.00%,0.05%}. The size distorsion, under a low noise regime, is not as severe
as in the case of the first battery of tests. The size of the permanent co-jump tests is
very close to the nominal value with the exception of the JO and the ABD-LM tests
both affected by a lower size. The size of the exogenous co-jump test is very similar
to the size of the contemporaneous co-jump tests especially under low levels of noise.
Under a regime characterized by high noise, we observe a very big size distorsion in the
case of the PZ test, affected, as in previous case, by large oversize. The CPR and the
JO tests are also affected by size issues. Finally, in terms of power, we do not detect
any big impact moving from a low to a high noise regime. This confirms the results
obtained with the first battery of tests.

The bottom panel of Table 2.13 shows the size and the size corrected power of the co-
jump tests in the presence of noise caused by rounding effects. As in the previous case,
we first introduce a regime where the noise is low and where we impose a rounding of rnd
= 3 decimal places and, subsequently, introduce a regime where the noise is high and
where we impose a rounding of rnd = 1 decimal place. The size and the size corrected

power of the test is computed under the assumption of p1y = p2) = py ) = py ) =0,
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oy = 0(2) = 0ya) = 0y(2) = 0.10, 01,2y = 0.50 and Adt = {0.00%,0.05%}. Rounding
is particularly relevant in this case as we observe a very severe size distorsion with the
LBNS, the RBNS, the MinRV and the CPR tests. Even if this result is in line with the
findings obtained using the first battery of tests, the size distorsion, in this particular
case, seems more relevant. Finally, we notice a higher power, across the various tests,
when we move from rdn = 3.00 to rdn = 1.00 decimal places. The jump in power is
particularly visible in the case of the CPR and the MinRV permanent co-jump tests.
The best performing test, under a low noise regime, is the JO test followed by the LBNS
and the RBNS tests. The LBNS and the RBNS rank higher under a high noise regime
followed by the CPR and the JO tests.

| Insert Tables 2.12 - 2.13 |

2.4 Final Remarks

In Chapter 2, we considered different combinations of univariate tests for jumps and
proposed a co-jump testing methodology in order to detect statistically significant com-
mon jumps between two correlated stochastic processes. In particular, we introduced a
testing procedure in the case where the data are either re-sampled over equally spaced
time intervals or observed at a tick-by-tick level. We also presented different tests to
identify the presence of contemporaneous, permanent and lagged or exogenous co-jump
events.

A Monte Carlo experiment was also presented to first assess the statistical properties
of the univariate tests for jumps and, subsequently, to study the statistical properties of

the proposed co-jump testing procedure under different levels of the jump intensity fac-
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tor, jump size and microstructural noise. We found a strong sensitivity of the proposed
co-jump testing procedure to the jump intensity variable lambda and, in particular,
we found that the rate of correctly identified co-jumps tends to increase as the jump
intensity factor raises. While we found very little sensitivity of the first set of co-jump
tests to changes in the correlation factor, the size corrected power of the second set of
co-jump tests was positively affected by an increase in correlation. We also observed
a big size distorsion of the proposed co-jump testing procedure under different types
of microstructural noise. In particular, we found that the noise caused by rounding
effects can severely affect the size of the tests as shown in the case of the LBNS, the
RBNS, the MinRV and the CPR tests. We also noticed that the proposed co-jump
testing procedure is robust to different levels of noise as the power of the tests is not
particularly affected when we move from a low to a high noise regime. Overall, the
strongest performance, in terms of power, was displayed by the LBNS, the RBNS and
the JO followed by the MedRV tests while the PZ and the CPR tests were the most
affected by microstructural noise.

In the next chapter, we present an empirical application of the proposed co-jump
testing procedure. In particular, we use ultra high frequency data observed from the
EUR/USD FX spot market to relate liquidity shocks to EUR/USD FX spot price jumps

during the week from May 3 to May 7, 2010.
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Table 2.1: Formulae for Jumps and Co-jump test indicators

The table reports the formulae used to compute the jump and co-jump test indicators. In particular,
the top panel shows the test indicators used when the data are re-sampled over equally spaced time
intervals at an observation frequency of m and n time units. The bottom panel shows instead the

test indicators used when the data are observed at a tick-by-tick level over two non-overlapping time

intervals.
Code Formulae
Re-sampled data
Contemporaneous co-jump CJT Hldzl T (‘P(j)i,m[O,T])
Permanent co-jump PCJT ?:m {szzl I (@(j)i,z[O,T])}
Lagged co-jump LCJT max {0, [H?:1 1 (%,Z@)[O,T])] . {H‘f:l I (%,Z[O,T])] }
z=[m1,...,mn] z=m,...,n
Tick-by-tick data
Contemporaneous co-jump CJT H;_i’:l I (Sﬁ(j)i[T—t,T+t])
Permanent co-jump PCJT HZlet { ;_i=1 I(@(j)iyz)}
i T
Exogenous co-jump ECJT max {07 H?:l I(pir+)) = [Hzt;Tlt 1 ((pi’z)} i d}

Table 2.2: Parameter Values for the Monte Carlo Simulations

The Table reports the values of the parameters of the data generating process used in the simulation
exercise. We report the values for the correlated stochastic processes, S(1) and S(z), the jump processes,
J(1) and J(2y and the microstructural noise denoted as . We initially simulate m = 2,000 returns,
we then re-sample the simulated data over intervals of dt = 1, 5 and 10 time units and finally re-run
the simulation n = 1,000 times. In particular, we denote with r1, r5 and ryg the simulated returns at
a frequency of one, five and ten time units for the stochastic process S¢;) for i = 1,2. The simulated
time series consists of r; = 2,000, r5 = 400 and 719 = 200 returns for each simulation.

Parameter S(1) S(2) J1y J(2) ™
nsim 1,000 1,000 - - -
nobs 2,000 2,000 - - -

dt 1/2,000 1/2,000 - - -

H(d) 0.00 0.00 0.00 0.00 0.00
o) 0.10 0.10 0.10 - 1.25 0.10 - 1.25 0.10 - 1.25
0¢i,5) 0.00 - 0.95 0.00 - 0.95 0.00 - 0.95 0.00 - 0.95 -

0) - - 0.00 - 5.00%  0.00 - 5.00% -

S(i).t=0 100 100 - - -
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Table 2.3: Size and power of the univariate tests for jumps for varying jump intensity

The Table reports the size and the size corrected power of the univariate tests for jumps for a varying
jump intensity factor. In particular, we estimate the linear and ratio Barndorff-Nielsen and Shephard
(2005) tests (LBNS and RBNS respectively), the Andersen et al. (2012) MinRV and MedRV tests
(MinRV and MedRV respectively), the Jiang and Oomen (2008) test (JO), the Andersen, Bollerslev
and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) tests (ABD-LM), the Corsi et al. (2010)
test (CPR) and the Podolskij and Ziggel (2010) test (PZ). The test JT'1, JT2 and JT3 are computed
using simulated data re-sampled over a frequency of 1, 5 and 10 time units respectively. We report
the results using a 5% significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3
Adt : 0.00% 0.00% 0.00% 0.05% 0.05% 0.05% 0.25% 0.25% 0.25%
LBNS 0.054 0.056 0.048 0.564 0.528 0.494 0.986 0.968 0.960
RBNS 0.052 0.060 0.046 0.566 0.528 0.482 0.986 0.968 0.954
MinRV 0.058 0.060 0.048 0.542 0.532 0.462 0.970 0.942 0.906
MedRV 0.048 0.040 0.042 0.552 0.524 0.490 0.972 0.942 0.932
JO 0.046 0.042 0.048 0.574 0.552 0.504 0.984 0.966 0.934
ABD-LM 0.024 0.024 0.024 0.514 0.478 0.448 0.968 0.956 0.942
CPR 0.050 0.056 0.046 0.484 0.458 0.424 0.964 0.940 0.916
PZ 0.056 0.062 0.058 0.464 0.400 0.356 0.910 0.818 0.784
Adt : 0.50% 0.50% 0.50% 2.50% 2.50% 2.50% 5.00% 5.00% 5.00%
LBNS 1.00 1.00 0.99 1.000 1.000 1.000 1.000 1.000 1.000
RBNS 1.00 1.00 0.99 1.000 1.000 1.000 1.000 1.000 1.000
MinRV 0.99 0.93 0.88 0.852 0.862 0.742 0.848 0.972 0.870
MedRV 0.99 0.95 0.94 0.972 0.994 0.976 0.998 1.000 0.954
JO 0.99 0.96 0.94 0.960 0.830 0.742 0.930 0.674 0.456
ABD-LM 1.00 1.00 1.00 1.000 1.000 1.000 1.000 1.000 0.998
CPR 1.00 0.99 0.99 1.000 1.000 1.000 1.000 1.000 1.000
PZ 0.95 0.90 0.86 0.964 0.904 0.894 0.964 0.918 0.922

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Table 2.4: Power of the univariate tests for jumps for varying jump size

The Table reports the size corrected power of the univariate tests for jumps for a varying jump volatility.
In particular, we estimate the linear and ratio Barndorff-Nielsen and Shephard (2005) tests (LBNS
and RBNS respectively), the Andersen et al. (2012) MinRV and MedRV tests (MinRV and MedRV
respectively), the Jiang and Oomen (2008) test (JO), the Andersen, Bollerslev and Dobrev (2007,
ABD) and Lee and Mykland (2008, LM) tests (ABD-LM), the Corsi et al. (2010) test (CPR) and the
Podolskij and Ziggel (2010) test (PZ). The test JT, JT» and JT3 are computed using simulated data
re-sampled over a frequency of 1, 5 and 10 time units respectively. We report the results using a 5%
significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3
oy (1) 0.10 0.10 0.10 0.25 0.25 0.25 0.50 0.50 0.50
LBNS 0.986 0.968  0.960 0.994 0.992  0.990 0.994 0.992 0.994
RBNS 0.986  0.968 0.954 0.994 0.992 0.990 0.994 0.992 0.994
MinRV 0.970 0.942  0.906 0.980 0.954 0.914 0.976  0.954  0.910
MedRV 0.972 0.942  0.932 0.984 0.950  0.922 0.976 0.942  0.870

JO 0.984 0.966  0.934 0.992 0.986  0.962 0.994 0.988  0.980
ABD-LM 0.968 0.956  0.942 0.980 0.980  0.978 0.976  0.974  0.968
CPR 0.964 0.940 0.916 0.980 0.974 0.972 0.976  0.972  0.970
PZ 0.910 0.818 0.784 0.984 0.960  0.950 0.988 0.986  0.984
oy (1) 0.75 0.75 0.75 1.00 1.00 1.00 1.25 1.25 1.25
LBNS 0.996 0.996  0.996 0.994 0.994 0.994 0.990 0.990  0.992
RBNS 0.996 0.996  0.996 0.994 0.994 0.994 0.990 0.990  0.992
MinRV 0.986 0.954  0.898 0.980 0.934  0.900 0.982 0.934 0.886
MedRV 0.980 0.932  0.876 0.976 0.934  0.880 0.980 0.918 0.862
JO 0.996 0.990  0.984 0.994 0.992  0.990 0.990 0.986  0.986
ABD-LM 0.984 0.982  0.980 0.984 0.984 0.984 0.974 0.976  0.972
CPR 0.984 0.984  0.980 0.984 0.986  0.984 0.972 0.972 0.974
PZ 0.996 0.992 0.996 0.996 0.992 0.992 0.990 0.990 0.990

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Table 2.5: Size of the univariate tests for jumps for varying microstructural noise

The Table reports the size of the univariate tests for jumps in the presence of an i.i.d. microstruc-
tural noise with varying variance. In particular, we estimate the linear and ratio Barndorff-Nielsen
and Shephard (2005) tests (LBNS and RBNS respectively), the Andersen et al. (2012) MinRV and
MedRV tests (MinRV and MedRV respectively), the Jiang and Oomen (2008) test (JO), the Andersen,
Bollerslev and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) tests (ABD-LM), the Corsi et
al. (2010) test (CPR) and the Podolskij and Ziggel (2010) test (PZ). The test JT3, JT5 and JT3 are
computed using simulated data re-sampled over a frequency of 1, 5 and 10 time units respectively. We
report the results using a 5% significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3
on : 0.10 0.10 0.10 0.25 0.25 0.25 0.50 0.50 0.50
LBNS 0.038 0.062  0.054 0.038 0.044  0.056 0.052 0.068  0.044
RBNS 0.036  0.056 0.050 0.042 0.048 0.058 0.046  0.060 0.032
MinRV 0.038 0.062  0.054 0.022 0.072  0.066 0.048 0.064  0.048
MedRV 0.042 0.044  0.048 0.024 0.058  0.050 0.042 0.052  0.062
JO 0.026 0.048  0.038 0.028 0.026  0.030 0.024 0.036  0.036
ABD-LM 0.040 0.032  0.020 0.022 0.018 0.024 0.024 0.040  0.020
CPR 0.024 0.042  0.060 0.034 0.048  0.046 0.034 0.058  0.044
PZ 0.052  0.026  0.052 0.056  0.060  0.066 0.088 0.066  0.104

on : 0.75 0.75 0.75 1.00 1.00 1.00 1.25 1.25 1.25
LBNS 0.048 0.060  0.056 0.042 0.056  0.048 0.026 0.064  0.042
RBNS 0.042 0.056  0.062 0.042 0.058  0.048 0.024 0.058  0.048
MinRV 0.032  0.076  0.046 0.030 0.074  0.048 0.026  0.076  0.052
MedRV 0.048 0.064  0.040 0.050 0.062  0.048 0.024 0.062  0.042
JO 0.040 0.034  0.050 0.028 0.046  0.036 0.028 0.036  0.042
ABD-LM 0.042 0.016  0.020 0.022 0.036  0.022 0.028 0.012 0.018
CPR 0.048 0.052  0.068 0.034 0.072  0.054 0.022 0.054 0.044
PZ 0.106  0.098 0.152 0.144 0.156 0.178 0.202  0.200 0.236

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Table 2.6: Power of the univariate tests for jumps for varying microstructural noise

The Table reports the size corrected power of the univariate tests for jumps in the presence of an i.i.d.
microstructural noise with varying variance. In particular, we estimate the linear and ratio Barndorff-
Nielsen and Shephard (2005) tests (LBNS and RBNS respectively), the Andersen et al. (2012) MinRV
and MedRV tests (MinRV and MedRV respectively), the Jiang and Oomen (2008) test (JO), the
Andersen, Bollerslev and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) tests (ABD-LM),
the Corsi et al. (2010) test (CPR) and the Podolskij and Ziggel (2010) test (PZ). The test JTy, JT»
and JT3 are computed using simulated data re-sampled over a frequency of 1, 5 and 10 time units
respectively. We report the results using a 5% significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3
on : 0.10 0.10 0.10 0.25 0.25 0.25 0.50 0.50 0.50
LBNS 0.992 0.978  0.962 0.986 0.974 0.972 0.976  0.970  0.958
RBNS 0.992 0.978 0.962 0.986 0.974 0.970 0.976  0.966 0.958
MinRV 0.984 0.960  0.920 0.984 0.950  0.920 0.970 0.946  0.920
MedRV 0.986 0.966  0.926 0.984 0.952  0.930 0.976 0.948  0.910
JO 0.986 0.966  0.910 0.978 0.940  0.908 0.976  0.948  0.922
ABD-LM 0.982 0.974 0.962 0.980 0.962  0.944 0.962 0.946  0.928
CPR 0.982  0.960 0.944 0.970 0.938 0.934 0.948 0.938 0.918
PZ 0.916 0.844 0.774 0.908 0.786  0.796 0.896 0.858  0.752
on : 0.75 0.75 0.75 1.00 1.00 1.00 1.25 1.25 1.25
LBNS 0.986 0.968  0.944 0.982 0.960  0.940 0.962 0.940  0.908
RBNS 0.986 0.964  0.942 0.982 0.958  0.940 0.962 0.936  0.904
MinRV 0.980 0.960  0.912 0.980 0.952  0.896 0.958 0.924  0.856
MedRV 0.980 0.950  0.912 0.984 0.954  0.930 0.964 0.930 0.878
JO 0.974 0.950  0.904 0.972  0.942  0.902 0.964 0.904 0.842
ABD-LM 0.964 0.946  0.918 0.966 0.932  0.902 0.960 0.944  0.898
CPR 0.952  0.938  0.904 0.948 0.908  0.886 0.940 0.894 0.854
PZ 0.912  0.808 0.794 0.910 0.808 0.778 0.886 0.798 0.770

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Table 2.7: Size and power of the univariate tests for jumps for varying rounding noise

The Table reports the size (top panel) and the size corrected power (bottom power) of the univariate
tests for jumps in the presence of noise caused by rounding effects. In particular, we estimate the linear
and ratio Barndorff-Nielsen and Shephard (2005) tests (LBNS and RBNS respectively), the Andersen
et al. (2012) MinRV and MedRV tests (MinRV and MedRV respectively), the Jiang and Oomen (2008)
test (JO), the Andersen, Bollerslev and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) tests
(ABD-LM), the Corsi et al. (2010) test (CPR) and the Podolskij and Ziggel (2010) test (PZ). The
test JT1, JT» and JT3 are computed using simulated data re-sampled over a frequency of 1, 5 and 10
time units respectively. We report the results using a 5% significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3
rnd. 3.00 3.00 3.00 2.00 2.00 2.00 1.00 1.00 1.00
LBNS 0.068 0.048 0.072 0.048 0.054  0.066 0.508 0.088  0.066
RBNS 0.062  0.050 0.054 0.052  0.062 0.058 0.496 0.082 0.058
MinRV 0.060 0.064  0.050 0.048 0.052  0.058 0.166  0.086  0.066
MedRV 0.058 0.060  0.038 0.062 0.052  0.074 0.056  0.064  0.062
JO 0.036 0.034  0.040 0.052  0.038  0.040 0.038 0.046  0.040
ABD-LM 0.016 0.022  0.026 0.018 0.022  0.044 0.038 0.038  0.032
CPR 0.066 0.036  0.058 0.056  0.034  0.060 0.428 0.058  0.046
PZ 0.058 0.072  0.058 0.068 0.052  0.056 0.082 0.072  0.070
rnd. 3.00 3.00 3.00 2.00 2.00 2.00 1.00 1.00 1.00
LBNS 0.966 0.960  0.944 0.994 0.978  0.968 1.000 0.978  0.968
RBNS 0.966 0.958  0.940 0.992 0.978  0.970 1.000 0.978  0.964
MinRV 0.958 0.928  0.902 0.992 0.964 0.936 0.974 0.958  0.930
MedRV 0.954 0.936  0.906 0.990 0.972  0.946 0.982 0.962  0.942
JO 0.972  0.938  0.902 0.988 0.950  0.918 0.982 0.966  0.934
ABD-LM 0.958 0.944  0.926 0.988 0.974  0.966 0.978 0.968  0.948
CPR 0.946  0.930  0.920 0.984 0.960  0.940 0.990 0.942 0.934
PZ 0.898 0.818 0.776 0.924 0.840 0.798 0.926 0.804 0.784

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10




122

CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS

966°0 000°T C66°0 8660 866°0 ¥66°0 986°0 8660 066°0 Zd
000°'T 000°T 000°'T 000°'T 000°'T 000°'T 866°0 000°T 000°'T addo
000°T 000°T 000°'T 000°'T 000°'T 000°'T 000°T 000°T 000°'T WT-agav
¢66°0 ¥786°0 ¢66°0 866°0 000°'T 866°0 000°T 000°T 866°0 or
8660 000'T 000°'T 086°0 000°'T 000°'T 000°'T 000'T 866°0 AIPIN
8€6°0 000°'T 000°'T 976°0 000°'T 866°0 000°'T 000°'T 000°'T AHUIN
000°'T 000°T 000°'T 000°'T 000°'T 000°'T 000°'T 000°T 000°T SNgYd
000°T 000°T 000°'T 000°'T 000°'T 000°'T 000°T 000°T 000°'T SNA'T
%00°¢ %00°¢ %00°¢ %09°2 %0S°C %0S°C %0S°0 %0S°0 %0S°0 CIPY
086°0 066°0 8L6°0 ¥29°0 89°0 2890 090°0 ¥0°0 7400 Zd
9.6°0 866°0 966°0 8490 8€L0 L0 ¥40°0 o0 890°0 qdo
966°0 866°0 866°0 8LL0 8810 88L°0 0L0°0 970°0 890°0 WT-agav
000°T 866°0 000°T 9€8°0 8€80 7780 7900 960°0 ¥90°0 or
986°0 000'T 000°'T .90 ¢80 0080 ¢80°0 7600 ¢90°0 AIPPIN
¥66°0 7660 066°0 cal’0 ¥6L°0 ¥8L°0 890°0 970°0 2900 AHUIN
¥66°0 966°0 8660 8LL°0 9180 86.°0 2900 2S00 890°0 SNad
966°0 866°0 866°0 0080 280 ¢80 0L0°0 870°0 990°0 SNAT
%920 %8920 %920 %S0°0 %S0°0 %S0°0 %00°0 %00°0 %00°0 CIPY
ILfOT TLrOd TILrO ILODT TLCOd TILLO ILOT TLrOd TILLD  ®Inpasoad

“[9A9] 9OURDYIUSIS %G © UL $)Nsox o) J10dox oAy sdwnl 10J $1599 9JRLIRATUN JO SUOIJRUIGUIOD JUSIDJIP UO
paseq aIe $1s9) snolrea oy, *[[ ‘0] [RAIoIUI awl) oY) Iea0 'jep pajdures-a1 Jursn payndurod st s1s9) dumn(-0o jo AI99yeq 9s1y oY,
“10%00) Aysuejur duml Sutdrea e 103 s3s9) dwnl-0o Jo L19330q 9817 819 JO Tomod PajoalIod 9ZIs 9y} pue d9zIs 9Y) s)10dal S[qr], 9],

Aysuoqur dum( Surdrea 10y s1s9) dwn(-0o jo A1933eq 811 91} Jo Tomod pue 9z1§ :Q°7 9[qe],



123

0L9°0 ¥99°0 899°0 ¥29°0 ¢29'0 ¥99°0 ¥29°0 89°0 2890 989°0 2690 8890 Zd
2290 ¥0L°0 9€L°0 8890 0L9°0 ¥69°0 849°0 8€L°0 L0 ¥19°0 81L°0 89L°0 ado
98L°0 VLLO 9LL°0 9€L°0 L0 9L 0 8LL0 8810 88L°0 86L°0 ¢80 0080 WT-agav
0640 86.L°0 0180 808°0 ¢6L°0 7080 9€8°0 8€80 7780 ¢80 7€8°0 c4e8'0 or
¥99°0 VLLO VLL0 9990 CLL'O CLLO .90 ¢80 0080 84990 0820 9080 AIP°IN
91L°0 0940 0LL°0 ¥0L°0 8G.L°0 ¥9L°0 cal’0 ¥6.L°0 ¥8L°0 oL 0 88L°0 8080 AHUIN
8GL°0 0€0°0 8LL°0 ¥eLo 0€0°0 VLLO 8LL°0 9180 86.°0 0840 0€L°0 c08°0 SNayd
8LL0 8LL0 88L°0 c9L0 8LL0 C¢6L°0 0080 ¢80 180 96.L°0 908°0 ce8'0 SNA'T
%S6°0 %56°0 %S6°0 %8940 %SL°0 %SL0 %0S°0 %0S°0 %0S°0 %00°0 %00°0 %00°0 : @Da
ILOT TLOd ILrO ILOT TLrOd TILrO ILOT TLCOd ILrO ILOT TLrOd TILLD  ®Mmpadoad

CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS

"[OAS] 90URIYTUSIS %G ' Julsn s3Nsol o7 J10dox oAy sdwnl 10J $1599 9)RLIRATUN JO SUOT)RUIGUIOD
JUSISJJIP UO Pase( dIe )59} SNOLIRA dYJ, *[ [ ‘(] [RAIRIUT oW} 1) IoA0 eyep pajdures-al Suisn pejnduoo st s3s9) dumn(-0d jo £1939eq
jsag oy, *(@1)d 103005 uoIyR[RII0D SUrfIeA 10§ $3503 dWN(-00 Jo A1033Rq 181G O3 Jo Iomod Po3oaLIod ozIs oy s)Iodol d[qe], Oy,

UOIJR[O1100 SUIAIRA 10] $3s9) dwmn(-00 Jo A19)9e( 18I o) JO IoMod :6°Z 9[R],



124

0€9°0 <90 ¥799°0 7490 4990 9L9°0 8¢1°0 970°0 00T°0 ¥0T°0 7€0°0 890°0 Zd
989°0 ¥9L°0 7880 €90 9€L°0 c9L0 ¥¢10 cse’0 9€9°0 960°0 €00 080°0 qdo
csL0 ¢c9L°0 8GL°0 0840 96.L°0 98L°0 ¥90°0 ¥.0°0 ¢L00 00 .00 0L0°0 W1-agav
0640 VLL 0 080 ¢80 0280 8€8°0 cG0'0 ¥v0°0 9€0°0 0L0°0 960°0 2900 or
979°0 99L°0 89.°0 9€9°0 8LL°0 ¥18°0 090°0 8400 960°0 8%0°0 8¢0°0 9.0°0 AdPPIN
el 0 9L 0 98L°0 0140 09L°0 ¥8L°0 961°0 ¢Iro 8L¢°0 880°0 070°0 ¥0T°0 AHUIN
7080 0€0°0 9€8°0 9GL°0 0€0°0 0LL0 ¥¢¢0 0€0°0 ¥¢€0 00 0€0°0 070°0 SN
888°0 080 ce6°0 c8L°0 ¢8L°0 ¢80 8870 0€€0 8¢L'0 ¥.0°0 8¢€0°0 960°0 SNA'T
00°'T 00°'T 00°'T 00°€ 00°€ 00°€ 00°'T 00°'T 00°'T 00°€ 00°€ 00°€ puu
9,90 9.9°0 90L°0 2890 969°0 0TL0 ¥92°0 CcLT'O0 0€2°0 911°0 070°0 2600 Zd
ovso 0790 0690 0€9°0 80.L°0 ovL 0 0400 ¥€0°0 9.0°0 ¥.0°0 ¢e0'0 960°0 qdo
CcI1L0 ceL’0 L0 8GL0 98L°0 0LL0 ¥v0°0 9.0°0 ¢s0°0 870°0 0G0°0 970°0 W1-agav
99.°0 9L 0 0LL°0 8€8°0 7780 0980 ¢80°0 ¥60°0 9.0°0 090°0 8600 ¥90°0 or
9140 0TL0 ceL0 0890 ¢80 0180 890°0 0700 990°0 080°0 ¥90°0 VIT°0 AIPIN
9690 690 9¢L°0 YL 0 9180 8080 980°0 0v0°0 890°0 0110 090°0 0TT"0 AHUIN
899°0 0€0°0 ¥0L°0 ¥8L°0 0€0°0 9180 090°0 0€0°0 8¢0°0 8400 0€0°0 960°0 SNdYd
80L°0 VIL0 0vL0 V180 ¢80 ¢ae80 ¢80°0 ¥€0°0 8L0°0 ¥.0°0 ¢G0'0 c0T'0 SNA'T
%00°T %00°T %00°T %0T1°0 %010 %0T1°0 %00°T %00°T %00°T %0T1°0 %010 %0T1°0 1 vo
ILCOT TITLLOd LTLLO ILCOT TLLOd  TLCOD ILCOT TITLLOd  LTLLO ILCOT TLLOd TLLD  2Inpadsold

CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS

“[9AS] 90UROYTUSTS %G ' Sulsn synsol o) J10dor oAy sdwnl 10y s1599 oeLIeATUN
JO SUOT)RUIQUIOD JUSIOHIP WO Paseq oIe $)s9) snolrea o T, *[[ ‘0] TeAI9IUI o) o1} I9A0 ejep pojdures-o1 Suisn pajnduwod ST s1s0)
duwn(-0o jo A1933eq 381y oy J, ‘sdwn( jo ooussaid o) Ul 1omod pajodlIod 9ZIS 9} SUWN]OD XIS 1S 9} O[IYM 9SIOU [RINJITLIISOIITUT
JO sonfeA JUSIOPIP 10} $3s0) dum(-00 91} JO 9ZIS B[} MOYS S[RT, O} JO SUWN[0D XIs 1817 oY ], ‘([oured m0930() $1S9) SNOLIRA 1]} JO
Tomod o1} pue 9zIs 1) U0 Surpunod jo oedwit o) Apnys uoy) om pue ([oued doy) sourLIeA SUIATRA )M OSIOU "P'T'T UR PPR ISIY A\
‘£ 9STOU [RINJONLIJSOIOTW FUIATRA 10J 53593 dwn(-00 Jo A1933eq 9SIg 9} JO Tomod PaldooLIod dZIs 9} pue dzZIs oY) s310dal d[qe], oY T,

9SIOU [RINJONIISOINTW FUIAIRA 10] $950) dun(-00 Jo A1993eq 981 o) Jo Iomod pue ozI§ :0]°g O[qRL



125

CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS

000°T 000°T 8660 000°T 8660 966°0 866°0 000°T ¥66°0 Zd
000°T 000°T 000°T 000°T 000°T 000°T 000°'T 000°T 000°T addo
000°'T 000°T 000°T 000°'T 000°T 000°T 000°T 000°T 000°T WT-agav
866°0 000°T 7660 000°T 000°T 000°T 000°T 000°T 000°T or
866°0 000°T 000°'T 986°0 000°T 000°'T 866°0 000°T 000°T AYPIN
¥46°0 000°T 000°T V.60 000°T 000°T 000°T 000°T 000°'T AHUIN
000°T 000°T 000°T 000°T 000°T 000°T 000°'T 000°T 000°T SNdY
000°T 000°T 000°T 000°T 000°T 000°T 000°'T 000°T 000°T SNAT
%00°S  %00°S  %00°S %09°c %09  %0S°C %09°0 %090 %050 SIPY
966°0 000°T ¥86°0 9180 ¥9L°0 0990 0L0°0 090°0 ¥.0°0 Zd
000°T 000°T 066°0 888°0 0080 8,90 0L0°0 890°0 ¢90°0 addo
000°'T 000°T 000°T 0760 ¥06°0 8LL0 ¥60°0 970°0 890°0 NT-dgav
000°T 000°T 000°T ¢96°0 ¥€6°0 908°0 ¢s0'0 0€0°0 ¢90°0 or
000°T 000'T 866°0 868°0 988°0 8GL°0 2900 9¢0°0 0L0°0 AYPIN
866°0 000°T 966°0 088°0 ce8'0 8TL0 990°0 960°0 0L0°0 AHUTN
000°T 000°T 000°T 016°0 8¢8°0 8¢L0 ¥90°0 2900 ¢90°0 SNdY
000°T 000°T 000°T 0€6°0 9.8°0 ¥6L°0 890°0 ¢90°0 790°0 SNAT
%820 %STO0  %ST0 %80°0 %S00 %S00 %000  %00°0 %00°0 SIPY
LO"H LroOd LD LO"H LroOd LLO Lo  LroOd LLO 2JInpasoadq

‘ToA9]

90URDYIUSIS 9/G © Sulsn synsar o) 11odar spy sdwnl 10 $9s91 9jeLIRATUN JO SUOIIRUIGUIOD JUSISPIP UO PIseq oIk S1s9) STOLIRA
AU, ‘s[earsjur awir) Sutdde[Ioa0 UOU OM) I9AO RIRp IOI1-A(Q-301} Sutsn pajndurod st 9591 dun(-00 jo A1993Rq PUOILS 9, "1010®]
Aysuoyur duml Sutdrea e 103 s9s9) dwml-00 Jo A19130q PU0OO9s oY) JO Tomod PajddlIod dZIS 9} pue dzIs oY) s)10dal S[qR], 9],

Aysuogur dum( Sutdrea 10y s3s9) dunf-0o jo A1013e( puodss o) Jo remod pue ozI§ 11 9[qR],



126

CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS

9€8°0 ¥8L°0 9€9°0 86.°0 6€L°0 ¥€9°0 918°0 ¥9L°0 0990 98L°0 670 879°0 Zd
TL8°0 0280 869°0 8680 0180 7690 888°0 0080 8.9°0 0980 9¢8°0 089°0 qdo
¢c6'0 ¥706°0 8GL°0 8¢6°0 ¢06°0 8VL0 0760 ¥06°0 8LL0 ¢16°0 ¢68°0 ¥9L°0 INT-dav
¥46°0 ¥€6°0 88L°0 0%6°0 816°0 0180 ¢96°0 ¥€6°0 908°0 976°0 ¢c6'0 96.L°0 or
¥¢6°0 016°0 9vL 0 ¢16°0 7880 ¥6L°0 868°0 988°0 8GL°0 006°0 998°0 ¥aL0 AYPIN
816°0 968°0 ¥eL0 V.80 8€8°0 91L°0 0880 cE8'0 8TL°0 288°0 c48°0 VELO AHUIN
¥€6°0 680 99L°0 806°0 2980 ¥9L°0 016°0 8¢8°0 8€L0 006°0 988°0 082°0 SNgd
¥v6°0 906°0 0840 8¢6°0 968°0 cLLO 0€6°0 9.8°0 ¥6L°0 0¢6°0 006°0 9G.L°0 SNAT
%S6°0  %S6°0 %96°0 %SL0  %SL0  %SLO0 %0S°0 %090 %0S°0 %00°0 %00°0 %00°0 : @
LrO"d Lrod LLO LrO"d Lrod LLO LO"H Lrod LLO Lo  Lrod LLO 8Jnpasoadq

“[9A9] 90URIYIUSIS %G ' SuIsn s3Nsol o7 J10dox oAy sdwnl 10J $1599 9)RLIRATUN JO SUOIJRUIGUIOD JUSIIPIP UO PIseq dIe
§9899 SNOLIRA 9Y ], "S[RAIOJUI o) SUIdde[IoA0 TOU 0M) JTOAO RIRD XO1}-AQ-¥o1) Jursn payndmwod st s3s9) dwn(-00 Jo A103)eq PUOIAS
oyl ‘(@D 103005 uoreEII0d SuUlAIRA 10§ $3503 dWn(-00 Jo A103)Rq PUOdLS o} Jo Tomod PojoalIod ozis oy sprodol d[qR], oY,

UOT)R[ALI0D SUIATIRA 10] §)s9) dwmn(-00 Jo A19j)ye( Puodas oY) JO 1MoJ :7T°7 9[qRL



127

CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS

¥¢8°0 96.L°0 899°0 9¢8°0 VLL0 0990 940°0 090°0 990°0 ¢L00 00 7900 Zd
60 V.60 998°0 988°0 0€8°0 0cL0 LLV0 G490 7460 890°0 ¥v0°0 790°0 qdo
0€6°0 868°0 0LL°0 ¥¢6°0 068°0 c9L°0 ¥60°0 960°0 980°0 890°0 ¥60°0 0L0°0 NT-adv
096°0 8€6°0 96.°0 096°0 976°0 €80 0¥0°0 ce0'0 960°0 8600 ¥v0°0 990°0 or
016°0 968°0 ¥9L°0 906°0 2680 cLLO .00 080°0 960°0 8%0°0 ¥40°0 8¢0°0 AHPIN
016°0 826°0 C6L°0 0880 8680 ovL0 8GT°0 T9¢°0 €20 870°0 870°0 970°0 AHUIN
¢96°0 V.60 016°0 0€6°0 ¥16°0 ¥8L°0 LvS0 7.0 7790 ¢L00 7600 090°0 SNdY
V.60 086°0 7160 8€6°0 0€6°0 ¢6L°0 6L9°0 ¥6L°0 8490 0400 ¢s0'0 8600 SNAT
00°'T 00°'T 00°'T 00°€ 00°€ 00°€ 00°'T 00°'T 00°'T 00°€ 00°€ 00°€ pua
9¢8°0 08L°0 989°0 88L°0 8GL°0 0190 0020 8LT°0 Y410 990°0 0%0°0 290°0 Zd
7980 98L°0 979°0 9.8°0 0280 769°0 960°0 0€0°0 8¢0°0 890°0 ¥60°0 090°0 qdo
016°0 V.80 ¥vL0 ¥¢6°0 7980 L0 0600 990°0 ¢90°0 8400 9€0°0 890°0 NT-adav
9€6°0 906°0 6.0 ¢%6°0 8¢6°0 VLL0 ¢s0°0 9€0°0 2900 ¥60°0 8¢0°0 ¢G0°0 or
7880 8680 caL’0 806°0 098°0 92L'0 970°0 ¥v0°0 970°0 890°0 0.0°0 9.0°0 AYPIN
898°0 8¢8°0 0020 68°0 480 0120 0800 920°0 070°0 ¥80°0 990°0 990°0 AHUIN
7680 cL80 0€L°0 916°0 880 9G.L°0 990°0 8400 8400 ¢L00 090°0 790°0 SNAY
916°0 8880 VL0 ¥€6°0 806°0 99.°0 990°0 ¥60°0 8400 .00 ¢90°0 890°0 SNAT
%00°'T  %00°'T %00°T %0T°0 %010 %O0T°0 %00°T  %00°'T %00°T %0T°0 %010 %O0T°0 1 vo
LO"d Lrod LD LO"H Lrod LD LO"H Lrod LD LrO"H Lrod LD 9.IMpsv0.Idq

‘[oAd] PourROYIUSIS 04C @ Juisn synsal oY) j10dor opp sdwmnl I10J $)597 9JRLIBATUN JO SUOIJRUIGUIOD JUSIOHIP
UO poseq oIe $)S9) SNOLreA Y], ‘sealojul owl) Surdde[Ioao uou omy I9A0 eyep o13-£q-3o13 Sursn pajnduwod st 9593 dwnf-0o jo
A1917Rq puodss oy, ‘sdumnl jo soussaid o1} ur romod pajdalIod 9ZIs oY} SUWMN[OD XIS s 9} SIYM SSIOU [RINIONI)SOIOIUL JO SONTRA
JUDISPIP 10] $9803 dwn(-00 o1} JO 9ZIS 1) MOYS d[QR], S} JO SUWN[OD XIS 9811 o], "([oured w01)0q) $1s9) SnoLreA BT[] Jo Tomod
9T} pure 9zIs oY) uo urpunol jo joedwr oY) Apnjs uay) om pue ([pued doy) oouerres SUILIRA )M 9SIOU "P°I'T UR PPR JSIJ OA\ '@
9SI0U [eIN)onIIsoIdT SurAIea 10] $1s91 duml-0o jo £I199)eq PUO2LS A1) JO Iomod PalIaLInd dzIs 91} PuR dZIs oY) s110dal a[qe], o,

9SIOU [RINJONIISOIOTW SUIAIRA 10} §1507 dwn(-00 Jo A10330q PUO9S o) Jo Tomod pur ozI§ :€1°7 S[qRL,



CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS

Re-sampled Data 51
Temporary

% 1ls=ec IT1

_g Ssec IT3

10 sec T4

Z Contemparaneous Tl
=

? Permanent PCIT1

:; Lagged LCIT1

52

T2

IT4

IT3

aT2

FCIT2

LoiT2

Initial Data
Tick-by-tick Data
Temporary
Permanent
o7 Contemporan eous
ASEE Permanent
LCIT3 Exogenous

51

IT1

PIT1

T

FCIT

ECIT

128

52

T2

PIT2

Figure 2.1: Jump and Co-Jump Tests for re-sampled and tick-by-tick data.

The Figure shows the different jump and co-jump tests presented in this chapter for re-sampled (left
panel) and tick-by-tick (right panel) data for two correlated stochastic processes, S(1) and S(a).
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2.5 Appendix: Simulation Design - Matlab Code

In order to model multivariate Poisson random variables we use the algorithm presented

by Yahav and Shmueli (2011). In particular:

1. We use a Cholesky decomposition of the variance-covariance matrix of a p-dimensional
vector of price returns to simulate multivariate normal random vectors. The vec-

tor of multivariate normal random variables is denoted with X%

2. For each value of X(Ni) where i € 1,2, ...p we calculate the Normal CDF q)(X(ZN)).

3. For each (X (]2’)) we calculate the Poisson inverse CDF (quantile) with a rate Ag):
xp=={o(xy)}

The vector X 5) is a p-dimensional Poisson vector with correlation matrix R” and rates

A. The algorithm allows us to transform the Normal marginals of the vector XV

using the Normal CDF and obtain a p-dimensional vector with uniform marginals.

The uniform variates are then subsequently transformed into Poisson variates using the

Poisson inverse CDF.

We show below the Matlab code used to simulate the path of two correlated stochas-
tic processes where the Poisson processes used to model the price jumps are also corre-

lated.

ml = 5; m2 = 10;

nsim = 1000; nsteps = 2000; dt = 1/nsteps;
drift1 — 0.00; drift2 — 0.00;

drift1J = 0.00; drift2J = 0.00;
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voll = 0.10; vol2 = 0.10;

volJ1 = 0.10; volJ2 = 0.10;

rho = 0.50;

sigma = [voll~2 voll*vol2*rho; voll*vol2*rho vol2~2];

lam1 = 0.00; lam2 = 0.00;
S01 = 100; S02 = 100;

for i = 1:nsim
mnoise = normrnd(0,voln,2 nsteps);
Rnd12 = randn(2,nsteps)-+mnoise;
VolMa = (ChoDe’*Rnd12);
PhiVolMa = normedf(VolMa);
if lam1 > 0
P = poissinv(PhiVolMa,lam1);
elseif lam1l == 0
P = zeros(2,nsteps);
end
jumpnb = poissrnd (P*dt);
jump = normrnd(driftJ1*(jumpnb-lam1*dt),volJ1.*sqrt(jumpnb));
M1(i,:) = (drift1+driftJ1*lam1-1/2*voll.”2)*dt-+sqrt(dt)*vol1*Rnd12(1,:)+jump(1,:);
M2(i,:) = (drift2-+driftJ2*¥lam2-1/2%vol2.” 2)*dt+sqrt(dt) *vol2*Rnd12(2,:)+jump(2,:);
Minj(i,:) = (drift1-1/2*voll.”2)*dt+sqrt(dt)*vol1*Rnd12(1,:);
M2nj(i,:) = (drift2-1/2*vol2.72)*dt+sqrt(dt)*vol2*Rnd12(2,:);
end
Ul(1:nsim,1) = S01; U2(1:nsim,1) = S02;

Ulnj(1:nsim,1) = S01; U2nj(1:nsim,1) = S02;

for i = 1l:nsteps

U1(1:nsim,i+1)=U1(1:nsim,i).*exp(M1(1:nsim,i));
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U2(1:nsim,i+1)=U2(1:nsim,i).*exp(M2(1:nsim,i));
Ulnj(1:nsim,i+1)=Ulnj(1:nsim,i).*exp(M1nj(1:nsim,i));
U2nj(1:nsim,i+1)=U2nj(1:nsim,i).*exp(M2nj(1:nsim,i));

end






CHAPTER 3

THE LIQUIDITY-PRICE TRANSMISSION MECHANISM

3.1 Introduction

The relationship between asset prices and liquidity has been analyzed, tested and widely
accepted by academics, practitioners and most recently by regulators. The transmission
mechanism that links changes in liquidity to the price evolution of an underlying asset
has become even more relevant during times characterized by high volatility and market
distress. Morris and Shin (2004) define the notion of a liquidity black hole occurring
when a fall in prices is followed by an increase in the liquidation of the underlying asset,
which, in the absence of fresh liquidity, can generate an additional adverse move in the
price. A similar analysis is provided by Adalid and Detken (2007) who again relate
shocks to liquidity to collapses in the asset prices. As discussed in Herring et al. (2008)
a change in the perception of liquidity can cause a severe market correction even if the
underlying price for that particular asset does not diverge from its fundamental values.
The value of liquidity is affected by time, location and most importantly by price of the
underlying asset as shown in Sparrow and Ilijanic (2010) who also quantify liquidity as

a function of transactional costs and risk preferences. A liquidity crisis can also affect
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the ability of market to properly function and, in some extreme cases, to survive. In
particular, Allen et al. (2011) and Calem et al. (2011) show that the absence of liquidity
associated with a financial shock can deeply affect the lending capacity of banks.

The analysis and the composition of market liquidity plays an important role also
in price discovery as already discussed in Chapter 1. In their respective models, Kyle
(1985) shows that private information is channeled through market liquidity, while Has-
brouck (1991), Engle and Russell (1998) and De Jong and Schotman (2010) relate price
dynamics to different measures of liquidity. In particular, Kyle’s sequential equilibrium
model describes the behavior of noise, informed, and market making trading agents
as a function of their access to liquidity. Market liquidity is defined and measured in
terms of tightness, resiliency and depth. Depth and resiliency are also considered en-
dogenous variables and signal the presence of insider and noise traders in the market. A
greater number of noise traders have the tendency to increase available liquidity, while
a negative correlation is observed between the level of private information and market
depth.

Despite the relevance of liquidity shocks, jumps are often studied in relation to
prices. Most of the literature on jumps and the empirical applications only focus on the
discontinuous path of prices. Also, in the common notion of a co-jump, two or more
variables are characterized by a discontinuous path over the same observation frequency
but the jumps are both exogenous. In our empirical application, we combine the testing
methodology based on combinations of univariate tests for jumps, measured either at
different observation frequencies or over non-overlapping time intervals, to study the

price impact of liquidity shocks. In particular, we relate jumps in liquidity to the
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dynamics of the underlying asset price and establish a causality effect between liquidity
and price. Moreover, the jump and co-jump testing procedure, presented Chapter 2, is
used to identify a number of different jump and co-jump events and, in particular, we
distinguish between contemporaneous, permanent and lagged or exogenous co-jumps.
The chapter is organized as follows. Section 3.2 introduces the data used in the
empirical application. In Section 3.3 we present the results of the co-jump testing
procedure when data are first re-sampled over fixed time intervals and, subsequently,

observed at a tick-by-tick level. Section 3.4 concludes.

3.2 The Structure of the Data

The data used in the empirical application consist of five time series: the available
liquidity on the bid and the ask side of the EUR/USD FX spot limit order book,
expressed in EUR millions; the bid and ask price associated to the available liquidity in
the order book, expressed as units of US Dollars for 1 EUR; quotation time, expressed
in milliseconds. The data span over an entire trading week, from May 3 to May 7,
2010. The time frame considered is particularly interesting given that, during this time
horizon, EUR/USD FX spot displayed a large move, opening on Monday at around
1.3250 and closing the session on Friday just above 1.2750. Despite the short time
interval, in our empirical application, we use data observed at a very high frequency to
obtain a large sample. From the raw data, we cannot recognize the identity and the
characteristics of the market participants in that particular security.

The available liquidity in the order book is recorded at three different price levels:

the available liquidity on the bid (ask) side at the best displayed bid (ask) price in the
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order book represents the total amount of buy (sell) limit orders with the highest priority
in terms of execution. We denote this particular measure of liquidity as qx (1) pid(ask)-
The available liquidity on the bid (ask) side of the order book is also observed at
different price levels, and, in particular, at k = 1 and k = 2 ticks away from the best
displayed price. We denote these measures of liquidity as qz(2) ¢ pid(ask) a0d qT(3) ¢, pid(ask)
respectively. The total amount of available liquidity on the bid (ask) side of the order
book and at k = 2 ticks from the best displayed price is denoted as Q¥ pid(ask) =
Zle 4T () 1. bid(ask) and is referred to market depth throughout the chapter.

The bid (ask) price is the observed price associated to the available liquidity in the
order book. In particular we denote with px(1) s pid(ask), PT(2).tpid(ask) a0 PT(3) ¢ bid(ask)
the price associated to the available liquidity at £ = 0, 1 and 2 ticks from the best
displayed price on the buy (sell) side of the order book. As discussed in Chapter 1,
the bid and the ask side of the order book seem to behave under different rules. For
this particular reason, given that the focus of this chapter is to analyze the behavior
of liquidity and price jumps rather than the dynamic structure of the limit order book,
we will we use a price variable computed as the mid-quote of the best bid and the best
ask price in the order book. We denote the variable as Px; = (px(1)1,pia + P (1) t,a5k)/2-
Figure 3.1 shows the normalized EUR/USD FX mid-quote price behavior. In order
to preserve data confidentiality, we show the price series in index form. The vertical
dotted line shows the end of the NY trading session and the open of the Australian
trading session.

Finally quotation time is defined as the time, expressed in milliseconds, between

consecutive quotes on either side of the order book. Quotation time is denoted as trz;.
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Similar to the liquidity variable introduced by Frey (2000) and Esser and Moench
(2005), denoted in this chapter as rhoq) s pia(ask) = 1/ {th,bid(ask * th}, we introduce
a second liquidity variable rho(,) which is function of market depth and quotation time,
rho(2) 1 bid(ask) = 1/ {th,bid(ask) * trxt}. Both the liquidity variables rho() and rhog)
are inverse functions of available liquidity. In particular, the liquidity variable rhos)
increases when the available liquidity or the market depth on the bid (ask) side of
the order book decreases or equivalently when the time between consecutive quotes
decreases.

Figure 3.2 shows the behavior of cumulative available liquidity on the bid side of
the order book and quotation time. We notice a common pattern between liquidity and
time. Quotation time tends to spike during the first hours of the Australian trading
session and the final hours of the NY trading session. The trading regime at those
times is characterized by low transactional volatility and little liquidity. From the
top section of Figure 3.2 we notice that, during those times, the cumulative available
liquidity, observed from the order book, tends to be small compared to the central
hours of the trading day. This is particularly evident during the 4th and the 5th of
May where we also observe a few sudden spikes. The liquidity variable rho) aims to
capture this relationship between time and liquidity. Quotation time is used here as
a proxy of transactional volatility. As in the case of the liquidity variable rho(y, also
the liquidity variable rho() is expected to decrease when market transactions become
more frequent, or equivalently, when the transactional time decreases or transactional
volatility increases. Figure 3.3 shows the behavior of the liquidity variable rho). We

notice that the liquidity variable shows indeed the tendency to spike as we approach the
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close of the NY trading session where we typically observe low transactional volatility

and little liquidity.
| Insert Figures 3.1 - 3.3 |

The relationship between price and the liquidity variable rho) can also be studied
further by looking at Figure 3.4 which shows the pattern of the normalized price series
for the EUR/USD FX spot mid-quote price and the liquidity variable rhoy on May
6, 2010. This day appears particularly volatile when we look at the price path of
EUR/USD FX over the entire trading week. Not surprisingly, we notice that large
moves in prices are observed together with sudden spikes in the liquidity variable and
close to the end of the trading session and in particular around 18:00 London time.
Spikes in the liquidity variable are associated to periods of low volatility and little
liquidity which again could explain the erratic behavior of the EUR/USD FX spot

price during these times.

| Insert Figures 3.4 |

3.2.1 Preparation of the Data

Two different methodologies are used to manage the data, initially observed at a tick-
by-tick level over irregular time intervals. We first re-sample the data over equally
spaced time intervals. We normalize the series and pre-average the re-sampled data in
order reduce the impact of micro-structural noise, subsequently divide the time series
in blocks of equal size and, finally, select a fixed number of observations per block.

The re-sampling methodology is used in Dumitru and Urga (2012) in order to compute
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jump tests at different observation frequencies. The first testing procedure, presented
in Chapter 2 and based on the combination of univariate tests for jumps across different
frequencies, will be used on the first data-set.

We then use the raw tick-by-tick data, we again normalize the series, pre-average
and finally divide the sample in blocks of equal size. The time series will not be re-
sampled and we will benefit from the full information content of the original data-set.
Tick-by-tick data are traditionally used in the jump and co-jump literature. The second

testing procedure presented in Chapter 2 will be used on the second data set.

Re-sample over fized intervals. The data is initially observed at a tick-by-tick level
and subsequently re-sampled over a frequency of 1, 5 and 10 seconds. The re-sampling
of the data allows us to reduce the impact of excessive discreteness in the time series and
to better handle issues related to computational complexity. Furthermore, in order to
preserve data confidentiality, we represent the three microstructural variables in index
form rather than as actual levels. In particular, the time series is normalized such that
the average liquidity, price and transactional time over the whole sample is set at 100.
A similar convention was adopted in Chaboud et al. (2004) and Berger et al. (2008).

The continuously compounded returns are constructed from the natural logarithms
of the time series. In particular, we denote the liquidity and price returns with LRI
and rPRI respectively while we use rLV'1 and rLV2 to indicate the returns of the
liquidity variables, rhoy and rho) , introduced in the previous section. We measure
the returns using different observation frequencies of 1, 5 and 10 seconds.

Given the structure of our data-set, where the price and the associated liquidity

from the order book are observed at the same time, we find no evidence of the so called
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Epps-effect caused by non-synchronous trading and which allows covariance estimates
to converge to zero as the observation frequency increases. We find instead a high de-
gree of microstructural noise especially in the liquidity process and at a frequency of
1 second. Pre-averaging is commonly performed to reduce the impact of the noise on
the various jump and co-jump tests traditionally used in the literature (see Jacod et al.
2009, Christensen et al. 2010, Hautsch and Podolskij 2010, Mykland and Zhang 2011).
We perform pre-averaging on the normalized time series using different combinations of
windows and sampling frequencies. In particular we denote the pre-averaging window
with kp and use a window size of kp = 30, 60, 90 and 120 observations. We compute the
auto-correlation function for lags from 0 to 20 and plot the correspondent correlogram.
Figures 3.5 - 3.8 show the auto-correlation plot (ACF) for the continuously compounded
logarithmic returns, computed over a 1 second re-sampling interval, of cumulative avail-
able liquidity Q@ 3iq, mid-quote price Pz, and the two liquidity variables rhog) and
rho() defined in the previous section for different values of the pre-averaging window
size. The ACF for the normalized liquidity and price returns shows very little signs of
auto-correlation for lags greater than 1. Similar results can also be observed with the
normalized returns of the liquidity variable rho) despite a slightly greater degree of
auto-correlation especially at lags equal to 1 and 2. The liquidity variable rho(;) instead
seems to be affected by a higher degree of auto-correlation which is particularly severe

when the pre-averaging window is set at 30 observations.
[ Insert Figures 3.5 - 3.8 |

Tables 3.1 - 3.4 report the auto-correlations at different lags, re-sampling frequen-

cies and pre-averaging window size again for the compounded logarithmic returns of
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cumulative available liquidity, mid-quote price and the two liquidity variables. The
upper and lower bounds for auto-correlation have been computed at a significance level
of @ = 5%. From the Tables we highlight two important results. First, the lower the re-
sampling frequency and the lower the auto-correlation detected in the series. The bold
mark denotes auto-correlation values higher (lower) than the upper (lower) confidence
bound, i.e. when the null hypothesis of no auto-correlation at and beyond a given lag
is rejected. Across Tables 3.1 - 3.4 we can see that the rate of rejection of the null
hypothesis decreases as we decrease the re-sampling frequency from 1 to 10 seconds.
This result shows that the degree of microstructural noise is lower when the time series
is sampled at a lower frequency or, equivalently, that a higher pre-averaging window is
needed at higher sampling frequencies. Finally we also notice the optimal choice of the
pre-averaging windows is a function of the re-sampling frequency. In particular we ob-
serve that when data are sampled over a frequency of 10 seconds an averaging window
size of 30 observations allows us to dramatically reduce the degree of auto-correlation
at lags greater than 1. The auto-correlation completely disappears with a window size
of 90 to 120 observations. We find that a window size of at least 60 observations is
needed instead when the data are re-sampled over a frequency of 5 seconds with virtu-
ally no sign of auto-correlation being detected when 90 to 120 observations are used in
the pre-averaging exercise. Finally, when the date are re-sampled over a frequency of 1

second, at least 90 observations are needed to reduce the impact of auto-correlation.

[ Insert Tables 3.1 - 3.4 |

Tick-by-tick data set. The data used here is directly observed from the original time

series and not re-sampled over a fixed observation frequency. As in the previous case,
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where re-sampled data are used, we perform pre-averaging on the normalized time
series using different combinations of observation windows. In particular we denote
the pre-averaging window with kp and use a window size of kp = 30, 60, 90 and 120
observations. We compute the auto-correlation function for lags from 0 to 20 and plot
the correspondent correlogram. Figures 3.9 - 3.12 show the auto-correlation plot (ACF)
for the continuously compounded logarithmic returns of cumulative available liquidity
QT4 piq, mid-quote price Px, and the two liquidity variables rho() and rho) defined
in the previous section for different values of the pre-averaging window size. From the
ACF we notice that the liquidity, the price returns and the second liquidity variable
rho() seem to be well behaved also at a pre-averaging window of kp = 30 observations.
We observe, instead, a high degree of auto-correlation at a number of lags in the first

liquidity variable, rho(), when kp = 30 or 60.
[ Insert Figures 3.9 - 3.12 |

Tables 3.5 - 3.6 report the auto-correlations at different lags and pre-averaging
window size again for the compounded logarithmic returns of cumulative available lig-
uidity, mid-quote price and the two liquidity variables. The upper and lower bounds
for auto-correlation have been computed at a significance level of @ = 5%. The bold
mark denotes auto-correlation values higher (lower) than the upper (lower) confidence
bound, i.e. when the null hypothesis of no auto-correlation at and beyond a given lag
is rejected. From Tables 3.5 - 3.6 we see that the rate of rejection of the null hypothesis
decreases as we increase the pre-averaging window and notice that the optimal choice
of the window seems to be equal to kp = 90 observations when tick-by-tick data are

used.
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[ Insert Tables 3.5 - 3.6 |

As a final remark, and also given the virtual continuity of the currency markets as
opposed to equity and fixed income markets, we do not discard the data observed at
the open and close of a trading session but we do eliminate the very last observations
in proximity of the NY close on the Friday due to a reporting error. The ability to
recognize different trading regimes and patterns during the 24 hours trading day is
critically important and highligths some interesting features of the data as discussed in

the previous section.

3.3 Estimation and Results

3.3.1 Re-Sampled Data Set

In this section we first present the methodology used to test for the presence of jumps
and co-jumps between liquidity and prices, when data are re-sampled over equally
spaced intervals, and finally discuss the estimation results. The co-jump testing proce-
dure is based on the combination of univariate tests for jumps introduced in Chapter
2.

Figure 3.13 shows an illustrative example of the data re-sampling exercise performed
for the first day of the week. In particular, the data is initially observed at a tick-by-tick
level and subsequently re-sampled over a frequency of 1, 5 and 10 seconds. In order
to limit the impact of micro-structural noise, the data is firstly normalized so that the
average over the whole sample is set at 100 and then pre-averaged using a window of

kp = 300, 60 and 30 observations for data re-sampled at a frequency of 1, 5 and 10
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seconds respectively. As shown in the previous section, the optimal selection for data
re-sampled at a frequency of 5 and 10 seconds would be kp = 60 and 30 respectively. In
order to have the same number of returns across frequencies we then select a window
period of kp = 300 for data re-sampled at a frequency of 1 second. The re-sampled
and pre-averaged data set consists of n = 1331 observations for the whole week from
May 3rd to May 7th, 2010. In particular we have n = 288 re-sampled and pre-averaged
observations for the first four days and n = 179 observations during the last day of
the week. We subsequently divide the time series in blocks of equal size and select a
number of m = 28 observations per block. The returns of the mid-quote price and the

liquidity variables and the respective jump tests are then computed for each block.

[ Insert Figure 3.13 |

Test computation. In order to identify a jump or a co-jump event in our series,
we use the jump and co-jump test indicator functions discussed in Chapter 2. The
test indicator functions assign a value equal to one if a jump or a co-jump is detected
over a block of size m or, alternatively, a value equal to zero if no jump or co-jump
is identified at a significance level o = 5%. In particular, JT(; represents a vector of
signal variables (e.g. zeros and ones) which indicate the presence of a jump at each
block for asset i. The size of the vector JT{; will be equal to the number of blocks
used. The proportion of identified jumps in both liquidity and price is given by the
arithmetic average, across the different blocks, of the elements of the vector J1(;. We
denote with JT(jyand JT(o) the test indicator vectors for the liquidity and the price

processes respectively. Similarly, C'JT represents a co-jump test indicator vector of
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signal variables which indicate the presence of a co-jump at each block. In particular,
we denote with C'JT) the contemporaneous co-jump test indicator vector for liquidity
and price. The contemporaneous co-jump test indicator vector is given by the product
of the jump vectors JT(;) and JT(3). In the case where k observation frequencies are
used, we define with JT{y);, and JT(y) the jump indicator vectors for liquidity and price
measured at a frequency of k seconds. In our empirical application we let £ =1, 5 and
10 seconds respectively. We also define as CJT7, C'JT, and C'JT3 the contemporaneous
co-jump test indicator vector between liquidity and price at a frequency of 1, 5 and
10 seconds respectively. We define as PC'JT, and PCJT; the permanent co-jump test
indicator vectors between liquidity and price at a frequency of 1-5 and 5-10 seconds
while PC'JT; measures the permanent co-jump at either a frequency of 1-5 or 5-10
seconds. We finally define as LC'JTy and LCJT, the lagged co-jump test indicator
vectors between the liquidity variable measured at a frequency of 1 second and the mid-
price variable measured at 5 and 10 seconds respectively. The test LCJT3 measures

the lagged co-jump observed at a frequency of 1-5 and 1-10 seconds combined.

Analysis of the results. Tables 3.7 and 3.8 report the percentage of identified jumps
at a significance level a = 5% during the week from May 3rd to May 7th, 2010. In
particular, the jump indicator vectors JT(yy 1, J1(1)5 and J1{1)10 provide a measure of
liquidity jumps for the liquidity variables defined as rho(;) and rho() at a frequency of
1, 5 and 10 seconds respectively, while the jump indicator vectors JT{s) 1, J1(2)5 and
JT(2),10 provide a measure of mid-quote price jumps again at a frequency of 1, 5 and
10 seconds respectively for m = 28 observations per block. The full set of results for

different levels of m is available upon request.
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We immediately notice, from Table 3.7, that the percentage number of identified
jumps in both liquidity and price tends to decrease as we move from a high to a low
observation frequency. Also, with the exception of the MinRV and the MedRV tests
we also detect a lower number of liquidity than price jumps across all the observation
frequencies used. In particular, we observe an average percentage of liquidity jumps
equal to 30%, 13% and 10% at frequencies 1, 5 and 10 seconds compared to an average
percentage of price jumps equal to 36%, 22% and 17%. The very high number of jumps
detected by the MinRV, the MedRV, the CPR and the PZ test may be driven by the
level of microstructural noise. In particular, the PZ test reports a suspiciously high
number of jump events which we believe may be spurious. This result is in line with
the findings from the simulation exercise from Chapter 2 where the PZ was shown to
be the most affected univariate test in the presence of noise. The best performing test
in terms of power is the LBNS, followed by the RBNS, the JO and the ABD-LM tests.
Similar results would have been obtained using different levels of m.

Similar results can be observed when the liquidity variable rho() is used in the
analysis. Table 3.8 shows that the average number of liquidity jumps is lower than
the average number of price jumps at all frequencies and for all the test methodologies
used with the exception of the PZ test. Again, as in the previous case, we notice a
big percentage of jumps detected by the PZ and the CPR tests. The best performance
is shown by the LBNS, the RBNS, the JO and the ABD-LM tests. The JO test,
however, together with the MedRV test fails to detect any sign of liquidity jumps at an
observation frequency of ten seconds. Similar results would have been obtained using

different levels of m.
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[ Insert Tables 3.7 - 3.8 |

Table 3.9 reports the results of the first battery of co-jump tests when the first
liquidity variable rho(;) is used. We immediately notice that the average percentage
of detected contemporaneous co-jumps between liquidity and prices is greater than the
average percentage of permanent and the lagged co-jump events. We also notice that
the percentage of contemporaneous co-jumps shows the tendency to decrease for higher
observation frequencies. We observe an average percentage of contemporaneous co-
jumps equal to 38% when the observation frequency is set at 1 second, and 20% and
15% when the observation frequencies are set at 5 and 10 seconds respectively. The
MinRV, the MedRV, the CPR and the PZ tests show a high number of contemporaneous
co-jump events at a frequency of 1 second. The result is not surprising given the high
number of liquidity jumps identified by these tests. We believe however that a good
portion of the identified contemporaneous co-jumps events is spurious and driven by
noise. The best performing tests are again the LBNS, the RBNS, the JO and the ABD-
LM. However, the LBNS and the RBNS tests fail to detect any sign of contemporaneous
co-jump at a frequency of 10 seconds together with the MedRV test. We also find that
most of the contemporaneous co-jumps detected are also permanent especially at a
frequency of 1 and 5 seconds. The highest number of permanent co-jumps is identified
at a frequency of 1 second by the MinRV test followed by the CPR and the MedRV
tests. Finally, with the exception of the MinRV, the CPR and the PZ test, we find very
little evidence of lagged co-jumps in particular at frequencies greater than 1-5 seconds.
The result shows that jumps in liquidity observed at a frequency of 1 second are usually

not followed by statistically significant price jumps at lower frequencies.
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Table 3.10 reports the results of the second battery of co-jump tests when the second
liquidity variable rho() is used. We still observe a higher number of contemporaneous
co-jumps at a frequency of 1 second with the PZ, the MedRV and the CPR still affected
by power issues. On average, the we find that the number of detected co-jumps is
higher when the second liquidity variable is used and, in particular, we observe a higher
percentage of contemporaneous co-jumps at a frequency of 5 seconds. The difference is
evident when we look at the PZ, the LBNS, the RBNS and the MinRV tests. With the
exception of the PZ test, we observe a slightly lower percentage of contemporaneous
co-jumps at a frequency of 10 seconds in the case of rho(y) compared to rho(;y. Most of
the contemporaneous co-jumps are also found to be permanent especially at a frequency
of 1 and 5 seconds. Finally, we again find very small number of lagged co-jumps with
a lower average percentage of co-jumps detected when rho(;) is used. In terms of
performance, we find a similar ranking to the previous case, with the LBNS, the RBNS
and the ABD-LM displaying the best power followed by the JO test.

| Insert Tables 3.9 - 3.10 |

3.3.2 Tick-by-Tick Data Set

The tick-by-tick data are firstly normalized so that the average over the whole sample
is set at 100 and then pre-averaged using a window of kp = 90 observations. The
pre-averaged data set consists of n = 13,593 observations for the whole week from May
3rd to May Tth, 2010. We subsequently divide the time series in blocks of equal size
and initially select a number of m = 100 observations per block. The returns of the

mid-quote price and the liquidity variables and the respective jump and co-jump tests
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are then computed for each block. The methodology used is very similar to the case

where the data are re-sampled over equally space time intervals.

Test computation. A jump event is identified through the univariate tests for jumps
introduced in Chapter 2. In particular we use a jump test indicator and assign a value
equal to one (zero) if the null of no jump is rejected (accepted) at a significance level
a = 5%. We use the vector JT; for i = 1,2 to signal the presence of a jump at
each block and, in particular, denote with J7(;) and JT(2) the jump test indicator
vectors for liquidity and price respectively. As in the previous case, the proportion of
identified jumps is given by the arithmetic average, across the different blocks, of the
elements of the vector JT(;). When the data are observed at a tick-by-tick level we are
able to identify different types of jump and co-jump events. In particular, we identify
a temporary jump when we observe only one jump over two consecutive blocks. A
temporary jump is also called ezogenous as no temporal causality can be established
between consecutive jumps. We also identify a permanent jump when we observe, over
two consecutive blocks, a jump in either liquidity or mid-price. In this context, we
also say that a permanent jump is endogenous as the state of a jump in one block is
likely to be influenced or caused by the state of a jump in a consecutive block. We
use the vector PJT to signal the presence of a permanent jump at each block. We use
PJTy and PJT{3) to denote the permanent jump for liquidity and price respectively.
A value equal to one (zero) is assigned to the vector when the null of no permanent
jump is rejected (accepted). The percentage of identified permanent jumps is given by
the arithmetic average, across the different blocks, of the elements of the vector PJT.

We identify a permanent co-jump when the intersection of two permanent jump events
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for two different processes yields a non-zero result. We finally identify an endogenous
co-jump event when two consecutive endogenous jumps are observed or, alternatively,
when one endogenous jump occurs together with an exogenous jump. In this context, a
permanent co-jump will always also be endogenous. Similarly, we identify an exogenous
co-jump when two consecutive exogenous jumps are observed. An exogenous co-jump
will always be contemporaneous but the opposite may not be true. The vectors PCJT
and ECJT are used to signal the presence of a permanent and an exogenous co-jump
event respectively at each block. Figure 3.14 shows an illustrative example of the
different jump and co-jump test constructions when tick-by-tick data are used. The
first section of the Figure shows the presence of contemporaneous co-jumps denoted
with C'JT. The second section shows instead the presence of permanent jumps and
in particular highlights a permanent jump in liquidity at block 5. The third section
of the Figure shows the presence of a permanent and endogenous co-jump at block 5
while the bottom section of the Figure highlights the difference between endogenous
and exogenous co-jumps. As an example, looking at block number 3, we identify two
contemporaneous jump events with J7'1) 3 = JT'(2)3 = 1. None of the two jump events
is permanent or endogenous as we find no sign of jumps in block 2. The co-jump is
considered in this case both contemporaneous and exogenous. Moving to blocks number
5 and 6, we observe a contemporaneous jump in the liquidity process, i.e. J1(1)s = 1,
and a permanent or endogenous jump in the price process, i.e. PJT ()6 = 1. In this
case, we identify a contemporaneous co-jump in block 6, but we cannot consider the

co-jump exogenous under the definition provided in Chapter 2.

[ Insert Figure 3.14 |
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Analysis of the results. Tables 3.11 - 3.14 report the results of the jump and co-
jump tests for the two liquidity variables used, rho(y and rho) respectively, and the
mid-quote price at a significance level & = 5% and under different pre-averaging as-
sumptions. In particular, Table 3.11 shows the percentage of identified jumps and
co-jumps when m = 100, kp varies from kp = 30 to 120 in step of 30 observations
and rho(y), is used as a liquidity variable. J1'1 and JT2 indicate the contemporaneous
jump test indicator vectors for liquidity and price, while CJT, PC'JT and ECJT pro-
vide a measure of the number of identified contemporaneous, permanent and exogenous
co-jumps respectively. With the exception of the MinRV, the MedRV and the JO tests
we notice a greater number of contemporaneous jumps in the liquidity process. The
difference in jump frequency between liquidity and price is particularly evident in the
case of the PZ, the CPR and the ABD-LM tests. The greater dispersion in the number
of identified liquidity jumps, when rho( is used, can be driven by the high level of
microstructural noise. The number of contemporaneous price jumps tends to converge
at a faster rate when a higher pre-averaging window is used. This result reinforces the
importance of pre-averaging as a way to reduce the level of microstructural noise which
could be affect the power of the jump and co-jump tests. The PZ and the ABD-LM tests
appear to be the most affected by the presence of noise while the LBNS, the RBNS and
the JO tests display a robust behavior also when the pre-averaging window is short.
With the exception again of the ABD-LM and the PZ, we find that the number of
identified contemporaneous co-jumps tends to converge across the various testing pro-
cedures also under a smaller number of observations used in the pre-averaging window.

We also observe that the contemporaneous CPR test displays little power especially at
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lower levels of kp. Finally, the permanent and the exogenous co-jump tests display a
similar behavior with an average percentage of identified co-jumps equal to 20%. We
believe that the PZ procedure detects a higher number of spurious co-jumps due to
the presence of microstructural noise. This result is in line with the findings from the
Monte Carlo simulation presented in Chapter 2.

Table 3.12 reports the percentage of identified jumps and co-jumps when kp = 90
and m varies from 20 to 100 with rho(;) being the liquidity variable used. The sensitivity
analysis of the various jump and co-jump tests under different block sizes is particularly
relevant as different levels of m would imply a different variance and covariance structure
in the returns of both liquidity and price. We notice a substantial decrease in the
percentage of identified liquidity and price jumps when we move from m = 20 to
m = 100. This result is particularly evident when we exclude the PZ tests from the
computation. The PZ test is in fact still affected by a high degree of noise and detects
a very high number of (spurious) liquidity jumps and co-jumps. A similar pattern can
also be observed in the case of the ABD-LM test which detects a higher number of
jumps and co-jumps and displays a higher dispersion compared to the other tests as we
move from low to high levels of m. The power of the MinRV, the MedRV and the CPR
seems to be also affected by noise at low levels of m but the power of the tests shows
the tendency to converge as m moves towards 100. The most robust performance, in
terms of power, is again displayed by the LBNS, the RBNS and the JO tests across

different levels of m.
| Insert Tables 3.11 - 3.12 |

Table 3.13 reports the percentage of identified jumps and co-jumps when m = 100,
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kp varies from 30 to 120 in step of 30 observations and rho() is used as a liquidity
variable. We immediately notice that the PZ test is still affected by microstructural
noise as the number of identified liquidity jumps is much greater than the average
number of jumps detected by the other tests. Unlike in the previous case, the ABD-LM
appears well behaved also at lower levels of kp while the JO test detects a slightly higher
number of jumps and co-jumps compared to the other tests and across different levels
of kp. We finally notice a lower dispersion in the number of detected jumps and co-
jumps across the different tests moving from a lower to a higher number of observations
used in the pre-averaging window. The result is particularly evident in the case of the
permanent and exogenous co-jump tests and partially confirms that the second liquidity
variable rhoy) is affected by a lower microstructural noise compared to rho).

Table 3.14 reports the percentage of identified jumps and co-jumps when kp = 90
and m varies from 20 to 100 with rho(9) being the liquidity variable used. We notice that,
on average, the tests detect a lower number of jump and co-jump event when a greater
number of observations is used at each block. We find that the average percentage of
identified jumps, when we exclude the PZ test, equals 20% under the assumption of
m = 20 and 9% when m = 100. The average number of co-jumps also falls from 26%
to an average of 12% with the exogenous co-jumps showing the biggest drop moving
from an average of 31% to 14%. The PZ test is still affected by microstructural noise as
it detects a suspiciously high number of liquidity jumps. The high number of liquidity
jumps also affects the computation of the contemporaneous, permanent and exogenous
co-jump detection rate. The power of CPR test is also affected at low levels of m while

it converges quickly to the average power of the other tests when m = 100 with the
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JO test showing the opposite behavior and increasing the number of detected liquidity
and price jumps and co-jumps as m raises. The most robust performance, in terms of

power, is displayed by the LBNS, the RBNS and the JO tests.

| Insert Tables 3.13 - 3.14 |

3.4 Final Remarks

In Chapter 3, we presented a framework that allowed us to explicitly assess the trans-
mission mechanism between price and liquidity dynamics and relate liquidity shocks to
price jumps in the EUR/USD FX spot market during the week from May 3 to May 7,
2010. The time frame considered was particularly relevant given that EUR/USD spot
displayed a large move opening on Monday at around 1.3250 and ending the session on
Friday just above 1.2750.

We divided the empirical exercise in two different parts. In the first part of the
empirical application, we used the first battery of jump and co-jump tests on data
re-sampled over equally spaced time intervals. We found that the percentage number
of identified jumps in both liquidity and price tends to decrease as we move from a
high to a low observation frequency. With the exception of the MinRV and the MedRV
tests, we also detected a lower number of liquidity than price jumps across all the
observation frequencies used. The high number of jumps detected by the MinRV, the
MedRV, the CPR and the PZ test was probably affected by the level of microstructural
noise. We also noticed a strong performance, in terms of ability to detect jumps, of
the LBNS test, followed by the RBNS, the JO and the ABD-LM tests. The average

percentage of contemporaneous co-jumps between liquidity and prices was found higher
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than the average percentage of permanent and lagged co-jump events. We also found
a high number of spurious co-jumps using the MinRV, the MedRV, the CPR and the
PZ tests. Finally, very little evidence of lagged co-jumps was observed, in particular,
at frequencies greater than 1-5 seconds. The result indicated that jumps in liquidity
observed at a frequency of 1 second are usually not followed by statistically significant
price jumps at lower frequencies.

In the second part of the empirical application, we used tick-by-tick data with no
re-sampling and computed the second battery of tests presented in Chapter 2. The tests
allowed us to distinguish between different jump and co-jump events and in particular to
measure the number of contemporaneous and permanent jumps and co-jumps together
with exogenous co-jumps between two different liquidity measures and the mid-quote
spot price of EUR/USD FX. We overall noticed a greater number of contemporaneous
jumps in the liquidity process. The difference in jump frequency between liquidity
and price was particularly evident in the case of the PZ, the CPR and the ABD-
LM tests. The greater dispersion in the number of identified liquidity jumps, when
the first liquidity variable was used, could have been driven again by the high level
of microstructural noise. When we let the pre-averaging window size increase, we
noticed a lower dispersion in the number of contemporaneous price jumps detected.
This result confirmed the importance of pre-averaging as a way to reduce the level of
microstructural noise especially when the data is collected a high frequency. The noise
in the series affected the PZ and the ABD-LM tests in particular. As we considered
a different number of observations per block, we noticed a substantial decrease in the

percentage of detected liquidity and price jumps. The power of the MinRV, the MedRV
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and the CPR tests was also found to be affected by noise and, in particular, when a
low number of observations was used. Overall, as in the first empirical application, we
observed a strong performance, in terms of power, of the LBNS, the RBNS and the JO
tests.

There are a number of areas for a further extension of the empirical analysis. First,
liquidity is shown to play an important role in the context of microstructural contagion
and shocks to liquidity, especially when driven by informed trading, have a more per-
manent impact on prices. In our empirical analysis we have not distinguished between
trading regimes or time-of-the-day effects. We would expect a higher number of lagged
co-jumps to be detected in proximity of the opening or the closing of a trading session
when both trading volatility and displayed liquidity are low as also observed from the
data. It would then be particularly interesting to run the co-jump tests for different
trading times during the day and isolate diurnal effects. Second, despite the large sam-
ple used in the empirical analysis, we would need to extend the time interval considered
and measure the robustness of the proposed testing methodology to different trading
cycles. It would also be interesting to assess if the transmission mechanism between
liquidity and prices is stable across different trading regimes or if it can be affected by
other microstructural variables. Finally, the transactional variables, used in the analy-
sis, belong to one side of the limit order book. We would need to study the dynamics
of the entire order book in order to detect an asymmetric response of the price to a

liquidity shock. We leave these developments to future research.
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CHAPTER 3. THE LIQUIDITY-PRICE TRANSMISSION MECHANISM
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Figure 3.13: Illustrative Example of Data re-sampling for Test Computation.
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The Figure shows an illustrative example of the data re-sampling exercise performed for the first day

of the week. The data is initially observed at a tick-by-tick level and subsequently re-sampled over a

frequency of 1, 5 and 10 seconds. In order to limit the impact of micro-structural noise, the data is

firstly normalized so that the average over the whole sample is set at 100 and then pre-averaged using

a window of kp = 300, 60 and 30 observations for frequencies of 1, 5 and 10 seconds respectively. The

re-sampled and pre-averaged data set consists of n = 1331 observations for the whole week from May

3rd to May 7th, 2010. In the example we assume that the data are re-grouped in blocks of equal size

containing m = 27 returns. In particular we have n = 288 re-sampled and pre-averaged observations

for the first four days and n = 179 observations during the last day of the week.
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Jumps and Co-Jump Event

Blocks Im 2 cIT PIT1 PIT2 PCIT ECIT
1 0 0 0 -
2 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0
4 1 1 1 0 0 0 1
5 1 1 1 1 1 1 0
6 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0
Permanent Jump Event
Blocks Im 2 cIT PIT1 PIT2 PCIT ECIT
1 0 0 0 -
2 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0
4 1 1 1 0 0 0 1
5 1 1 1 1 1 1 0
6 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0
Permanent Jumps and Co-Jump Event
Blocks Im 2 cIT PIT1 PIT2 PCIT ECIT
1 0 0 0 -
2 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0
4 1 1 1 0 0 0 1
5 1 1 1 1 1 1 0
6 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0
Exogenous Co-Jump Event
Blocks Im 2 cIT PIT1 PIT2 PCIT ECIT
1 0 0 0 -
2 ! ] 0 0 0 0 0
3 1 1 1 0 0 0 1
4 1 ] 1 1 1 1 U
5 ] 1 0 0 1 0 !
6 1 1 1 0 1 0 0
135 0 0 0 0 0 0 0

Figure 3.14: Illustrative Example of Data re-sampling for Test Computation.
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The Figures show an illustrative example of the jump and co-jump test construction when tick-by-tick

data are used. The data is observed at a tick-by-tick level, subsequently pre-averaged over a window

of kp = 90 observations and re-grouped in blocks of m = 100 observations. J7T(;) and JT(3) are jump

test indicator functions for liquidity and price respectively as defined in Chapter 2. A a value equal to

one indicates the rejection of the null of no jumps at a significance level o = 5%. CJT is a co-jump

test indicator function which indicates the presence of a contemporaneous co-jump. The signal vectors

PJT) and PJT; assume values equal to one when the null of no permanent jump is rejected and values

equal to zero otherwise. Finally, the vectors PC'JT and ECJT indicate the presence of a permanent

and an exogenous co-jumps.



CONCLUSIONS AND FURTHER RESEARCH

The main motivation of our research was to explore liquidity discovery models and
analyze the behavior of a direct measure of liquidity derived from the foreign exchange
markets. Our main goal was also to measure the price impact of liquidity shocks and
to construct a robust testing methodology to distinguish between transitory-permanent
and exogenous-endogenous co-jumps in price and liquidity in the context of ultra high
frequency data. In Chapter 1, we used a specific measure of liquidity, defined as available
liquidity, and directly observed from the foreign exchange markets as opposite to a
liquidity proxy measured by transactional volumes or inferred from trading frequency
or other microstructural variables. The dynamic behavior of liquidity was estimated by
allowing time to have a deterministic and a stochastic component. We made a further
distinction by identifying a stochastic liquidity and transactional time and modelled
conditional expected durations using a regime switching threshold representation in
order to incorporate a state dependent trading intensity. We found a robust empirical
evidence of a strong negative relationship between both the levels and the changes in
trading activity and the changes in the amount of available liquidity in a limit order
book, strong and persistent autocorrelation effects and a significant impact of time

durations in both the liquidity and in the trade activity process especially at the first
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lags. Impulse response functions were used to study the impact of exogenous shocks,
in the form of unexpected trade activity, on liquidity. We also found that unexpected
trade activity has an initial but only temporary negative impact. During times of
high volatility and intense turnover, liquidity adjusted quickly to the equilibrium level
reached in the previous state. During times of low volatility and poor market activity,
instead, the adjustment process became slower and more erratic. In addition to time
dependence, we have also evaluated the impact of a number of microstructural variables.
A strong statistically significant negative relationship between price spreads and market
activity and changes in displayed liquidity was observed, while other variables like net

order imbalance and market impact showed weak if not insignificant relationship.

In Chapter 2, we considered different combinations of univariate tests for jumps and
proposed a co-jump testing methodology in order to detect statistically significant com-
mon jumps between two correlated stochastic processes. In particular, we introduced a
testing procedure in the case where the data are either re-sampled over equally spaced
time intervals or observed at a tick-by-tick level and, accordingly, proposed different
tests to identify the presence of contemporaneous, permanent and lagged or exogenous
co-jump events. A Monte Carlo experiment assessed the statistical properties of the
univariate tests for jumps and, subsequently, evaluated the statistical properties of the
proposed co-jump testing procedure under different levels of the jump intensity factor,
jump size, correlation and microstructural noise. In our simulation exercise, we found a
strong sensitivity of the proposed co-jump testing procedure to the jump intensity vari-
able lambda and, in particular, a positive relationship between the number of correctly

identified co-jumps and the jump intensity factor. While we found very little sensitivity
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of the co-jump tests for re-sampled data to changes in the correlation factor, the size
corrected power of the co-jump tests for tick data was positively affected by an increase
in correlation. We also observed a big size distorsion of the proposed co-jump testing
procedure under different types of microstructural noise. In particular, we found that
the noise caused by rounding effects can severely affect the size of the tests as shown
in the case of the LBNS, the RBNS, the MinRV and the CPR tests. We also reported
that the proposed co-jump testing procedure was robust to different levels of noise as
the power of the tests was not particularly affected. Overall, the strongest performance,
in terms of power, was displayed by the LBNS, the RBNS and the JO followed by the
MedRYV tests while the PZ and the CPR tests were the most affected by microstructural

noise.

In Chapter 3, we analyzed the contribution of liquidity shocks to systemic risk and
contagion and, in particular, explicitly assessed the transmission mechanism between
the EUR/USD FX spot price and the liquidity dynamics observed from a representative
order book during the week from May 3 to May 7, 2010. The time frame considered
was particularly relevant given that EUR/USD spot displayed a large move opening
on Monday at around 1.3250 and ending the session on Friday just above 1.2750. The
empirical exercise was divided in two main parts. In the first part, we used the first
battery of jump and co-jump tests on data re-sampled over equally spaced time inter-
vals and found that the percentage number of identified jumps in both liquidity and
price tends to decrease as we move from a high to a low observation frequency. With
the exception of the MinRV and the MedRV tests, we also detected a lower number

of liquidity than price jumps across all the observation frequencies used. The high
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number of jumps detected by the MinRV, the MedRV, the CPR and the PZ test was
probably affected by the level of microstructural noise. The LBNS test, followed by
the RBNS, the JO and the ABD-LM tests were characterized by a higher ability to
detect contemporaneous jumps and co-jumps. Very little evidence of lagged co-jumps
was observed, in particular, at frequencies greater than one to five seconds. The result
indicated that jumps in liquidity observed at a frequency of one second are usually not
followed by statistically significant price jumps at lower frequencies. In the second part
of the empirical application, we used tick-by-tick data with no re-sampling and com-
puted the second battery of tests. The tests allowed us to distinguish between different
jump and co-jump events and in particular to measure the number of contemporaneous
and permanent jumps and co-jumps together with exogenous co-jumps between two
different liquidity measures and the mid-quote spot price of EUR/USD FX. The PZ
and the ABD-LM were particularly affected by microstructual noise and, in particular,
when a small pre-averaging window was used. As we considered a different number
of observations per block, we also noticed a substantial variation in the percentage of

detected liquidity and price jumps.

There are a number of areas for further research. In Chapter 1, we studied the
behavior of available liquidity at k-ticks from the best displayed price in the order book.
However, it would be interesting to evaluate the relationship between price dynamics
and changes in available liquidity also using a more extensive data-set or to relate the
bid to the ask side of the order book. In Chapter 2, we presented a co-jump testing
procedure based on the combination of univariate tests for jumps. In particular, we

used intersections and re-unions to combine a number of test statistics characterized
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by a known statistical distribution and construct the co-jump test indicator functions.
It would be interesting to study the statistical properties of the co-jump test indicator
function and to create a co-jump statistic based on combinations of p-values where some
form of dependence is allowed. Finally, in Chapter 3 we have not distinguished between
trading regimes or time-of-the-day effects. Liquidity is shown to play an important role
in the context of microstructural contagion and shocks to liquidity, especially when
driven by informed trading, tend to have a more permanent impact on prices. We
would expect a higher number of endogenous co-jumps to be detected in proximity of
the opening or the closing of a trading session when both trading volatility and displayed
liquidity are low as also observed from the data. It would then be particularly interesting
to run the co-jump testing procedure across different trading times during the day and
isolate diurnal effects. Also, despite the large sample used in the empirical analysis,
we would need to extend the time interval considered and measure the robustness
of the proposed testing methodology to different trading cycles. Moreover, it would
be interesting to assess if the transmission mechanism between liquidity and prices is
stable across different trading regimes or if it can be affected by other microstructural
variables. Finally, the transactional variables, used in the analysis, belong to one side
of the limit order book. We would need to study the dynamics of the entire order book
in order to detect an asymmetric response of the bid vs. offer price to a liquidity shock.

We leave these developments to future research.
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