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ABSTRACT

The thesis provides a novel contribution to the literature of microstructural theory and

discovery models. The main contributions are twofolds. First, we move from price

to liquidity discovery and explicitly study the dynamic behavior of a direct measure

of liquidity observed from the foreign exchange markets. We extend the framework

presented by Hasbrouck (1991) and Dufour and Engle (2000) by allowing the coefficients

of both liquidity and trade activity to be time dependent. We find that liquidity time is

characterized by a strong stochastic component and that liquidity shocks tend to have

temporary effects when transactional time is low or equivalently when trading volatility

is high.

We then analyze the contribution of liquidity to systemic risk and contagion and,

in particular, assess the price impact of liquidity shocks. We extend the approach

in Dumitru and Urga (2012) and present a co-jump testing procedure, robust to mi-

crostructural noise and spurious detection, and based on a number of combinations

of univariate tests for jumps. The proposed test allows us to distinguish between

transitory-permanent and endogenous-exogenous co-jumps and determine a causality

effect between price and liquidity. In the empirical application, we find evidence of con-

temporaneous and permanent co-jumps but little signs of exogenous co-jumps between

1
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the price and the available liquidity of EUR/USD FX spot during the week from May

3 to May 7, 2010.
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INTRODUCTION

The analysis and the composition of market liquidity plays an important role in price

discovery and miscrostructural theory. Kyle (1985) provides a very general definition

of market liquidity in terms of tightness, resiliency and depth. Tightness is typically

measured as the spread between the bid and the ask price, directly observed from the

market. This particular measure of liquidity is used in the empirical work of Amihud

and Mendelson (1980), Bessembinder (1994) and Chordia et al. (2000). Resiliency and

depth are often measured in terms of price impact functions. In particular, following

a shock or an unexpected trade, impulse response functions are used to determine the

speed of convergence of prices towards their pre-shock equilibrium level. This is the

approach followed by Hasbrouck (1991), Dufour and Engle (2000) and Large (2007).

Banti et al. (2012) propose a measure of liquidity based on the notion of expected return

reversal as in Pastor and Stambaugh (2003). Order flow data, defined as difference

between the number of buy and sell market transactions, is used instead as an indirect

measure of market liquidity and related to the dynamics of asset pricing in Evans and

Lyons (2002), Berger et al. (2008), Evans (2010) and Chen et al. (2012).

The purpose of the dissertation is not to provide a theoretical model for order driven

markets alongside the work produced by Rosu (2009), Goettler et al. (2005), Foucault

4



INTRODUCTION 5

et al. (2005), Cont et al. (2010), nor to present a framework in the context of optimal

order execution strategies as in Harris and Hasbrouck (1996), Almgren and Chriss (1999,

2000), Kissell and Malamut (2005), Frey and Sandas (2008). Our motivation is to model

the behavior of a direct measure of liquidity, not inferred nor derived from prices or

order flow data and use the particular structure and the high information content of

the limit order book. There are some important differences between the approach used

here and the methodology followed by previous studies to measure market liquidity.

First, we employ a direct measure of liquidity defined as the sum of the limit orders

at a given distance from the best displayed price in a limit order book. We refer to

this particular measure of liquidity as available liquidity throughout Chapter 1 and 3.

Available liquidity on the bid (ask) side represents the real amount of orders that can be

executed on the buy (sell) side of a limit order book. Second, from the behavior of this

direct measure of liquidity we construct a number of additional liquidity variables. In

particular, we define market orders and new limit and cancelled orders at different price

levels in the order book. We also introduce a measure of order book resiliency and of

net order imbalance to use the information content of asymmetric structure of the order

book. We also define and study the behavior of transactional and liquidity duration

measured, respectively, as the time between consecutive market orders and changes

in available liquidity. Liquidity time, in particular, provides an additional, indirect,

measure of order book and market liquidity. Finally, we present an alternative and

more informative measure of the order flow indicator, commonly used in microstructural

theory as an indirect measure of liquidity. In our model, we construct the order flow

indicator as the sum of market and new limit orders. We refer to this variable as trading
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activity throughout the dissertation. Trading activity on the buy (sell) side of the order

book is measured as the sum of sell (buy) market orders and new incoming buy (sell)

limit orders and used to capture important features of the behavior of market liquidity.

We then analyze the contribution of liquidity to systemic risk and contagion and, in

particular, assess the price impact of liquidity shocks. Jumps and co-jumps are typically

studied in relation to price dynamics and most of the literature on jumps focuses on the

discontinuous and extremely large price returns caused by a trading or a macroeconomic

shock. We instead propose a co-jump testing procedure used to distinguish between

transitory-permanent and endogenous-exogenous jumps between liquidity and price.

Finally, we use a data-set, collected at a very high frequency, motivated by the interest

to understand the influence of high speed trading on liquidity and prices. The results

presented are particularly relevant also in the context of the recent debate on high

frequency trading and the need to impose a set of operational rules in the interest of

financial stability.

The dissertation is divided in three chapters. In Chapter 1, we propose a com-

prehensive liquidity discovery model which is used to analyze the behavior of a direct

measure of liquidity and the interaction of a number of microstructural variables. In

particular, we extend the vector autoregressive representation of Hasbrouck (1991) and

Dufour and Engle (2000) and establish an explicit relationship between changes in the

available liquidity and a measure of trading activity observed from a representative

EUR/USD FX spot limit order book during the week from May 3 to May 7, 2010.

The dynamic behavior of liquidity is estimated by allowing time to have a deterministic

and a stochastic component. Time plays a very important role and, in our study, we
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distinguish between two very specific time measures. We first identify transactional

time as the duration between consecutive market orders, and then define liquidity time

as the interval between changes in the liquidity variable. The distinction is particularly

relevant and enables to better understand the role of time in a high frequency trading

framework. For this purpose, we allow the autoregressive conditional duration model

to switch across different trading volatility regimes. The use of a regime switching

model allows us to capture changes in the liquidity behavior and in the relationship

with other microstructural variables due to time-varying trading intensities. Moreover,

we use impulse response functions to measure the speed at which liquidity moves to the

equilibrium level following an exogenous shock.

In Chapter 2, we introduce a co-jump testing procedure based on the combination of

univariate tests for jumps as an extension of Dumitru and Urga (2012). The combina-

tion of tests allows us to address some of the issues with the existing tests for co-jumps

and extend the notion of a co-jump event. In particular, the proposed tests are shown

to be robust to microstructural noise and can be adjusted to take into account for non-

synchronous trading. Also, in the common notion of a co-jump used in the literature

two or more variables are characterized by a simultaneous and discontinuous path over

a given time interval. The jumps are traditionally both exogenous and no causality be-

tween the two can be inferred. We identify instead a causality effect between different

jumps observed over a fixed time horizon and distinguish between contemporaneous,

permanent and lagged or exogenous co-jump events. Finally, we assess the behavior of

the proposed co-jump tests under different levels of jump intensity, volatility, correlation

and microstructural noise.
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In Chapter 3, we present an empirical application where we explicitly assess the

transmission mechanism between the price of EUR/USD FX spot and the associated

liquidity displayed in a representative limit order book. Our estimates are based on

observations measured at a very high frequency. We use the co-jump testing procedure,

based on the combination of univariate tests for jumps presented in Chapter 2, to

measure the impact and assess the effects of liquidity jumps on prices. We also use two

distinct liquidity measures to take into account the information content of transactional

time. Finally, we determine the type of co-jump event observed and establish an explicit

causality effect between liquidity and the EUR/USD FX spot price during the week

from May 3 to May 7, 2010.





CHAPTER 1

MOVING FROM PRICE TO LIQUIDITY DISCOVERY

1.1 Introduction

Following the abrupt events experienced by financial markets in recent years, the behav-

ior of liquidity has started to play an important role in microstructural theory. Liquidity

shocks and the associated systemic risks have led to an increasing interest from regu-

latory bodies, policymakers and market participants who are in the process of defining

new rules and risk management practices with a specific focus on liquidity (Goodhart

2007, Farhi et al. 2007, Rochet 2008, Espinoza et al. 2008, Cao and Illing 2010, Perotti

and Suarez 2011, Hafeez 2011). The introduction of precise liquidity requirements for

financial institutions has also been prompted by the need to properly assess the risks

related to the presence of liquidity externalities. Moreover, trading agents are defining

execution rules to better manage and offer liquidity at an increasing high frequency and

reduce the issues related to latency, defined as the time between the submission and

the consequent execution of an order (Mahanti et al. 2008, Riordan and Storkenmaier

2011). Neoclassical economists have also shown that liquidity, order flows and trade

activity have a deep influence on price discovery. Liquidity in particular is described

10
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as the result of the interaction of a number of agents who reveal and exchange private

information respectively through prices and trading activity.

The seminal contribution of Hasbrouck (1991) has generated a huge body of lit-

erature dealing with price discovery models using transactional data. A number of

extensions and empirical applications have followed. Kempf and Korn (1998) measure

the price impact of unexpected financial transactions using data on the DAX futures

and highlight the informational content of trades of different size and type. Dufour and

Engle (2000) use the autoregressive conditional duration (ACD) model of Engle and

Russell (1998) to accommodate for stochastic transactional time and explain the role of

time in the price formation process of a number of stocks quoted on the NYSE. Evans

and Lyons (2002) introduce a microstructural model, based on a vector autoregressive

representation, to study the relationship between order flows and exchange rate dynam-

ics and to show the superior forecasting ability of microstructural variables as opposed

to the more traditional fundamental models based on macro variables. The importance

of order flows and trading volumes in price discovery models is also highlighted in Per-

raudin and Vitale (1996), Breedon and Vitale (2004), Moberg and Sucarrat (2007), and

Berger et al. (2008). Payne (2003) studies the informational content of trades executed

in foreign exchange markets and measures the relationship between trading activity,

performed at different times of the day, and price changes. A similar approach is used

by Floegel (2006) who identifies various levels of informational asymmetry among trades

performed by different types of dealers.

A common feature to all these studies on price discovery is that liquidity is indirectly

measured through the use of price impulse functions or through the notion of price
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spread. The concept of a liquid market is either related to the speed at which prices

converge to an equilibrium level following an informational shock in the system or to the

absolute distance of bid and offer prices, with a lower (higher) spread being associated

to higher (lower) levels of liquidity. Danielsson and Payne (2010) provide an important

contribution to the analysis of the behavior of liquidity in foreign exchange markets.

In their study, liquidity is measured both indirectly and directly through spreads and

depth. However, most of the leading literature on discovery models has not focused

specifically on liquidity dynamics and no direct measure had been proposed despite

the recognition of the importance of liquidity in microstructural theory (Copeland and

Galai 1983, Kyle 1985, Hasbrouck 1993, Burghardt et al. 2006, Hafeez 2007).

The main objective of Chapter 1 is to propose a comprehensive liquidity discovery

model which allows us to analyze the behavior of a direct measure of liquidity and the

interaction of a number of microstructural variables. Our contribution to the litera-

ture is three-fold. First, we move from price to pure liquidity discovery and study the

dynamics of available liquidity. This is particularly relevant given the little reference

that the literature on price discovery gives to a direct measure of liquidity. We define

liquidity in terms of depth, as in Kyle (1985) and Danielsson and Payne (2010), us-

ing an high observation frequency. We measure liquidity as the cumulative units of a

currency that a dealer can purchase or sell, in a limit order book, at a given distance

from the best price. We refer to available liquidity throughout the chapter. Second, we

extend the vector autoregressive representation of Hasbrouck (1991) and Dufour and

Engle (2000) by allowing all the coefficients of the vector autoregressive model to be

time dependent and establish an explicit relationship between changes in liquidity and
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market transactions. The dynamic behavior of liquidity is estimated by allowing time

to have a deterministic and a stochastic component. We also distinguish between two

very specific time measures. We first identify transactional time as the duration be-

tween consecutive market orders, and then define liquidity time as the interval between

changes in the liquidity variable. The distinction is particularly relevant and enables to

better understand the role of time in a high frequency trading framework. For this pur-

pose, we allow the ACD model to switch across different trading volatility regimes. The

use of a regime switching model allows us to capture changes in the liquidity behavior

and in the relationship with other microstructural variables due to time-varying trading

intensities. Moreover, we use impulse response functions to measure the speed at which

liquidity moves to the equilibrium level following an exogenous shock. The framework

provides an important contribution to the analysis of high frequency trading. Third, we

use a data-set which contains transactional information from the main reference cash

market in foreign exchange, observed and re-sampled at a very high frequency. Our

empirical study is based on one week of data observed from a representative EUR/USD

FX spot limit order book and recorded at a millisecond level. Our dataset contains time

stamped, tick-by-tick data on available liquidity, prices and quotation times from May 3

to May 7, 2010, subsequently re-sampled over a frequency of 10 seconds. Limit, market

orders and a number of transactional variables and liquidity measures have also been

constructed from the data. The analysis of the series at such high frequency enables us

also to measure the impact of high speed trading on liquidity.

Our main results are as follows. In our analysis, we find strong predictability and

feedback effects between available liquidity, changes in trading activity and time dura-
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tions. As in Easley and O’Hara (1992) and in Dufour and Engle (2000), trade durations

have a significant informational content and are characterized by a strong stochastic

component. However, we also find that liquidity durations are statistically significant

over a number of lags and that the impact of latency on the liquidity behavior varies

across different trading regimes. The use of two distinct measures of stochastic times

and the assumption of two trading regimes, that our model allows to identify, provides

also additional insights on how liquidity is affected by a non-homogeneous trade inten-

sity. In particular, we first identify an inventory effect of time, where, in the absence

of external shocks, the available liquidity at k ticks from the best price tends to dry

up with time and with an increase in market order activity. A greater time at which

liquidity moves from one state to another is typically associated to a lower trading

activity and to a smaller liquidity decay at a given price level. In our empirical ap-

plication, we relate our measure of liquidity to the concept of inventory as described

in Avellaneda and Stoikov (2008). In particular, we find that the available liquidity,

measured as the sum of limit orders, can provide a direct measure of the inventory of a

trading agent. We also find that a greater time between changes in available liquidity,

which translates into a more static structure of the order book, is typically associated

to a larger inventory or opportunity cost faced by a trading agent when a limit order is

selected as opposed to a market order. This result highlights the issue of optimal order

execution, and, in particular, the trade-off between the opportunity cost of a limit order

and the transactional cost of a market order as also discussed in Harris and Hasbrouck

(1996), Almgren and Chriss (1999, 2000), Kissell and Malamut (2005), Frey and Sandas

(2008), Cont et al. (2010) and Kratz and Schoneborn (2011). The relationship between
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liquidity, measured in terms of bid-ask spread, and trading inventory is also discussed

in Bessembinder et al. (1996).

Moreover, we find that trade durations are negatively correlated with available liq-

uidity and incoming limit orders. During times of intense trading activity the level of

available liquidity at a given price is in fact negatively affected. These results are due

to the fact that liquidity, offered by a dealer at a given price or distance from the best

available price, is not infinite and decreases as market orders, on the opposite side of

the book, are matched in the absence of fresh liquidity introduced in the order book.

Second, we identify an informational effect of time, where, following an external shock,

the rate of adjustment of liquidity is greater during times of high volatility or, equiv-

alently, low transactional and liquidity durations. We also find evidence of a negative

relationship between the information content of trades and both trade and liquidity

durations. In particular, the initial and the final hours of the day tend to be character-

ized by lower volatility and market activity and hence by a worse information content,

the duration between consecutive transactions tends to be higher, the liquidity impact

of a trade more persistent and the liquidity decaying process weaker. This finding is

consistent with the empirical result of Easley and O’Hara (1992), Lyons (1995), Dufour

and Engle (2000), Payne (2003) who show that prices tend to adjust faster and that

the informational content of trades is greater during periods of higher trading inten-

sity. Moreover, during times characterized by a higher trading intensity, market making

agents tend to tighten price spreads, defined as the difference between the ask and the

bid price, and increase the amount of displayed liquidity. This result shows that high

speed trading allows liquidity to adjust quicker to the equilibrium level following an
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exogenous shock and that the level of information content provided by trading activity

increases with a decrease in transactional time. In particular, high speed trading seems

to facilitate the flow of private information in the market and to reduce the negative

effects of unexpected trading activity. Further, there is evidence of temporal clustering

and of a decaying pattern in the liquidity process and a strong relationship between

trading intensity, volatility and liquidity. Liquidity is drained by matching market or-

ders, on the opposite side of the book, with the drained liquidity not being immediately

supplied at the same price level. We find no correlation between available liquidity or

trading activity on different sides of the book and this highlights a different trading

behavior and motivation among trading agents on the bid and ask side of the market.

Finally, both trade and liquidity durations show a M-shaped pattern during the trading

day similar to the realized volatility of the underlying asset price. The same pattern is

highlighted in Engle and Russell (1998) and in Dufour and Engle (2000).

The chapter is organized as follows. In Section 1.2, we first introduce the price

discovery model as in Hasbrouck (1991) and Dufour and Engle (2000), and then we

present an alternative vector autoregressive model specification enriched with regime

switching stochastic time. In Section 1.3, we describe the data and the main features of

the trading venue and of order book structure. In Section 1.4, we present the estimation

results and study the impact of both liquidity and transactional durations on liquidity

and trade activity. Some final remarks and proposals for further research are discussed

in Section 1.5.
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1.2 The Model

In standard price discovery models, vector autoregressive (VAR) representations are

used to capture the joint behavior of price changes and trades. Mid-quote prices, qt,

are measured as the average of the bid and the offer price at time t and just after a trade

xt. Given the non-stationary nature of the process, price changes, ∆qt, are considered

in the dynamic model and studied jointly with the behavior of trades. Trading activity,

xt, is typically measured by the sign of the underlying transaction and expressed by a

dummy variable, which takes a value equal to one if the initiated trade is a buy order

or minus one if the initiated trade is a sell order instead.

1.2.1 The Price Discovery Model proposed by Hasbrouck (1991) and Du-

four and Engle (2000)

Hasbrouck (1991) and Dufour and Engle (2000) propose the following VAR represen-

tation:

∆qt =
∑∞

i=1 ai∆qt−i +
∑∞

i=0 bixt−i + υ1,t

xt =
∑∞

i=1 ci∆qt−i +
∑∞

i=1 dixt−i + υ2,t

(1.1)

to model the relationship between mid-quote price changes, ∆qt, and a trade indi-

cator variable, xt, which takes a value equal to one if a buy-trade is initiated or minus

one otherwise. υ1,t and υ2,t are i.i.d processes measuring shocks, determined by public

and private information, to the price and the trade equation respectively. Unlike in the

original model set up described by Hasbrouck (1991), Dufour and Engle (2000) allow

the trade coefficient to vary with time in both the price and the trade equations. Time
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is considered, in this context, a variable with both deterministic and stochastic compo-

nents. The coefficients of the trade variable in the price equation are time dependent

and given by:

bi = γqi +
J∑
j=1

λqj,iDj,t−i + δqi ln (Tt−i) (1.2)

and, similarly, the coefficients of the trade equations are given by:

di = γxi +
J∑
j=1

λxj,iDj,t−i + δxi ln (Tt−i) (1.3)

whereDj,t−i represents a time-of-day dummy variable while γ, λ and δ the estimation

coefficients. In particular, γ represents a constant component, λ and δ capture the

impact of deterministic and stochastic components of the time process respectively.

The duration between consecutive transactions, measured by T , enters non-linearly in

the VAR representation. In a more general set-up, the equation for the mid-quote price

change can be expressed as:

∆qt =
N∑
i=1

αi∆qt−i +
N∑
i=0

[γqi + zt−iδ
q
i ]xt−i + υ1,t (1.4)

where zt−i represents a row vector of observations for different transactional vari-

ables and where δi provides the column vector of corresponding coefficients. The signifi-

cance of time in the dynamic system (1.4) is verified by testing the statistical significance

of the coefficients δi. In particular, intraday periodicities can be found when the δqi are

jointly zero and at least one of the λqi is not zero at the same time.
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Given the stochastic nature of the time process, ACD models are used to model

the dynamic behavior of diurnally adjusted trade durations and to compute impulse

response functions. The conditional duration mean is modelled using an ARMA-type

specification:

φt = ω +

p∑
j=1

pjT̃t−j +

q∑
i=1

ζiφt−i + λDt−1 (1.5)

where T̃ represents the diurnally adjusted duration between consecutive transac-

tions, T̃ = Tt/Φt (t− 1), with Φt (t− 1) being the deterministic component of time and

Dt−1 diurnal dummy variables which measure the time-of-the day effects while p, ζ

and λ represent the estimation coefficients. The conditional density of T̃ is given by

g
(
T̃
)

= θ/φθt T̃
θ−1
t exp

[
−
(
T̃t/φt

)θ]
for θ, φt > 0.

In Hasbrouck (1991), conditional impulse response functions are represented as:

Iq = ∆qxt+k =
k∑
i=0

βiυ2,t (1.6)

Dufour and Engle (2000) propose an extension assuming a joint distribution of marks

and arrival times conditional on their past values and represented as follows:

Iq (k, υt, Tt, ωt−1) = E [qt+k |υ2,t = 1, Tt = τ, ωt−1] = ET [E (q, x |T )] (1.7)

where ωt−1 indicates the information content of all the variables in the model up to

time t− 1.

The framework presented by Dufour and Engle (2000) allows to measure the impact

of transactional time and also to capture diurnal versus stochastic components in the
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time process. Not surprisingly, during times of high trading activity, prices converge

to the full information value, after a shock, at a faster pace. Also, standardized trade

durations are found to be non strongly exogenous and mainly dependent on past volume

and past standardized durations. Authors finally show that the effect of time durations

on price changes tends to be marginal if compared to the same effect produced by volume

dynamics and spread when these are introduced as additional independent variables in

a more general model specification.

In the traditional framework of price discovery models, liquidity is measured indi-

rectly through the use of price impact functions, price spreads or as a function of some

microstructural or trading variables. The concept of a liquid market is often related

to the speed at which prices convergence to an equilibrium level following an informa-

tional shock in the system. In this chapter, however, we directly measure and construct

a number of liquidity variables by looking at the available liquidity displayed on one side

of a limit order book from the foreign exchange markets. Moreover, in our model, the

available liquidity is characterized by a deterministic and a stochastic time component,

and analyzed under different trading regimes.

1.2.2 Moving from Price to Liquidity Discovery

Let ∆qkt express the logarithmic changes in the cumulative liquidity displayed at k ticks

from the best price in a limit order book. The measure of liquidity is very similar to

Kyle’s (1985) definition of market depth and is computed as in Danielsson and Payne

(2010).

In our model, we introduce and model different types of durations. First a trans-
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actional duration which measures the time interval between consecutive market orders

and a liquidity duration which measures the time interval at which changes in available

liquidity occur. This important distinction enables us to isolate the role played by the

time at which liquidity moves from one state to another.

In addition to available liquidity, we also study the behavior of a transactional

variable, ωt, which measures the overall trading activity on one side of order book and

defined as the sum of market and new incoming limit orders. More specifically, trading

activity on the bid (ask) side of the market is recorded when a buy (sell) limit order

is matched by a sell (buy) market order, under the assumption that market orders can

only be executed against the best limit orders available at a certain price (i.e. market

orders cannot “walk the book”) and also when a new limit order (i.e. new additional

available liquidity) is added to existing orders at the same price priority in the book.

This particular measure of trading activity is more informative than the trade indicator

variables used in previous studies on price discovery.

We propose the following VAR representation to model the joint behavior of changes

in the available liquidity observed on one side of the order book and the proposed

measure of trading activity:

∆qkt =
∑n

i=1

[
γqq,i + zt−iδ

q
q,i

]
∆qkt−i +

∑n
i=1

[
γqω,i + ht−iδ

q
ω,i

]
+ υ1,t

ωt =
∑n

i=1

[
γωq,i + zt−iδ

ω
q,i

]
∆qkt−i +

∑n
i=1

[
γωω,i + ht−iδ

ω
ω,i

]
+ υ2,t

(1.8)

In the dynamic system described in (1.8), zt−i and ht−i are row vectors of observa-

tions and δi represents a column vector with the correspondent coefficients. Model (1.8)

extends the original model (1.1) by allowing both the liquidity and the trade coefficients
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to vary with time, where time is again characterized by a deterministic and a stochastic

component. In the case where the variables in zt−i and ht−i are current and past time

durations, with Dj,t−i being a set of n time-of-day dummy variables, we can re-write

the liquidity impact coefficients as:

ai =
[
γqq,i + δqq,iln

(
T qt−i

)]
ci =

[
γωq,i + δωq,iln

(
T qt−i

)] (1.9)

where T qt−i measures the observed time for a change in available liquidity (liquidity

duration). Analogously, we can express the trade impact coefficients as:

bi =
[
γqω,i +

∑n
j=1 λ

q
j,ω,iDj,t−i + δqω,iln

(
T ωt−i

)]
di =

[
γωω,i +

∑n
j=1 λ

ω
j,ω,iDj,t−i + δωω,iln

(
T ωt−i

)] (1.10)

where T ωt−i measures the time between consecutive market orders on the opposite

side of the order book (transactional duration).

Equations (1.9) and (1.10) nest a special case of the model presented by Dufour and

Engle (2000) and referenced in (1.1)-(1.3). Model (1.8) is also flexible to accommodate

other transactional variables in the zt−i and ht−i vectors like price spreads or net order

imbalance for example. The framework presented above is also quite convenient from

an estimation point of view. The liquidity and the trade equations are in fact modeled

as a conditional process of both liquidity and transactional durations which allows to

estimate the VAR system directly.

In order to capture state dependent trade intensities, i.e. regime shifts, in the

series, the ARMA-type conditional expected durations are modeled using a regime
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switching threshold ACD (TACD) model introduce by Russell et at. (2001). The

model is represented as:

xi = ψiε
k
i

ψi = ωk +
∑m

j=1 α
k
jxi−j +

∑q
j=1 β

k
j ψi−j

(1.11)

with εki being an i.i.d. vector with positive and regime specific intensities. The

vector k denotes the number of regimes with 0 = r0 < r1 < r2 < ... < rk = ∞

being the threshold values. The model allows us to deal with non-linearity and to

accept a number of different trading volatility regimes. In our empirical application, we

identify two regimes. A regime characterized by low trading intensity (or equivalently

by high time durations) is denoted with Rk=1 while a regime characterized instead

by a high trading intensity (or equivalently by low time durations) is denoted with

Rk=2. The threshold indicators are computed as a function of the rolling mean and

standard deviations of liquidity time. In particular, given the vector of liquidity time

x = {x1, ..., xn}, the model moves from Rk=1 to Rk=2 when xi < {xm + ξσm} for

i = 1...n, where xm = (1/m)
∑m

i=1 (xi) and σm =
√

1/ (m− 1)
∑m

i=1 (xi − xm)2 with

m = [1, ..., n]. The choice of the number of threshold levels, the size of the rolling

sample m and the form of the threshold function is obtained by fitting the threshold

function to the empirical data. In particular, we find that ξ = 6 provides a good fit to

the data set used in the empirical application when two trading regimes are considered.

The use of a TACD model in our empirical analysis is motivated by the observed

behavior of liquidity and transactional durations and, in particular, by the M-shaped

pattern displayed in proximity of the opening and closing hours of a trading session. The
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regime switching model allows us to isolate the diurnal effects caused by the opening and

closing hours of the trading day and highlight the different behavior observed during the

central hours of the day which are characterized instead by high transactional volatility.

De Luca and Zuccolotto (2006) also identify two trading regimes across which the shape

of the underlying distribution can vary while Iordanis and Maher (2011) use a threshold

switching model to allow the shape parameter of different distributions to vary across

regimes characterized by non homogeneous trading intensities. In Appendix A, we

report a comprehensive family of ACD models commonly used to estimate stochastic

arrival times.

In the context of discovery models, it is particularly relevant to use response func-

tions in order to measure the permanent or transitory impact on available liquidity of

exogenous shocks generated by unexpected trading activity. The results can be very

important to distinguish between informative and non-informative trade activity. We

identify the informational shocks using two white noise processes, υ1,t and υ2,t. In partic-

ular, υ1,t is associated to the liquidity shocks caused by publicly available information,

while υ2,t measures the impact of private information mainly driven by unexpected

trades. In order to compute impulse response functions we can follow two different

methodologies. The first approach follows from Dufour and Engle (2000) in the case

where
∑n

i=1 δω,i 6= 0. Alternatively, in the case where
∑n

i=1 δω,i = 0, we can directly

compute the impulse functions from the VAR model as in Hasbrouck (1991). We use

a modified representation of the impulse response function which is dependent on both

liquidity and transactional durations:
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I∆q (η, υ, T q, T ω, It−1) = E
(
∆qkt+k |υ2,t = 1, T q = τ q, T ω = τω, It−1

)
(1.12)

where T q and T ω measure the liquidity and the transactional time respectively.

In the empirical application presented in this chapter, we also assume that time du-

rations are non strongly exogenous and that the arrival of trade shock hits the equilib-

rium level for liquidity and trading activity. In particular, we start from a steady-state

equilibrium level where ∆ωt = 0 and ∆q0
t = 0 with q0

t = q∗ at t = 0. We then introduce

a shock in the trade activity equation equal to υ2,t = 1 and measure the impact on

the liquidity process through the impulse response function as in (1.12). Given that we

model changes in liquidity, conditional on both transactional and liquidity durations,

we need to compute the joint density of liquidity and durations in order to determine

the output of the impulse response function. The joint density is, in this case, given

by the product of the conditional density of liquidity times the marginal density of

transactional durations which are modelled using the TACD specification as in (1.11).

Finally, we use Monte Carlo simulations to estimate the impulse response function.

1.3 The Data

The data used in the empirical application consist of five time series: the available

liquidity on the bid and the ask side of a representative EUR/USD FX spot limit order

book, expressed in EUR millions; the bid and ask price associated to the available

liquidity in the order book, expressed as units of US Dollars for 1 EUR; quotation time,
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expressed in milliseconds. The data spans over an entire trading week, from May 3 to

May 7, 2010. The time frame considered is particularly interesting given that, during

this time horizon, EUR/USD FX spot displayed a large move, opening on Monday

at around 1.3250 and closing the session on Friday just above 1.2750. Despite the

short time interval, in our empirical application, we use data observed at a very high

frequency to obtain a large sample.

The behavior of the mid-quote price for EUR/USD spot is shown in Figure 1.1.

The vertical dotted line shows the end of the NY trading session and the open of the

Australian trading session. Figures 1.2 shows the available liquidity observed, on the

bid side of the order book, at k = 0, 1 and 2 ticks from the best displayed price in the

book during the week from May 3 to May 7, 2010. The greatest amount of liquidity

is observed during the central hours of the trading day, while liquidity tends to dry

up in proximity to the opening and the closing of the trading session. Figures 1.3-1.4

show the returns of liquidity, market and new limit orders during the first hours of the

trading session and the London opening respectively on May 3, 2010. The combination

of market and new limit orders define the trading activity in the order book. We notice

that the level trading activity becomes more intense and regular during the London

opening hours compared to the initial hours of the Asian trading session.

[ Insert Figures 1.1 - 1.4 ]

Summary statistics for the variables in the data are presented in Table 1.1. An

average of 245,000 orders were actively traded on a daily basis during the reference

period considered in the analysis, with almost twice as many limit than market orders.

Approximately 17% of the orders have been inputed as new limit orders close to the
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best price, around 15% of the total overall limit orders have been cancelled and almost

one fourth of the total limit orders were filled completely. The size of both new limit

and cancelled orders shows the tendency to decrease away from the best price. Limit

and market orders appear also to be more frequent on the bid side of the market as

opposed to new limit and cancelled orders.

[ Insert Table 1.1 ]

In what follows, we present details of the data and how these have been adjusted

and sampled, a description of the variables, and finally a preliminary empirical analysis

based on descriptive statistics of the series.

1.3.1 Preparation of the Data

The data is initially recorded to the one thousandth of a second over irregular time

intervals and subsequently resampled over equally spaced intervals of 10 seconds. The

conversion from tick to calendar time is done by selecting a fixed time grid {t = 1, ...T}

of equally spaced time intervals and using the most recent mark at the end of the

selected interval as the observation for that particular interval.

The decision to re-sample the data over fixed size time intervals is motivated by

two main arguments. First, as discussed in Engle and Russell (2004), issues of extreme

discreteness and micro-structural noise, typical of high frequency data, can lead to

spurious estimations, impact the volatility of the series and generate a high degree of

kurtosis in the data. Converting the data from an irregular space grid to regularly

spaced intervals, combined with pre-averaging, can also reduce the autocorrelation in

the series returns and limit the effects of temporal dependence. Second, re-sampling
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over fixed intervals of 10 seconds can substantially reduce the computational efforts

of the modelling framework used to produce the estimation results. Similar empirical

results would have also been obtained using a re-sampling frequency of 5 seconds.

Given the virtual continuity of the currency markets, as opposed to equity and fixed

income markets, we do not discard the opening and the overnight transactions, despite

the lower liquidity and the consequent higher volatility in the series, but we do eliminate

the reporting errors observed during the very last trading day in proximity of the NY

closing. In order to take into account the so called diurnal effects in the series, we

adjust both the transactional and the liquidity durations following the same procedure

as in Engle and Russell (1998) and in Dufour and Engle (2000). First, we fit the time

series of the unadjusted durations using a polynomial equation, we then compute the

ratio between actual and fitted trade durations. To improve the fitting accuracy we

transform the predictors, in this case represented by the unadjusted trade durations,

by normalizing their center and scale. The predictors have a zero mean and standard

deviation equal to one.

1.3.2 Variables

From the original data set we derive a number of microstructural variables. We define

∆qkt as the change in the natural logarithm of cumulative available liquidity at k = 2

ticks from the best displayed price on the bid side of the order book. In the original

dataset, the available liquidity in the order book is recorded at three different price

levels: the available liquidity on the bid (ask) side at the best displayed bid (ask) price

in the order book which represents the total amount of buy (sell) limit orders with the
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highest priority in terms of execution, followed by the available liquidity on the bid

(ask) side of the order book, observed at different price levels, and, in particular, at

k = 1 and k = 2 ticks away from the best displayed price where the tick is measured as

0.0001 US Dollars per 1 EUR. Cumulative available liquidity is a direct measure of the

displayed depth in the order book. In the empirical application, presented in Chapter

1, we take into account only the liquidity observed on the bid side of the market.

Unlike in previous studies, two measures of time durations are introduced here: a

transactional duration, T ω, which indicates the time interval between two consecutive

market orders and a liquidity duration, T q, which indicates instead the time at which

available liquidity changes from previous levels. Both time durations are expressed in

milliseconds.

The trading activity, ωt, on the bid (ask) side of the order book is measured in terms

of market and new limit orders. More specifically trading activity on the bid (ask) side

of the order book is recorded when a buy (sell) limit order is matched by a sell (buy)

market order, under the assumption that market orders can only be executed against

the best limit orders available at a certain price (i.e. market orders cannot “walk the

book”) and also when a new limit order (i.e. new additional available liquidity) is added

in the order book. Market orders, mt, are measured in EUR millions and represent the

amount of liquidity drained from the market either on bid (market orders sell) or on

the offer (market orders buy).

Cancelled and new limit orders, here indicated as climt and nlimt, are again ex-

pressed in EUR millions and represent respectively the amount of liquidity firstly dis-

played and subsequently withdrawn from the order book (i.e. not filled) or fresh new
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liquidity inputed in the order book at k-ticks from the best available price.

Figure 1.5 shows the methodology used to derive market, cancelled and new limit

orders from the original time series. In particular, the first box shows that a sell

market order is identified either when the best displayed bid price in the order book

decreases and computed as the difference between the available liquidity, on the bid

side of the order book, over the time interval [t− 1, t] or when the best displayed bid

price remains constant but available liquidity drops. In particular, the best bid price

in the book drops from 1.3310 to 1.3309 between 4th and th 5th observation. Available

liquidity drops from 22 to 7 over the same time interval. We identify a sell market order

and we quantify the order in 22 units. The second box shows that a new limit order

is identified when the best displayed bid price remains constant over the time interval

[t− 1, t] but available liquidity increases over the same time interval. In particular, the

best bid price in the book remains constant between the 7th and the 8th observation

but the available liquidity at k = 0 ticks from the best price increase by 1 unit. We

identify a new limit order and quantify the order in 1 unit. Finally, the third box shows

that a cancelled limit order is identified at k = 1 or k = 2 ticks from the best displayed

price in the order book in the event where the price does not change over the time

interval [t− 1, t] but available liquidity drops. In particular, the bid price at k = 2

ticks from the best displayed price in the order book remains constant between the

15th and the 16th observation at 1.3306 but the available liquidity drops from 9 to 8

units. We identify a cancelled limit order and quantify the order in 1 unit. Sell market

orders and cancelled orders will have a negative effect while new buy limit orders a

positive effect on the available liquidity on the bid side of the order book.



CHAPTER 1. MOVING FROM PRICE TO LIQUIDITY DISCOVERY 31

[ Insert Figure 1.5 ]

The spread, represented by the variable st, is measured as the difference between

the best ask and the bid price and expressed in pips of the domestic currency (USD).

We also introduce a very important transactional variable, often used in price dis-

covery models and represented by the net order imbalance, denoted with noit, which is

here measured as the excess amount of available liquidity displayed on the bid over the

ask side of the order book. This variable is very similar to the net order imbalance in

Cao et al. (2009). We can interpret the net order imbalance as a ex-ante measure of

the trade indicator variable used by Hasbrouck (1991) and Evans and Lyons (2002) in

their models. Both the net order imbalance and the trade indicator variables express

the willingness of market participants to enter the buy or the sell side of the market.

The net order imbalance can be used, in this context, to forecast trading activity with a

higher number of buy (sell)-side trades being expected following an increase (decrease)

in the net order book imbalance.

Finally, we introduce a variable that measures the market impact of trading activity,

denoted as moit, that can be used as a proxy of market resilience. We compute this

particular measure of liquidity as the ratio of relative mid-price variation over the level

of previous trading activity defined as the sum of market and new limit orders at k = 0

ticks from the best displayed price in the order book.

In Appendix B, we report part of the Matlab code used to re-sample the data over

fixed time intervals and to construct the micro-structural variables presented in the

chapter.
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1.3.3 Preliminary Analysis

In Tables 1.2 - 1.3, we report some preliminary analysis of the transactional variables

introduced above. In line with previous studies, we find that both changes in trading

activity and liquidity show a strong autocorrelation. In particular, the autocorrelation

tends to increase at a lower distance from the best mid-point price.

[ Insert Tables 1.2 - 1.3 ]

We also note negative autocorrelation in both the trade and liquidity equations. No

signs of cross-correlations can be find when looking at the different sides of the order

book, with changes in trading activity on the bid side being completely unrelated to

changes in trading activity on the offer side of the order book. Not surprisingly changes

in the liquidity displayed at the best price in the order book tend to have a greater

impact on the overall liquidity dynamics. Strong autocorrelation is again detected in

the series of the raw and adjusted time durations as shown in Table 1.4.

[ Insert Tables 1.4 ]

The autocorrelations and the partial autocorrelations are far from zero and all the

signs are positive. The Ljung-Box statistic is examined to test the null hypothesis that

the first 15 autocorrelations are jointly equal to zero. We perform the test on the raw

and the adjusted time series. The null is rejected in both cases with a chi-squared

statistic of 126.70 (125.00) and 76.84 (58.54) for both raw (adjusted) liquidity and

transactional durations respectively. Figure 1.6 reports a plot of the histogram and

the distribution for the liquidity and the transactional durations respectively. Trade
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durations also display a M-shaped pattern typical of many financial series. The initial

and the final hours of the day tend to be characterized by lower volatility and trading

activity and hence by a worse liquidity. The duration between consecutive transactions

tends to be higher and the overall liquidity turnover lower as shown in Figure 1.7.

[ Insert Figures 1.6 - 1.7 ]

Not surprisingly logarithmic trade durations are overall negatively correlated with

the level of trade activity (both on the bid and on the offer side) and with the level

of incoming limit orders which is probably driven by an informational asymmetry in

the market. This result shows volatility clustering, where periods characterized by high

trading intensity and volatility are usually followed by a number of consecutive periods

of high and slowly decaying volumes. In line with Dufour and Engle (2000), we also find

some evidence of a negative correlation between trade durations and available liquidity

at the best price. The greater the time between two consecutive transactions and the

lower the level of available liquidity displayed on one side of the market. The spread,

defined as the difference between the ask and the bid price, is also negatively correlated

with the current and the lag liquidity duration but shows signs of positive correlation

with both the current and the lag transactional duration. A market maker tends to

reduce the spread if available liquidity remains stable and does not change suddenly.

Also, due to inventory effects and to the fact that liquidity, in the form of limit orders,

has an intrinsic cost, spreads are tighten in order to give a greater incentive to trade and

absorb non utilized quantities of liquidity. However, an increase in the time between

consecutive trades gives a market making agent the incentive to widen the spread as

the informational asymmetry increases and the price discovery process becomes less
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transparent. Changes in available liquidity are also found to be associated with large

shifts in trading activity. This very last result ties well with the observation of a M-

shaped pattern in trade and liquidity durations during the trading day. An increase

in market orders, associated with a lower trade duration, tends to drain an increasing

amount of liquidity which again motivates market making agents to widen spreads and

reduce the number of additional trades.

1.4 Estimation and Results

In this section, we report and comment the results from the estimation of the VAR

system defined in (1.7)-(1.10) and and study the impact of both liquidity and transac-

tional durations on liquidity and trade dynamics. In this context, time durations can

be characterized by intraday deterministic or stochastic components. In order to cap-

ture possible diurnal effects in time durations, we introduce a set of dummy variables,

Dj,t−i, one for the first trading hour, one for the middle part of the day and a final

one for the last trading hour of the day. A Wald test of the null that all the lagged

diurnal dummies are jointly zero is performed. The null is rejected at a five percent

confidence interval with a p-value of 0.0375. The Ljung-Box statistic is also examined

to determine the proper lag structure in the VAR model specification and we identify

a structure with five lags.

The final VAR model specification is:
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∆qkt =
∑5

i=1

[
γqq,i + δqq,iln(T qt−i)

]
∆qkt−i +

∑5
i=0

[
γqω,i + δqω,iln(T ωt−i)

]
∆ωt−i + ...

+
∑3

j=1Dj,t∆ωt + υ1,t

∆ωt =
∑5

i=1

[
γωq,i + δωq,iln(T qt−i)

]
∆qkt−i +

∑5
i=1

[
γωω,i + δωω,iln(T ωt−i)

]
∆ωt−i + ...

+
∑3

j=1Dj,t−1∆ωt−1 + υ2,t

(1.13)

1.4.1 The Relevance of Time in the VAR System

The estimated VAR coefficients are shown in Tables 1.5-1.7 where the bold format is

used to indicate the values of the coefficients that are statistically significantly different

from zero at a five percent confidence level. We use White’s heteroscedasticity and

autocorrelation consistent standard errorsto compute the Wald and the t-statistics.

[ Insert Tables 1.5 - 1.7 ]

We initially run three different models with slightly different specifications. In Model

1 (see Table 1.5) we study the joint behavior of cumulative liquidity changes and levels

of trade activity. We notice again strong signs of autocorrelation in both the liquidity

and the trade activity equations. In the liquidity equation, we also detect a negative

relationship between changes in cumulative liquidity and the overall level of trading

activity. Liquidity and transactional time are significant but only at the very first lags,

while there seems to be no deterministic component in transactional time. In the trade

equation, we immediately observe a positive relationship between trading activity and
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liquidity. Time is again statistically relevant but only at the first lag showing, in this

case, both a stochastic and a deterministic component. These very first results tend to

confirm our initial findings. Due to inventory effects, liquidity tends to dry up with time

and with an increase in trade activity. Also, the greater the time between consecutive

transactions and the lower the associated liquidity. This result can be explained with

the risk-adverse behavior of a market making agent who, in the absence of fresh and

incoming information, channelled through trades, is less inclined to provide liquidity.

Looking at the size of the coefficient, liquidity time seem to have a stronger impact

than transactional time in both the equations, being positively related to changes in

liquidity and negatively related to trade activity. This again can be explained looking

at the decaying-pattern of liquidity. A greater time at which liquidity moves from one

state to another is typically associated to a lower trading activity which, at the same

time, allows liquidity to accumulate at a faster pace at given price level.

Very similar results are obtained in Model 2 (see Table 1.6), where changes in cu-

mulative liquidity are related also to changes in the liquidity displayed at the best price

in the order book. The coefficients for the trade time durations are still negative, in

both the equations, as in Dufour and Engle (2000), despite being statistically signifi-

cant only at the first two lags. The negative correlation can be explained by the fact

that liquidity dries up slowly as transactions become less frequent. A lower number of

transactions may be associated with a higher degree of informational asymmetry in the

market and this explains why the liquidity posted by a market maker is automatically

reduced due to a higher risk aversion. The coefficients of the dummy variables in the

trade equation are particularly significant unlike in the liquidity equation where no sign



CHAPTER 1. MOVING FROM PRICE TO LIQUIDITY DISCOVERY 37

of diurnal deterministic effects can be observed. The estimation results also point to a

strong autocorrelation in both the available liquidity and the trade activity equations.

The negative autocorrelation in the liquidity process can be explained through an in-

ventory analysis of limit order books. The existence of feedback strategies can instead

explain the positive autocorrelation in the trade activity equation. The presence of

a greater number of informed trading agents, initially responsible for an increase in

trading activity, may also be used to supports this result.

In Model 3 (see Table 1.7), we relate changes in cumulative liquidity to variations

in trading activity. Unlike in the previous cases, we immediately observe a negative

autocorrelation in the trade process and a positive and statistically significant impact

of trade durations in both the equations. We also notice a strong presence of diurnal

effects in transactional time in the first equation, despite only in the first hour of the

trading day, while again the three dummies seem to be all statistically significant in

the trade equation.

We test the stochastic and diurnal effects of time and report the results in Table

1.8.

[ Insert Table 1.8 ]

The first column of Table 1.8 shows Wald statistics for the hypothesis that the time

coefficients, including the coefficients of the dummy variables, are jointly zero. The null

is rejected in both the liquidity and the trade equations. In the second column, we test

if the diurnal dummy alone is statistically significant and, also in this case, we reject

the null of hypothesis in the case of the trade equation. Finally, in the third column, we

test the significance of the stochastic component and we find strong stochastic effects
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in the time process in the two equations considered in the analysis. The sum of the

time coefficients is positive and also statistically different from zero.

The estimation results for the TACD model are presented in Table 1.9. Quasi-

maximum likelihood is used under the assumption of an exponential distribution for

the standardized durations. In particular, as discussed in Pacurar (2008), the standard

exponential distribution is often used given that provides quasi-maximum likelihood

(QML) estimators for the ACD parameters. Consistent and asymptotically normal es-

timates of the ACD model are obtained by maximizing the quasi-likelihood function,

even if the distribution of the standardized durations x̃i = xi/ψiφ (ti−1) is not expo-

nential. In the TACD model, we use two different regimes, Rk=1 and Rk=2, with the

threshold indicators being a function of the rolling mean and standard deviation of

both liquidity time. The first trading regime, Rk=1, is characterized by low trading

volatility or, equivalently, by high time durations. Conversely, a high trading intensity

and short time durations can be observed in the second trading regime, Rk=2. Figure

1.8 shows the threshold indicators during May 6, 2010. In particular, we plot the liq-

uidity time for the available liquidity at k = 0 ticks from the best displayed price in

the order book (dark blue line) together with the threshold indicators (light blue line).

Low volatility, or alternatively, high liquidity durations can be observed during the first

and the last hours of the trading session. The trading hours where liquidity displays

the highest turnover are between 6:00 am and 9:00 am and between 12:00 and 15:00 pm

during London time. Liquidity time shows the tendency to increase as we approach the

London close and peaks at around 18:00 before moving lower again due to the higher

liquidity exchanged during the NY hours.
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[ Insert Table 1.9 and Figure 1.8 ]

From the estimation results, we can observe a high statistical significance in the au-

toregressive parameter (beta coefficient) in all the different models used. Both the trade

and liquidity time processes are weakly stationary given that
∑n

i=1 αi +
∑n

i=1 βi < 1

despite being close to unity showing a certain degree of persistence. In Table 1.9 we

also show that the autoregressive parameter is more significant and of greater relevance

in the second regime characterized by a higher trading intensity. A number of misspec-

ification tests for the TACD model are presented in Tables 1.10-1.11. We report a set

of normality tests, a Box-Pierce test for serial correlation in the standardized residuals

with lags equal to 5, 10, 20 and 50 and finally a Box-Pierce tests for serial correlation

in the squared standardized residuals again with lags equal to 5, 10, 20 and 50. We find

evidence of strong serial correlation in both the liquidity and trade duration equations

and strong signs of non-normality across the different regimes.

[ Insert Tables 1.10 - 1.11 ]

In Tables 1.12-1.13 we show the autocorrelations and the Ljung-Box tests for stan-

dardized and squared standardized time durations in the two trading regimes. Testing

the assumption of independence in the standardized time durations provides an addi-

tional diagnostic check on the model. For the TACD (1,1), the Ljung-Box is much less

then the statistic for the raw and adjusted durations shown in Table 1.13 across the

different regimes. The statistics strongly exceeds the 5% critical value in the case of

liquidity durations and in the second regime. The autocorrelation is otherwise very

weak particularly in the first regime. Similar results are obtained in the case of squared
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standardized durations where the autocorrelation is even weaker. These statistics show

that, despite the initial misspecification tests, the TACD (1,1) model is still able to pro-

vide satisfactory results and account for the intertemporal dependence in transaction

arrival times.

For completeness, in Appendix C, we report the results of the estimation for the

general exponentialACD (EACD) and EXponential ACD (EXACD) models as shown

in Tables 1.16-1.17 respectively where QML has also been used.

[ Insert Tables 1.12 - 1.13 ]

1.4.2 Analysis of the Model’s Dynamics

In this section, we measure the impact of an exogenous shock, due to unexpected

trading activity, on available liquidity using impulse response functions. Given that∑n
i=1 δω,i 6= 0, we use a Montercarlo experiment to construct an estimator for the

impulse response function where liquidity is conditional on both transactional and liq-

uidity time durations. We follow a similar approach as in Dufour and Engle (2000)

where we first filter out time-of-day effects from both the transactional and liquidity

duration series by fitting a piece-wise linear spline to obtain a diurnally adjusted series

with unit mean. We then fit an exponential TACD (1,1) model on the adjusted time

series and estimate the conditional time durations. The estimated coefficients of the

TACD model, used to construct the impulse response functions, are presented in the

first columns of the bottom panel of Table 1.9. The QML estimates of the TACD co-

efficients are obtained using standard GARCH software where the dependent variable

is set equal to
√
x(i) and the conditional mean equal to zero.We use the exponential
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TACD to simulate the conditional durations n = 60 steps forward, we then compute the

impulse response function for each of the n steps using the estimated VAR coefficients

from Table (1.5), we repeat the procedure over 5, 000 times, and finally average the

outcome of the impulse response function at each time step.

We consider three models based on alternative specifications for the impulse func-

tions. We use the representation in (1.6), introduced by Hasbrouck (1991), where

υ2,t = 1 represents an exogenous shock in the trade activity equation. We indicate the

first model with the notation HS. We then use the same approach as in Dufour and

Engle (2000) and compute impulse response functions as in (1.7) where trade durations

are assumed non-constant. We indicate the second model with the notation DE. We

finally run model (1.12) where both liquidity and time durations are assumed to be

non-constant. We indicate the third model with the notation UM. We run the three

models across different trading regimes and we report the results in Table 1.14. We first

consider the entire trading day without any distinction between high and low trading

volatility regime. We then analyze a regime, indicated with R1, characterized by low

trading volatility and high trade durations. We finally consider a regime, indicated

with R2, characterized by high trading volatility and low trade durations. In all these

scenarios, we start from a steady-state equilibrium where ∆ωt = 0 and ∆qt = 0 with

q0
t = q∗ at time t = 0. We introduce a shock in the trade activity equation equal to

υ2,t = 1 and measure the subsequent impact on the liquidity process.

[ Insert Table 1.14 ]

The plot of the different function outputs are reported in Figure 1.9. The adjustment

time for liquidity to converge to the equilibrium level tends to be quicker and smoother
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when only the central and most liquid hours of the trading day are considered. In the

first row of the graph we show the adjustment process of cumulative available liquidity

adjusts when the entire trading sample is considered. It takes an average of 90 - 100

seconds for cumulative available liquidity at k = 0−2 ticks from the best displayed price

to recover from the exogenous shock. The second row shows the adjustment process

during the most illiquid times of the trading day, where transactions are less frequent

and trading volatility low. The adjustment process is much more erratic and noisy and

it takes an average of 250 seconds for liquidity to absorb the shock. The third row

shows the liquidity adjustment process during the most liquid part of the day where it

takes an average of 60 - 80 seconds for liquidity to move back towards equilibrium.

A comparison between impulse response functions across different trading volatility

regimes is shown in Figure 1.10. We can observe that the liquidity adjustment process is

much slower and erratic in the first regime (R1) characterized by lower trading volatility

and higher time durations compared to the second regime (R2). Figure 1.11 shows

instead a comparison between different models across the two trading regimes. In

particular, we compare the model where only trading durations are non-constant (model

DE), with the model where both the liquidity and the transactional time are non-

constant (model UM). The impulse response functions obtained from the two models

converge at the same time. However, model UM shows larger shock waves around the

equilibrium level in the two trading regimes considered in the analysis. Not surprisingly

the size of the liquidity jump is also bigger, on average, in the first trading regime due

to the lower trading volatility and liquidity depth and in the second model due to

fact that liquidity time is assumed to be non-constant. Moving across regimes, we can
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observe that positive liquidity shocks are more persistent and of greater size in the

second model.

[ Insert Figures 1.9 - 1.11 ]

It is interesting to note that liquidity experiences an initial negative jump following

unexpected trading activity only in the first model across the different trading regimes

considered. A negative jump is recorded in the second and in the third model only in the

first trading regime. However, in the second regime, the liquidity jump is positive for

both model two and three. We believe that this liquidity behavior is due to a different

risk aversion level across the two trading regimes considered. In the second regime a

market making agent is clearly less risk-adverse and more inclined to provide liquidity

even in the event of unexpected trading due to a higher level of market activity and

greater transparency. The ability of the market maker to distinguish between informed

vs. uninformed trading activity, in the first regime, is much lower due to the lack of

flows and informational content. This explains a negative liquidity jump following an

unexpected trade.

We confirm the previous estimation results presented as in Easley and O’Hara

(1992), Lyons (1995), Dufour and Engle (2000) and Payne (2003) and conclude that,

following an external shock, liquidity adjusts at a higher rate during times of high

volatility and low transactional durations. The convergence towards an equilibrium

level becomes slower during times of low volatility and high transactional durations.

The negative relationship between information content of trades and durations indi-

cates that, during times-of-day characterized by lower volatility and market activity,
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the duration between consecutive transactions tends to be higher, the liquidity impact

of a trade more persistent and the liquidity adjusting process slower.

1.4.3 Model Sensitivity to Microstructural Variables

A final important step in our analysis is to investigate the significance of a number

of microstructural variables to address not only the possible additional contribution in

explaining market liquidity but also to evaluate the degree of correlation with stochastic

time.

We extend model (1.13) as follows:

bi =
[
γqω,i +

∑J
j=1 λ

q
j,ω,iDj,t−i + δqω,iln

(
T ωt−i

)
+ θq1,ω,inoit−i + θq2,ω,imoit−i + θq3,ω,ist−i

]
di =

[
γωω,i +

∑J
j=1 λ

ω
j,ω,iDj,t−i + δωω,iln

(
T ωt−i

)
+ θω1,ω,inoit−i + θω2,ω,imoit−i + θω3,ω,ist−i

]
(1.14)

The extended model allows the time dependent coefficients to be a function of three

additional transactional variables; noit represents the net-order imbalance given by the

difference between new limit orders on the bid and on the ask side of the order book at

k = 0 − 2 ticks from the best price, moit a market impact variable given by the ratio

between price change and the level of trading activity at time t − 1; and st the price

spread measured as the difference between the bid and the ask price at time t expressed

in units of the domestic currency.

From a comparison of the results reported in Table 1.15 with those reported in Table

1.5, we notice that the coefficients, γi, δi and λi are substantially the same which favors
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the conclusion that the three additional variables complement the explanatory power

of the original stochastic time model. Strong autocorrelation at all lags is still evident

in both the equations. The different set of coefficients in the four columns of Tables

1.5-1.15 are of the same size and sign. In particular we observe from the second column

of the Tables that changes in trade activity negatively impact the available liquidity

even if the effect tends to fade quickly soon after the first lags. Liquidity duration

remains positively related to liquidity as shown in the third column of the Table 1.15

while there are still signs of a strong negative relationship between trade durations and

both changes in trade activity and liquidity as shown in the four column of Table 1.15.

The coefficients for the diurnal dummy are statistically significant only in the trading

equation of both models as shown in the fifth column of Tables 1.5 and 1.15.

Looking at the three additional transactional variables, we observe a strong signif-

icance in the price spread in both the liquidity and the trading equations (θ3,i) while

both the net order imbalance (θ1,i) and the market impact of a trade (θ2,i) show a

poor explanatory power in both the equations. Not surprisingly an increase in price

spread is responsible for a decrease in volumes and in the displayed liquidity especially

at lags greater than one. Net order imbalance is statistically significant in the liquidity

equation even if the net effect is close to zero, while it fails to show any significance in

the trade activity equation. The sign of the market impact variable is in line with the

one of the lagged trade activity and indicates the presence of a high degree of trading

volatility clustering. Trading activity seems to become more frequent during periods

of high market volatility and when the market impact of a trade is large potentially

pointing to informed trading. This is particularly relevant looking at the sign and the
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size of the coefficients of the trading equation in the seventh column of Table 1.15.

[ Insert Table 1.15 ]

1.5 Final Remarks

In Chapter 1, we extended the vector autoregressive model with time dependent coeffi-

cients introduced by Hasbrouck (1991) and Dufour and Engle (2000) in order to study

the relationship between available liquidity and trading activity in foreign exchange

markets. The main novelties of our study can be summarized as follows. First, we use

a specific measure of liquidity directly observed from the foreign exchange markets as

opposite to a liquidity proxy measured by transactional volumes and trade frequency.

Second, the dynamic behavior of liquidity is estimated by allowing time to have a

deterministic and a stochastic component. Third, we make a further distinction by

identifying a stochastic liquidity and transactional time. Finally, we model conditional

expected durations using a regime switching threshold representation in order to incor-

porate a state dependent trading intensity. We use transactional, time stamped, data

for EUR/USD spot over the trading week, from May 3 to May 7, 2010.

There is robust empirical evidence of a strong negative relationship between both the

levels and the changes in trading activity and the changes in the amount of available

liquidity in a limit order book, strong and persistent autocorrelation effects and a

significant impact of time durations in both the liquidity and in the trade activity

process especially at the first lags. No deterministic component could be found in the

liquidity time process. Strong diurnal effects were instead found in the transactional

time process. Impulse response functions were used to study the impact of exogenous
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shocks, in the form of unexpected trade activity, on liquidity. We found that unexpected

trade activity has an initial but only temporary negative impact. The use of regime

switching threshold models allowed us to identify and capture different sensitivities

of liquidity between two trading regimes. During times of high volatility and intense

turnover, liquidity adjusted quickly to the equilibrium level reached in the previous

state. During times of low volatility and poor market activity, instead, the adjustment

process became slower and more erratic. In addition to time dependence, we have also

evaluated the impact of a number of microstructural variables. A strong statistically

significant negative relationship between price spreads and market activity and changes

in displayed liquidity was observed, while other variables like net order imbalance and

market impact showed weak if not insignificant relationships.

The results presented in Chapter 1 have interesting practical implications and can

be particularly relevant in the analysis of dynamic order-allocation strategies or in the

construction of high frequency algorithmic trading programmes. The most common

issues for a market making trading agent are to identify at what price levels liquidity is

available and for what size, to understand how liquidity evolves through time and under

different trading regimes and to measure the speed at which liquidity can converge back

to the equilibrium level following an external shock to the system. We believe that the

framework presented in this study gives an important contribution to address these

issues. The impulse response functions derived from the regime switching model also

allow to distinguish between temporary and permanent shocks in the liquidity process

and to isolate the information content of a trade. In this chapter we have also measured

the impact of an exogenous shock, caused by unexpected trading activity, on an en-



CHAPTER 1. MOVING FROM PRICE TO LIQUIDITY DISCOVERY 48

dogenous liquidity process. However, we did not address the transmission mechanism

between liquidity and prices and considered the causality effects of a liquidity shock.

The significance of a liquidity jump can be tested using combinations of conventional

nonparametric tests for jumps as shown in Dumitru and Urga (2012). This step will

not only allow us to exploit the information content of genuine jumps but also the

possibility to forecast and measure the price impact of a liquidity jump. This exercise

is even more relevant when considering a data set characterized by high volatility. This

line of research is developed in Chapter 2.
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Table 1.2: Estimated coefficients for trade equation.

The Table reports the coefficient estimates for the trade equation. ∆ωkt represents changes in the
trading activity, where k represents a binary variable assuming values equal to 0 if the trade activity is
performed on the bid side of the market and values equal to 1 if the trade activity is performed on the
offer side of the market. More specifically a transaction on the bid (offer) side of the market is recorded
when (i) a buy (sell) limit order is matched by a sell (buy) market order, under the assumption that
market orders can only be executed against the best limit orders available at a certain price and also
(ii) when a new limit order is added to the order book. The standard errors are corrected by using
White’s heteroskedasticity consistent covariance estimator to construct Wald and t−statistics. Bold
denotes significance at the 5 percent level.
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Table 1.3: Estimated coefficients for liquidity equation.

The Table reports the coefficient estimates for the liquidity equation. ∆qkt represents changes in
cumulative available liquidity, observed on the bid side of the order book, at k = 0− 2 ticks from the
best displayed price. ∆q1t , ∆q2t and ∆q3t represent the available liquidity, observed on the bid side of
the order book, at k = 0, 1 and 2 ticks respectively from the best displayed price in the book. The
standard errors are corrected by using White’s heteroskedasticity consistent covariance estimator to
construct Wald and t-statistics. Bold denotes significance at the 5 percent level.
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Table 1.4: Autocorrelations of time durations.

The Table reports the autocorrelations of both liquidity and transactional durations measured in
millisecond. Liquidity duration is the time, measured in milliseconds, between changes in cumulative
available liquidity at k = 0− 2 ticks from the best displayed price. Transactional duration is the time,
measured in milliseconds, between two consecutive market orders. Bold denotes significance at the 5
percent level.
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Table 1.5: Model 1 - Estimated coefficients for liquidity and trade equation.

The Table reports the coefficient estimates for both the liquidity and the trade activity equations as
in 1.13 (Model 1). ∆qt represents changes in cumulative available liquidity at k = 0 − 2 ticks from
the best displayed price, ωt represents instead the level of trading activity on the buy side of the order
book. More specifically a transaction on the bid (ask) side of the market is recorded when (i) a buy
(sell) limit order is matched by a sell (buy) market order, under the assumption that market orders
can only be executed against the best limit orders available at a certain price and also (ii) when a new
limit order is added in the order book. T qt is the time observed for changes in cumulative available
liquidity at k = 0− 2 ticks from the best displayed price while the variable Tωt represents the duration
between two consecutive market orders both expressed at a millisecond level. Finally, Dt represents
the diurnal dummy variable used to indicate the time of the day. The standard errors are corrected
by using White’s heteroskedasticity consistent covariance estimator to construct Wald and t-statistics.
Bold denotes significance at the 5 percent level.



CHAPTER 1. MOVING FROM PRICE TO LIQUIDITY DISCOVERY 54

Table 1.6: Model 2 - Estimated coefficients for liquidity and trade equation.

The Table reports the coefficient estimates for both the liquidity and the trade activity equations as
in 1.13 (Model 2). ∆qt represents changes in cumulative available liquidity at k = 0 − 2 ticks from
the best displayed price, ωt represents instead the level of trading activity on the buy side of the order
book. More specifically a transaction on the bid (ask) side of the market is recorded when (i) a buy
(sell) limit order is matched by a sell (buy) market order, under the assumption that market orders
can only be executed against the best limit orders available at a certain price and also (ii) when a new
limit order is added in the order book. ∆q1t represents changes in the available liquidity at the best
displayed price in the order book also referred as liquidity at best. T qt is the time observed for changes
in cumulative available liquidity at k = 0− 2 ticks from the best displayed price while the variable Tωt
represents the duration between two consecutive market orders both expressed at a millisecond level.
Finally, Dt represents the diurnal dummy variable used to indicate the time of the day. The standard
errors are corrected by using White’s heteroskedasticity consistent covariance estimator to construct
Wald and t-statistics. Bold denotes significance at the 5 percent level.
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Table 1.7: Model 3 - Estimated coefficients for liquidity and trade equation.

The Table reports the coefficient estimates for both the liquidity and the trade activity equations as
in 1.13 (Model 3). ∆qt represents changes in cumulative available liquidity at k = 0− 2 ticks from the
best displayed price, ∆ωt represents instead changes in trading activity on the buy side of the order
book. More specifically a transaction on the bid (ask) side of the market is recorded when (i) a buy
(sell) limit order is matched by a sell (buy) market order, under the assumption that market orders
can only be executed against the best limit orders available at a certain price and also (ii) when a new
limit order is added in the order book. ∆q1t represents changes in the available liquidity at the best
displayed price in the order book also referred as liquidity at best. T qt is the time observed for changes
in cumulative available liquidity at k = 0− 2 ticks from the best displayed price while the variable Tωt
represents the duration between two consecutive market orders both expressed at a millisecond level.
Finally, Dt represents the diurnal dummy variable used to indicate the time of the day. The standard
errors are corrected by using White’s heteroskedasticity consistent covariance estimator to construct
Wald and t-statistics. Bold denotes significance at the 5 percent level.
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Table 1.8: The significance of time in the liquidity and trade activity equations.

The Table reports the statistical significance of the diurnal and the stochastic component in both the
liquidity and transactional duration equations. The standard errors are corrected by using White’s
heteroskedasticity consistent covariance estimator to construct Wald and t-statistics. Bold denotes
significance at the 5 percent level.
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Table 1.12: Autocorrelations of standardized time durations in TACD model.

The Table reports the autocorrelations of standardized liquidity and trade durations measured
in millisecond in the two regimes considered R = [1, 2]. Standardized durations are defined as
x̃i = x1/ψ1φ (ti−1) where xi represents either liquidity or transactional durations, ψ1 the respec-
tive conditional durations and φ (ti−1) the diurnal adjustment factor. Liquidity duration is the time,
measured in milliseconds, between changes in cumulative available liquidity at k = 0−2 ticks from the
best displayed price. Trade duration is the time, measured in milliseconds, between two consecutive
market orders. Bold denotes significance at the 5 percent level.
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Table 1.13: Autocorrelations of squared standardized time durations in TACD model.

The Table reports the autocorrelations of squared standardized liquidity and trade durations mea-
sured in millisecond in the two regimes considered R = [1, 2]. Standardized durations are defined as
x̃i = x1/ψ1φ (ti−1) where xi represents either liquidity or transactional durations, ψ1 the respective
conditional durations and φ (ti−1) the diurnal adjustment factor. Liquidity duration is the time, mea-
sured in milliseconds, between changes in cumulative available liquidity at k = 0 − 2 ticks from the
best displayed price. Trade duration is the time, measured in milliseconds, between two consecutive
market orders. Bold denotes significance at the 5 percent level.
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Figure 1.6: Histogram of time durations.

The Figures show the histogram and respective distribution of adjusted liquidity and transactional
durations. Liquidity time is the time, measured in milliseconds, between changes in available liquidity
at k = 2 ticks from the best displayed price. Transactional time is the time, measured in milliseconds,
between two consecutive market orders.
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Figure 1.9: Impulse response functions for available liquidity.

The Figures show a number of impulse response functions for cumulative available liquidity at different
point in time during the trading week and assuming different model specifications. We run three models
under different market regimes. We start from the model presented by Hasbrouck (HS), we then add
time variant coefficient as in Dufour and Engle (DE) and finally study the behavior of liquidity as
described in this chapter (UM). We also analyze three different trading scenarios. We first consider
the entire trading day without any distinction between high and low trading volatility regimes (M:
Tot). We then analyze a regime characterized by low trading volatility and high time durations (M:
R1). We then analyze a regime characterized instead by high trading volatility and low time durations
(M: R2). In all the scenarios, we start from a steady-state equilibrium level where ∆ωt = 0 and
∆q0t = 0 with q0t = q∗ at t = 0. We then introduce a shock in the trade activity equation equal to
υ2,t = 1 and measure the impact on the liquidity process through the impulse response functions.
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Figure 1.10: Impulse response functions: comparison across regimes.

The Figure shows a comparison between impulse response functions across different trading volatility
regimes using model UM. We first analyze a regime characterized by low trading volatility and high
time durations (M: R1). We then analyze a regime characterized instead by high trading volatility
and low time durations (M: R2). In all the scenarios, we start from a steady-state equilibrium level
where ∆ωt = 0 and ∆q0t = 0 with q0t = q∗ at t = 0. We then introduce a shock in the trade activity
equation equal to υ2,t = 1 and measure the impact on the liquidity process through the impulse
response functions.
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Figure 1.11: Impulse response functions: comparison across regimes.

The Figures show a comparison between impulse response functions obtained from different models and
across two trading volatility regimes. The two models considered are the time variant coefficient model
introduced by Dufour and Engle (DE) and the model presented in this chapter (UM). We analyze two
different trading scenarios. We first analyze a regime characterized by low trading volatility and high
time durations (M: R1). We then analyze a regime characterized instead by high trading volatility
and low time durations (M: R2).
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1.6 Appendix A: A Family of Models for Stochastic Trade Arrival Times

In Appendix A we provide a brief overview of the most common models for trade arrivals

which can be considered a general extension of the ACD model introduced by Engle

and Russell (1998) and Dufour and Engle (2000). A more comprehensive analysis of

the theoretical and empirical literature on ACD models can be found in Pacurar (2008).

Given a series of trade durations xi = ti−ti−1, where ti represents the time at which

an event has occurred, the conditional expected durations are represented by:

ψi = E(xi |zi−1) = ψi(xi−1, zi−1) (1.15)

where xi−1 and zi−1 show the past value of the trade durations and trade marks re-

spectively and zi−1 the information set available at time ti−1. An important assumption

of ACD models is that the standardized durations ε̂i = xi/ψiφ(ti−1) are independent

and identically distributed with E(εi) = 1 and higher order moments also independent.

Different specifications of the process for the expected durations ψi and different

distributional assumptions for εi will produce a number of models for trade durations.

In the original ACD model proposed by Engle and Russell (1998), conditional expected

durations are described using a linear ARMA-type representation:

ψt = $ +

p∑
j=1

αjxt−j +

q∑
i=1

βiψt−i (1.16)

where, in order to ensure positive conditional durations, sufficient but not necessary
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conditions impose that ω > 0, α > 0 and β > 0. (1.16) can be rewritten as

xt = $t +

max(p,q)∑
j=1

(αj + βj)xt−j −
q∑
j=1

βjηt−j + ηt (1.17)

by letting η ≡ xt − ψt . The sufficient condition in order to have a covariance-

stationary stochastic process imposes that
∑m

j=1 αj+
∑q

j=1 βj < 1. The density function

p(ε, θε) is instead defined on a non-negative support, the most common choice being

either the Exponential (EACD) or the Weibull (WACD) distribution. The parameters

of this first class of models, θ ≡ ($,α, β), are estimated by maximizing the following

log-likelihood function:

L (θ) =
N∑
i=1

[log (γ/xi) + γlog (xi/ψi)− (xi/ψi)
γ] (1.18)

which, in the Exponential case, when γ = 1, becomes:

L (θ) = −
N∑
i=1

[xi/ψi + logψi] (1.19)

In the case of EACD models, consistent and asymptotically normal estimates of

θ are obtained by maximizing the quasi-likelihood function described in (1.19) even

if the distribution of ε is not exponential and provided that the conditional mean

is correctly specified and that the standard errors are adjusted for heteroskedasticity

and autocorrelation. An important limitation of EACD models relates, however, to a

constant hazard function while WACD models allow an increasing (decreasing) hazard

function by assuming γ > 1 (γ < 1).
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Despite being the most common models for time durations, several extensions to

the EACD and WACD representations have been recently proposed. The Fractionally

Integrated ACD (FIACD) model has been introduced to handle the high persistence and

the significant autocorrelation up to a good number of lags of many financial duration

series. In the FIACD model the conditional expected duration is defined as

[1− β(L)]ψt = $ + [1− β(L)− [1− φ(L)](1− L)d]xi (1.20)

where φ(L) = α(L)+β(L) and where (1−L)d =
∑∞

k=0 Γ(k−d)Γ(k+1)−1Γ(−d)−1Lk

with Γ being the gamma function. When d = 1 the FIACD model becomes an Inte-

grated ACD (IACD).

In order to avoid negative expected durations Logarithmic ACD (LACD) models

are instead introduced where the logarithm of the conditional expected duration is

represented as:

log (ψt) = $ +
m∑
j=1

αjlog (xi−j) +

q∑
j=1

βlog (ψi−j) (1.21)

or equivalently using the standardized durations:

log (ψt) = $ +
m∑
j=1

αjlog (εi−j) +

q∑
j=1

(βj − αj)log (ψi−j) (1.22)

where the following condition is imposed |α + β| < 1 in order to ensure covariance

stationary coefficients. The estimation is still performed by maximum likelihood (ML)

with the Exponential or the Weibull distributions being the most used representations
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for the density p(ε; θε).

The EXponential ACD (EXACD) models are introduced to deal with a potential

nonlinear dependence between the conditional duration and past trade durations and

to measure the asymmetric impact of short vs. long durations. In particular, the

conditional duration is modelled using an asymmetric function of past durations:

log (ψt) = $ +
m∑
j=1

[αjεt−j + δj (|εt−j − E (εt−j)|)] +

q∑
i=1

βilog (ψt−i) (1.23)

The regression slope in (1.23) depends on the trade duration being greater or lower

than the conditional mean.

An alternative non-linear ACD modelling specification assumes the existence of a

certain number of trading regimes each characterized by different dynamics and distri-

butional features. A k -regime Threshold ACD (TACD) model is given by

xi = ψiε
k
i

ψi = ωk +
∑m

j=1 α
k
jxi−j +

∑q
j=1 β

k
j ψi−j

(1.24)

where εki is an i.i.d vector with positive and regime specific intensities. The vector

k = {1, 2, ..., K} denotes the number of regimes with 0 = r0 < r1 < ... < rK = ∞

being the threshold values often identified with the presence of structural breaks in

the time series. Again stationarity conditions impose the following restrictions on the

parameters: ωk > 0, αkj > 0 and βkj > 0.
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1.7 Appendix B: Data re-sampling - Matlab Code

In Appendix B we show the Matlab code used to re-sample the original dataset and to

create the microstructural variables from the liquidity data from the limit order book:

Calendar time conversion and resampling

while r < length(k) for i = 1:length(TRCN)

if k(r) < TRCN(i)

Q_bid_1(x+1) = Q1(i); P_bid_1(x+1) = L1(i);

Q_bid_2(x+1) = Q2(i); P_bid_2(x+1) = L2(i);

Q_bid_3(x+1) = Q3(i); P_bid_3(x+1) = L3(i);

Time_T(x) = TRC(i); Time_T_R(x+1) = T1(i);

r = r+1; x = x+1;

elseif k(r) > TRCN(i)

Q_bid_1(x+1) = Q1(i); P_bid_1(x+1) = L1(i);

Q_bid_2(x+1) = Q2(i); P_bid_2(x+1) = L2(i);

Q_bid_3(x+1) = Q3(i); P_bid_3(x+1) = L3(i);

Time_T(x) = TRC(i); Time_T_R(x+1) = T1(i);

r = r; x = x;

end

end

end

Q_bid_T = Q_bid_1+Q_bid_2+Q_bid_3;
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Determination of market orders and new limit orders for the bid side of the

order book

for i = 1:dii-1

if P_bid_1(i+1) == P_bid_1(i)

if Q_bid_1(i+1) - Q_bid_1(i) < 0

MO_Sell(i+1) = Q_bid_1(i) - Q_bid_1(i+1);

NLim_bid_1(i+1) = 0;

elseif Q_bid_1(i+1) - Q_bid_1(i) >= 0

MO_Sell(i+1) = 0;

NLim_bid_1(i+1) = Q_bid_1(i+1) - Q_bid_1(i);

end

elseif P_bid_1(i+1) < P_bid_1(i)

MO_Sell(i+1) = Q_bid_1(i);

NLim_bid_1(i+1) = 0;

elseif P_bid_1(i+1) > P_bid_1(i)

MO_Sell(i+1) = 0;

NLim_bid_1(i+1) = 0;

end

end

Determination of new limit orders and cancelled orders at second price level

of the bid side of the order book

for i = 1:dii-1

if P_bid_2(i+1) == P_bid_2(i)
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if Q_bid_2(i+1) - Q_bid_2(i) < 0

CLim_bid_2(i+1) = Q_bid_2(i) - Q_bid_2(i+1);

NLim_bid_2(i+1) = 0;

elseif Q_bid_2(i+1) - Q_bid_2(i) >= 0

CLim_bid_2(i+1) = 0;

NLim_bid_2(i+1) = Q_bid_2(i+1) - Q_bid_2(i);

end

elseif P_bid_2(i+1) < P_bid_2(i)

CLim_bid_2(i+1) = 0; NLim_bid_2(i+1) = 0;

elseif P_bid_2(i+1) > P_bid_2(i)

CLim_bid_2(i+1) = 0;

NLim_bid_2(i+1) = 0;

end

end

1.8 Appendix C: Estimation Results for the EACD and the EXACDModel

In Appendix C we provide the estimation results for the EACD and the EXACD Models

respectively.
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Table 1.16: EACD Model Estimations.

The Table below shows the parameter estimates for Exponential Autoregressive Conditional Dura-
tion (EACD) models on both liquidity and transactional durations, expressed in milliseconds, and
after removing the diurnal effects through a polynomial interpolation. The terms $µ and $σ refer
to the constant terms in the conditional mean and variance equations respectively. The standard er-
rors are corrected by using White’s heteroskedasticity consistent covariance estimators. Bold denotes
significance at the 5 percent level.

EACD (1,1) EACD (2,2) EACD (1,1) EACD (2,2)

Liquidity Duration Coefficient Trade Duration Coefficient

$µ 0.5739 0.5729 $µ 0.5316 0.5317

$σ - 0.0004 $σ 0.0002 0.0004

α1 0.0181 0.0204 α1 0.0152 0.0150

α2 - 0.0212 α2 - 0.0152

β1 0.9819 -0.0173 β1 0.9848 -0.0143

β2 - 0.9756 β2 - 0.9841

Likelihood -33150 -33089 Likelihood -40376 -33150

AIC 1.6593 1.6564 AIC 2.0210 2.0210

BIC 1.6597 1.6574 BIC 2.0216 2.0220
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Table 1.17: EXACD Model Estimations.

The Table below shows the parameter estimates for EXponential Autoregressive Conditional Duration
(EXACD) models on both liquidity and transactional durations, expressed in milliseconds, and after
removing the diurnal effects through a polynomial interpolation. Conditional durations depend on
m past durations and q past expected durations. The model allows to measure the different impact
on conditional duration of asymmetric time durations in the case where the durations are shorter or
longer than the conditional mean. In the event where εi < 1 the slope factor equals θ1 − θ2 while
εi > 1 is associated to a slope factor equal to θ1 + θ2. The terms $µ and $σ refer to the constant
terms in the conditional mean and variance equations respectively. The standard errors are corrected
by using White’s heteroskedasticity consistent covariance estimators. Bold denotes significance at the
5 percent level.

EXACD (1,1) EXACD (2,2) EXACD (1,1) EXACD (2,2)

Liquidity Duration Coefficient Trade Duration Coefficient

$µ 0.5767 0.5765 $µ - 0.5331

$σ - - $σ - -

α1 -0.5775 0.4254 α1 -0.9025 0.2743

α2 - -0.5945 α2 - -0.7372

β1 0.9975 -0.0018 β1 1.0023 -0.0009

β2 - 0.9969 β2 - 0.9953

θ1 0.0418 0.0424 θ1 0.0558 0.0507

θ2 0.1071 0.1090 θ2 0.2206 0.1217

Likelihood -33094 -33081 Likelihood -53146 -40575

AIC 1.6566 1.6560 AIC 2.6601 2.0311

BIC 1.6577 1.6575 BIC 2.6610 2.0362





CHAPTER 2

A TESTING PROCEDURE FOR CO-JUMPS

2.1 Introduction

Chapter 2 presents a co-jump testing procedure based on the combination of univariate

tests for jumps. Statistical tests that combine independent p-values using the union

of rejections decision rule are discussed in Neuhauser (2003) and Harvey et al. (2009,

2011), while Loughin (2004) and Cheng and Sheng (2010) use combinations of p-values

combinations. Dumitru and Urga (2012) propose a testing methodology, robust to spu-

rious detection and microstructural noise, based on combinations of jump tests mea-

sured at different frequencies. The combination of tests allows to detect a lower number

of spurious jumps or, equivalently, a greater percentage of truly-identified jumps. We

extend this methodology to a multivariate context in order to identify common jumps

between different stochastic processes.

The contribution of this chapter to the literature on co-jumps is threefold. First, we

present a testing procedure alternative to the existing tests for co-jumps. The approach

used here allows us to address some of the issues with the existing tests, to extend

the notion of a co-jump event and to identify a lower number of spurious co-jumps.

85
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The existing literature on non-parametric tests for co-jumps has only been recently

developed mainly as an extension of the univariate tests for jumps. Barndorff-Nielsen

and Shephard (2004a, 2004b) introduce the concept of realized bi-power covariation in

order to test for co-jumps in multivariate price process as a natural evolution of the

work on quadratic variation in the univariate case. Brandt and Diebold (2006) use a

range based measure of the volatility of a portfolio of assets to estimate the covariance

of the portfolio components. Bollerslev et al. (2008) focus on the covariance structure

of intraday returns to construct a more robust test statistic for co-jumps where the

notion of a cross product statistic, defined as normalized sum of individual returns,

is used to measure the covariation of a portfolio of stocks. Bannouh et al. (2009)

use a realized corange measure to estimate quadratic covariation which also captures

important feature of microstructural models. Jacod and Todorov (2009) propose a test

for co-jumps using a higher order power variation. Gobbi and Mancini (2012) allow both

finite and infinite jump activity between two semimartingale processes and present an

efficient and robust estimator of the diffusion part of the integrated covariation and

of the co-jumps. Liao and Anderson (2011) introduce the notion of first-high-low-last

which also provides a more efficient covariance estimator by using the full intraday price

history of the asset price. In the common notion of a co-jump used in the literature two

or more stochastic processes are characterized by a simultaneous and discontinuous path

over a given time interval. The jumps are traditionally both exogenous and no causality

between the two can be inferred. In this chapter, instead, we identify a causality

effect between different jumps observed over a fixed time interval. We also present

different types of co-jumps, and in particular we distinguish between contemporaneous,
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permanent and lagged or exogenous co-jump events. We finally assess the performance

of the proposed co-jump testing procedure under different levels of the jump intensity

factor, jump size, correlation and microstructural noise. The issue of microstructural

noise becomes particularly relevant and could severely affect the performance of the

jump and co-jump tests especially when the data are collected and observed at a high

frequency. We show that the proposed testing procedure is robust in power to different

types of microstructural noise and can be easily adjusted to take into account the issue

of non-synchronous trading highlighted in Bannough et al. (2009).

The chapter is organized as follows. Section 2.2 introduces the proposed co-jump

testing procedure when the data are either re-sampled over equally spaced time intervals

or observed at a tick-by-tick level. Section 2.3 describes the results of the Monte Carlo

experiment used to evaluate the performance of a number of univariate tests for jumps

and to analyze the size and the power of the various tests for co-jump. Section 2.4

concludes.

2.2 A Co-Jump Testing Procedure

The co-jump testing procedure presented in this chapter is based on a number of com-

binations of univariate tests for jumps for different stochastic processes and observation

frequencies. In particular, we propose two distinct testing methodologies.

With the first set of tests, we combine univariate tests for jumps, computed at

different observation frequencies, to define contemporaneous, permanent and lagged co-

jump events. The tests can be used when the data are observed over regular time

intervals of equal size and at different frequencies.
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With the second set of tests, we combine univariate tests for jumps, computed over

non-overlapping time intervals, to define contemporaneous, permanent and exogenous

co-jump events. The tests can be used when the data are observed at a tick-by-tick

level and not necessarily re-sampled over intervals of equal size.

Figure 2.1 shows the different jump and co-jump tests presented in the chapter for

data re-sampled over equally spaced time intervals (left panel) and tick-by-tick data

(right panel) respectively.

[ Insert Figure 2.1 ]

Re-sampled data. In the presence of a data set, re-sampled over equally spaced

time intervals, and in the case of three main re-sampling frequencies, where a time unit

corresponds to one second, we identify three distinct temporary jump events, observed

at a frequency of 1, 5 and 10 time units respectively over the time interval [0, T ].

In a multivariate context, a contemporaneous co-jump event is observed when two

or more jump events occur over the same time interval. In particular, we identify a

contemporaneous co-jump event at a frequency of 1, 5 and 10 time units when two

or more temporary jump events, observed at a frequency of 1, 5 and 10 time units

respectively, occur simultaneously over the time interval [0, T ]. A permanent co-jump

event occurs when a co-jump, observed at a certain frequency over the time interval

[0, T ], is also observed at a lower frequency over the same time interval. In particular,

we identify a permanent co-jump event when a co-jump event at a frequency of 1 time

unit is also observed at a frequency of 5 time units or alternatively when a co-jump

event at a frequency of 5 time units is also observed at a frequency of 10 time units



CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS 89

over the same time interval. Finally, a lagged co-jump event occurs when the jump

of one asset, observed at a certain frequency, is followed, over the same time interval

[0, T ], by the jump of a second asset at a lower frequency under the condition of no

contemporaneous co-jumps between the two assets. In particular, in the presence of

two stochastic processes, we identify a lagged co-jump event when the following jump

events are simultaneously observed over the same time interval [0, T ]: a jump in asset

one, at a frequency of 1 time units, is detected together with a jump in asset two, at a

frequency of either 5 or 10 time units, but not at the same frequency of 1 time unit.

Tick-by-tick data. In the presence of a data set observed at a tick-by-tick level, we

identify a temporary and a permanent jump event. In particular we define a temporary

jump event, over two non overlapping time intervals ]T − t, T ] and ]T, T + t], when a

jump observed over the interval ]T − t, T ] is not observed over the interval ]T, T + t].

A temporary jump is also called exogenous as no temporal causality can be established

between consecutive jumps. Alternatively, a permanent jump event is defined when a a

jump observed over the interval ]T − t, T ] is also observed over the interval ]T, T + t]. In

this context, a permanent jump is also defined as endogenous as the likelihood to detect

a jump over the time interval ]T, T + t] may be influenced by the presence of a jump

over the time interval ]T − t, T ]. Similarly, in a multivariate context, a contemporane-

ous (permanent) co-jump event is identified when two temporary (permanent) jump

events are observed over two non overlapping time intervals. Finally, we identify an

exogenous co-jump event when two consecutive exogenous jumps are observed, over two

non overlapping time intervals, or, alternatively, an endogenous co-jump event when

two consecutive endogenous jumps are observed or when one endogenous jump occurs
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together with an exogenous jump. It follows that a permanent co-jump will always also

be endogenous and that an exogenous co-jump will always be contemporaneous.

In the next section we provide a more formal set of definitions for the different

types of jump and co-jumps events together with the methodology used to construct

the various tests proposed in this chapter and used in the empirical applications in

Chapter 3.

2.2.1 Jump and Co-Jump Test Indicator Functions

Let X be a random vector of returns generated from a probability distribution Px. Let

J be a subsample of X representing a random vector of extreme returns or jumps with

J =
[
j(1)..., j(n)

]
. The null hypothesis H0 :j(i) ∈ Ω0 is tested against the alternative

hypothesis of H1 : j(i) ∈ Ω1 for i = 1...n and with Ω0 and Ω1 being disjoint subsets of

Ω. Ω0 represents the subset of non-statistically significant jumps and Ω1 the subset of

statistically significant jumps in the jump space Ω. Alternatively Ω0 defines the region

of acceptance of H0 while the subset Ω1 defines the rejection or critical region. The

univariate jump test statistics, ϕ(j), determines whether to reject H0, accepting H1 as

true, or alternatively accept H0.

Definition 1. Let ϕ(j) be a univariate jump test statistic characterized by a known

statistical distribution. We define JT[0,T ] as a jump test indicator function which as-

sumes values equal to one when the null of no-statistically significant jumps is rejected

at a significance level α over the time interval [0, T ] and values equal to zero otherwise.

More formally, for a pre-specified significance level α and critical value c(α), we define
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the jump test indicator function as:

{
JT[0,T ] := 1

∣∣Ω1(α) : ϕ(j)[0,T ] > c(α)

}
(2.1)

The definition provided in (2.1) can be used to identify both temporary and perma-

nent jump events.

Moving to the multivariate case, we denote with Xi,j a matrix of correlated returns,

generated from a multivariate probability distribution, and Ji, Jj and CJi,j sub-samples

of Xi,j representing a random matrix of extreme returns or jumps for the stochastic

process i and j and the extreme simultaneous returns or co-jumps respectively with

CJ =
[
cj(1)...c, j(n)

]
. We define the null hypothesis as H0 :cj(i) ∈ Φ0 against the

alternative hypothesis of H1 : cj(i) ∈ Φ1 for i = 1...n and with Φ0 and Φ1 being disjoint

subsets of Φ. Φ0 represents the subset of non-statistically significant co-jumps and Φ1

the subset of statistically significant co-jumps in the co-jump space Φ. Alternatively,

Φ0 defines the region of acceptance of H0 while the subset Φ1 defines the rejection or

critical region.

Definition 2. Let ϕ1(j) and ϕ2(j) be the univariate jump test statistics charac-

terized by a known statistical distribution for the returns of two correlated stochastic

processes S(1) and S(2). We define (a) ϕ(cj) a multivariate co-jump test statistic char-

acterized by a given statistical specification and given by the product of ϕ1(j) and ϕ2(j)

and (b) CJT[0,T ] a co-jump test indicator which assumes values equal to one when the

null of no-statistically significant co-jumps is rejected at a significance level α over the
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time interval [0, T ] and values equal to zero otherwise.

More formally, for a pre-specified significance level α and critical value c(α) we define

the contemporaneous co-jump test indicator as:

{
CJT[0,T ] := 1

∣∣Φ1(α) : ϕ(cj)m,[0,T ] > c(α)

}
(2.2)

In particular, for d-assets whose returns are computed over an observation frequency

m, the contemporaneous co-jump test indicator is computed as:

CJT[0,T ] =
d∏
i=1

I
(
ϕ(j)i,m[0,T ]

)
(2.3)

where I (·) is a unit step function which assumes values equal to one for positive

defined arguments and m denotes the observation frequency. A similar definition is

also used in Lahaye et al. (2011). The definition, provided in (2.2), is used to identify

contemporaneous co-jump events when the data are both re-sampled over equally spaced

time intervals and observed at a tick-by-tick level. The combination of (2.1) and (2.2)

allows us to define also permanent and exogenous co-jump events. In particular:

Definition 3.1 Let ϕ(j)1,m(n), ϕ(j)2,m(n) and ϕ(cj)m(n) be the univariate jump and

co-jump test statistics respectively for the returns of two correlated stochastic processes

S(1) and S(2) at two different observation frequencies m and n with m < n. We define

PCJT[0,T ] a co-jump test indicator which assumes values equal to one when the null of

no-statistically significant permanent co-jumps is rejected at a significance level α over

the time interval [0, T ] and values equal to zero otherwise.

More formally, for a pre-specified significance level α and critical value c(α) we define
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the permanent co-jump test indicator as:

{
PCJT[0,T ] := 1

∣∣Φ1,m(α)Φ1,n(α) : ϕ(cj)m,[0,T ] ∩ ϕ(cj)n,[0,T ] > c(α)

}
(2.4)

withm < n. In particular, for d-assets whose returns are computed over observation

frequencies m and n, when the data are re-sampled over equally spaced time intervals,

the permanent co-jump test indicator is computed as:

PCJT[0,T ] =
n∏

z=m

{
d∏
i=1

I
(
ϕ(j)i,z[0,T ]

)}
(2.5)

In the case where the data are observed at a tick-by-tick level, we introduce the

following definition:

Definition 3.2 Let ϕ(j)1,T1(2)
, ϕ(j)2,T1(2)

, ϕ(cj)T1(2)
be the univariate jump and co-

jump test statistics respectively for the returns of two correlated stochastic processes S(1)

and S(2) over two non overlapping time intervals T1 = ]T − t, T ] and T2 = ]T, T + t]

where [T1,T2] ∈ [0, T ] with T2 > T1 . We define PCJT[T−t,T+t] a co-jump test indicator

which assumes values equal to one when the null of no-statistically significant permanent

co-jumps is rejected at a significance level α over the time interval [T − t, T + t] and

values equal to zero otherwise.

More formally, for a pre-specified significance level α and critical value c(α) we define

the permanent co-jump test indicator as:

{
PCJT[T−t,T+t] := 1

∣∣Φ1,T1(α)Φ1,T2(α) : ϕ(cj)T1 ∩ ϕ(cj)T2 > c(α)

}
(2.6)

The permanent test, when the data are observed at a tick-by-tick level, is computed
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as:

PCJT[T−t,T+t] =

Tt+1∏
z=Tt

{
d∏
i=1

I (ϕ(j)i,z)

}
(2.7)

Finally, we introduce the following definitions for the lagged and exogenous co-jump

events respectively.

Definition 4.1 Let ϕ(j)1,m, ϕ(j)2,n, ϕ(cj)m,n be the jump and the co-jump test

statistics respectively for the returns of two correlated stochastic processes S(1) and S(2)

at two different observation frequencies m and n with m < n. We define LCJT[0,T ] a co-

jump test indicator which assumes values equal to one when the null of no-statistically

significant lagged co-jumps is rejected at a significance level α over the time interval

[0, T ] and values equal to zero otherwise.

More formally, for a pre-specified significance level α and critical value c(α) we define

the lagged co-jump test indicator as:

{
LCJT[0,T ] := 1

∣∣Φ1,m,n(α) :
(
ϕ(cj)m,n \ ϕ(cj)m > c(α)

)}
(2.8)

In particular, for d-assets whose returns are computed over observation frequencies

{m1, ...,mn} with m1 < mn, and when the data are re-sampled over equally spaced

time intervals, the lagged co-jump test indicator is computed as:

LCJT[0,T ] = max

0,

[
d∏
i=1

I
(
ϕi,z(i)[0,T ]

)]
z=[m1,...,mn]

−

[
d∏
i=1

I
(
ϕi,z[0,T ]

)]
z=m,...,n

 (2.9)

where z = [m1, ...mn] is a vector of size d. Similarly, when the data are observed at
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a tick-by-tick level, the exogenous co-jump event is defined as:

Definition 4.2 Let ϕ1,T1(2)
, ϕ2,T1(2)

, ϕ(cj)T1(2)
be the univariate jump and co-jump

test statistics respectively for the returns of two correlated stochastic processes S(1) and

S(2) over two non overlapping time intervals T1 = ]T − t, T ] and T2 = ]T, T + t] where

[T1,T2] ∈ [0, T ] with T2 > T1 . We define ECJT[T−t,T+t] a co-jump test indicator which

assumes values equal to one when the null of no-statistically significant exogenous co-

jumps is rejected at a significance level α over the time interval [T − t, T + t] and values

equal to zero otherwise.

More formally, for a pre-specified significance level α and critical value c(α) we define

the exogenous co-jump test indicator as:

{
ECJT[T−t,T+t] := 1

∣∣Φ1(α) : ϕ(cj)T2 \ ϕ(cj)T2,T1 > c(α)

}
(2.10)

In particular, for d-assets whose returns are computed over two non overlapping

time intervals, the exogenous co-jump test indicator is computed as:

ECJT[T−t,T+t] = max

0,
d∏
i=1

I
(
ϕi,[T+t]

)
−

[
Tt+1∏
z=Tt

I (ϕi,z)

]
i=1,..,d

 (2.11)

The idea of an endogenous vs. exogenous jump together with the notion of a tem-

porary vs. permanent co-jump between two stochastic processes is new and provides

an interesting contribution to the literature. It also allows us to extend the common

notion of co-jump from portfolio theory and to better understand the individual con-

tribution of different stochastic processes to the co-jump event. For convenience, Table

2.1 reports the full set of jumps and co-jump test indicators. In particular, the top
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panel shows the test indicators used when the data are re-sampled over equally spaced

time intervals and for frequencies of 1, 5 and 10 time units. The bottom panel shows

instead the test indicators used when the data are observed at a tick-by-tick level over

two non-overlapping time intervals.

[ Insert Table2.1 ]

2.3 Monte Carlo Experiment

2.3.1 Simulation Design

The reference model for all the simulations reported in this chapter is a jump diffusion

model with compound Poisson jumps as described in Brigo et al. (2009). The stochastic

differential equation (SDE) for the stochastic process S(t) is given by:

dS(t) = µS(t)dt+ σS(t)dW (t) + S(t)dJ(t) (2.12)

whereW (t) is a univariate Wiener process and J(t) a univariate jump process which

is represented as:

dJ(t) =
(
YN(t) − 1

)
dN(t) (2.13)

where N(T ) represents a counting process which follows a homogeneous Poisson

process characterized by an intensity factor λ and distributed like a Poisson distribution

with parameter λT with Yj being the size of the j-th jump. The Yj’s are i.i.d. log-

normal variables, distributed with with mean µY and variance σ2
Y , independent from



CHAPTER 2. A TESTING PROCEDURE FOR CO-JUMPS 97

both the Brownian motion W and the Poisson process N . Applying Ito’s lemma to

f (S) = log (S) we can re-write (2.12) as:

dlogS(t) =

(
µ+ λµY −

1

2
σ2

)
dt+ σdW (t) +

[
log
(
YN(t)

)
dN(t)− µY λdt

]
(2.14)

The solution to (2.14) is given by:

S(T ) = S(0)exp((µ− σ2

2
)T + σW (T ))

N(T )∏
j=1

Yj (2.15)

We define X(t) := ∆log(S(t)) and apply a Euler-discretization of (2.15) to obtain:

X(t) = ∆log(S(t)) = µ∗∆t+ σ
√

∆tεt + ∆J∗t (2.16)

where ε ∼ N (0, 1), ∆J∗t =
∑nt

j=1 log(Yj) − λµY ∆t with nt = Nt − Nt−∆t and

µ∗ = (µ+ λµY − 1/2σ2).

In a multivariate set-up, where two correlated stochastic processes are modelled, we

re-write (2.15) as:

S(1)(T ) = S(1)(0)exp((µ(1) −
σ2
(1)

2
)T + σ(1)W(1)(T ))

∏N(1)(T )

j=1 Y(1)j

S(2)(T ) = S(2)(0)exp((µ(2) −
σ2
(2)

2
)T + σ(2)W(2)(T ))

∏N(2)(T )

j=1 Y(2)j

(2.17)

where the quadratic instantaneous covariation of the two Wiener processes is given

by < W(1)W(2) >= %(t)dt so that W(2)(t) = %(t)W(1)t +
√

(1− %(t))W(3) with W(1)

and W(3) being independent. As in the univariate case, Y(1),j and Y(2),j are i.i.d. log-

normal variables, distributed with mean µY (1) and µY (2) and variances σ2
Y (1) and σ

2
Y (2)
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independent from both the Brownian motion processes W(1) and W(2) and the Poisson

processes N(1)(T ) and N(2)(T ). The processes N(1)(T ) and N(2)(T ) are characterized by

a correlation structure implied by %(t)dt.

In order to simulate two correlated stochastic processes, we use a Cholesky decom-

position where we first compute Z ∼MN (0, I) and then we set V = CTZ with C being

the Cholesky decomposition of the variance-covariance matrix of the two processes de-

noted with Σ. The algorithm introduced by Yahav and Shmueli (2011) is used, instead,

to simulate the two correlated Poisson processes, under the assumption of a constant

rate vector where λ(1) = λ(2). In particular, we first simulate two correlated and nor-

mally distributed Wiener processes WN
(1)(t) and WN

(2)(t), and then calculate the normal

cumulative density functions (CDF) for each value WN
(i), with i = 1, 2. We denote the

CDF with Φ
(
WN

(i)

)
. We finally compute the Poisson inverse CDF, with rate λ(i), as

W P
(i) = Ξ

{
Φ
(
WN

(i)

)}
. The vector W P

(i) will be a two-dimensional Poisson vector with

correlation matrix Σ. The Matlab code and the algorithm used in the simulation can

be found in Appendix A.

We initially simulate m = 2, 000 returns over a frequency of dt = 1 time unit,

we then re-sample the simulated data over intervals of dt = 5 and 10 time units and

finally re-run the simulation n = 1, 000 times. In particular, we denote with r(i),1, r(i),5

and r(i),10 the simulated returns at a frequency of one, five and ten time units for the

stochastic process S(i) for i = 1, 2. The simulated time series consists of r1 = 2, 000,

r5 = 400 and r10 = 200 returns for each simulation. Table 2.2 reports the value of the

parameters used in the Monte Carlo simulation.

[ Insert Table 2.2 ]
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Figure 2.2 shows the simulated path, across n = 1, 000 simulations, of the stochastic

process S(1) under the assumption of jumps (blue line) and zero jumps (red line). The

jumps have been simulated using λ(1)dt = 0.25%, or, equivalently, k = 5 total number

of jumps over the time horizon considered. Figure 2.3 shows instead the simulated path,

across n = 1, 000 simulations, of the stochastic processes S(1) and S(2) again under the

assumption of jumps (blue line) and zero jumps (red line) and the combined path of

the processes under the assumptions of jumps. The jumps have been simulated using

λ(1)dt = λ(2)dt = 0.05% and % = 0.50. Finally, the first two panels of Figure 2.4 show

the quadratic variation of S(1) and S(2) respectively under the assumption of jumps (blue

line) and zero jumps (red line) while the bottom panel shows the quadratic covariaton

of S(1) and S(2) again under the assumption of jumps (blue line) and zero jumps (red

line). The jumps have been simulated using λ(1)dt = λ(2)dt = 0.05% and %(1,2) = 0.50.

Not surprisingly, we notice that, in the presence of jumps, the quadratic variation and

the quadratic covariation show a greater number of spikes and are both characterized

by a higher level of clustering compared to the case where jumps are assumed to be

zero.

[ Insert Figures 2.2 - 2.4 ]

2.3.2 Monte Carlo Findings

We divide our Monte Carlo analysis in three distinct parts. First, we perform a com-

prehensive evaluation of the most common univariate tests for jumps. In particular, we

estimate the linear and the ratio Barndorff-Nielsen and Shephard (2005) tests (LBNS

and RBNS respectively), the Andersen et al. (2012) MinRv and MedRV test (MinRV
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and MedRV respectively), the Jiang and Oomen (2008) test (JO), the Andersen, Boller-

slev and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) test (ABD-LM), the

Corsi et al. (2010) test (CPR) and the Podolskij and Ziggel (2010) test (PZ). We com-

pute the size and the size corrected power of the univariate tests under different levels

of jump intensity, jump size and microstructural noise using a 5% significance level.

Second, we compute the first battery of co-jump tests based on combinations of uni-

variate tests for jumps measured and estimated at different frequencies. In particular,

we consider a frequency of 1, 5 and 10 time units over a fixed time interval ofm = 2, 000

observations. We evaluate the size and the power of the test presented again under dif-

ferent levels of jump intensity, jump size, correlation and microstructural noise using a

5% significance level.

Finally, we compute the second battery of co-jump tests on simulated data which is

observed at a tick-by-tick level over non-overlapping time intervals and not re-sampled

over a fixed observation frequency. As in the previous case, we evaluate the size and

the power of the tests under different levels of jump intensity, jump size, correlation

and microstructural noise using a 5% significance level.

2.3.2.1 An Evaluation of the Univariate Tests for Jumps

SIZE. In order to evaluate the size of the univariate tests for jumps we use the jump

diffusion model specified in (2.12). We also indicate with JT1, JT2 and JT3 the jump

test indicators measured at a frequency of 1, 5 and 10 time units. The top-left section

of Table 2.3 reports the size of the univariate tests for jumps under the assumption of

µ(1) = µY (1) = 0.00, σ(1) = σY (1) = 0.10 and zero microstructural noise ($ = 0.00). We
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immediately notice a big size distorsion in the case of the ABD-LM test at different

sampling frequencies, with a size of 2.40% at a frequency of one, five and ten time

units. We also find evidence of a slight oversize in the case of the LBNS, the RBNS,

the MinRV and the PZ tests at a frequency of one and five time units. The MedRV

and the JO test are slightly undersized especially at a frequency of five time units.

POWER.We use the jump diffusion model specified in (2.12) to evaluate the power

of the tests by adding a continuous jump process characterized by a different intensity

factor and jump size.

Varying jump intensity. Under the alternative hypothesis of discontinuous price

paths, and in order to examine the performance of the univariate tests for jumps as

the number of jumps increase, we allow λdt = {0.05%, 0.25%, 0.50%, 2.50%, 5.00%}

over the time frame considered in the analysis. The power refers, in this case, to the

ability of the tests to detect a jump when the jump intensity factor is different from

zero. For different values of the lambda factor, we consider a jump size that is normally

distributed with µY (1) = 0.00 and σY (1) = 0.10. The level of the microstructural noise

is again set at zero ($ = 0.00). Table 2.3 reports the size corrected power of the

univariate tests for jumps. We notice that the frequency of correctly identified jumps

increases as the jump intensity raises. In particular, all the tests considered display a

strong power at a frequency of 1 and 5 time units. A slightly lower power is observed

as the sampling frequency decreases. This is particular evident in the case of the JO

test and for high levels of lamdba. The best tests in terms of power are the LBNS,

the RBNS, the ABD-LM and the CPR while the PZ and the JO test display, on a

average, a weaker power especially at lower frequencies. The LBNS, the RBNS and the
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CPR tests are again ranked high in terms of power also at low frequencies. A similar

behavior was also observed in Dumitru and Urga (2012).

[ Insert Table 2.3 ]

Varying jump size. We also study the power of the jump tests by letting the

jump size vary. In particular, we draw the jump size from a normal distribution with

zero mean and a standard deviation that varies from σY (1) = 0.10 to σY (1) = 1.25. We

assume that the jump intensity factor remains constant and equal to λdt = 0.25%.

Table 2.4 reports the size corrected power of the univariate tests for jumps. The LBNS

and the RBNS display again the best power together with the JO and the CPR tests.

The MinRV and the MedRV tests display a lower power when the observation frequency

decreases and the jump volatility increases. The PZ test is the worst in terms of power

among all the tests considered in the analysis when the jump volatility is low. The

ability of the test to detect jump increases and converges to the power of the other

tests when the jump volatility increases. Finally, the ABD-LM test displays a very

consistent powers across different levels of jump volatilities but ranks slightly lower

compared to the LBNS, the RBNS and the JO tests.

[ Insert Table 2.4 ]

Impact of Microstructural Noise. The size and the size corrected power of the

univariate tests for jumps is also assessed under different levels of micro-structural noise.

We consider two types of noise. First, as in Dumitru and Urga (2012), we simulate an

i.i.d. microstructural noise normally distributed with mean zero and a varying variance.
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We add the simulated noise to the jump diffusion model described in (2.12) and study

the statistical properties of the jump tests when the variance of the noise increases.

We then analyze the microstructural noise caused by rounding effects and discreteness

of the observations. This type of noise can be particularly relevant when the data are

conditionally heteroskedastic or serially correlated. The issue of heteroskedasticity and

serial correlation becomes even more relevant when data are observed at a very high

frequency.

Table 2.5 reports the size of the univariate tests for jumps under different sampling

frequencies and noise variances for the first type of noise. In particular, we let the noise

volatility σn vary from σn = 0.10 to σn = 1.25 under the assumption of σ(1) = σY (1) =

0.10, µ(1) = µY (1) = 0.00 and λ(1)dt = 0.00%. With the exception of the PZ test, the

remaining tests suffer from undersize at a frequency of 1 time unit. While the size of the

other tests tends to converge to the nominal size at lower frequencies, the JO and the

ABD-LM tests are still affected by undersize at a frequency of 5 and 10 time units. The

degree of undersize is particularly evident as the noise variance increases as shown with

the ABD-LM test. The PZ test suffers from oversize when the noise variance moves to

σn = 0.50 with the size distorsion being particularly severe at high levels of noise and,

in particular, at σn = 1.25. The oversize of the test shows also the tendency to increase

with lower re-sampling frequencies. Table 2.6 reports the size corrected power of the

tests under the presence of the first type of microstructural noise. In particular, we

simulate the process under the assumption of σ(1) = σY (1) = 0.10, µ(1) = µY (1) = 0.00

and λ(1)dt = 0.25% and a noise volatility again ranging from σn = 0.10 to σn = 1.25.

The power of the various tests is only moderately affected by an increase in the noise
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variance. The best performing test is the LBNS, followed by the RBNS and the ABD-

LM. The MinRV and the MedRV also rank high. Among all the tests considered, the

PZ test shows the smallest power especially at lower frequencies. However, the loss in

power does not seem to be caused by an increase in noise volatility. The power of the

test varies between 77% and 92% when σn = 0.10 and falls to a range of 77% to 89%

when σn = 1.25. It is interesting to notice that, across the various tests, a decrease in

power is associated to lower frequencies and tends to be more evident at high levels of

noise. As a final remark, we observe that, while the power of the univariate tests for

jumps seems to be only moderately affected by the presence of microstructural noise,

the size distorsion is particularly evident when data are re-sampled at a high frequency.

Pre-averaging or noise reducing techniques may be necessary to limit the effects of

microstructural noise especially when dealing with empirical data observed at a high

frequency.

[ Insert Tables 2.5 - 2.6 ]

Table 2.7 reports the size (top panel) and the size corrected power (bottom panel)

of the univariate tests for jumps in the presence of noise caused by rounding effects.

In particular, we use three different rounding rules and run the tests at different re-

sampling frequencies. In order to evaluate the size of the tests, we simulate the process

under the assumption of σ(1) = σY (1) = 0.10, µ(1) = µY (1) = 0.00 and λ(1)dt = 0.00%

and an imposed rounding of rnd = 3, 2 and 1 decimal places respectively. The biggest

size distorsion is observed in the case of the LBNS, the RBNS and the CPR tests when

1 decimal place is used in the rounding and at a frequency of 1 time unit. The ABD-

LM test appears undersized in particular at a frequency of 1 time units and when 3
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decimal places are used in the rounding. With the exception of the ABD-LM test, we

observe, on average, a slight oversize of the various tests which increases as the number

of decimal places used in the rounding decreases. The power of the tests is evaluated

under the assumption of σ(1) = σY (1) = 0.10, µ(1) = µY (1) = 0.00 and λ(1)dt = 0.25%

and an imposed rounding of rnd = 3, 2 and 1 decimal places respectively. As in the

case of a white noise with varying variance, we do not find evidence of major effects

on the power of the tests when rounding is introduced. The best power is displayed

by the LBNS, the RBNS, the MinRV and the MedRV tests followed by the JO test

when 3 decimal places are used in the rounding. A similar ranking can be observed

when 2 decimal places are used while the CPR test displays the best power after the

LBNS and the RBNS when 1 decimal place is used. The power of the ABD-LM test

is stable across frequencies and rounding levels but tends to rank lower compared to

the other tests. The worst performance in terms of power is displayed by the PZ test.

Not surprisingly, and in line with previous results, we observe a decreasing power with

lower re-sampling frequencies.

[ Insert Table 2.7 ]

Conclusions. The presence of microstructural noise can affect the size and the

ability of the tests to detect jumps especially when the data are observed and measured

at a high frequency. The best performing tests, under different types of microstructural

noise, are the LBNS, the RBNS, the MinRV and the MedRV. The JO test also shows

a good performance especially when the degree of discreteness in the data is not too

extreme unlike the CPR test which tends to be robust in power also when data are
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affected by rounding effects. Among the various tests the weaker performance is shown

by the ABD-LM and the PZ test which is severely affected by the types of noise consid-

ered at lower frequencies. The power of the ABD-LM test tends to remain stable across

different frequencies and increasing levels of noise but ranks lower than the other tests.

2.3.2.2 Co-Jump Tests I: re-sampled data

In order to compute the first battery of co-jump tests we consider data generated by

the multivariate jump diffusion model specified in (2.17) and subsequently re-sampled

at a frequency of 1, 5 and 10 time units. The log-returns, at different frequencies, are

computed over the same time interval [0, T ].

We indicate with CJT1, CJT2 and CJT3 the contemporaneous co-jump test indi-

cators measured at a frequency of 1, 5 and 10 time units. We indicate with PCJT1,

PCJT2 and PCJT3 the co-jump test indicators for permanent co-jumps observed re-

spectively at a frequency of 1 and 5, 5 and 10 and 1 to 5 and 5 to 10 time units combined

over the same time interval. We finally denote with LCJT1, LCJT2 and LCJT3 the

co-jump test indicator for lagged co-jumps observed respectively at a frequency of 1 to

5, 1 to 10, and 1 to 5 and 1 to 10 time units combined over the same time interval. The

size and the power of the co-jump tests are evaluated at a 5% significance level.

SIZE. The top-left section of Table 2.8 reports the size of the co-jump test indicators

CJT1, PCJT1 and LCJT1 under the assumption of µ(1) = µ(2) = µY (1) = µY (2) = 0,

σ(1) = σ(2) = σY (1) = σY (2) = 0.10, %(1,2) = 0.50 and zero microstructural noise ($ =

0.00). The full set of results, for different observation frequencies, is available upon

request. The best performing contemporaneous co-jump test, in terms of size, is the
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PZ followed by the MinRV and the MedRV tests. The biggest size distorsion is observed

in the case of the RBNS, the ABD-LM and the CPR test where the average size is 6.8%.

The size of the permanent co-jump tests are very close to the nominal size of 5.00% even

we notice a slight undersize in the case of the PZ, the CPR and ABD-LM tests. The

lagged co-jump tests show signs of oversize and in particular in the case of the MedRV,

the LBNS and the ABD-LM tests. The best performing test is the CPR followed by

the PZ test.

POWER. In order to study the power of the co-jump tests, we again consider the

case of a varying jump intensity, correlation between the two stochastic processes and

different types of microstructural noise.

Varying jump intensity. We consider, for the two correlated stochastic pro-

cesses, a jump size that is normally distributed with mean zero and standard devi-

ation equal to 0.10 and let the jump intensity λ vary. In particular, we let λdt =

{0.05%, 0.25%, 0.50%, 2.50%, 5.00%} and assume that the jump intensities of the two

processes are the same, i.e. λ(1)dt = λ(2)dt. Table 2.8 reports the size corrected power

of the co-jump test indicators CJT1, PCJT1 and LCJT1 under the assumption of

µ(1) = µ(2) = µY (1) = µY (2) = 0, σ(1) = σ(2) = σY (1) = σY (2) = 0.10, %(1,2) = 0.50 and

zero microstructural noise ($ = 0.00). The full set of results, for different observation

frequencies, is available upon request. In line with the univariate case, we observe that

the frequency of correctly identified co-jumps increases as the jump intensity factor

raises. The best contemporaneous co-jump test in terms of power is the JO followed

by the LBNS test. The corrected power for these tests is greater than 80% in the case

where λ(1)dt = λ(2)dt = 0.05% (e.g. average number of 1 jump over the time interval
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considered) and increases to an average of 99.9% when λ(1)dt = λ(2)dt = 0.25% (e.g.

average number of 5 jumps over the time interval considered). The worst contempora-

neous co-jump test in terms of power is the PZ, followed by the CPR and the MinRV.

A similar ranking is also observed in the case of the permanent and lagged co-jump

tests with the JO and the RBNS displaying the greatest power. The power of all the

co-jump tests shows the tendency to converge to 1.00 as the jump intensity factor λdt

moves to values equal to 0.50%. In particular, the best improvement, in terms of power,

is shown by the PZ, the CPR, the MinRV and the ABD-LM tests.

[ Insert Table 2.8 ]

Varying correlation factor. Table 2.9 reports the size corrected power of the co-

jump test indicators CJT1, PCJT1 and LCJT1 under different levels of the correlation

variable %(1,2) and, in particular, when we allow %(1,2) to vary from 0.00 to 0.95 under

the assumption of µ(1) = µ(2) = µY (1) = µY (2) = 0, σ(1) = σ(2) = σY (1) = σY (2) = 0.10

and λdt = 0.05%. In the absence of correlation, we notice that the contemporaneous

co-jump tests rank higher than the permanent and the lagged co-jump tests across the

different test statistics used to construct the co-jump tests with the exception of the

ABD-LM and the PZ tests. We also notice that, on average, all co-jump tests show the

tendency to decrease in power when the correlation factor raises while the difference

in power between contemporaneous, permanent and lagged is not as marked at higher

levels of correlation compared to the case where correlation is zero. In the absence of

correlation, the best performing test is the JO followed by the LBNS tests. A similar

ranking is also observed at different correlation levels and across the different co-jump
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tests. The worst performance is shown by the PZ test which shows an average corrected

power of 67% compared to an average of 75% across the different co-jump tests.

Impact of Microstructural Noise. The top panel of Table 2.10 shows the size

and the size corrected power of the co-jumps tests in the presence of an i.i.d. mi-

crostructural noise with mean zero and varying variance σn. In particular we allow two

different noise regimes. In the first regime, σn assume values equal to 0.10 (low noise)

while in the second regime σn = 1.00 (high noise). The fist six columns of the Table

report the size while the last six columns the size corrected power under the assumption

of µ(1) = µ(2) = µY (1) = µY (2) = 0, σ(1) = σ(2) = σY (1) = σY (2) = 0.10, %(1,2) = 0.50 and

λdt = {0.00%, 0.05%}. We notice that the average size of the various co-jump tests

tends to be much higher than the average size of the test in the absence of noise. This

is also true when we compute the test under a regime characterized by low noise. In

particular, we notice a big size distorsion in the case of the contemporaneous co-jumps

tests constructed from the LBNS, the MinRV and the MedRV tests. The size of the

tests is very close to the nominal size of 5% in the case of the permanent co-jump tests

even if we observe still a slight oversize in the case of the MinRV and the MedRV tests.

Similar issues of oversize are also observed in the case of lagged co-jump tests and in

particular when the PZ, the MinRV and the MedRV test are used. The size of the PZ

test overshoots under a regime characterized by high noise. This result is in line with

the univariate case where we also observed a very large size distorsion from the PZ test

for high levels of noise. The best performing test in terms of power and under a low

noise regime is the JO test followed by the LBNS and the RBNS. The PZ and the CPR

tests are instead characterized by a lower power especially in the case of high structural
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noise. In particular, the lagged CPR test suffers from very little power together with

the MedRV compared to the other tests.

The bottom panel of Table 2.10 shows the size and the size corrected power of the co-

jump tests in the presence of noise caused by rounding effects. As in the previous case,

we first introduce a regime where the noise is low and where we impose a rounding of rnd

= 3 decimal places and, subsequently, introduce a regime where the noise is high and

where we impose a rounding of rnd = 1 decimal place. The size and the size corrected

power of the test is computed under the assumption of µ(1) = µ(2) = µY (1) = µY (2) = 0,

σ(1) = σ(2) = σY (1) = σY (2) = 0.10, %(1,2) = 0.50 and λdt = {0.00%, 0.05%}. As in the

univariate case, rounding effects can affect the size of the co-jump tests as shown, in

particular, when only 1 decimal place is used. We notice that the average size of the co-

jump tests tends to be slightly higher in the case of low noise compared to the size of the

test in the absence of noise. This is particularly relevant in the case of contemporaneous

and lagged co-jump tests. The size of the LBNS, the RBNS, the MinRV and the CPR

is severely affected by the rounding noise. Even if the size of the tests gets closer to the

nominal level in the case of permanent co-jumps, we can still observe a high degree of

oversize for the permanent LBNS and CPR tests and the lagged LBNS and the RBNS

tests. The power of the co-jump tests seems to be less affected by noise. The best

performance is shown by the contemporaneous JO test, followed by the LBNS and the

MedRV tests. The power tends to decrease as we move from the contemporaneous to

the lagged case. Also, with the exception of the LBNS, the RBNS and the CPR test

we notice that the power of the various tests decreases slightly as we move from a low

to a high noise regime.
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[ Insert Tables 2.9 - 2.10 ]

2.3.2.3 Co-Jump Tests II: tick-by-tick data

In order to compute the second battery of co-jump tests we generate tick-by-tick data

and compute the log-returns over non overlapping time intervals of fixed size. The sim-

ulations are generated from the multivariate specification of the jump diffusion model

described in (2.12). The size and the power of the co-jump tests are evaluated at a 5%

significance level. In particular, we compute three co-jump test indicators in order to

detect contemporaneous, permanent and exogenous co-jump events denoted with CJT ,

PCJT and ECJT respectively.

SIZE. The top-left section of Table 2.11 reports the size of the co-jump test indi-

cators under the assumption of µ(1) = µ(2) = µY (1) = µY (2) = 0, σ(1) = σ(2) = σY (1) =

σY (2) = 0.10, %(1,2) = 0.50 and zero microstructural noise ($ = 0.00). We notice a size

distorsion in the case of the contemporaneous co-jump tests which appears, on average,

greater then the one observed with the first battery of tests. The oversize is particularly

evident in the case of the contemporaneous PZ, the MinRV and the MedRV tests. The

permanent co-jump tests are also affected by size issues with the LBNS, the RBNS, the

CPR and the PZ tests displaying oversize while the JO and the ABD-LM tests being

slightly undersized compared to the nominal size of the tests. The exogenous co-jump

tests are are also characterized by a higher size compared to the case of the first battery

of tests. The biggest size issue can be observed in the case of the CPR and the PZ

tests.

POWER. In order to study the power of the second battery of co-jump tests,
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we again consider the case of a varying jump intensity, correlation between the two

stochastic processes and different types of microstructural noise.

Varying jump intensity. Table 2.11 reports the size corrected power of the co-

jump test indicators under under the assumption of µ(1) = µ(2) = µY (1) = µY (2) =

0, σ(1) = σ(2) = σY (1) = σY (2) = 0.10, %(1,2) = 0.50 and zero microstructural noise

($ = 0.00) where λdt = {0.05%, 0.25%, 0.50%, 2.50%, 5.00%}. The rate of correctly

identified co-jumps shows the tendency to increase as the jump intensity factor moves

from 0.05% to 5.00%. In particular, we notice that, while the power of the second

battery of contemporaneous co-jump tests is smaller then the power displayed by the

first battery of tests, this is not the case for the permanent and the exogenous co-jump

tests. The exogenous co-jump tests, computed from the second battery of tests, also

show a greater power than the permanent co-jump tests. The power of tests converge

to 99%−100% as we move to λdt = 0.25%. The speed of convergence is slightly higher

than in the case of the first battery of tests.

[ Insert Tables 2.11 ]

Varying correlation factor. Table 2.12 shows the power sensitivity of the co-

jump tests when we allow %(1,2) to vary from 0.00 to 0.95 under the assumption of µ(1) =

µ(2) = µY (1) = µY (2) = 0, σ(1) = σ(2) = σY (1) = σY (2) = 0.10 and λdt = 0.05%. The

power of the various co-jump tests increases with higher correlation levels and also when

we move from the contemporaneous to the exogenous case. The best contemporaneous

co-jump test is the JO, followed by the LBNS and the RBNS tests. As in the previous

case, the worst performance is shown by the PZ and the CPR tests.
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Impact of Microstructural Noise. The top panel of Table 2.13 shows the size

and the size corrected power of the co-jumps tests in the presence of an i.i.d. mi-

crostructural noise with mean zero and varying variance σn. In particular we allow two

different noise regimes. In the first regime, σn assume values equal to 0.10 (low noise)

while in the second regime σn = 1.00 (high noise). The fist six columns of the Table

report the size while the last six columns the size corrected power under the assumption

of µ(1) = µ(2) = µY (1) = µY (2) = 0, σ(1) = σ(2) = σY (1) = σY (2) = 0.10, %(1,2) = 0.50 and

λdt = {0.00%, 0.05%}. The size distorsion, under a low noise regime, is not as severe

as in the case of the first battery of tests. The size of the permanent co-jump tests is

very close to the nominal value with the exception of the JO and the ABD-LM tests

both affected by a lower size. The size of the exogenous co-jump test is very similar

to the size of the contemporaneous co-jump tests especially under low levels of noise.

Under a regime characterized by high noise, we observe a very big size distorsion in the

case of the PZ test, affected, as in previous case, by large oversize. The CPR and the

JO tests are also affected by size issues. Finally, in terms of power, we do not detect

any big impact moving from a low to a high noise regime. This confirms the results

obtained with the first battery of tests.

The bottom panel of Table 2.13 shows the size and the size corrected power of the co-

jump tests in the presence of noise caused by rounding effects. As in the previous case,

we first introduce a regime where the noise is low and where we impose a rounding of rnd

= 3 decimal places and, subsequently, introduce a regime where the noise is high and

where we impose a rounding of rnd = 1 decimal place. The size and the size corrected

power of the test is computed under the assumption of µ(1) = µ(2) = µY (1) = µY (2) = 0,
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σ(1) = σ(2) = σY (1) = σY (2) = 0.10, %(1,2) = 0.50 and λdt = {0.00%, 0.05%}. Rounding

is particularly relevant in this case as we observe a very severe size distorsion with the

LBNS, the RBNS, the MinRV and the CPR tests. Even if this result is in line with the

findings obtained using the first battery of tests, the size distorsion, in this particular

case, seems more relevant. Finally, we notice a higher power, across the various tests,

when we move from rdn = 3.00 to rdn = 1.00 decimal places. The jump in power is

particularly visible in the case of the CPR and the MinRV permanent co-jump tests.

The best performing test, under a low noise regime, is the JO test followed by the LBNS

and the RBNS tests. The LBNS and the RBNS rank higher under a high noise regime

followed by the CPR and the JO tests.

[ Insert Tables 2.12 - 2.13 ]

2.4 Final Remarks

In Chapter 2, we considered different combinations of univariate tests for jumps and

proposed a co-jump testing methodology in order to detect statistically significant com-

mon jumps between two correlated stochastic processes. In particular, we introduced a

testing procedure in the case where the data are either re-sampled over equally spaced

time intervals or observed at a tick-by-tick level. We also presented different tests to

identify the presence of contemporaneous, permanent and lagged or exogenous co-jump

events.

A Monte Carlo experiment was also presented to first assess the statistical properties

of the univariate tests for jumps and, subsequently, to study the statistical properties of

the proposed co-jump testing procedure under different levels of the jump intensity fac-
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tor, jump size and microstructural noise. We found a strong sensitivity of the proposed

co-jump testing procedure to the jump intensity variable lambda and, in particular,

we found that the rate of correctly identified co-jumps tends to increase as the jump

intensity factor raises. While we found very little sensitivity of the first set of co-jump

tests to changes in the correlation factor, the size corrected power of the second set of

co-jump tests was positively affected by an increase in correlation. We also observed

a big size distorsion of the proposed co-jump testing procedure under different types

of microstructural noise. In particular, we found that the noise caused by rounding

effects can severely affect the size of the tests as shown in the case of the LBNS, the

RBNS, the MinRV and the CPR tests. We also noticed that the proposed co-jump

testing procedure is robust to different levels of noise as the power of the tests is not

particularly affected when we move from a low to a high noise regime. Overall, the

strongest performance, in terms of power, was displayed by the LBNS, the RBNS and

the JO followed by the MedRV tests while the PZ and the CPR tests were the most

affected by microstructural noise.

In the next chapter, we present an empirical application of the proposed co-jump

testing procedure. In particular, we use ultra high frequency data observed from the

EUR/USD FX spot market to relate liquidity shocks to EUR/USD FX spot price jumps

during the week from May 3 to May 7, 2010.
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Table 2.1: Formulae for Jumps and Co-jump test indicators

The table reports the formulae used to compute the jump and co-jump test indicators. In particular,
the top panel shows the test indicators used when the data are re-sampled over equally spaced time
intervals at an observation frequency of m and n time units. The bottom panel shows instead the
test indicators used when the data are observed at a tick-by-tick level over two non-overlapping time
intervals.

Code Formulae

Re-sampled data

Contemporaneous co-jump CJT
∏d
i=1 I

(
ϕ(j)i,m[0,T ]

)
Permanent co-jump PCJT

∏n
z=m

{∏d
i=1 I

(
ϕ(j)i,z[0,T ]

)}
Lagged co-jump LCJT max

{
0,
[∏d

i=1 I
(
ϕi,z(i)[0,T ]

)]
z=[m1,...,mn]

−
[∏d

i=1 I
(
ϕi,z[0,T ]

)]
z=m,...,n

}

Tick-by-tick data

Contemporaneous co-jump CJT
∏d
i=1 I

(
ϕ(j)i[T−t,T+t]

)
Permanent co-jump PCJT

∏Tt+1
z=Tt

{∏d
i=1 I (ϕ(j)i,z)

}
Exogenous co-jump ECJT max

{
0,
∏d
i=1 I

(
ϕi,[T+t]

)
−
[∏Tt+1

z=Tt
I (ϕi,z)

]
i=1,..,d

}

Table 2.2: Parameter Values for the Monte Carlo Simulations

The Table reports the values of the parameters of the data generating process used in the simulation
exercise. We report the values for the correlated stochastic processes, S(1) and S(2), the jump processes,
J(1) and J(2) and the microstructural noise denoted as $. We initially simulate m = 2, 000 returns,
we then re-sample the simulated data over intervals of dt = 1, 5 and 10 time units and finally re-run
the simulation n = 1, 000 times. In particular, we denote with r1, r5 and r10 the simulated returns at
a frequency of one, five and ten time units for the stochastic process S(i) for i = 1, 2. The simulated
time series consists of r1 = 2, 000, r5 = 400 and r10 = 200 returns for each simulation.

Parameter S(1) S(2) J(1) J(2) $

nsim 1,000 1,000 - - -
nobs 2,000 2,000 - - -
dt 1/2,000 1/2,000 - - -

µ(i) 0.00 0.00 0.00 0.00 0.00

σ(i) 0.10 0.10 0.10 - 1.25 0.10 - 1.25 0.10 - 1.25

%(i,j) 0.00 - 0.95 0.00 - 0.95 0.00 - 0.95 0.00 - 0.95 -

λ(i) - - 0.00 - 5.00% 0.00 - 5.00% -

S(i),t=0 100 100 - - -
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Table 2.3: Size and power of the univariate tests for jumps for varying jump intensity

The Table reports the size and the size corrected power of the univariate tests for jumps for a varying
jump intensity factor. In particular, we estimate the linear and ratio Barndorff-Nielsen and Shephard
(2005) tests (LBNS and RBNS respectively), the Andersen et al. (2012) MinRV and MedRV tests
(MinRV and MedRV respectively), the Jiang and Oomen (2008) test (JO), the Andersen, Bollerslev
and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) tests (ABD-LM), the Corsi et al. (2010)
test (CPR) and the Podolskij and Ziggel (2010) test (PZ). The test JT1, JT2 and JT3 are computed
using simulated data re-sampled over a frequency of 1, 5 and 10 time units respectively. We report
the results using a 5% significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3

λdt : 0.00% 0.00% 0.00% 0.05% 0.05% 0.05% 0.25% 0.25% 0.25%

LBNS 0.054 0.056 0.048 0.564 0.528 0.494 0.986 0.968 0.960

RBNS 0.052 0.060 0.046 0.566 0.528 0.482 0.986 0.968 0.954

MinRV 0.058 0.060 0.048 0.542 0.532 0.462 0.970 0.942 0.906

MedRV 0.048 0.040 0.042 0.552 0.524 0.490 0.972 0.942 0.932

JO 0.046 0.042 0.048 0.574 0.552 0.504 0.984 0.966 0.934

ABD-LM 0.024 0.024 0.024 0.514 0.478 0.448 0.968 0.956 0.942

CPR 0.050 0.056 0.046 0.484 0.458 0.424 0.964 0.940 0.916

PZ 0.056 0.062 0.058 0.464 0.400 0.356 0.910 0.818 0.784

λdt : 0.50% 0.50% 0.50% 2.50% 2.50% 2.50% 5.00% 5.00% 5.00%

LBNS 1.00 1.00 0.99 1.000 1.000 1.000 1.000 1.000 1.000

RBNS 1.00 1.00 0.99 1.000 1.000 1.000 1.000 1.000 1.000

MinRV 0.99 0.93 0.88 0.852 0.862 0.742 0.848 0.972 0.870

MedRV 0.99 0.95 0.94 0.972 0.994 0.976 0.998 1.000 0.954

JO 0.99 0.96 0.94 0.960 0.830 0.742 0.930 0.674 0.456

ABD-LM 1.00 1.00 1.00 1.000 1.000 1.000 1.000 1.000 0.998

CPR 1.00 0.99 0.99 1.000 1.000 1.000 1.000 1.000 1.000

PZ 0.95 0.90 0.86 0.964 0.904 0.894 0.964 0.918 0.922

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Table 2.4: Power of the univariate tests for jumps for varying jump size

The Table reports the size corrected power of the univariate tests for jumps for a varying jump volatility.
In particular, we estimate the linear and ratio Barndorff-Nielsen and Shephard (2005) tests (LBNS
and RBNS respectively), the Andersen et al. (2012) MinRV and MedRV tests (MinRV and MedRV
respectively), the Jiang and Oomen (2008) test (JO), the Andersen, Bollerslev and Dobrev (2007,
ABD) and Lee and Mykland (2008, LM) tests (ABD-LM), the Corsi et al. (2010) test (CPR) and the
Podolskij and Ziggel (2010) test (PZ). The test JT1, JT2 and JT3 are computed using simulated data
re-sampled over a frequency of 1, 5 and 10 time units respectively. We report the results using a 5%
significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3

σY (1) : 0.10 0.10 0.10 0.25 0.25 0.25 0.50 0.50 0.50

LBNS 0.986 0.968 0.960 0.994 0.992 0.990 0.994 0.992 0.994

RBNS 0.986 0.968 0.954 0.994 0.992 0.990 0.994 0.992 0.994

MinRV 0.970 0.942 0.906 0.980 0.954 0.914 0.976 0.954 0.910

MedRV 0.972 0.942 0.932 0.984 0.950 0.922 0.976 0.942 0.870

JO 0.984 0.966 0.934 0.992 0.986 0.962 0.994 0.988 0.980

ABD-LM 0.968 0.956 0.942 0.980 0.980 0.978 0.976 0.974 0.968

CPR 0.964 0.940 0.916 0.980 0.974 0.972 0.976 0.972 0.970

PZ 0.910 0.818 0.784 0.984 0.960 0.950 0.988 0.986 0.984

σY (1) : 0.75 0.75 0.75 1.00 1.00 1.00 1.25 1.25 1.25

LBNS 0.996 0.996 0.996 0.994 0.994 0.994 0.990 0.990 0.992

RBNS 0.996 0.996 0.996 0.994 0.994 0.994 0.990 0.990 0.992

MinRV 0.986 0.954 0.898 0.980 0.934 0.900 0.982 0.934 0.886

MedRV 0.980 0.932 0.876 0.976 0.934 0.880 0.980 0.918 0.862

JO 0.996 0.990 0.984 0.994 0.992 0.990 0.990 0.986 0.986

ABD-LM 0.984 0.982 0.980 0.984 0.984 0.984 0.974 0.976 0.972

CPR 0.984 0.984 0.980 0.984 0.986 0.984 0.972 0.972 0.974

PZ 0.996 0.992 0.996 0.996 0.992 0.992 0.990 0.990 0.990

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Table 2.5: Size of the univariate tests for jumps for varying microstructural noise

The Table reports the size of the univariate tests for jumps in the presence of an i.i.d. microstruc-
tural noise with varying variance. In particular, we estimate the linear and ratio Barndorff-Nielsen
and Shephard (2005) tests (LBNS and RBNS respectively), the Andersen et al. (2012) MinRV and
MedRV tests (MinRV and MedRV respectively), the Jiang and Oomen (2008) test (JO), the Andersen,
Bollerslev and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) tests (ABD-LM), the Corsi et
al. (2010) test (CPR) and the Podolskij and Ziggel (2010) test (PZ). The test JT1, JT2 and JT3 are
computed using simulated data re-sampled over a frequency of 1, 5 and 10 time units respectively. We
report the results using a 5% significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3

σn : 0.10 0.10 0.10 0.25 0.25 0.25 0.50 0.50 0.50

LBNS 0.038 0.062 0.054 0.038 0.044 0.056 0.052 0.068 0.044

RBNS 0.036 0.056 0.050 0.042 0.048 0.058 0.046 0.060 0.032

MinRV 0.038 0.062 0.054 0.022 0.072 0.066 0.048 0.064 0.048

MedRV 0.042 0.044 0.048 0.024 0.058 0.050 0.042 0.052 0.062

JO 0.026 0.048 0.038 0.028 0.026 0.030 0.024 0.036 0.036

ABD-LM 0.040 0.032 0.020 0.022 0.018 0.024 0.024 0.040 0.020

CPR 0.024 0.042 0.060 0.034 0.048 0.046 0.034 0.058 0.044

PZ 0.052 0.026 0.052 0.056 0.060 0.066 0.088 0.066 0.104

σn : 0.75 0.75 0.75 1.00 1.00 1.00 1.25 1.25 1.25

LBNS 0.048 0.060 0.056 0.042 0.056 0.048 0.026 0.064 0.042

RBNS 0.042 0.056 0.062 0.042 0.058 0.048 0.024 0.058 0.048

MinRV 0.032 0.076 0.046 0.030 0.074 0.048 0.026 0.076 0.052

MedRV 0.048 0.064 0.040 0.050 0.062 0.048 0.024 0.062 0.042

JO 0.040 0.034 0.050 0.028 0.046 0.036 0.028 0.036 0.042

ABD-LM 0.042 0.016 0.020 0.022 0.036 0.022 0.028 0.012 0.018

CPR 0.048 0.052 0.068 0.034 0.072 0.054 0.022 0.054 0.044

PZ 0.106 0.098 0.152 0.144 0.156 0.178 0.202 0.200 0.236

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Table 2.6: Power of the univariate tests for jumps for varying microstructural noise

The Table reports the size corrected power of the univariate tests for jumps in the presence of an i.i.d.
microstructural noise with varying variance. In particular, we estimate the linear and ratio Barndorff-
Nielsen and Shephard (2005) tests (LBNS and RBNS respectively), the Andersen et al. (2012) MinRV
and MedRV tests (MinRV and MedRV respectively), the Jiang and Oomen (2008) test (JO), the
Andersen, Bollerslev and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) tests (ABD-LM),
the Corsi et al. (2010) test (CPR) and the Podolskij and Ziggel (2010) test (PZ). The test JT1, JT2

and JT3 are computed using simulated data re-sampled over a frequency of 1, 5 and 10 time units
respectively. We report the results using a 5% significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3

σn : 0.10 0.10 0.10 0.25 0.25 0.25 0.50 0.50 0.50

LBNS 0.992 0.978 0.962 0.986 0.974 0.972 0.976 0.970 0.958

RBNS 0.992 0.978 0.962 0.986 0.974 0.970 0.976 0.966 0.958

MinRV 0.984 0.960 0.920 0.984 0.950 0.920 0.970 0.946 0.920

MedRV 0.986 0.966 0.926 0.984 0.952 0.930 0.976 0.948 0.910

JO 0.986 0.966 0.910 0.978 0.940 0.908 0.976 0.948 0.922

ABD-LM 0.982 0.974 0.962 0.980 0.962 0.944 0.962 0.946 0.928

CPR 0.982 0.960 0.944 0.970 0.938 0.934 0.948 0.938 0.918

PZ 0.916 0.844 0.774 0.908 0.786 0.796 0.896 0.858 0.752

σn : 0.75 0.75 0.75 1.00 1.00 1.00 1.25 1.25 1.25

LBNS 0.986 0.968 0.944 0.982 0.960 0.940 0.962 0.940 0.908

RBNS 0.986 0.964 0.942 0.982 0.958 0.940 0.962 0.936 0.904

MinRV 0.980 0.960 0.912 0.980 0.952 0.896 0.958 0.924 0.856

MedRV 0.980 0.950 0.912 0.984 0.954 0.930 0.964 0.930 0.878

JO 0.974 0.950 0.904 0.972 0.942 0.902 0.964 0.904 0.842

ABD-LM 0.964 0.946 0.918 0.966 0.932 0.902 0.960 0.944 0.898

CPR 0.952 0.938 0.904 0.948 0.908 0.886 0.940 0.894 0.854

PZ 0.912 0.808 0.794 0.910 0.808 0.778 0.886 0.798 0.770

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Table 2.7: Size and power of the univariate tests for jumps for varying rounding noise

The Table reports the size (top panel) and the size corrected power (bottom power) of the univariate
tests for jumps in the presence of noise caused by rounding effects. In particular, we estimate the linear
and ratio Barndorff-Nielsen and Shephard (2005) tests (LBNS and RBNS respectively), the Andersen
et al. (2012) MinRV and MedRV tests (MinRV and MedRV respectively), the Jiang and Oomen (2008)
test (JO), the Andersen, Bollerslev and Dobrev (2007, ABD) and Lee and Mykland (2008, LM) tests
(ABD-LM), the Corsi et al. (2010) test (CPR) and the Podolskij and Ziggel (2010) test (PZ). The
test JT1, JT2 and JT3 are computed using simulated data re-sampled over a frequency of 1, 5 and 10
time units respectively. We report the results using a 5% significance level.

Procedure JT1 JT2 JT3 JT1 JT2 JT3 JT1 JT2 JT3

rnd. 3.00 3.00 3.00 2.00 2.00 2.00 1.00 1.00 1.00

LBNS 0.068 0.048 0.072 0.048 0.054 0.066 0.508 0.088 0.066

RBNS 0.062 0.050 0.054 0.052 0.062 0.058 0.496 0.082 0.058

MinRV 0.060 0.064 0.050 0.048 0.052 0.058 0.166 0.086 0.066

MedRV 0.058 0.060 0.038 0.062 0.052 0.074 0.056 0.064 0.062

JO 0.036 0.034 0.040 0.052 0.038 0.040 0.038 0.046 0.040

ABD-LM 0.016 0.022 0.026 0.018 0.022 0.044 0.038 0.038 0.032

CPR 0.066 0.036 0.058 0.056 0.034 0.060 0.428 0.058 0.046

PZ 0.058 0.072 0.058 0.068 0.052 0.056 0.082 0.072 0.070

rnd. 3.00 3.00 3.00 2.00 2.00 2.00 1.00 1.00 1.00

LBNS 0.966 0.960 0.944 0.994 0.978 0.968 1.000 0.978 0.968

RBNS 0.966 0.958 0.940 0.992 0.978 0.970 1.000 0.978 0.964

MinRV 0.958 0.928 0.902 0.992 0.964 0.936 0.974 0.958 0.930

MedRV 0.954 0.936 0.906 0.990 0.972 0.946 0.982 0.962 0.942

JO 0.972 0.938 0.902 0.988 0.950 0.918 0.982 0.966 0.934

ABD-LM 0.958 0.944 0.926 0.988 0.974 0.966 0.978 0.968 0.948

CPR 0.946 0.930 0.920 0.984 0.960 0.940 0.990 0.942 0.934

PZ 0.898 0.818 0.776 0.924 0.840 0.798 0.926 0.804 0.784

dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10 dt: 1 dt: 5 dt: 10
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Figure 2.1: Jump and Co-Jump Tests for re-sampled and tick-by-tick data.

The Figure shows the different jump and co-jump tests presented in this chapter for re-sampled (left
panel) and tick-by-tick (right panel) data for two correlated stochastic processes, S(1) and S(2).
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2.5 Appendix: Simulation Design - Matlab Code

In order to model multivariate Poisson random variables we use the algorithm presented

by Yahav and Shmueli (2011). In particular:

1. We use a Cholesky decomposition of the variance-covariance matrix of a p-dimensional

vector of price returns to simulate multivariate normal random vectors. The vec-

tor of multivariate normal random variables is denoted with XN .

2. For each value of XN
(i) where i ∈ 1, 2, ...p we calculate the Normal CDF Φ(XN

(i)).

3. For each Φ(XN
(i)) we calculate the Poisson inverse CDF (quantile) with a rate λ(i):

XP
(i) = Ξ−1

{
Φ
(
XN

(i)

)}
.

The vector XP
(i) is a p-dimensional Poisson vector with correlation matrix RP and rates

Λ. The algorithm allows us to transform the Normal marginals of the vector XN

using the Normal CDF and obtain a p-dimensional vector with uniform marginals.

The uniform variates are then subsequently transformed into Poisson variates using the

Poisson inverse CDF.

We show below the Matlab code used to simulate the path of two correlated stochas-

tic processes where the Poisson processes used to model the price jumps are also corre-

lated.

m1 = 5; m2 = 10;

nsim = 1000; nsteps = 2000; dt = 1/nsteps;

drift1 = 0.00; drift2 = 0.00;

drift1J = 0.00; drift2J = 0.00;
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vol1 = 0.10; vol2 = 0.10;

volJ1 = 0.10; volJ2 = 0.10;

rho = 0.50;

sigma = [vol1^2 vol1*vol2*rho; vol1*vol2*rho vol2^2];

lam1 = 0.00; lam2 = 0.00;

S01 = 100; S02 = 100;

for i = 1:nsim

mnoise = normrnd(0,voln,2,nsteps);

Rnd12 = randn(2,nsteps)+mnoise;

VolMa = (ChoDe’*Rnd12);

PhiVolMa = normcdf(VolMa);

if lam1 > 0

P = poissinv(PhiVolMa,lam1);

elseif lam1 == 0

P = zeros(2,nsteps);

end

jumpnb = poissrnd(P*dt);

jump = normrnd(driftJ1*(jumpnb-lam1*dt),volJ1.*sqrt(jumpnb));

M1(i,:) = (drift1+driftJ1*lam1-1/2*vol1.^2)*dt+sqrt(dt)*vol1*Rnd12(1,:)+jump(1,:);

M2(i,:) = (drift2+driftJ2*lam2-1/2*vol2.^2)*dt+sqrt(dt)*vol2*Rnd12(2,:)+jump(2,:);

M1nj(i,:) = (drift1-1/2*vol1.^2)*dt+sqrt(dt)*vol1*Rnd12(1,:);

M2nj(i,:) = (drift2-1/2*vol2.^2)*dt+sqrt(dt)*vol2*Rnd12(2,:);

end

U1(1:nsim,1) = S01; U2(1:nsim,1) = S02;

U1nj(1:nsim,1) = S01; U2nj(1:nsim,1) = S02;

for i = 1:nsteps

U1(1:nsim,i+1)=U1(1:nsim,i).*exp(M1(1:nsim,i));
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U2(1:nsim,i+1)=U2(1:nsim,i).*exp(M2(1:nsim,i));

U1nj(1:nsim,i+1)=U1nj(1:nsim,i).*exp(M1nj(1:nsim,i));

U2nj(1:nsim,i+1)=U2nj(1:nsim,i).*exp(M2nj(1:nsim,i));

end





CHAPTER 3

THE LIQUIDITY-PRICE TRANSMISSION MECHANISM

3.1 Introduction

The relationship between asset prices and liquidity has been analyzed, tested and widely

accepted by academics, practitioners and most recently by regulators. The transmission

mechanism that links changes in liquidity to the price evolution of an underlying asset

has become even more relevant during times characterized by high volatility and market

distress. Morris and Shin (2004) define the notion of a liquidity black hole occurring

when a fall in prices is followed by an increase in the liquidation of the underlying asset,

which, in the absence of fresh liquidity, can generate an additional adverse move in the

price. A similar analysis is provided by Adalid and Detken (2007) who again relate

shocks to liquidity to collapses in the asset prices. As discussed in Herring et al. (2008)

a change in the perception of liquidity can cause a severe market correction even if the

underlying price for that particular asset does not diverge from its fundamental values.

The value of liquidity is affected by time, location and most importantly by price of the

underlying asset as shown in Sparrow and Ilijanic (2010) who also quantify liquidity as

a function of transactional costs and risk preferences. A liquidity crisis can also affect

136
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the ability of market to properly function and, in some extreme cases, to survive. In

particular, Allen et al. (2011) and Calem et al. (2011) show that the absence of liquidity

associated with a financial shock can deeply affect the lending capacity of banks.

The analysis and the composition of market liquidity plays an important role also

in price discovery as already discussed in Chapter 1. In their respective models, Kyle

(1985) shows that private information is channeled through market liquidity, while Has-

brouck (1991), Engle and Russell (1998) and De Jong and Schotman (2010) relate price

dynamics to different measures of liquidity. In particular, Kyle’s sequential equilibrium

model describes the behavior of noise, informed, and market making trading agents

as a function of their access to liquidity. Market liquidity is defined and measured in

terms of tightness, resiliency and depth. Depth and resiliency are also considered en-

dogenous variables and signal the presence of insider and noise traders in the market. A

greater number of noise traders have the tendency to increase available liquidity, while

a negative correlation is observed between the level of private information and market

depth.

Despite the relevance of liquidity shocks, jumps are often studied in relation to

prices. Most of the literature on jumps and the empirical applications only focus on the

discontinuous path of prices. Also, in the common notion of a co-jump, two or more

variables are characterized by a discontinuous path over the same observation frequency

but the jumps are both exogenous. In our empirical application, we combine the testing

methodology based on combinations of univariate tests for jumps, measured either at

different observation frequencies or over non-overlapping time intervals, to study the

price impact of liquidity shocks. In particular, we relate jumps in liquidity to the
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dynamics of the underlying asset price and establish a causality effect between liquidity

and price. Moreover, the jump and co-jump testing procedure, presented Chapter 2, is

used to identify a number of different jump and co-jump events and, in particular, we

distinguish between contemporaneous, permanent and lagged or exogenous co-jumps.

The chapter is organized as follows. Section 3.2 introduces the data used in the

empirical application. In Section 3.3 we present the results of the co-jump testing

procedure when data are first re-sampled over fixed time intervals and, subsequently,

observed at a tick-by-tick level. Section 3.4 concludes.

3.2 The Structure of the Data

The data used in the empirical application consist of five time series: the available

liquidity on the bid and the ask side of the EUR/USD FX spot limit order book,

expressed in EUR millions; the bid and ask price associated to the available liquidity in

the order book, expressed as units of US Dollars for 1 EUR; quotation time, expressed

in milliseconds. The data span over an entire trading week, from May 3 to May 7,

2010. The time frame considered is particularly interesting given that, during this time

horizon, EUR/USD FX spot displayed a large move, opening on Monday at around

1.3250 and closing the session on Friday just above 1.2750. Despite the short time

interval, in our empirical application, we use data observed at a very high frequency to

obtain a large sample. From the raw data, we cannot recognize the identity and the

characteristics of the market participants in that particular security.

The available liquidity in the order book is recorded at three different price levels:

the available liquidity on the bid (ask) side at the best displayed bid (ask) price in the
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order book represents the total amount of buy (sell) limit orders with the highest priority

in terms of execution. We denote this particular measure of liquidity as qx(1),t,bid(ask).

The available liquidity on the bid (ask) side of the order book is also observed at

different price levels, and, in particular, at k = 1 and k = 2 ticks away from the best

displayed price. We denote these measures of liquidity as qx(2),t,bid(ask) and qx(3),t,bid(ask)

respectively. The total amount of available liquidity on the bid (ask) side of the order

book and at k = 2 ticks from the best displayed price is denoted as Qxt,bid(ask) =∑3
i=1 qx(i),t,bid(ask) and is referred to market depth throughout the chapter.

The bid (ask) price is the observed price associated to the available liquidity in the

order book. In particular we denote with px(1),t,bid(ask), px(2),t,bid(ask) and px(3),t,bid(ask)

the price associated to the available liquidity at k = 0, 1 and 2 ticks from the best

displayed price on the buy (sell) side of the order book. As discussed in Chapter 1,

the bid and the ask side of the order book seem to behave under different rules. For

this particular reason, given that the focus of this chapter is to analyze the behavior

of liquidity and price jumps rather than the dynamic structure of the limit order book,

we will we use a price variable computed as the mid-quote of the best bid and the best

ask price in the order book. We denote the variable as Pxt = (px(1),t,bid + px(1),t,ask)/2.

Figure 3.1 shows the normalized EUR/USD FX mid-quote price behavior. In order

to preserve data confidentiality, we show the price series in index form. The vertical

dotted line shows the end of the NY trading session and the open of the Australian

trading session.

Finally quotation time is defined as the time, expressed in milliseconds, between

consecutive quotes on either side of the order book. Quotation time is denoted as trxt.
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Similar to the liquidity variable introduced by Frey (2000) and Esser and Moench

(2005), denoted in this chapter as rho(1),t,bid(ask) = 1/
{
Qxt,bid(ask ∗ Pxt

}
, we introduce

a second liquidity variable rho(2) which is function of market depth and quotation time,

rho(2),t,bid(ask) = 1/
{
Qxt,bid(ask) ∗ trxt

}
. Both the liquidity variables rho(1) and rho(2)

are inverse functions of available liquidity. In particular, the liquidity variable rho(2)

increases when the available liquidity or the market depth on the bid (ask) side of

the order book decreases or equivalently when the time between consecutive quotes

decreases.

Figure 3.2 shows the behavior of cumulative available liquidity on the bid side of

the order book and quotation time. We notice a common pattern between liquidity and

time. Quotation time tends to spike during the first hours of the Australian trading

session and the final hours of the NY trading session. The trading regime at those

times is characterized by low transactional volatility and little liquidity. From the

top section of Figure 3.2 we notice that, during those times, the cumulative available

liquidity, observed from the order book, tends to be small compared to the central

hours of the trading day. This is particularly evident during the 4th and the 5th of

May where we also observe a few sudden spikes. The liquidity variable rho(2) aims to

capture this relationship between time and liquidity. Quotation time is used here as

a proxy of transactional volatility. As in the case of the liquidity variable rho(1), also

the liquidity variable rho(2) is expected to decrease when market transactions become

more frequent, or equivalently, when the transactional time decreases or transactional

volatility increases. Figure 3.3 shows the behavior of the liquidity variable rho(2). We

notice that the liquidity variable shows indeed the tendency to spike as we approach the
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close of the NY trading session where we typically observe low transactional volatility

and little liquidity.

[ Insert Figures 3.1 - 3.3 ]

The relationship between price and the liquidity variable rho(2) can also be studied

further by looking at Figure 3.4 which shows the pattern of the normalized price series

for the EUR/USD FX spot mid-quote price and the liquidity variable rho(2) on May

6, 2010. This day appears particularly volatile when we look at the price path of

EUR/USD FX over the entire trading week. Not surprisingly, we notice that large

moves in prices are observed together with sudden spikes in the liquidity variable and

close to the end of the trading session and in particular around 18:00 London time.

Spikes in the liquidity variable are associated to periods of low volatility and little

liquidity which again could explain the erratic behavior of the EUR/USD FX spot

price during these times.

[ Insert Figures 3.4 ]

3.2.1 Preparation of the Data

Two different methodologies are used to manage the data, initially observed at a tick-

by-tick level over irregular time intervals. We first re-sample the data over equally

spaced time intervals. We normalize the series and pre-average the re-sampled data in

order reduce the impact of micro-structural noise, subsequently divide the time series

in blocks of equal size and, finally, select a fixed number of observations per block.

The re-sampling methodology is used in Dumitru and Urga (2012) in order to compute
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jump tests at different observation frequencies. The first testing procedure, presented

in Chapter 2 and based on the combination of univariate tests for jumps across different

frequencies, will be used on the first data-set.

We then use the raw tick-by-tick data, we again normalize the series, pre-average

and finally divide the sample in blocks of equal size. The time series will not be re-

sampled and we will benefit from the full information content of the original data-set.

Tick-by-tick data are traditionally used in the jump and co-jump literature. The second

testing procedure presented in Chapter 2 will be used on the second data set.

Re-sample over fixed intervals. The data is initially observed at a tick-by-tick level

and subsequently re-sampled over a frequency of 1, 5 and 10 seconds. The re-sampling

of the data allows us to reduce the impact of excessive discreteness in the time series and

to better handle issues related to computational complexity. Furthermore, in order to

preserve data confidentiality, we represent the three microstructural variables in index

form rather than as actual levels. In particular, the time series is normalized such that

the average liquidity, price and transactional time over the whole sample is set at 100.

A similar convention was adopted in Chaboud et al. (2004) and Berger et al. (2008).

The continuously compounded returns are constructed from the natural logarithms

of the time series. In particular, we denote the liquidity and price returns with rLRI

and rPRI respectively while we use rLV 1 and rLV 2 to indicate the returns of the

liquidity variables, rho(1) and rho(2) , introduced in the previous section. We measure

the returns using different observation frequencies of 1, 5 and 10 seconds.

Given the structure of our data-set, where the price and the associated liquidity

from the order book are observed at the same time, we find no evidence of the so called
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Epps-effect caused by non-synchronous trading and which allows covariance estimates

to converge to zero as the observation frequency increases. We find instead a high de-

gree of microstructural noise especially in the liquidity process and at a frequency of

1 second. Pre-averaging is commonly performed to reduce the impact of the noise on

the various jump and co-jump tests traditionally used in the literature (see Jacod et al.

2009, Christensen et al. 2010, Hautsch and Podolskij 2010, Mykland and Zhang 2011).

We perform pre-averaging on the normalized time series using different combinations of

windows and sampling frequencies. In particular we denote the pre-averaging window

with kp and use a window size of kp = 30, 60, 90 and 120 observations. We compute the

auto-correlation function for lags from 0 to 20 and plot the correspondent correlogram.

Figures 3.5 - 3.8 show the auto-correlation plot (ACF) for the continuously compounded

logarithmic returns, computed over a 1 second re-sampling interval, of cumulative avail-

able liquidity Qxt,bid, mid-quote price Pxt and the two liquidity variables rho(1) and

rho(2) defined in the previous section for different values of the pre-averaging window

size. The ACF for the normalized liquidity and price returns shows very little signs of

auto-correlation for lags greater than 1. Similar results can also be observed with the

normalized returns of the liquidity variable rho(2) despite a slightly greater degree of

auto-correlation especially at lags equal to 1 and 2. The liquidity variable rho(1) instead

seems to be affected by a higher degree of auto-correlation which is particularly severe

when the pre-averaging window is set at 30 observations.

[ Insert Figures 3.5 - 3.8 ]

Tables 3.1 - 3.4 report the auto-correlations at different lags, re-sampling frequen-

cies and pre-averaging window size again for the compounded logarithmic returns of
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cumulative available liquidity, mid-quote price and the two liquidity variables. The

upper and lower bounds for auto-correlation have been computed at a significance level

of α = 5%. From the Tables we highlight two important results. First, the lower the re-

sampling frequency and the lower the auto-correlation detected in the series. The bold

mark denotes auto-correlation values higher (lower) than the upper (lower) confidence

bound, i.e. when the null hypothesis of no auto-correlation at and beyond a given lag

is rejected. Across Tables 3.1 - 3.4 we can see that the rate of rejection of the null

hypothesis decreases as we decrease the re-sampling frequency from 1 to 10 seconds.

This result shows that the degree of microstructural noise is lower when the time series

is sampled at a lower frequency or, equivalently, that a higher pre-averaging window is

needed at higher sampling frequencies. Finally we also notice the optimal choice of the

pre-averaging windows is a function of the re-sampling frequency. In particular we ob-

serve that when data are sampled over a frequency of 10 seconds an averaging window

size of 30 observations allows us to dramatically reduce the degree of auto-correlation

at lags greater than 1. The auto-correlation completely disappears with a window size

of 90 to 120 observations. We find that a window size of at least 60 observations is

needed instead when the data are re-sampled over a frequency of 5 seconds with virtu-

ally no sign of auto-correlation being detected when 90 to 120 observations are used in

the pre-averaging exercise. Finally, when the date are re-sampled over a frequency of 1

second, at least 90 observations are needed to reduce the impact of auto-correlation.

[ Insert Tables 3.1 - 3.4 ]

Tick-by-tick data set. The data used here is directly observed from the original time

series and not re-sampled over a fixed observation frequency. As in the previous case,
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where re-sampled data are used, we perform pre-averaging on the normalized time

series using different combinations of observation windows. In particular we denote

the pre-averaging window with kp and use a window size of kp = 30, 60, 90 and 120

observations. We compute the auto-correlation function for lags from 0 to 20 and plot

the correspondent correlogram. Figures 3.9 - 3.12 show the auto-correlation plot (ACF)

for the continuously compounded logarithmic returns of cumulative available liquidity

Qxt,bid, mid-quote price Pxt and the two liquidity variables rho(1) and rho(2) defined

in the previous section for different values of the pre-averaging window size. From the

ACF we notice that the liquidity, the price returns and the second liquidity variable

rho(2) seem to be well behaved also at a pre-averaging window of kp = 30 observations.

We observe, instead, a high degree of auto-correlation at a number of lags in the first

liquidity variable, rho(1), when kp = 30 or 60.

[ Insert Figures 3.9 - 3.12 ]

Tables 3.5 - 3.6 report the auto-correlations at different lags and pre-averaging

window size again for the compounded logarithmic returns of cumulative available liq-

uidity, mid-quote price and the two liquidity variables. The upper and lower bounds

for auto-correlation have been computed at a significance level of α = 5%. The bold

mark denotes auto-correlation values higher (lower) than the upper (lower) confidence

bound, i.e. when the null hypothesis of no auto-correlation at and beyond a given lag

is rejected. From Tables 3.5 - 3.6 we see that the rate of rejection of the null hypothesis

decreases as we increase the pre-averaging window and notice that the optimal choice

of the window seems to be equal to kp = 90 observations when tick-by-tick data are

used.
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[ Insert Tables 3.5 - 3.6 ]

As a final remark, and also given the virtual continuity of the currency markets as

opposed to equity and fixed income markets, we do not discard the data observed at

the open and close of a trading session but we do eliminate the very last observations

in proximity of the NY close on the Friday due to a reporting error. The ability to

recognize different trading regimes and patterns during the 24 hours trading day is

critically important and highligths some interesting features of the data as discussed in

the previous section.

3.3 Estimation and Results

3.3.1 Re-Sampled Data Set

In this section we first present the methodology used to test for the presence of jumps

and co-jumps between liquidity and prices, when data are re-sampled over equally

spaced intervals, and finally discuss the estimation results. The co-jump testing proce-

dure is based on the combination of univariate tests for jumps introduced in Chapter

2.

Figure 3.13 shows an illustrative example of the data re-sampling exercise performed

for the first day of the week. In particular, the data is initially observed at a tick-by-tick

level and subsequently re-sampled over a frequency of 1, 5 and 10 seconds. In order

to limit the impact of micro-structural noise, the data is firstly normalized so that the

average over the whole sample is set at 100 and then pre-averaged using a window of

kp = 300, 60 and 30 observations for data re-sampled at a frequency of 1, 5 and 10
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seconds respectively. As shown in the previous section, the optimal selection for data

re-sampled at a frequency of 5 and 10 seconds would be kp = 60 and 30 respectively. In

order to have the same number of returns across frequencies we then select a window

period of kp = 300 for data re-sampled at a frequency of 1 second. The re-sampled

and pre-averaged data set consists of n = 1331 observations for the whole week from

May 3rd to May 7th, 2010. In particular we have n = 288 re-sampled and pre-averaged

observations for the first four days and n = 179 observations during the last day of

the week. We subsequently divide the time series in blocks of equal size and select a

number of m = 28 observations per block. The returns of the mid-quote price and the

liquidity variables and the respective jump tests are then computed for each block.

[ Insert Figure 3.13 ]

Test computation. In order to identify a jump or a co-jump event in our series,

we use the jump and co-jump test indicator functions discussed in Chapter 2. The

test indicator functions assign a value equal to one if a jump or a co-jump is detected

over a block of size m or, alternatively, a value equal to zero if no jump or co-jump

is identified at a significance level α = 5%. In particular, JT(i) represents a vector of

signal variables (e.g. zeros and ones) which indicate the presence of a jump at each

block for asset i. The size of the vector JT(i) will be equal to the number of blocks

used. The proportion of identified jumps in both liquidity and price is given by the

arithmetic average, across the different blocks, of the elements of the vector JT(i). We

denote with JT(1)and JT(2) the test indicator vectors for the liquidity and the price

processes respectively. Similarly, CJT represents a co-jump test indicator vector of
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signal variables which indicate the presence of a co-jump at each block. In particular,

we denote with CJT1 the contemporaneous co-jump test indicator vector for liquidity

and price. The contemporaneous co-jump test indicator vector is given by the product

of the jump vectors JT(1) and JT(2). In the case where k observation frequencies are

used, we define with JT(1),k and JT(2),k the jump indicator vectors for liquidity and price

measured at a frequency of k seconds. In our empirical application we let k = 1, 5 and

10 seconds respectively. We also define as CJT1, CJT2 and CJT3 the contemporaneous

co-jump test indicator vector between liquidity and price at a frequency of 1, 5 and

10 seconds respectively. We define as PCJT1 and PCJT2 the permanent co-jump test

indicator vectors between liquidity and price at a frequency of 1-5 and 5-10 seconds

while PCJT3 measures the permanent co-jump at either a frequency of 1-5 or 5-10

seconds. We finally define as LCJT1 and LCJT2 the lagged co-jump test indicator

vectors between the liquidity variable measured at a frequency of 1 second and the mid-

price variable measured at 5 and 10 seconds respectively. The test LCJT3 measures

the lagged co-jump observed at a frequency of 1-5 and 1-10 seconds combined.

Analysis of the results. Tables 3.7 and 3.8 report the percentage of identified jumps

at a significance level α = 5% during the week from May 3rd to May 7th, 2010. In

particular, the jump indicator vectors JT(1),1, JT(1),5 and JT(1),10 provide a measure of

liquidity jumps for the liquidity variables defined as rho(1) and rho(2) at a frequency of

1, 5 and 10 seconds respectively, while the jump indicator vectors JT(2),1, JT(2),5 and

JT(2),10 provide a measure of mid-quote price jumps again at a frequency of 1, 5 and

10 seconds respectively for m = 28 observations per block. The full set of results for

different levels of m is available upon request.
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We immediately notice, from Table 3.7, that the percentage number of identified

jumps in both liquidity and price tends to decrease as we move from a high to a low

observation frequency. Also, with the exception of the MinRV and the MedRV tests

we also detect a lower number of liquidity than price jumps across all the observation

frequencies used. In particular, we observe an average percentage of liquidity jumps

equal to 30%, 13% and 10% at frequencies 1, 5 and 10 seconds compared to an average

percentage of price jumps equal to 36%, 22% and 17%. The very high number of jumps

detected by the MinRV, the MedRV, the CPR and the PZ test may be driven by the

level of microstructural noise. In particular, the PZ test reports a suspiciously high

number of jump events which we believe may be spurious. This result is in line with

the findings from the simulation exercise from Chapter 2 where the PZ was shown to

be the most affected univariate test in the presence of noise. The best performing test

in terms of power is the LBNS, followed by the RBNS, the JO and the ABD-LM tests.

Similar results would have been obtained using different levels of m.

Similar results can be observed when the liquidity variable rho(2) is used in the

analysis. Table 3.8 shows that the average number of liquidity jumps is lower than

the average number of price jumps at all frequencies and for all the test methodologies

used with the exception of the PZ test. Again, as in the previous case, we notice a

big percentage of jumps detected by the PZ and the CPR tests. The best performance

is shown by the LBNS, the RBNS, the JO and the ABD-LM tests. The JO test,

however, together with the MedRV test fails to detect any sign of liquidity jumps at an

observation frequency of ten seconds. Similar results would have been obtained using

different levels of m.
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[ Insert Tables 3.7 - 3.8 ]

Table 3.9 reports the results of the first battery of co-jump tests when the first

liquidity variable rho(1) is used. We immediately notice that the average percentage

of detected contemporaneous co-jumps between liquidity and prices is greater than the

average percentage of permanent and the lagged co-jump events. We also notice that

the percentage of contemporaneous co-jumps shows the tendency to decrease for higher

observation frequencies. We observe an average percentage of contemporaneous co-

jumps equal to 38% when the observation frequency is set at 1 second, and 20% and

15% when the observation frequencies are set at 5 and 10 seconds respectively. The

MinRV, the MedRV, the CPR and the PZ tests show a high number of contemporaneous

co-jump events at a frequency of 1 second. The result is not surprising given the high

number of liquidity jumps identified by these tests. We believe however that a good

portion of the identified contemporaneous co-jumps events is spurious and driven by

noise. The best performing tests are again the LBNS, the RBNS, the JO and the ABD-

LM. However, the LBNS and the RBNS tests fail to detect any sign of contemporaneous

co-jump at a frequency of 10 seconds together with the MedRV test. We also find that

most of the contemporaneous co-jumps detected are also permanent especially at a

frequency of 1 and 5 seconds. The highest number of permanent co-jumps is identified

at a frequency of 1 second by the MinRV test followed by the CPR and the MedRV

tests. Finally, with the exception of the MinRV, the CPR and the PZ test, we find very

little evidence of lagged co-jumps in particular at frequencies greater than 1-5 seconds.

The result shows that jumps in liquidity observed at a frequency of 1 second are usually

not followed by statistically significant price jumps at lower frequencies.
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Table 3.10 reports the results of the second battery of co-jump tests when the second

liquidity variable rho(2) is used. We still observe a higher number of contemporaneous

co-jumps at a frequency of 1 second with the PZ, the MedRV and the CPR still affected

by power issues. On average, the we find that the number of detected co-jumps is

higher when the second liquidity variable is used and, in particular, we observe a higher

percentage of contemporaneous co-jumps at a frequency of 5 seconds. The difference is

evident when we look at the PZ, the LBNS, the RBNS and the MinRV tests. With the

exception of the PZ test, we observe a slightly lower percentage of contemporaneous

co-jumps at a frequency of 10 seconds in the case of rho(2) compared to rho(1). Most of

the contemporaneous co-jumps are also found to be permanent especially at a frequency

of 1 and 5 seconds. Finally, we again find very small number of lagged co-jumps with

a lower average percentage of co-jumps detected when rho(1) is used. In terms of

performance, we find a similar ranking to the previous case, with the LBNS, the RBNS

and the ABD-LM displaying the best power followed by the JO test.

[ Insert Tables 3.9 - 3.10 ]

3.3.2 Tick-by-Tick Data Set

The tick-by-tick data are firstly normalized so that the average over the whole sample

is set at 100 and then pre-averaged using a window of kp = 90 observations. The

pre-averaged data set consists of n = 13, 593 observations for the whole week from May

3rd to May 7th, 2010. We subsequently divide the time series in blocks of equal size

and initially select a number of m = 100 observations per block. The returns of the

mid-quote price and the liquidity variables and the respective jump and co-jump tests
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are then computed for each block. The methodology used is very similar to the case

where the data are re-sampled over equally space time intervals.

Test computation. A jump event is identified through the univariate tests for jumps

introduced in Chapter 2. In particular we use a jump test indicator and assign a value

equal to one (zero) if the null of no jump is rejected (accepted) at a significance level

α = 5%. We use the vector JT(i) for i = 1, 2 to signal the presence of a jump at

each block and, in particular, denote with JT(1) and JT(2) the jump test indicator

vectors for liquidity and price respectively. As in the previous case, the proportion of

identified jumps is given by the arithmetic average, across the different blocks, of the

elements of the vector JT(i). When the data are observed at a tick-by-tick level we are

able to identify different types of jump and co-jump events. In particular, we identify

a temporary jump when we observe only one jump over two consecutive blocks. A

temporary jump is also called exogenous as no temporal causality can be established

between consecutive jumps. We also identify a permanent jump when we observe, over

two consecutive blocks, a jump in either liquidity or mid-price. In this context, we

also say that a permanent jump is endogenous as the state of a jump in one block is

likely to be influenced or caused by the state of a jump in a consecutive block. We

use the vector PJT to signal the presence of a permanent jump at each block. We use

PJT(1) and PJT(2) to denote the permanent jump for liquidity and price respectively.

A value equal to one (zero) is assigned to the vector when the null of no permanent

jump is rejected (accepted). The percentage of identified permanent jumps is given by

the arithmetic average, across the different blocks, of the elements of the vector PJT.

We identify a permanent co-jump when the intersection of two permanent jump events
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for two different processes yields a non-zero result. We finally identify an endogenous

co-jump event when two consecutive endogenous jumps are observed or, alternatively,

when one endogenous jump occurs together with an exogenous jump. In this context, a

permanent co-jump will always also be endogenous. Similarly, we identify an exogenous

co-jump when two consecutive exogenous jumps are observed. An exogenous co-jump

will always be contemporaneous but the opposite may not be true. The vectors PCJT

and ECJT are used to signal the presence of a permanent and an exogenous co-jump

event respectively at each block. Figure 3.14 shows an illustrative example of the

different jump and co-jump test constructions when tick-by-tick data are used. The

first section of the Figure shows the presence of contemporaneous co-jumps denoted

with CJT . The second section shows instead the presence of permanent jumps and

in particular highlights a permanent jump in liquidity at block 5. The third section

of the Figure shows the presence of a permanent and endogenous co-jump at block 5

while the bottom section of the Figure highlights the difference between endogenous

and exogenous co-jumps. As an example, looking at block number 3, we identify two

contemporaneous jump events with JT (1),3 = JT (2),3 = 1. None of the two jump events

is permanent or endogenous as we find no sign of jumps in block 2. The co-jump is

considered in this case both contemporaneous and exogenous. Moving to blocks number

5 and 6, we observe a contemporaneous jump in the liquidity process, i.e. JT(1),6 = 1,

and a permanent or endogenous jump in the price process, i.e. PJT (2),6 = 1. In this

case, we identify a contemporaneous co-jump in block 6, but we cannot consider the

co-jump exogenous under the definition provided in Chapter 2.

[ Insert Figure 3.14 ]
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Analysis of the results. Tables 3.11 - 3.14 report the results of the jump and co-

jump tests for the two liquidity variables used, rho(1) and rho(2) respectively, and the

mid-quote price at a significance level α = 5% and under different pre-averaging as-

sumptions. In particular, Table 3.11 shows the percentage of identified jumps and

co-jumps when m = 100, kp varies from kp = 30 to 120 in step of 30 observations

and rho(1),t is used as a liquidity variable. JT1 and JT2 indicate the contemporaneous

jump test indicator vectors for liquidity and price, while CJT , PCJT and ECJT pro-

vide a measure of the number of identified contemporaneous, permanent and exogenous

co-jumps respectively. With the exception of the MinRV, the MedRV and the JO tests

we notice a greater number of contemporaneous jumps in the liquidity process. The

difference in jump frequency between liquidity and price is particularly evident in the

case of the PZ, the CPR and the ABD-LM tests. The greater dispersion in the number

of identified liquidity jumps, when rho(1) is used, can be driven by the high level of

microstructural noise. The number of contemporaneous price jumps tends to converge

at a faster rate when a higher pre-averaging window is used. This result reinforces the

importance of pre-averaging as a way to reduce the level of microstructural noise which

could be affect the power of the jump and co-jump tests. The PZ and the ABD-LM tests

appear to be the most affected by the presence of noise while the LBNS, the RBNS and

the JO tests display a robust behavior also when the pre-averaging window is short.

With the exception again of the ABD-LM and the PZ, we find that the number of

identified contemporaneous co-jumps tends to converge across the various testing pro-

cedures also under a smaller number of observations used in the pre-averaging window.

We also observe that the contemporaneous CPR test displays little power especially at
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lower levels of kp. Finally, the permanent and the exogenous co-jump tests display a

similar behavior with an average percentage of identified co-jumps equal to 20%. We

believe that the PZ procedure detects a higher number of spurious co-jumps due to

the presence of microstructural noise. This result is in line with the findings from the

Monte Carlo simulation presented in Chapter 2.

Table 3.12 reports the percentage of identified jumps and co-jumps when kp = 90

andm varies from 20 to 100 with rho(1) being the liquidity variable used. The sensitivity

analysis of the various jump and co-jump tests under different block sizes is particularly

relevant as different levels ofm would imply a different variance and covariance structure

in the returns of both liquidity and price. We notice a substantial decrease in the

percentage of identified liquidity and price jumps when we move from m = 20 to

m = 100. This result is particularly evident when we exclude the PZ tests from the

computation. The PZ test is in fact still affected by a high degree of noise and detects

a very high number of (spurious) liquidity jumps and co-jumps. A similar pattern can

also be observed in the case of the ABD-LM test which detects a higher number of

jumps and co-jumps and displays a higher dispersion compared to the other tests as we

move from low to high levels of m. The power of the MinRV, the MedRV and the CPR

seems to be also affected by noise at low levels of m but the power of the tests shows

the tendency to converge as m moves towards 100. The most robust performance, in

terms of power, is again displayed by the LBNS, the RBNS and the JO tests across

different levels of m.

[ Insert Tables 3.11 - 3.12 ]

Table 3.13 reports the percentage of identified jumps and co-jumps when m = 100,
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kp varies from 30 to 120 in step of 30 observations and rho(2) is used as a liquidity

variable. We immediately notice that the PZ test is still affected by microstructural

noise as the number of identified liquidity jumps is much greater than the average

number of jumps detected by the other tests. Unlike in the previous case, the ABD-LM

appears well behaved also at lower levels of kp while the JO test detects a slightly higher

number of jumps and co-jumps compared to the other tests and across different levels

of kp. We finally notice a lower dispersion in the number of detected jumps and co-

jumps across the different tests moving from a lower to a higher number of observations

used in the pre-averaging window. The result is particularly evident in the case of the

permanent and exogenous co-jump tests and partially confirms that the second liquidity

variable rho(2) is affected by a lower microstructural noise compared to rho(1).

Table 3.14 reports the percentage of identified jumps and co-jumps when kp = 90

andm varies from 20 to 100 with rho(2) being the liquidity variable used. We notice that,

on average, the tests detect a lower number of jump and co-jump event when a greater

number of observations is used at each block. We find that the average percentage of

identified jumps, when we exclude the PZ test, equals 20% under the assumption of

m = 20 and 9% when m = 100. The average number of co-jumps also falls from 26%

to an average of 12% with the exogenous co-jumps showing the biggest drop moving

from an average of 31% to 14%. The PZ test is still affected by microstructural noise as

it detects a suspiciously high number of liquidity jumps. The high number of liquidity

jumps also affects the computation of the contemporaneous, permanent and exogenous

co-jump detection rate. The power of CPR test is also affected at low levels of m while

it converges quickly to the average power of the other tests when m = 100 with the
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JO test showing the opposite behavior and increasing the number of detected liquidity

and price jumps and co-jumps as m raises. The most robust performance, in terms of

power, is displayed by the LBNS, the RBNS and the JO tests.

[ Insert Tables 3.13 - 3.14 ]

3.4 Final Remarks

In Chapter 3, we presented a framework that allowed us to explicitly assess the trans-

mission mechanism between price and liquidity dynamics and relate liquidity shocks to

price jumps in the EUR/USD FX spot market during the week from May 3 to May 7,

2010. The time frame considered was particularly relevant given that EUR/USD spot

displayed a large move opening on Monday at around 1.3250 and ending the session on

Friday just above 1.2750.

We divided the empirical exercise in two different parts. In the first part of the

empirical application, we used the first battery of jump and co-jump tests on data

re-sampled over equally spaced time intervals. We found that the percentage number

of identified jumps in both liquidity and price tends to decrease as we move from a

high to a low observation frequency. With the exception of the MinRV and the MedRV

tests, we also detected a lower number of liquidity than price jumps across all the

observation frequencies used. The high number of jumps detected by the MinRV, the

MedRV, the CPR and the PZ test was probably affected by the level of microstructural

noise. We also noticed a strong performance, in terms of ability to detect jumps, of

the LBNS test, followed by the RBNS, the JO and the ABD-LM tests. The average

percentage of contemporaneous co-jumps between liquidity and prices was found higher
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than the average percentage of permanent and lagged co-jump events. We also found

a high number of spurious co-jumps using the MinRV, the MedRV, the CPR and the

PZ tests. Finally, very little evidence of lagged co-jumps was observed, in particular,

at frequencies greater than 1-5 seconds. The result indicated that jumps in liquidity

observed at a frequency of 1 second are usually not followed by statistically significant

price jumps at lower frequencies.

In the second part of the empirical application, we used tick-by-tick data with no

re-sampling and computed the second battery of tests presented in Chapter 2. The tests

allowed us to distinguish between different jump and co-jump events and in particular to

measure the number of contemporaneous and permanent jumps and co-jumps together

with exogenous co-jumps between two different liquidity measures and the mid-quote

spot price of EUR/USD FX. We overall noticed a greater number of contemporaneous

jumps in the liquidity process. The difference in jump frequency between liquidity

and price was particularly evident in the case of the PZ, the CPR and the ABD-

LM tests. The greater dispersion in the number of identified liquidity jumps, when

the first liquidity variable was used, could have been driven again by the high level

of microstructural noise. When we let the pre-averaging window size increase, we

noticed a lower dispersion in the number of contemporaneous price jumps detected.

This result confirmed the importance of pre-averaging as a way to reduce the level of

microstructural noise especially when the data is collected a high frequency. The noise

in the series affected the PZ and the ABD-LM tests in particular. As we considered

a different number of observations per block, we noticed a substantial decrease in the

percentage of detected liquidity and price jumps. The power of the MinRV, the MedRV
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and the CPR tests was also found to be affected by noise and, in particular, when a

low number of observations was used. Overall, as in the first empirical application, we

observed a strong performance, in terms of power, of the LBNS, the RBNS and the JO

tests.

There are a number of areas for a further extension of the empirical analysis. First,

liquidity is shown to play an important role in the context of microstructural contagion

and shocks to liquidity, especially when driven by informed trading, have a more per-

manent impact on prices. In our empirical analysis we have not distinguished between

trading regimes or time-of-the-day effects. We would expect a higher number of lagged

co-jumps to be detected in proximity of the opening or the closing of a trading session

when both trading volatility and displayed liquidity are low as also observed from the

data. It would then be particularly interesting to run the co-jump tests for different

trading times during the day and isolate diurnal effects. Second, despite the large sam-

ple used in the empirical analysis, we would need to extend the time interval considered

and measure the robustness of the proposed testing methodology to different trading

cycles. It would also be interesting to assess if the transmission mechanism between

liquidity and prices is stable across different trading regimes or if it can be affected by

other microstructural variables. Finally, the transactional variables, used in the analy-

sis, belong to one side of the limit order book. We would need to study the dynamics

of the entire order book in order to detect an asymmetric response of the price to a

liquidity shock. We leave these developments to future research.
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Figure 3.13: Illustrative Example of Data re-sampling for Test Computation.

The Figure shows an illustrative example of the data re-sampling exercise performed for the first day
of the week. The data is initially observed at a tick-by-tick level and subsequently re-sampled over a
frequency of 1, 5 and 10 seconds. In order to limit the impact of micro-structural noise, the data is
firstly normalized so that the average over the whole sample is set at 100 and then pre-averaged using
a window of kp = 300, 60 and 30 observations for frequencies of 1, 5 and 10 seconds respectively. The
re-sampled and pre-averaged data set consists of n = 1331 observations for the whole week from May
3rd to May 7th, 2010. In the example we assume that the data are re-grouped in blocks of equal size
containing m = 27 returns. In particular we have n = 288 re-sampled and pre-averaged observations
for the first four days and n = 179 observations during the last day of the week.
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Figure 3.14: Illustrative Example of Data re-sampling for Test Computation.

The Figures show an illustrative example of the jump and co-jump test construction when tick-by-tick
data are used. The data is observed at a tick-by-tick level, subsequently pre-averaged over a window
of kp = 90 observations and re-grouped in blocks of m = 100 observations. JT(1) and JT(2) are jump
test indicator functions for liquidity and price respectively as defined in Chapter 2. A a value equal to
one indicates the rejection of the null of no jumps at a significance level α = 5%. CJT is a co-jump
test indicator function which indicates the presence of a contemporaneous co-jump. The signal vectors
PJT1 and PJT2 assume values equal to one when the null of no permanent jump is rejected and values
equal to zero otherwise. Finally, the vectors PCJT and ECJT indicate the presence of a permanent
and an exogenous co-jumps.



CONCLUSIONS AND FURTHER RESEARCH

The main motivation of our research was to explore liquidity discovery models and

analyze the behavior of a direct measure of liquidity derived from the foreign exchange

markets. Our main goal was also to measure the price impact of liquidity shocks and

to construct a robust testing methodology to distinguish between transitory-permanent

and exogenous-endogenous co-jumps in price and liquidity in the context of ultra high

frequency data. In Chapter 1, we used a specific measure of liquidity, defined as available

liquidity, and directly observed from the foreign exchange markets as opposite to a

liquidity proxy measured by transactional volumes or inferred from trading frequency

or other microstructural variables. The dynamic behavior of liquidity was estimated by

allowing time to have a deterministic and a stochastic component. We made a further

distinction by identifying a stochastic liquidity and transactional time and modelled

conditional expected durations using a regime switching threshold representation in

order to incorporate a state dependent trading intensity. We found a robust empirical

evidence of a strong negative relationship between both the levels and the changes in

trading activity and the changes in the amount of available liquidity in a limit order

book, strong and persistent autocorrelation effects and a significant impact of time

durations in both the liquidity and in the trade activity process especially at the first

189
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lags. Impulse response functions were used to study the impact of exogenous shocks,

in the form of unexpected trade activity, on liquidity. We also found that unexpected

trade activity has an initial but only temporary negative impact. During times of

high volatility and intense turnover, liquidity adjusted quickly to the equilibrium level

reached in the previous state. During times of low volatility and poor market activity,

instead, the adjustment process became slower and more erratic. In addition to time

dependence, we have also evaluated the impact of a number of microstructural variables.

A strong statistically significant negative relationship between price spreads and market

activity and changes in displayed liquidity was observed, while other variables like net

order imbalance and market impact showed weak if not insignificant relationship.

In Chapter 2, we considered different combinations of univariate tests for jumps and

proposed a co-jump testing methodology in order to detect statistically significant com-

mon jumps between two correlated stochastic processes. In particular, we introduced a

testing procedure in the case where the data are either re-sampled over equally spaced

time intervals or observed at a tick-by-tick level and, accordingly, proposed different

tests to identify the presence of contemporaneous, permanent and lagged or exogenous

co-jump events. A Monte Carlo experiment assessed the statistical properties of the

univariate tests for jumps and, subsequently, evaluated the statistical properties of the

proposed co-jump testing procedure under different levels of the jump intensity factor,

jump size, correlation and microstructural noise. In our simulation exercise, we found a

strong sensitivity of the proposed co-jump testing procedure to the jump intensity vari-

able lambda and, in particular, a positive relationship between the number of correctly

identified co-jumps and the jump intensity factor. While we found very little sensitivity
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of the co-jump tests for re-sampled data to changes in the correlation factor, the size

corrected power of the co-jump tests for tick data was positively affected by an increase

in correlation. We also observed a big size distorsion of the proposed co-jump testing

procedure under different types of microstructural noise. In particular, we found that

the noise caused by rounding effects can severely affect the size of the tests as shown

in the case of the LBNS, the RBNS, the MinRV and the CPR tests. We also reported

that the proposed co-jump testing procedure was robust to different levels of noise as

the power of the tests was not particularly affected. Overall, the strongest performance,

in terms of power, was displayed by the LBNS, the RBNS and the JO followed by the

MedRV tests while the PZ and the CPR tests were the most affected by microstructural

noise.

In Chapter 3, we analyzed the contribution of liquidity shocks to systemic risk and

contagion and, in particular, explicitly assessed the transmission mechanism between

the EUR/USD FX spot price and the liquidity dynamics observed from a representative

order book during the week from May 3 to May 7, 2010. The time frame considered

was particularly relevant given that EUR/USD spot displayed a large move opening

on Monday at around 1.3250 and ending the session on Friday just above 1.2750. The

empirical exercise was divided in two main parts. In the first part, we used the first

battery of jump and co-jump tests on data re-sampled over equally spaced time inter-

vals and found that the percentage number of identified jumps in both liquidity and

price tends to decrease as we move from a high to a low observation frequency. With

the exception of the MinRV and the MedRV tests, we also detected a lower number

of liquidity than price jumps across all the observation frequencies used. The high
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number of jumps detected by the MinRV, the MedRV, the CPR and the PZ test was

probably affected by the level of microstructural noise. The LBNS test, followed by

the RBNS, the JO and the ABD-LM tests were characterized by a higher ability to

detect contemporaneous jumps and co-jumps. Very little evidence of lagged co-jumps

was observed, in particular, at frequencies greater than one to five seconds. The result

indicated that jumps in liquidity observed at a frequency of one second are usually not

followed by statistically significant price jumps at lower frequencies. In the second part

of the empirical application, we used tick-by-tick data with no re-sampling and com-

puted the second battery of tests. The tests allowed us to distinguish between different

jump and co-jump events and in particular to measure the number of contemporaneous

and permanent jumps and co-jumps together with exogenous co-jumps between two

different liquidity measures and the mid-quote spot price of EUR/USD FX. The PZ

and the ABD-LM were particularly affected by microstructual noise and, in particular,

when a small pre-averaging window was used. As we considered a different number

of observations per block, we also noticed a substantial variation in the percentage of

detected liquidity and price jumps.

There are a number of areas for further research. In Chapter 1, we studied the

behavior of available liquidity at k-ticks from the best displayed price in the order book.

However, it would be interesting to evaluate the relationship between price dynamics

and changes in available liquidity also using a more extensive data-set or to relate the

bid to the ask side of the order book. In Chapter 2, we presented a co-jump testing

procedure based on the combination of univariate tests for jumps. In particular, we

used intersections and re-unions to combine a number of test statistics characterized
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by a known statistical distribution and construct the co-jump test indicator functions.

It would be interesting to study the statistical properties of the co-jump test indicator

function and to create a co-jump statistic based on combinations of p-values where some

form of dependence is allowed. Finally, in Chapter 3 we have not distinguished between

trading regimes or time-of-the-day effects. Liquidity is shown to play an important role

in the context of microstructural contagion and shocks to liquidity, especially when

driven by informed trading, tend to have a more permanent impact on prices. We

would expect a higher number of endogenous co-jumps to be detected in proximity of

the opening or the closing of a trading session when both trading volatility and displayed

liquidity are low as also observed from the data. It would then be particularly interesting

to run the co-jump testing procedure across different trading times during the day and

isolate diurnal effects. Also, despite the large sample used in the empirical analysis,

we would need to extend the time interval considered and measure the robustness

of the proposed testing methodology to different trading cycles. Moreover, it would

be interesting to assess if the transmission mechanism between liquidity and prices is

stable across different trading regimes or if it can be affected by other microstructural

variables. Finally, the transactional variables, used in the analysis, belong to one side

of the limit order book. We would need to study the dynamics of the entire order book

in order to detect an asymmetric response of the bid vs. offer price to a liquidity shock.

We leave these developments to future research.
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