IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Kopparti, R. M. & Weyde, T. (2019). Factors for the Generalisation of Identity
Relations by Neural Networks. Paper presented at the Thirty-sixth International Conference
on Machine Learning (ICML 2019 ), 9-15 Jun 2019, Long Beach, USA.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23875/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

arXiv:1906.05449v1 [cs.LG] 13 Jun 2019

Factors for the Generalisation of Identity Relations by Neural Networks

Radha Kopparti' and Tillman Weyde

Abstract

Many researchers implicitly assume that neural
networks learn arbitrary relations and generalise
them to new unseen data. It has been shown re-
cently, however, that the generalisation of feed-
forward networks fails for identity relations. The
proposed solution for this problem is to create
an inductive bias with Differential Rectifier (DR)
units. In this work we explore various factors
in the neural network architecture and learning
process whether they make a difference to the gen-
eralisation on equality detection of Neural Net-
works without and and with DR units in early and
mid fusion architectures.

We find in experiments with synthetic data effects
of the number of hidden layers, the activation
function and the data representation. The train-
ing set size in relation to the total possible set of
vectors also makes a difference. However, the
accuracy never exceeds 61% without DR units
at 50% chance level. DR units improve generali-
sation in all tasks and lead to almost perfect test
accuracy in the Mid Fusion setting. Thus, DR
units seem to be a promising approach for creat-
ing generalisation abilities that standard networks
lack.

1. Introduction

Humans are very effective in learning abstract patterns that
don’t depend on the values of items but only on their re-
lations, such as the identity of pattern components, and
applying them to new stimuli, often after very brief expo-
sure to a sequence of patterns (Marcus et al., 1999). There,
it was also shown that recurrent neural networks do not gen-
eralise identity rules. This has recently been confirmed for
the most common neural network types and the ‘Relation
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Based Patterns’ (RBP) solution, based on ‘Differentiator-
Rectifier’ (DR) units has been introduced in (Weyde & Kop-
parti, 2018a). The more fundamental problem of learning
equality relations has identified and a solution with DR units
has been proposed in (Weyde & Kopparti, 2018b).

In this work, we study the generalisation behaviour of neural
networks, especially feed-forward neural networks (FFNN)
on the equality detection task. FFNNs are universal ap-
proximators (Leshno et al., 1993) and thus the modelling of
equality between binary vectors is in their hypothesis space.
The failure to generalise is therefore in the learning process
and we investigate the effect of the learning parameters on
the generalisation of FFNNs with and without DR units.

The remainder of this paper is organised as follows: Section
2 presents a literature review, including a description of the
RBP/DR structures and the task of abstract rule learning.
Section 3 presents the experimental results and discussion,
and the conclusions of this paper follow in Section 4.

2. Related work

The question of systematic learning of abstractions by neu-
ral networks has been posed already in (Fodor & Pylyshyn,
1988). In a well-known study a recurrent neural network
failed to distinguish abstract patterns, based on equality re-
lations between sequence elements, although seven-month-
old infants could distinguish them after a few minutes of
exposure (Marcus et al., 1999). This was followed by an
exchange on rule learning by neural networks and in human
language acquisition with different approaches to training
and designing neural networks (Elman, 1999; Altmann &
Dienes, 1999; Shultz & Bale, 2001; Vilcu & Hadley, 2001;
2005; Shultz & Bale, 2006; Vilcu & Hadley, 2005; Shas-
tri & Chang, 1999; Dominey & Ramus, 2000; Alhama &
Zuidema, 2016).

A more specific problem of learning equality relations was
posed in (Marcus, 2001) by showing that neural network
learning of equality on even numbers in binary representa-
tion does not generalise to odd numbers. (Mitchell et al.,
2018) addressed this problem with different approaches as
an example for extrapolation and inductive biases for ma-
chine learning in natural language processing. Inductive
biases can be realised in a number of ways and have at-
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tracted increased interest recently. They have been applied,
for instance, to spatial reasoning (Hamrick et al., 2018), to
arithmetic tasks (Trask et al., 2018) and to learning from
few examples (Snell et al., 2017), suggesting a number of
potential benefits.

RBP and DR units have been introduced in (Weyde & Kop-
parti, 2018a) and (Weyde & Kopparti, 2018b) as a way to
create an inductive bias for learning identity relations. DR
units compare two input values by calculating the absolute
difference: f(x,y) = |x —y|. Pairs of vectors are compared
with one DR unit for every vector dimension with weights
from the inputs to the DR units fixed at 1. There are two
ways of adding DR units to a standard neural network. In
Early Fusion, DR units are concatenated to input units, and
in Mid Fusion they are concatenated to the first hidden layer.
The DR units have activation 0 for equal input and positive
values otherwise. Learning the suitable summation weights
for the DRs is sufficient for creating a generalisable equality
detector, so that they make this learning task easier. They
have been shown to have a positive effect on real-life tasks
in (Weyde & Kopparti, 2018a) and no adverse effects were
found on other tasks in (Weyde & Kopparti, 2018b).

3. Experiments and Results

The task here is a simple one: detecting if two binary vectors
v1, v2 With n dimensions are equal. v; and v, are concate-
nated as input to a neural network. We extend the work in
(Weyde & Kopparti, 2018b) by experimenting with various
factors to determine their effect on generalisation.

Our plain FFNN is a network with one hidden layer and
ReLU activation. Throughout our experiments, the network
is trained for 20 epochs, which led to convergence in all
cases and 100% average training accuracy. We run 10 simu-
lations for each configuration and round accuracy averages.
We test the significance of differences between models with
a Wilcoxon Signed Rank Test with threshold p = .05, over
the results of the simulations, which does not assume normal
distribution and tests for different medians.

3.1. Variations of the data size

Vector dimensionality We generate pairs of random bi-
nary vectors with dimensionality n between 2 and 100 as
shown in table 1. For n < 10 we use all the possible bi-
nary vectors to generate equal pairs, i.e. 2" equal pairs, and
random vectors for the unequal pairs. For n < 10 we use
a random, class balanced selection of 10000 vectors. We
randomly generate the same number of unequal vector pairs.
Then we use stratified sampling to split the data 75:25 into
train and test set. The results are shown in Table 1.

We see that the standard FFNN s barely exceed chance level
(50%). The early fusion model improves results, but never

Vector Plain | DR Early | DR Mid
Dimension | FFNN Fusion Fusion
n=2 52% 66% 100%
n=3 55% 65% 100%
n=5 51% 67% 100%
n=10 51% 65% 100%
n=20 49% 63% 100%
n=30 50% 65% 100%
n=40 50% 64% 100%
n=50 51% 65% 100%
n=60 48% 64% 100%
n=70 50% 62% 100%
n=80 50% 63% 100%
n=90 49% 62% 100%
n=100 50% 64% 100%
SD 1.59 1.23 0.07

Table 1. Accuracy of the different network types on pairs of vectors
of different dimensions. The joint train and test data covers all
possible equal vector pairs for n < 10, and a random, class-
balanced selection of 10000 vector pairs where n > 10. The
standard deviation (SD) is given in percentage points.

reaches full generalisation. The Mid Fusion reaches close
to perfect test performance. We tested for significant dif-
ferences between the lowest dimensionalities (n = 2, 3) vs
the highest (n = 90, 100), with a sample size of 20 each.
We found significant differences only for the DR Early and
Mid Fusion (p < .01), where accuracy is better for lower
dimensionalities, but not for the plain FFNN.

Training data size We study here how much the perfor-
mance depends on the training data size. For this, we vary
only the training data size and keep the test set and all
other parameters constant. We use training data sizes of 1%
to 50% (in relation to the totally available data as defined
above) and the accuracy achieved in various conditions is
plotted in Figure 1. The Mid Fusion network reaches 100%
accuracy from 10% data size on while the FFNN shows only
small learning effects.

In order to further study the effect of increased training data
we also use higher proportions of the total data as training
data, which means that we have to reduce the test data
size. We vary the train/test split from 75/25% of training
and testing data up to 95/5% on pairs of 10-dimensional
vectors. The results are given in Figure 2, showing gradual
improvements of the Early Fusion DR and plain FFNN
models, but even with 95% of all possible combinations in
the training set the accuracy never exceeds 72% and 68%,
respectively.

Vector coverage A possible hypothesis for the results of
the FFNN is that the coverage of the vectors in the training
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Figure 1. Accuracy of plain FFNN and DR variants for 10-
dimensional binary vectors when varying the distributions of train-
ing data from 1% to 50%, keeping the testing data fixed at 50%.

set plays a role. We do not share vectors in equal pairs
between training and test set, as it would mean to train on
the test data. Instead we create a training set that contains in
its unequal pairs all vectors that appear in the test set. The
results are shown in column a) of Table 2. We also created
a training set where each vector appeared as above, but in
two pairs, one in position v; and once in vy. The results are
shown in column b) of Table 2. The results in both cases are
similar to those without this additional coverage in Table 1.

Type Plain DR Early DR Mid

FFNN Fusion Fusion
a)one | 50% (1.56) | 75% (1.17) | 100% (0.03)
b) both | 52% (1.56) | 87% (1.14) | 100% (0.04)

Table 2. Test set accuracy (standard deviation) of plain FFNNs and
with DR units for test set vectors appearing in training in a) one
position, or b) both positions for n = 10. Accuracies for a) and
b) are not significantly different to the case of random vectors for
plain FFNNSs, but the improvement is significant for Early and Mid
Fusion DR models.

3.2. Variations of the network architecture

Network depth Given the general success of deep net-
works, we hypothesised that depth might help in learning a
generalisable solution and thus tested networks with greater
numbers of hidden layers. In the mid fusion architecture,
the DR units are always concatenated to the first layer that
is connected to the inputs. The results show some improve-
ment, but not to a large extent, as we increase the number of
hidden layers as given in Table 3. The difference between
the shallow networks (1 and 2 layers) and the deep networks
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Figure 2. Accuracy of plain FFNN and DR variants for 10-
dimensional vectors when varying the size of training data set
from 75% to 95% of the total, with the remaining data used for
testing.

(4 and 5 layers) is statistically significant (p < .01). This
is an interesting result, as the additional depth is not nec-
essary for representing a generalisable solution, but does
help somewhat to find such a solution. It is not obvious,
why deeper networks learn somewhat more generalisable
solutions, given that Early Fusion models, where there is
one more layer between the DR units and the outputs, are
doing worse than the Mid Fusion models.

Number of Plain | DR Early | DR Mid
hidden layers | FFNN Fusion | Fusion
h=1 55% 65% 100%
h=2 57% 69% 100%
h=3 58% 69% 100%
h=4 60% 72% 100%
h=5 61% 73% 100%
SD 1.57 1.59 0.05

Table 3. Test accuracy for different numbers of hidden layers with
10 neurons each, for vector dimension n=3. Deeper networks are
significantly better than shallower ones (see text for details).

Hidden layer width Based on the positive effect of a
larger model with more parameters, we also evaluated the
performance of the network using a single hidden layer and
varying the number of neurons in that layer. We considered
hidden layer size of 10 to 100, again with and without DR
units, the results are tabulated in Table 4. The observation
here is that the larger models do not improve in perfor-
mance when width is changed instead of depth. There is
no significant difference between the two smallest networks
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(h, = 10,20) and the largest (h,, = 80,100) for Plain
FFNNs, while for the DR models the smaller networks per-
form significantly better.

Hidden layer | Plain | DR Early | DR Mid
size FFNN Fusion Fusion
h, =10 50% 65% 100%
h, =20 49% 63% 100%
hn, =30 51% 61% 100%
hn, =40 45% 65% 100%
h, =50 47% 65% 100%
h, =80 51% 62% 100%
h, =100 50% 64% 100%
SD 1.62 1.23 0.04

Table 4. Accuracy of different network types for n=3. The net-
works contain a single hidden layer of variable size h,.

3.3. Other factors

Activation function Another approach to change the
learning behaviour is using different activation functions in
the hidden layer. For n=3, we evaluated the networks with
ReLU, Sigmoid and Tanh activations. The results are given
in Table 5 and they show that the type of activation in the
hidden layer has small positive effect in the overall accuracy,
which is significant for all models.

Activation Plain DR Early DR Mid
function FFNN Fusion Fusion
ReLu 55% (1.38) | 65% (1.23) | 100% (0.05)
Sigmoid 58% (1.28) | 69% (1.18) | 100% (0.03)
Tanh 58% (1.29) | 69% (1.17) | 100% (0.03)

Table 5. Test accuracy (standard deviation) of the network for dif-
ferent activation functions for vector dimension n=3

Data representation We replace 0;1 with -1;1, like in
(Courbariaux et al., 2016), but only applied to the inputs.
The results of the accuracy for n=3 with and without DR
units are given in Table 6. We see an improvement, it is
relatively small but significant across all models.

Type Plain DR Early DR Mid

FFNN Fusion Fusion
a) 0/1 55% (1.23) | 65% (1.09) | 100% (0.03)
b) -1/1 | 58% (1.19) | 69% (1.07) | 100% (0.03)

Table 6. Accuracy of the network for data representation. a) stan-
dard 0/1 representation and b) ‘sign’ -1/1 representation for vector
dimension n=3.

We also tested a FFNN with 5 hidden layers, sigmoid activa-
tion function and -1/1 representation. Apparently the gains
do not accumulate, as the test set accuracy was only 58%.

3.4. Other tasks

Given the positive results for the DR mid fusion architecture
for vector pairs, we want to test whether the DR units have
an effect, possibly negative, on other learning tasks. We test
a) comparison of the two vectors in the pair, b) checking if
the digit sum is > 3, The results are shown in Table 7. In
both a) and b) we see, that the performance is actually not
hindered but helped by the DR units.

We also test two tasks the DR architecture was not designed
for: ¢) digit reversal (v; = flip(v2)) and d) parity checking
(digit sum mod 2). The DR units organised per correspond-
ing input neurons do not deliver a perfect solution here, but
still lead to better results than a plain FFNN. The differences
of Plain FFNN vs Early Fusion and Early vs Mid Fusion
DR are statistically significant for all tasks.

Task Plain DR Early DR Mid

FFNN Fusion Fusion
a) 75% (1.08) | 92% (0.94) | 100% (0.03)
b) 77% (1.05) | 82% (1.03) | 100% (0.03)
c) 50% (1.62) | 55% (1.53) 58% (1.50)
d) 51% (1.62) | 55% (1.53) 62% (1.45)

Table 7. Test set accuracy (standard deviation) of FFNN without
and with DR units for a) numeric comparison (vi1 > v2), b) digit
sum > 3, c) inversion of digit order and d) parity check.

4. Conclusions

In this study we examined the lack of generalisation of iden-
tity rules by feed-forward neural networks and the effect of
various factors in network architecture and learning method.
While data dimensionality, hidden layer size and vector cov-
erage had no influence, the data representation, activation
function and network depth do lead to some improvements.
Including DR units leads to substantial improvements. DR
Mid Fusion reaches almost perfect generalisation, even from
small amounts of training data, in all variants of identity
detection.

Identity is a fundamental task that many practitioners expect
neural networks to solve. We therefore believe it is impor-
tant to investigate the design of more techniques for creating
and controlling inductive biases in neural network learning,
as we find that even relatively a simple task like learning
identity rules requires them for good generalisation.

We see two sets of general questions that these results raise.
First: Why do FFNNs not learn to generalise vector identity?
Which other relations do neural networks not learn? What
does that mean for more complex tasks? Second: What
kinds of inductive biases should we design and how can we
implement them for more complex tasks?
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