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Abstract

The addition of a set of cohort parameters to a mortality model
can generate complex identifiability issues due to the collinearity be-
tween the dimensions of age, period and cohort. These issues can lead
to robustness problems and difficulties making projections of future
mortality rates. Since many modern mortality models incorporate
cohort parameters, we believe that a comprehensive analysis of the
identifiability issues in age/period/cohort mortality models is needed.
In this paper, we discuss the origin of identifiability issues in general
models before applying these insights to simple but commonly used
mortality models. We then discuss how to project mortality models
so that our forecasts of the future are independent of any arbitrary
choices we make when fitting a model to data in order to identify the
historical parameters.
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earlier drafts of this paper, and to Andrés Villegas for many useful discussions on this and
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1 Introduction

Many modern models of mortality include parameters to capture the impact
of lifelong mortality effects which follow individuals from birth, building on
the findings of studies such as Wilmoth (1990) and Willets (1999, 2004).
Understanding such “cohort” effects can be of critical importance, especially
for those interested in understanding the mortality experience of a specified
group of lives, such as members of a pension scheme or policyholders in an
annuity book. Examples of models incorporating cohort parameters include
those proposed in Renshaw and Haberman (2006), Cairns et al. (2009), Plat
(2009), O’Hare and Li (2012), Börger et al. (2013) and Hunt and Blake
(2014).

In Hunt and Blake (2015f), we argued that the time has come to under-
take a more holistic analysis of the class of age/period/cohort (APC) models
and began this analysis by outlining their common structure. In Hunt and
Blake (2015d), we focused on the subset of this class without a cohort term,
namely on age/period (AP) models, and examined their identifiability issues.

We found that, for AP models, there are a number of “invariant trans-
formations” which change the parameters, but not the fitted mortality rates.
The existence of these transformations lead to identifiability issues, meaning
that there are certain features of the parameters in a model which are not
defined by the data. Instead, they are only determined by the arbitrary iden-
tifiability constraints we impose, and therefore have no independent meaning.
Consequently, we must be careful to ensure that our results from using mor-
tality models do not depend upon these features of the parameters. These is-
sues with identifiability can lead to models which lack robustness when fitted
to data, cause us to draw faulty and erroneous conclusions when analysing
the historical data, and bias our projected mortality rates in future. We
also found that, unless we choose our projection methods carefully, our pro-
jections of mortality can depend upon the arbitrary choice of identifiability
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constraint. This should be avoided, so we discussed how to choose projection
methods which give “well-identified” projections of mortality rates.

The addition of a set of cohort parameters to a mortality model can gener-
ate additional identifiability issues which are fundamentally unlike anything
present in otherwise similar AP models. These are caused by the collinearity
between age, period and cohort. In the context of the APC mortality models
discussed in this study, we find that certain deterministic trends found within
the fitted parameters are unidentifiable by the models, and therefore do not
possess any meaning other than that imposed by our arbitrary identifiability
constraints. This, in turn, means that it is both more important and more
difficult to ensure that projections from these models are well-identified, as
we must separate these unidentified trends (which depend entirely upon the
identifiability constraints) from the variation around the trends, which is
meaningful and needs to be projected consistently with what has been ob-
served in the past. Thus, although the present study extends the work of
Hunt and Blake (2015d), it is necessary to view the underlying identifiability
issues in a fundamentally different way and, consequently, develop a new set
of tools to solve them.

In this paper, we study the identifiability issues present in some of the
simplest APC models in order to demonstrate the problems in action and
their potential resolution. In these simple cases, the identifiability issues
can appear trivial, and their impact on our analysis of historical and pro-
jected mortality rates relatively minor. However, we believe that it is vital
to fully understand these issues in the context of simple models, since they
become considerably more important in more complicated models. Indeed,
recognising these issues and solving them was vital to the development of
the “general procedure” for constructing APC mortality models, described
in Hunt and Blake (2014), and appropriately projecting such models, as we
discuss in Hunt and Blake (2015b), Hunt and Blake (2015a) Hunt and Blake
(2015c) and Hunt and Blake (2015e).

The outline of the paper is as follows. Section 2 reviews the structure of
general APC mortality models described in Hunt and Blake (2015f). Section
3 introduces the concept of identifiability in the context of the simplest and
most widely used APC model and develops our understanding of how cohort
effects create fundamentally new identification issues in this model compared
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with the simpler AP model. Section 4 generalises this by examining the issue
of identifiability in more general APC models with parametric age functions.
Section 5 investigates the consequences of identification for projection, first
by looking at the model discussed in Section 3 and then in a more general
case. Finally, Section 6 concludes.

2 Structure of age/period/cohort models

An APC mortality model is one which assumes that mortality rates can be
modelled as a series of terms involving functions of age, x, period, t, and year
of birth, y = t− x.1 This can be written as

ηx,t = αx +
N
∑

i=1

β(i)
x κ

(i)
t + γt−x (1)

where

• ηx,t is a link function to transform the response variable into a form
suitable for modelling and linking it to the proposed predictor structure;

• αx is a static function of age;2

• κ
(i)
t are period functions governing the evolution of mortality with time;

• β
(i)
x are age functions modulating the impact of the period function

dynamics over the age range; and

• γy is a cohort function describing mortality effects which depend upon
a cohort’s year of birth and follow that cohort through life as as it ages.

We also note that the general APC mortality model in Equation 1 can
be re-written as

ηx,t = αx + β⊤
xκt + γt−x (2)

1In this paper we assume that x ∈ [1, X ] and t ∈ [1, T ] and hence that years of birth,
y, are in the range (1 −X) to (T − 1). In practice, x and t will be given by the range of
the data being used.

2We consider models of the form of Equation 1 but without a static age function in
Appendix B.
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where

κt =
(

κ
(1)
t , . . . κ

(N)
t

)⊤

βx =
(

β
(1)
x , . . . β

(N)
x

)⊤

This form is useful when projecting these models, as discussed in Section 5.

The general structure of APC models was discussed in detail in Hunt
and Blake (2015f). In particular, we found that APC mortality models have
different demographic significance3 depending on whether the age functions
β
(i)
x are non-parametric4 or parametric.5

In Hunt and Blake (2015d), we used linear algebra to analyse the struc-
ture of AP mortality models as mappings from a space of parameters to a
model space, and found that in order for these mapping to be unique, the
spaces had to have the same dimension. In addition, AP models can be sub-
divided into those with parametric age functions and those where the age
functions are non-parametric. While the two families have similar identifia-
bility issues, these needed to be solved using different methods in order to
preserve the demographic significance of the parametric age functions.6 It
is important to note that AP mortality models are nested within the class
of APC models, and, therefore, all of the issues raised in Hunt and Blake
(2015d) are still applicable for APC mortality models.

APC models have additional identifiability issues which are fundamen-
tally different from anything present in otherwise similar AP models, hence
alternative methods are necessary to analyse them. They are caused by the

3Demographic significance is defined in Hunt and Blake (2015f) as the interpretation
of the components of the mortality model being explainable in terms of the underlying
biological, medical or socio-economic causes of changes in mortality rates.

4The values of the age functions β
(i)
x at different ages x are fitted without any a priori

structure or functional form. See Hunt and Blake (2015f).
5The age functions β

(i)
x take a specific functional form β

(i)
x = f (i)(x; θ(i)), defined in

advance of fitting the model to data. For simplicity, the dependence of the age functions
on θ(i) is suppressed in the remainder of this paper.

6These different methods are not germane to the arguments in this paper. Interested
readers should consult Hunt and Blake (2015d).
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collinearity between the dimensions of age, period and cohort, because pe-
riod = year of birth + age. This gives us the freedom to re-write functions
of cohort as functions of age and period, or vice versa. The additional iden-
tifiability issues generated by the cohort term depend fundamentally on the
definition of the age functions within the model, and so are specific to the
model in question. We find that APC models with non-parametric age func-
tions do not have any extra identifiability issues beyond those discussed for
AP models in Hunt and Blake (2015d), as shown in Appendix A. Models with
certain types of parametric age functions require additional identification as
discussed in Section 4.

In Hunt and Blake (2015f), we also found that difficulties with estimating
and assigning demographic significance to the cohort parameters mean that,
in practice, most models use only one cohort term (without any modulating
age function) and do not involve any age/cohort interactions for reasons of
both simplicity and robustness. We follow the same approach in this paper,
and so do not consider models such as that proposed in Renshaw and Haber-
man (2006) or Model M8 in Cairns et al. (2009).

3 Identifiability in the classic APC model

The simplest APC model (referred to here as the “classic APC model”) has
a long history and is widely used in the fields of medicine, epidemiology
and sociology as well as in demography and actuarial science.7 It has the
following form

ln(µx,t) = αx + κt + γt−x (3)

It can be seen that the classic APC model has one age/period term with
f(x) = 1, which is parametric in the sense defined in Hunt and Blake (2015f).

A model is fully identified when all the parameters in it can be uniquely
determined by reference to the available data. In contrast, the classic APC
model (as with most APC models) is not fully identified, because there exist

7For instance, see Hobcraft et al. (1982), Osmond (1985), O’Brien (2000), Carstensen
(2007) and Kuang et al. (2008b).
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different sets of parameters which will give the same fitted mortality rates
and consequently the same goodness of fit for any data set. This phenomenon
is not unique to APC mortality models. However, it is very widespread in
such models and has significant implications when we come to make projec-
tions using them.

The issue of identifiability in the classic APC model also has a very long
history.8 It is, therefore, a good starting point to determine whether the
issues raised in identifying the parameters in Equation 3 can be generalised
to the more complex APC models used in mortality modelling. We can see
that this model is not fully identified, since if we use the transformations in
Equations 4, 5 and 6 to obtain new sets of parameters, we do not change the
fitted mortality rates and hence the fit to the data

{α̂x, κ̂t, γ̂y} = {αx − a, κt + a, γy} (4)

{α̂x, κ̂t, γ̂y} = {αx − b, κt, γy + b} (5)

{α̂x, κ̂t, γ̂y} = {αx + c(x− x̄), κt − c(t− t̄), γy + c(y − ȳ)} (6)

where a bar denotes the arithmetic mean of the variable over the relevant
data range.9 We call such transformations “invariant” for this reason. The
existence of invariant transformations means that the model possesses iden-
tifiability issues, because no one set of parameters is determined uniquely
from the data.

The transformation in Equation 6 is fundamentally unlike any of the
transformations present in AP models discussed in Hunt and Blake (2015d),
since it involves functions of age, period and year of birth rather than con-
stants. It is a consequence of the collinearity between these dimensions,
y = t − x, which enables us to decompose a linear function of year of birth
into linear functions of age and period, and vice versa. This transformation
generalises for many, more complex APC models with parametric age/period
terms, as we discuss in Section 4.

8For instance, see Glenn (1976), Fienberg and Mason (1979), Rodgers (1982), Holford
(1983), Clayton and Schifflers (1987), Wilmoth (1990), Yang et al. (2004), Kuang et al.
(2008a) and O’Brien (2011).

9e.g., x̄ = 1
X

∑

x x = 0.5(X + 1).
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We say that linear trends in the data are “unidentifiable” by the model,
that is, they cannot be uniquely apportioned to either age, period or year
of birth (as was discussed in Wilmoth (1990)). The linear trends observed
in the parameters of the classic APC model therefore have no independent
meaning, as different sets of parameters, with different linear trends will give
exactly the same observable quantities such as fitted mortality rates.

The existence of unidentifiable linear trends in the classic APC model is
of practical as well as theoretical importance. This is because we often see
features of the (transformed) mortality rates which are approximately linear
in age and time. For instance, the shape of the age function, αx, is approx-
imately linear at high ages,10 whilst κt is often approximately linear.11 The
structure of the model means that we are fundamentally unable to separate
these linear trends from a linear trend in the cohort parameters.

Because different sets of parameters give the same fit to the data, we
cannot use the data to apportion the linear trend to either the age, period
or cohort terms. One method of solving this issue is to move to a “maxi-
mally invariant” set of parameters, as discussed in Kuang et al. (2008a) and
Nielsen and Nielsen (2014), which involves reparameterising the model in an
equivalent form with reduced dimensionality, which avoids the identifiability
issues. This approach is discussed in Appendix C.

An alternative and much more common approach is to impose addi-
tional identifiability constraints on the parameters in order to specify them
uniquely.12 These constraints manually apportion the linear trend between
the different terms in the model. Imposing suitable constraints on the model
involves the selection of a single set of parameters from the family of equiv-
alent parameter sets, all of which give identical fitted mortality rates. In
this sense, the manual apportionment is arbitrary - it does not depend upon

10If ηx,t = ln(µx,t), this is the Gompertz model, whilst if ηx,t = logit(qx,t), this is the
Perks model for mortality.

11See, for instance, Tuljapurkar et al. (2000), who went so far as to call this the “universal
pattern of mortality decline”.

12We say that the transformations in Equations 4, 5 and 6 cause issues with the iden-
tifiability of the model.Identification of the model is accomplished by imposing a set of
identifiability constraints and using the invariant transformations to achieve these con-
straints.
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any observable property of the data, but is a product of the model user’s
subjective interpretation of the demographic significance of the parameters.

For example, one set of identifiability constraints is
∑

t κt = 0,
∑

y nyγy =

0 and
∑

y nyγy(y− ȳ) = 0.13 These identifiability constraints allow us to im-
pose our interpretation of the demographic significance of the parameters
onto the model. For example, the first two of the constraints above mean
that αx can be interpreted as an “average” level of mortality at age x, over
the period, with κt and γy representing deviations from this average level.
The third constraint requires that there are no deterministic linear trends
within the fitted cohort parameters, since any linear trend in these param-
eters will be arbitrarily assigned to the age and period effects by using the
transformation in Equation 6. This is in line with the demographic signifi-
cance we assign to the cohort parameters in Hunt and Blake (2015f).

However, it is important to note that these additional identifiability con-
straints are arbitrary. For instance, the constraints

∑

t κt = 0,
∑

y γy = 0
and

∑

y γy(y − ȳ) = 0 (used later in Section 5.2) could also be imposed and
would give different estimated parameters with exactly the same fit to data
and have the same demographic significance. Further, the choice of having no
linear trend in the cohort parameters does not have any independent mean-
ing, since it is entirely dependent upon the identifiability constraints chosen.
While these constraints might allow us to interpret the demographic signif-
icance of the parameters, this interpretation nevertheless depends entirely
on the user’s judgement rather than on the underlying data. For instance,
a different choice of identifiability constraints could be used to impose that
the period parameters, κt, had no linear trend, which would give the param-
eters a different demographic significance but leave the fitted mortality rates
unchanged. We must, therefore, take care to ensure that our projections of
observable quantities such as mortality rates do not depend on our arbitrary
identification scheme, as discussed in Section 5.

13Here ny is the number of observations of cohort y in the data and so
∑

y nyγy =
∑

x,t γt−x.
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4 Identifiability in APC models with para-

metric age functions

Many of the more complex APC mortality models being proposed contain
cohort parameters in the same form as in the classic APC model (i.e., with-

out an age modulating β
(0)
x function). Cairns et al. (2009) and Haberman

and Renshaw (2011) found that models with a cohort term fit the data better
than otherwise similar AP models, especially for the UK population, where a
strong cohort effect has been observed by Willets (1999, 2004) and others. It
is therefore natural to ask whether the additional issues with identifiability
present in the classic APC model are also present in these more complex
models.

In Appendix A, we show that APC models with non-parametric age func-
tions do not possess any additional, non-trivial identification issues beyond
those found in similar AP models discussed in Hunt and Blake (2015d). We
have already seen, however, that in the simplest case of the classic APC
model, the additional structure in the model caused by having a parametric
age function combined with the collinearity of age, period and cohort can
yield new identification issues.

For a general model with parametric age functions

ηx,t = αx +

N
∑

i=1

f (i)(x)κ
(i)
t + γt−x (7)

we can try to generalise Equation 6 to look for invariant transformations of
the form

{α̂x, f̂
(i)(x), κ̂

(i)
t , γ̂y} = {αx − a(x), f (i)(x), κ

(i)
t − k(i)(t), γy + g(y)} (8)

where a(x), k(i)(t) and g(y) are smooth functions.14 Because the formulae
used for the age functions define the model being used, in the sense of Hunt
and Blake (2015f), we desire that they do not change under the invariant
transformations, i.e., f̂ (i)(x) = f (i)(x). Transformations which changed the

14While, αx and κt are only defined for integer x and t, the parametric age functions
f (i)(x) are defined for continuous x and so it make sense to look for transformations which
also use continuous functions, as in the classic APC model in Section 3.
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age functions in the model would give a fundamentally different model, al-
beit one which gave the same fit to the data. In Hunt and Blake (2015d), we
called different models, with different definitions of the age functions, that
gave identical fits to the data “equivalent models”.

In order for the transformation in Equation 8 to leave Equation 7 un-
changed, we require

g(t− x) = a(x) +
N
∑

i=1

f (i)(x)k(i)(t) (9)

If this is true, we say that the deterministic trends k(i)(t) and g(y) are
“unidentifiable”, since the model is unable to apportion them between the
age/period and cohort terms, in the same way as with the unidentifiable
linear trends in the classic APC model. Instead, we must manually appor-
tion these trends by means of additional identifiability constraints. These
deterministic trends in the fitted parameters, therefore, lack any objective
meaning, since they are entirely dependent on the choice of identifiability
constraints. Nevertheless, they must be allowed for when projecting the
APC mortality model, as discussed in Section 5, even if they appear to be
comparatively small.

The first thing to note from Equation 8 is the trivial case where Equation
9 holds, i.e., g(y) = a(x) = b, a constant, and k(i)(t) = 0, ∀t. This is simply a
transformation of the form in Equation 5. It does not involve any age/period
terms and so holds for all APC models, including those with non-parametric
age functions.

To find less trivial transformations, we take a Taylor expansion of g(y)
around −x, assuming that it is an infinitely differentiable function of year of
birth

g(t− x) = g(−x) +

∞
∑

j=1

1

j!
tj
djg

dyj

∣

∣

∣

∣

y=−x

(10)

Comparing this to Equation 9, we can set a(x) = g(−x) and k(j)(t) = 1
j!
tj if

f (j)(x) = djg

dyj

∣

∣

∣

y=−x
, i.e., the derivatives of g are a subset of the age functions

11



of the model. Models of the form in Equation 7 have a finite number, N ,
of age/period terms and, therefore, we require that g(y) has a finite series
of derivatives. There are two cases when g will have a finite sequence of
derivatives, either

1. the derivatives terminate after M ≤ N terms say, or

2. the form of the derivatives is cyclical so that dj+M g

dyj+M

∣

∣

∣

y=−x
= K djg

dyj

∣

∣

∣

y=−x

for some integer M ≤ N and constant K.

4.1 Polynomial age functions

For the Taylor series to terminate in a finite number of terms, we require
that djg

gyj
= 0, ∀j > M , and therefore that g(y) must be a polynomial in y of

order M .

Theorem 1 APC mortality models of the form in Equation 1 and age func-
tions spanning the polynomials to order M −1 possess invariant transforma-
tions which add a polynomial of order M to the cohort function.

Sketch of Proof Take g(y), a general polynomial of order M , and expand
as a function of x and t. This can then be regrouped into an equivalent form
that corresponds to the age/period terms in the model, in order to see how
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g(y) can be absorbed into the age/period structure

g(y) =

M
∑

n=0

any
n

⇒ g(t− x) =
M
∑

n=0

an(t− x)n

=

M
∑

n=0

an

n
∑

m=0

(

n

m

)

tm(−x)n−m

=

M
∑

n=0

an

[

(−x)n +

n
∑

m=1

(

n

m

)

tm(−x)n−m

]

=
M
∑

n=0

an(−x)n +
M
∑

n=1

n−1
∑

l=0

an

(

n

l

)

tn−l(−x)l

=

M
∑

n=0

an(−x)n +

M−1
∑

l=0

(−x)l
M
∑

n=l+1

an

(

n

l

)

tn−l

=
M
∑

n=0

an(−x)n +
M−1
∑

l=0

(−1)lf (l)(x)
M
∑

n=l+1

an

(

n

l

)

tn−l

= a(x) +

M−1
∑

l=0

f (l)(x)k(l)(t)

If there are age functions in the model of the form f (j)(x) = xj of
j = 0, 1, . . .M − 1, the expression above corresponds to Equation 9 with
a(x) =

∑M

n=0 an(−x)n and k(j)(t) = (−1)j
∑M

n=j+1 an
(

n

j

)

tn−j. More gener-
ally, we only require that the age functions span the first M −1 polynomials,
because these are equivalent to a model with f (j)(x) = xj such as that in the
derivation above.

We can think of the transformation as expanding the polynomial g(y)
into terms in x and t, grouping these and then combining them with the ap-
propriate age/period terms. A model with age functions spanning the first
M − 1 polynomials therefore has an additional M + 1 degrees of freedom
(represented by the coefficients, an, of the general polynomial) which do not
affect the fit to the data. This is similar to the analysis in Wilmoth (1990),
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which argues that higher order polynomial trends in the cohort parameters
will cause identifiability problems in a mortality model if sufficient age/period
terms of suitable form exist within the model. These additional degrees of
freedom mean that we need to impose an additional M+1 identifiability con-
straints, which assign the M + 1 unidentifiable polynomial trends between
the different age/period and cohort terms in the model.

The simplest example of this is the transformation of the classic APC
model described in Section 3. This has a single parametric age function
f(x) = 1 which spans the polynomials to order 0. The model will then allow
first order polynomials (i.e., linear terms) to be added to the cohort parame-
ters with offsets made to the static life function and the period term without
changing the fitted mortality rates. These are exactly the invariant trans-
formations described in Equations 5 and 6. Consequently, we impose two
additional identifiability constraints for the cohort parameters in the model
to identify their level and linear trend.

4.1.1 The Plat models

In Plat (2009), two new APC mortality models were introduced. These can
be written15

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x (11)

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + γt−x (12)

The second of these models was introduced as a simplification of the first,
with the expectation that it would be more suitable for modelling mortality
at high ages. We call the model in Equation 11 the “Plat model” and the
model in Equation 12 the “reduced Plat model” for this reason.16

The first point to note is that both the Plat and reduced Plat models
nest the classic APC model, and therefore the invariant transformations in
Equations 4, 5 and 6 are also applicable for both models.

15We define x+ ≡ max(x, 0).
16This model can also be thought of as an extension to model M6 in Cairns et al. (2009),

with a static age function, or as an extension to the “CBDX” model discussed in Hunt
and Blake (2015d) with a cohort term.
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The second point to note is that these models also nest simple AP mor-
tality models,17 and therefore the results of Hunt and Blake (2015d) are still
applicable. This means that the “locations” of the period functions are un-
defined and need to be identified by imposing a constraint on their levels.
Usually this is of the form

∑

t

κ
(i)
t = 0

These invariant transformations were noted by Plat (2009) and used to im-
pose suitable identifiability constraints.

However, the third point to note is that both of these models have age
functions f (1)(x) = 1 and f (2)(x) = (x − x̄) which span the polynomials to
linear order. Using the result of Theorem 1, we should be able to find a
transformation of the parameters which adds a quadratic polynomial in y

to the cohort parameters, but leaves the fitted mortality rates unchanged.
Indeed, we find that the transformation

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx − d(x− x̄)2,

κ
(1)
t − d(t− t̄)2, κ

(2)
t + 2d(t− t̄), γy + d(y − ȳ)2} (13)

leaves the fitted mortality rates unchanged for both the Plat and reduced
Plat models. We say that these models have unidentifiable quadratic trends,
which have to be manually allocated between the different parameters via
identifiability constraints.

Hence, we require three identifiability constraints on the cohort param-
eters in the Plat and reduced Plat models, i.e., to apportion the level, lin-
ear trend and quadratic trend between the different age/period and cohort
terms, plus identifiability constraints on the levels of the period functions.
This means that for full identification of the models, we require an additional
identifiability constraint to those discussed in Plat (2009).

If the model user fails to allocate the quadratic trend between the different
terms via an additional identifiability constraint, then the fitting algorithm

17In particular, both models nest the “CBDX” model discussed in Hunt and Blake
(2015d).
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will make an apportionment in order to achieve convergence. However, this
apportionment will not be based on any particular desired demographic sig-
nificance and will depend on the specific details of fitting algorithm, such
as the starting parameter values used. To illustrate, instead of removing
quadratic trends from the cohort parameters and apportioning them to the
age/period terms, the fitting algorithm may split any quadratic trends be-
tween the cohort parameters and the age/period terms, giving values of γy
with an apparent quadratic trend in y. Not only is this contrary to our
desired demographic significance, it can make comparing parameters across
datasets difficult due to the presence or absence of quadratic trends which
do not have any meaning independent of the data.

In addition, a failure to fully identify the model can lead to inefficient fit-
ting algorithms, which take a long time to converge to a solution, as discussed
in Hunt and Villegas (2015). Furthermore, they can also give parameter esti-
mates which are not robust to small changes in the data (e.g., an additional
year of data), since such changes can cause the fitting algorithm to abruptly
change the allocation of the unidentifiable trends. For these reasons, it is
very important to ensure that the APC mortality models we use are fully
identified by imposing sufficient identifiability constraints to uniquely esti-
mate all the parameters in the model.

Following the same approach as used for the classic APC model, we might
choose to impose the constraints in Section 3 and extend these to impose
∑

y ny(y − ȳ)2γy = 0 to remove quadratic trends in the cohort parameters
and allocate them to the age/period terms. However, as with the classic
APC model, this choice is arbitrary and a different choice of constraints will
make no difference to the fitted mortality rates, only to the interpretation
we give to the parameters.

In Section 3, we saw that the lack of identifiability of the linear trends in
the model, due to the transformation in Equation 6, was of practical as well
as theoretical importance because linear trends were often observed in both
the age and period terms. Similarly, the transformation in Equation 13 is
of practical importance when fitting the Plat model, because we usually see
some curvature in αx at high ages and also systematic departures from the
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linearity of the period functions.18 These quadratic trends will, therefore,
not be distinguishable from a quadratic trend in the cohort parameters in
the Plat model. However, because the observed magnitude of such trends
is typically smaller than the linear trends observed in the age/period terms,
failure to fully identify the quadratic trend in the data will typically have
a lower, though still important, impact than a failure to identify the linear
trend.

It is worth noting that the transformation in Equation 13 does not treat
the different period functions equally, i.e., a term which is quadratic in t is
added to κ

(1)
t , a term linear in t is added to κ

(2)
t , whilst κ

(3)
t is unchanged

by the invariant transformation for the Plat model. However, this is true
only for the particular definition of the age functions shown. To illustrate,
instead of the Plat model in Equation 11, we could instead have chosen an
equivalent model of the form

ln(µx,t) = αx + κ
(1)
t + (x− x̄)+κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x (14)

Such a model will trivially give the same fitted mortality rates as that in
Equation 11 and has the same number of parameters, and so will have the
same number of identifiability issues. However, the transformation corre-
sponding to Equation 13 for this model will now add terms linear in t to
both κ

(2)
t and κ

(3)
t . Specifically, for this model, we have the invariant trans-

formation

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx − d(x− x̄)2, κ

(1)
t − d(t− t̄)2,

κ
(2)
t − 2d(t− t̄), κ

(3)
t + 2d(t− t̄), γ + d(y − ȳ)2} (15)

in contrast to the transformation in Equation 13. Specifically, we note that
whilst the transformation in Equation 13 did not involve κ

(3)
t , the transfor-

mation in Equation 15 does. The invariant transformations of the model
are therefore specific to the age functions present, and may be different in
different models, even if those models give an equivalent fit to data.

4.2 Exponential and trigonometric age functions

The other case where Equation 10 potentially yields invariant transforma-
tions of the parameters occurs when the derivatives of g(y) are cyclical with

18For instance, see Booth et al. (2002), who curtailed the use of the data in the Lee and
Carter (1992) model based on when a linear assumption for κt is no longer appropriate.
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period M ≤ N .

Theorem 2 APC mortality models of the form in Equation 1 with exponen-
tial or trigonometric age functions possess invariant transformations which
add similar exponential or trigonometric functions to the cohort parameters.

Sketch of Proof In order for the derivatives of g(y) to be cyclical with
period M , we require

dMg

dyM
= Kg (16)

for some non-zero constant K. Substituting this into Equation 10 and com-
paring with Equation 9 gives

g(t− x) =

M−1
∑

j=0

djg

dyj

∣

∣

∣

∣

y=−x

∞
∑

k=1

1

(j + kM)!
tj+kM

=

M−1
∑

j=0

f (j)(x)k(t)

This is of the form of Equation 9 if we set k(t) =
∑∞

k=1
1

(j+kM)!
tj+kM and

have M age functions f (j)(x) = djg

dyj

∣

∣

∣

y=−x
present in the model. It is interest-

ing to note, therefore, that transformations of this form do not involve the
static age function, as there is no term in the Taylor expansion of g(t − x)
corresponding to a(x).19

Equation 16 has solutions of the form

g(y) =
M
∑

i=1

ℜ[ai exp(kiy)]

where ℜ[z] is the real part of the expression z, and the ki are the M roots
of the equation kM

i = K. In general, these roots will be complex, and,

19This means that they are also present in models without a static age function, as
discussed in Appendix B.
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therefore, g(y) will be exponential, trigonometric or a combination of the
two. In addition

f (j)(x) =
djg

dyj

∣

∣

∣

∣

y=−x

=

M
∑

i=1

ℜ[aik
j
i exp(−kix)]

and so the age functions present in the model will also be exponential or
trigonometric.

Exponential age/period terms can be included in models constructed us-
ing the “general procedure” of Hunt and Blake (2014), where they are typ-
ically used to explain infant mortality. As an example, consider a model of
the form

ηx,t = αx + κ
(1)
t + e−λxκ

(2)
t + γt−x (17)

This is an extension of the “exponential” model of Hunt and Blake (2015d),
with an additional cohort term. We typically require λ > 0 to give the age
function the demographic significance of governing rates of mortality at low
ages. This model will allow the parameters to be transformed using

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx, κ

(1)
t , κ

(2)
t − a eλt, γy + a eλy} (18)

This means that exponential trends in time within the (transformed) data
are not uniquely identifiable as either age/period or cohort effects.20 This
transformation gives us an extra degree of freedom in the model which could
be used to impose an additional identifiability constraint.

In this case, however, the imposition of an identifiability constraint will
be of little practical importance. In Section 3, we said that in order to be
practically important, the unidentifiable deterministic trends must be present
in both the age and period dimensions of the transformed data. Whilst ex-
ponentially increasing trends in the age function are frequently observed in
the data (due to low age mortality effects), exponential trends in the period

20Note that this transformation has g(y) = a exp(λy) and therefore dg

dy
= λg as per

Equation 16.
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functions are not.21 We therefore do not experience problems when fitting
the model to data as a result of any failure to be able to assign uniquely such
a trend to the either age/period or the cohort terms.

As another example, consider a model with trigonometric age functions
of the form

ηx,t = αx + κ
(1)
t + cos(θx)κ

(2)
t + sin(θx)κ

(3)
t + γt−x (19)

For this model, we can transform the parameters using

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx, κ

(1)
t ,

κ
(2)
t − a cos(θt)− b sin(θt),

κ
(3)
t + a sin(θt) + b cos(θt),

γy + a cos(θy) + b sin(θy)} (20)

This means that periodic patterns are not uniquely identifiable as either
age/period or cohort effects.22

As with the exponential functions, the presence of unidentifiable trigono-
metric trends in the model will be of little practical importance. Whilst
the (transformed) data often exhibits periodic behaviour in the cohort and
period effects, it is rare to see periodic behaviour across ages.23 Again, we
do not have the unidentifiable deterministic trends for the model in both
the age and period dimensions and consequently do not experience practical
difficulties when fitting the model to data as a result of any failure to be able
to assign uniquely such trends to the either age/period or the cohort terms.

21An exponential increase or decrease in the period function will typically correspond
to super-exponential growth or decline in the observed mortality rates if either ηx,t =
ln(µx,t) or ηx,t = logit(qx,t). Super-exponential growth in mortality rates are not typically
observed.

22Note that this transformation has g(y) = a cos(θy) + b sin(θy) and therefore d2g

dy2 =

−θ2g as per Equation 16.
23The lack of periodic structure across ages also explains why trigonometric age functions

are not widely used in practice.

20



4.3 Other age functions

Other parametric age functions do not admit any additional invariant trans-
formations involving the cohort parameters, except in the case where they
are actually redefined polynomials, exponentials or trigonometric functions.
For instance, the third age/period term in the Plat model did not generate
any extra interactions with the cohort parameters, beyond those of the re-
duced Plat model. This simplifies the identifiability issues of more complex
mortality models with different types of age functions, such as those pro-
duced by the “general procedure” of Hunt and Blake (2014), compared with
what would otherwise be necessary, were, for instance, only polynomial age
functions to be used.

4.4 Summary

In summary, issues with the identifiability of APC models relate to functions
of year of birth which can be decomposed into purely age/period terms. How-
ever, this is only true in models where the age functions take specific para-
metric forms - namely polynomial, exponential and trigonometric functions.
In such models, certain deterministic trends cannot be uniquely allocated
between the age/period and cohort terms in the model and so require the
imposition of arbitrary identifiability constraints in order to uniquely specify
the model.24 This is summarised in the flow chart in Figure 1.

5 Projection

In the preceding sections, we have seen that APC mortality models are not
fully identified and that we can impose arbitrary identifiability constraints
on the parameters in order to fit them to the historical data. Two different
modellers using the same data and the same model but different arbitrary
identification constraints will obtain different sets of parameters, but these
will give identical fitted mortality surfaces and, therefore, fits to the data.

24As discussed in Appendix B, APC mortality models with non-parametric age functions
will not have any additional transformations that leave the fitted mortality rates exactly
unchanged. However, such models may have transformations that leave the fitted mortality
rates approximately unchanged, as discussed in Hunt and Villegas (2015).

21



Parametric or
non-parametric
age functions?

No exact identification issues

Non-parametric

Shape of age
functions?

Parametric

Unidentifiable polynomial
trends of order M+1

Polynomial

Unidentifiable exponential
/ trigonometric trends

Exponential / Trigonometric

No exact identification issues

Neither

Figure 1: Flow chart of identifiability issues in APC models
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For the majority of practical purposes, we not only need to fit a mor-
tality model to historical data but also to use it to project mortality rates
into the future. In Hunt and Blake (2015d), we found that we needed to be
careful when doing so in AP mortality models in order to ensure that the
projected mortality rates will not depend on the arbitrary identifiability con-
straints imposed when fitting the models to data. The same is true in APC
mortality models. However, the addition of a set of cohort parameters and
the presence of unidentifiable deterministic trends complicate this analysis
significantly.

The most obvious change when moving from an AP to an otherwise simi-
lar APC mortality model is the presence of a set of cohort parameters which
will also need to be projected into the future. The period and cohort pa-
rameters in the APC model are conceptually different and need to be treated
separately when making projections. This is because cohort effects have very
different demographic significance from the period effects and are treated sep-
arately when fitting the model. It is therefore common practice to project
the period and cohort parameters independently.

Some authors (e.g., Haberman and Renshaw (2011)) disagree with this
approach, arguing that it may only be appropriate to do this when the co-
hort parameters are estimated using the residuals from the fitted primary
age/period structure. This means that the cohort structure fitted by the
model is independent of the age/period structure by construction. However,
such fitting techniques will not give parameter estimates which maximise
the fit to data and can lead to hierarchical issues (because the cohort pa-
rameters are only estimated conditional on the previously fitted estimates of
the age/period structure). We, therefore, have a clear preference for model
fitting techniques where all parameters are estimated together in order to
generate the best fit to the historical data.25

More generally, it is conceivable that events such as influenza pandemics
will cause both an immediate rise in mortality and also lifelong health ef-
fects in infants born during the pandemic due to selection effects, leading

25For example, in the general procedure of Hunt and Blake (2014), all parameters are
re-estimated every time the structure of the model is changed, in order to ensure a close
fit to the data.
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to correlations between extreme period and cohort effects. However, it is
difficult to analyse any dependence structure between the cohort and period
parameters as the cohort parameters will be observed over a longer time
period, but potentially at a lag of some decades. While it is possible that
some extreme mortality events may generate distinctive effects in both the
period and cohort parameters, the evidence supporting this conjecture is cur-
rently ambiguous (for instance, see Murphy (2009)) and will not generally
be relevant for more typical period and cohort effects. An assumption of
independence is, therefore, both practical and parsimonious.

In order to make projections of future mortality rates, we typically model
the period and cohort parameters as being generated by independent time
series processes and use these to project the parameters stochastically into
the future. However, the precise form of the time series processes generating
the parameters is unknown. Therefore, we analyse the fitted parameters by
statistical methods, such as the Box-Jenkins procedure, to determine which
processes from the ARIMA family provide the best fit.

Nevertheless, when it comes to projecting mortality rates, we need to
recognise that there is a fundamental symmetry between the processes of
estimating a model and projecting it: the former takes observations to cali-
brate the model, whilst the latter uses this calibration to produce projected
observations of the future. Due to this symmetry, identification issues which
exist when fitting the model may also yield problems when projecting it.
When estimating the model, these identifiability issues were solved by im-
posing arbitrary identifiability constraints on the parameters. However, any
time series structure that we find in the parameters needs to be independent
of the arbitrary identification scheme used when fitting the model to histor-
ical data.

We formalise this by saying that:

Two sets of model parameters, which give identical fitted mor-
tality rates for the past, should give identical projected mortality
rates when projected into the future.

We say that time series processes which satisfy this property are “well-
identified”.
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In particular, the invariant transformations of the parameters of the
model which leave the fitted mortality rates unchanged should also leave the
projected mortality rates unchanged and, hence, the time series processes
used to generate the projected mortality rates unchanged. Consequently, we
should use the same time series processes for all sets of parameters from a
model which give the same fitted mortality rates. If this is not the case, dif-
ferent processes will be used for different arbitrary identifiability constraints,
giving different projected mortality rates. A well-identified time series pro-
cess should be equally appropriate for all equivalent sets of parameters. To
confirm this, we need to check that applying the invariant transformations
to the parameters, which leave the fitted mortality rates unchanged, do not
also affect the time series processes used to project the parameters.

Hunt and Blake (2015d) discussed how the identification issues in the
class of AP models meant that methods for projecting the period parameters
from these models into the future needed to be chosen with care in order to
ensure they are well-identified. In general, we argued that we should choose
to project the model using multivariate methods which are as unstructured
as possible, i.e., we should not impose features such as independence, levels
of mean reversion or different orders of integration on the time series a priori,
but allow these to emerge during the fitting process. However, we also saw
that, in models with parametric age functions, the age/period terms were
no longer interchangeable once we defined their forms in the model. This
allowed us to prioritise biological reasonableness26 over using the same pro-
cesses for equivalent models, i.e., models giving the same fitted mortality
rates with different definitions of the age functions.

Current practice is to:

1. fit the chosen model to data, imposing any arbitrary identifiability
constraints needed in order to specify the parameters uniquely;

2. select time series processes for projecting the parameters based on ei-
ther using a statistical method (such as the Box-Jenkins procedure to
select the preferred processes from the ARIMA class of models) or by

26Introduced in Cairns et al. (2006) and defined as “a method of reasoning used to
establish a causal association (or relationship) between two factors that is consistent with
existing medical knowledge”.
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directly choosing the time series processes to ensure biologically reason-
able projections by making an appeal to the demographic significance
of the parameters.

However, such an approach often leads to projections of mortality rates which
are not well-identified. This is because the second step assumes that the pa-
rameters found at the first step are known, rather than merely estimated up
to an arbitrary identifiability constraint. This means that current practice
builds the arbitrary identifiability constraint into the projection process, en-
suring that the projected mortality rates are also arbitrary.

To avoid this, we propose to work backwards from our desire for projec-
tions which are biologically reasonable and well-identified to determine the
time series processes we need to use to achieve these aims. Before fitting
the model, we need to conduct a thorough analysis of the identifiability is-
sues in the chosen model, using the principles established in Section 4, to
determine which features of the parameters are set by the data and which
are set by the arbitrary identifiability constraints. Then, suitable time series
processes should be selected to model only the former, identifiable features of
the parameters, while still allowing for the unidentifiable trends in a way that
guarantees that they do not affect the projection of future mortality rates.
By following this procedure, we can ensure that the time series processes are
well-identified and that the projected mortality rates do not depend on the
arbitrary choices we make when fitting the model.

In this section, we will first look at the broad set of criteria needed for
well-identified projection methods in general APC mortality models in Sec-
tion 5.1. Section 5.2 looks in more detail at why current practice can lead to
projections which are not well-identified and depend on the arbitrary iden-
tifiability constraints chosen in the context of the classic APC model from
Section 3. We then revisit the general case of an APC mortality model in
Section 5.3, in order to determine general rules for choosing time series pro-
cesses which are well-identified. These are then applied in the context of the
classic APC model again in Section 5.4 and it is demonstrated that projected
mortality rates are genuinely independent of the choice of arbitrary identifi-
ability constraint. Section 5.5 then applies the general rules in the context
of the Plat model from Plat (2009) and Section 4.1.1 to see how they work
in the context of more sophisticated mortality models with more complex
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identifiability issues.

5.1 Projecting general APC models

Consider the case of projecting an APC mortality model, which has been
fitted using data over the period [1, T ] to give mortality rates at time τ > T .
From Equation 2, we could write this as

ηx,τ = αx + β⊤
xκτ + γτ−x

If the model has identifiability issues, then the projected mortality rates
should be unchanged under exactly the same invariant transformations as
the fitted mortality rates were, i.e., if we have an invariant transformation of
the form of Equation 8, namely

α̂x = αx − a(x)

β̂x = βx

κ̂t = κt − k(t)

γ̂y = γy + g(y)

where a(x), k(i)(t) and g(y) satisfy Equation 9, in which case

ηx,τ = α̂x + β̂
⊤

x κ̂τ + γ̂τ−x

The projected κτ (and potentially the γτ−x) will be random variables,
whose distribution is a function of the historical, fitted values, i.e., κτ =
Pκ(τ ; {κ}) and γy = Pγ(y; {γ}). We said previously that we should use the
same method of projection for all sets of parameters as a first step to ensure
that the projected mortality rates do not depend upon the identifiability
constraints. However, for different identifiability constraints, these processes
will be estimated from different sets of fitted parameters, e.g., if we use
Pκ(τ ; {κ}) to project the untransformed period parameters, we must use
Pκ(τ ; {κ̂}) to project the transformed period parameters. If we combine this
with the invariance of the projected mortality rates, we have

αx + β⊤
x Pκ(τ ; {κ}) + Pγ(τ − x; {γ}) = α̂x + β̂

⊤

x Pκ(τ ; {κ̂}) + Pγ(τ − x; {γ̂})

= αx − a(x) + β⊤
x Pκ(τ ; {κ− k}) + Pγ(τ − x; {γ + g})

Pγ(τ − x; {γ + g})− Pγ(τ − x; {γ}) = a(x) + β⊤
x (Pκ(τ ; {κ})− Pκ(τ ; {κ− k}))
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Using Equation 9, we can eliminate a(x)

Pγ(τ − x; {γ + g})− Pγ(τ − x; {γ}) = g(τ − x) + β⊤
x (Pκ(τ ; {κ})− Pκ(τ ; {κ− k})− k(τ))

In order for this to hold for all τ and x requires

Pκ(τ ; {κ− k}) = Pκ(τ ; {κ})− k(τ) (21)

Pγ(y; {γ + g}) = Pγ(y; {γ}) + g(y) (22)

This means that we should obtain the same results if we project the trans-
formed parameters as if we transform the projected parameters, i.e., the
processes of projection and transformation are commutative. Consequently,
we see that, in order for a projection method to be well-identified under
the invariant transformation, it needs to preserve the unidentifiable trends
in the model, i.e., Pκ must preserve the trends k(t), and Pγ must preserve
the trend g(y). This also means that it does not matter in which order we
perform the processes of projection and transformation, the distribution of
the transformed parameters projected into the future will be identical to the
distribution of the projected parameters which are then transformed.

In addition, since

Var(κτ ) = Var(κτ − k(τ)) = Var(κ̂t)

Var(γy) = Var(γy + g(y)) = Var(γ̂y)

we note that the variability of the parameters around the trend is identifi-
able and so does have a meaning independent of the identifiability constraints
imposed. Therefore, we conclude that, while the deterministic trends may
be unidentifiable and not meaningful, the variation around the trend is of
genuine significance, since it is independent of the identifiability constraints.
Therefore, this variation needs to be projected consistent with our demo-
graphic significance for the parameters and what has been observed in the
historical data.

However, the time series processes selected via current practice often do
not preserve the unidentifiable trends in the period and cohort parameters,
as we shall now see using the classic APC model.
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5.2 Projecting the classic APC model

It has long been known, at least since Osmond (1985), that the lack of identi-
fiability in the classic APC model has important consequences when making
projections from the model. Different sets of arbitrary identifiability con-
straints are based on different allocations of the linear trends in the data
between the age, period and cohort parameters. The outcome of current
practice can therefore be influenced by the presence or absence of a linear
trend in the fitted parameters, despite this being purely dependent upon the
identifiability constraints chosen.

To illustrate this, we consider projecting the classic APC model fitted us-
ing four different sets of identifiability constraints. The fitted mortality rates
given using these four sets of constraints are identical; however, the time
series processes found by current practice differ which means that current
practice would give different projected mortality rates in the four different
cases. Consequently, these time series processes are not well-identified.

We start by fitting the classic APC model to mortality data for the USA
from Human Mortality Database (2014) for ages 50 to 100 and year 1950 to
2010. As discussed in Section 3, a number of equally valid identifiability con-
straints can be imposed on this model, which give identical fitted mortality
rates. We consider the following four sets of identifiability constraints:

Case 1:
∑

t κt = 0,
∑

y nyγy =
∑

x,t γt−x = 0 and
∑

y nyγy(y − ȳ) =
∑

x,t γt−x((t − t̄) − (x − x̄)) = 0. This was discussed in Section 3 and
restricts the cohort parameters to be zero on average and without any
linear trends, consistent with our desired demographic significance for
the cohort parameters.

Case 2:
∑

t κt = 0,
∑

y γy = 0 and
∑

y γy(y − ȳ) = 0. These constraints
impose the same demographic interpretation on the parameters, except
that the averages are not weighted by the number of observations of
each cohort.

Case 3:
∑

t κt = 0,
∑

x,t γt−x = 0 and
∑

x,t γt−x(x − x̄) = 0. This set of
constraints is the same as imposed on the classic APC model in Cairns
et al. (2009), where it was written as imposing

∑

x(αx−
1
T

∑

t ηx,t)(x−
x̄) = 0, i.e., that the static age function, αx, explains all the linearity
across ages in the data.
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Case 4:
∑

t κt = 0,
∑

x,t γt−x = 0 and
∑

x,t γt−x(t− t̄) = 0. Similar to Case
3, this set of constraints imposes that the period function, κt, accounts
for all of the linearity across years in the data.

The first thing to note is that all of these constraints were developed to
give the cohort parameters the same demographic significance, i.e., that they
should be centred on zero and the other functions in the model should cap-
ture any linear trends. Because of this, the fitted parameters in each case
are very similar. However, they are not identical, unlike the fitted mortal-
ity rates. We therefore see that demographic significance, whilst helpful in
selecting an appropriate set of identifiability constraints, does not specify a
unique set of constraints to use. Model users with the same interpretation
of the parameters can reasonably choose to impose different constraints and
obtain different fitted parameters when using the same model with the same
data. The fact that demographic significance is subjective and, in practice,
different model users adopt a range of interpretations for the different param-
eters highlights the fact that we must take care to ensure that any conclusions
regarding projected mortality rates are independent of the arbitrary choice
of constraints made when fitting the model, and underscores the extent to
which the identifiability constraints we choose is arbitrary.

Current practice is to take the fitted parameters and then determine which
time series processes to use to project them. This may involve performing a
Box-Jenkins analysis on the fitted parameters, as was done in Lee and Carter
(1992) and Cairns et al. (2011). Alternatively, current practice may appeal to
the demographic significance assigned to the parameters, as in Plat (2009).
Such an appeal might determine that the period function is non-stationary
(as it is primarily responsible for the evolution of mortality) and, based on
the discussion in Hunt and Blake (2015f), that the cohort parameters are
stationary around zero. It might therefore appear reasonable to choose27 to
use a random walk with drift process for κt and an AR(1) process for γy

κt = κt−1 + µ+ ǫt (23)

γy = ργy−1 + εy (24)

27Note that we are not saying that these are the most appropriate time series processes to
use for this set of parameters. We use them for illustrative purposes as they are relatively
simple and not atypical of the processes used in practice. However, it is important to
observe that selecting alternative time series processes on a purely statistical basis from
the fitted parameters would not solve the issues we have identified.
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Table 1 shows the fitted parameters for the four cases above using these time
series processes.

Case 1 Case 2 Case 3 Case 4
κ2010 -0.3526 -0.3439 -0.3550 -0.3478
µ -0.0110 -0.0107 -0.0111 -0.0109

σκ = StDev(ǫt) 0.0161 0.0161 0.0161 0.0161
γ1950 -0.1459 -0.1125 -0.1422 -0.1530
ρ 0.9513 0.9577 0.9499 0.9542

σγ = StDev(εy) 0.0193 0.0184 0.0193 0.0194

Table 1: Time series parameters for the period and cohort functions in the
classic APC model fitted using different identifiability constraints

For τ − x > 1950,28 we find

Eηx,τ = αx + κ2010 + (τ − 2010)µ+ ρτ−x−1950γ1950 (25)

We can therefore see that, inserting the fitted time series parameters from
Table 1 for the four different cases, we do not find the same expected values
for the future mortality rates.29 This is shown in Figure 2. In addition, the
variability of the projected parameters depends on σκ, ρ and σγ . However, ρ
and σγ differ between cases, meaning that the variability of projected mortal-
ity rates will also be different for the different cases. These differences in the
distribution of projected mortality rates might be felt to be relatively small,
although they will grow with projection time. However, the most important
point is that the differences should not exist at all - the fitted mortality rates
for the different cases were identical and so should be the distribution of the
projected mortality rates. We therefore see that the time series processes
used above to project the classic APC model are not well-identified.

28That is, for cohort parameters that are projected rather than fitted from historical
data, taking into consideration that cohort parameters for the ten most recent years of
birth are not fitted from the data due to insufficient observations.

29For example, Eη60,2020 = −4.5449 for the Case 1 parameters, −4.5598 for the Case 2
parameters, −4.5459 for the Case 3 parameters and −4.5433 for the Case 4 parameters.
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Figure 2: Projected µ60,t using different sets of identifiability constraints
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5.3 Projecting general APC mortality models: Revis-
ited

From Section 5.1 above, we note that we must use the same time series
processes to project sets of parameters which give identical fitted mortality
rates, i.e., if Pγ(y; {γ}) is a suitable process (with time series parameters esti-
mated from the fitted cohort parameters, {γy}), then Pγ(y; {γ̂}) is a suitable
process, albeit with time series parameters estimated from the transformed
cohort parameters, {γ̂y = γy + g(y)}.

In practice, we usually describe our projection methods in terms of time
series processes rather than projection functions. However, the two are equiv-
alent, since the projection function is found by “solving” the difference equa-
tion form of the time series. For instance, the AR(1) process has the difference
equation form in Equation 24, but has solution

Pγ(y; {γ}) = ρy−Y γY +

y
∑

s=Y+1

ρy−sεs

where Y is the last year of birth for which we fitted the cohort parameters.

The general form of ARIMA difference equations for γy can be written
as30

(1− L)dΦ(L)(γy − Γ(y)) = Ψ(L)εy (26)

where L is the lag operator, d is the order of integration of the process, Φ and
Ψ are polynomials of order p and q governing the autoregressive and moving
average parts of the process, respectively,31 εy are the innovations and Γ(y) is
a deterministic function of year of birth. Taking unconditional expectations
(i.e., with no conditioning on previous lags of the process), we see that

E [γy − Γ(y)] = 0 ∀y

and that the function Γ(y) represents the trend around which the cohort
parameters vary.

30For simplicity, we use the cohort function as an illustrative case. The analysis is
identical for κt, however.

31In order to be stationary, these polynomials have roots with modulus less than unity.
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The invariant transformation of the model in Equation 9 adds a deter-
ministic function - the unidentifiable trend g(y) - to the cohort parameters.
However, this deterministic function must not change the error term, εy, of
a well-identified process and so

εy = (1− L)dΨ−1(L)Φ(L)(γy − Γ(y))

= (1− L)dΨ−1(L)Φ(L)(γ̂y − Γ̂(y))

= (1− L)dΨ−1(L)Φ(L)(γy + g(y)− Γ̂(y))

In order to ensure that the variation around the trend, given by the error
term, remains unchanged by the invariant transformation, we require

Γ̂(y) = Γ(y) + g(y)

In this case, the deterministic trend, Γ(y), has changed under the invariant
transformation but not the variation around the trend.

We stated above that the time series processes being used for the param-
eters should be equally applicable for all sets of parameters which give the
same fitted mortality rates. This implies that the form of the deterministic
trends should be the same, and, therefore, that Γ̂(y) is of the same form as
Γ(y). This can only be true if Γ̂(y), Γ(y) and g(y) are all of the same form.
For instance, if g(y) is a linear function of year of birth (as in the case of the
classic APC model), then Γ(y) and Γ̂(y) must also be linear functions of year
of birth and so will not change form under the invariant transformations of
the model.

If we solve Equation 26, we see that

γy = Pγ(y; {γ}) =
Ψ(L)

(1− L)dΦ(L)
εy + Γ(y) (27)

In this form, it can also be seen that such time series processes preserve
unidentified trends in the manner discussed in Section 5.1

γ̂y = γy + g(y)

=
Ψ(L)

(1− L)dΦ(L)
εy + Γ(y) + g(y)

=
Ψ(L)

(1− L)dΦ(L)
εy + Γ̂(y)
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i.e., the projected parameters after applying the invariant transformation
will have the same variation, Ψ(L)

(1−L)dΦ(L)
εy, but around a different determin-

istic trend, Γ̂(y), compared with the original parameters projected using the
same method. The use of the invariant transformations will not affect our
measurement of any coefficients in Ψ(L) or Ψ(L) at the fitting stage. Thus,
we also see that the two ways of looking at the projected parameters, namely
as time series processes and via projection functions, are equivalent.

As an example, consider the cohort parameters in the classic APC model.
From Section 3, we see that, in this model, the cohort parameters have an
unidentified constant and linear trend, i.e., g(y) = b+c(y−ȳ) from Equations
5 and 6. In Section 5.2, we said that current practice might use an AR(1)
process for the cohort parameters, which has ARIMA form

(1− ρL)γy = εy

Comparing this with Equation 26, we see that current practice assumes that
Γ(y) = 0, which is not of the same form as g(y) above. Therefore, the
time series process changes form when using an alternative set of parameters
γ̂y = γy + g(y) in place of γy,

(1− ρL)γ̂y = (1− ρL)(γy + b+ c(y − ȳ))

= (1− ρL)γy + (1− ρ)(b+ c(y − ȳ)) + ρc

= εy + (1− ρ)(b+ c(y − ȳ)) + ρc

6= εy

and therefore the process is not well-identified.

When analysed in this form, however, a solution becomes immediately
apparent: we need to introduce a linear function, Γ(y) = β0 + β1y, into the
AR(1) process to ensure that the process is well-identified, i.e.,

(1− ρL)(γy − β0 − β1y) = εy (28)

Using the alternative parameters γ̂y would produce

(1− ρL)(γ̂y − β̂0 − β̂1y) = (1− ρL)(γy + b+ c(y − ȳ)− β̂0 − β̂1y)

= (1− ρL)(γy − β0 − β1y)

= εy
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if β̂0 = β0 − b− cȳ and β̂1 = β1 − c. Therefore, the form of Equation 28 does
not change under the invariant transformations of the classic APC model,
and we conclude that this time series process is well-identified. Again, we
also see that the variation around the linear trend, given by εy, is unchanged
by the invariant transformation, whilst the unidentifiable trend is affected by
the invariant transformation.

The time series process in Equation 28 has been suggested previously for
the cohort parameters in Cairns et al. (2009) where it was referred to as
the “AR(1) process around a linear drift”. However, in Cairns et al. (2009),
it was not used for the classic APC model, nor was it selected for being
well-identified, but rather on the grounds of fitting the observed cohort pa-
rameters well.

The AR(1) around linear drift process is solved to give

Pγ(y; {γ}) = ρy−Y (γY − β0 − β1Y ) + β0 + β1y +

y
∑

s=Y+1

ρy−sεs

We can also verify, by substituting the forms for γ̂y, β̂0 and β̂1 found above,
that this process also satisfies the requirement of Equation 22 in Section 5.1,
namely

Pγ(y; {γ̂}) = Pγ(y; {γ}) + a+ b(y − ȳ)

Hence, projecting the transformed cohort parameters gives us the same re-
sults as transforming the projected cohort parameters.

Returning to the form of the time series process in Equation 26, it is
common to write this in an alternative, but equivalent form

(1− L)dΦ(L)γy − (1− L)dΦ(L)Γ(y) = Ψ(L)εy

(1− L)dΦ(L)γy = ξ(y) + Ψ(L)εy (29)

where ξ(y) is a deterministic function of y and Γ(y) solves the difference
equation

(1− L)dΦ(L)Γ(y) = ξ(y) (30)
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In this form, ξ(y) is often referred to as the “drift”. Knowing the form that
Γ(y) must take (i.e., the same form as g(y) from the unidentifiable trends
in the model in Equation 8), we can therefore specify the correct form of ξ(y).

As an example of this, consider the classic APC model again, but, this
time, consider the period parameters. We know from Section 3 that the
period parameters have an unidentified linear trend in much the same way
as the cohort parameters, i.e., k(t) = a− c(t− t̄) if we re-write Equations 4
and 6 using the notation of Equation 9. Random walk processes are often
used for the period parameters, i.e., we assume d = 1 and Φ(L) = Ψ(L) = 1.
It is then important to specify the correct form for the drift ξ(t). Based
on similar arguments to the ones used above for the cohort parameters, we
should look for time series processes of the form

(1− L)(κt − ν0 − ν1t) = ǫt

which has a linear trend K(t) = ν0 + ν1t. To obtain a well-identified time
series of the form of Equation 29, we need the drift, ξ(t), of the random walk
to satisfy

ξ(t) = (1− L)(ν0 + ν1t)

= ν0 + ν1t− ν0 − ν1(t− 1)

= ν1

i.e., the drift is constant. This shows that the random walk with drift is
well-identified for the period parameters in the classic APC model.

We can also verify this directly, since

ǫt = κt − κt−1 − µ

= κ̂t − a+ c(t− t̄)− κ̂t−1 + a− c(t− 1− t̄)− µ

= κ̂t − κ̂t−1 − µ̂

if µ̂ = µ − c. Thus the transformed period parameters, κ̂t, follow a random
walk with drift if the original period parameters do. However, the value of
the drift, which determines the unidentifiable linear trend, will change under
the invariant transformation, although the innovations, ǫt, which determine
the variability around this drift do not.
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In summary, we have the following procedure for selecting a well-identified
time series process for any specific APC mortality model:

1. Determine the identifiability issues in the specific APC model by finding
the unidentifiable deterministic trends for the parameters which cannot
be assigned between the different age/period and cohort terms in the
specific model. This will need to be done prior to the fitting stage in
order to fit the model robustly to data.

2. Specify a time series process for the variation around these trends. This
can either be done by analysing this variation using statistical tech-
niques, or by selecting a process which accords with our demographic
significance for the parameters. Doing so will set the form of Φ(L) and
Ψ(L), which determine the stochastic structure of the ARIMA process.

3. Specify the deterministic trends, Γ(y), in the time series process in
Equation 26, which will need to be of the same form as g(y). Equiv-
alently, this can be achieved by finding a drift function, ξ(y), in the
alternative form of the time series process in Equation 29, with the
requirement that (1− L)dΦ(L)Γ(y) = ξ(y).

It is important to recognise that this procedure works backwards from
the variation around the trends in the parameters, which is independent of
the identifiability constraints and then adds back in the unidentifiable trends
which will depend upon the specific set of identifiability constraints we use
when fitting the model. In this fashion, we can ensure that the projected
parameters are both well-identified and possess our desired demographic sig-
nificance when specifying a suitable form for the time series process.

5.4 Projecting the classic APC model: Revisited

In Section 5.2, it was demonstrated that the current practice approach to
selecting time series processes for the period and cohort parameters in the
classic APC model yielded projections of mortality rates which depended
upon arbitrary choices made when fitting the model. In Section 5.3, we
then showed that the issue in this case was not the use of the random walk
with drift for the period parameters, but the selection of an AR(1) process,
rather than an AR(1) process around a linear drift for the cohort parameters.
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If we use the AR(1) around linear drift process for the cohort parameters
for the four cases discussed in Section 5.2, we obtain the time series param-
eters in Table 2.

Case 1 Case 2 Case 3 Case 4
γ1950 -0.1459 -0.1125 -0.1422 -0.1530
β0 0.1388 0.1852 0.1388 0.1388
β1 -0.0053 -0.0056 -0.0052 -0.0055
ρ 0.9636 0.9636 0.9636 0.9636

σγ = StDev(εy) 0.0184 0.0184 0.0184 0.0184

Table 2: Time series parameters for different identifiability constraints

As previously mentioned in Section 5.2, ρ and σγ control the variation
of projected cohort parameters. It is, consequently, important to see that
these parameters do not change in the four different cases using the well-
identified time series processes. The variability of projected mortality rates
will be identical in each of the four cases. Using the AR(1) around linear
drift process, we also find

Eηx,τ = αx + κ2010 + (τ − 2010)µ

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950) + β0 + β1 × (τ − x) (31)

From the results of Section 5.3, we can see that if we transform the parameters
of the classic APC model using the transformation in Equations 4, 5 and 6,
and then project them using well-identified time series processes, we obtain

α̂x = αx − a− b+ c(x− x̄)

Eκ̂τ = κ̂2010 + µ̂(τ − 2010)

= κ2010 + a− c(2010− t̄) + (µ− c)(τ − 2010)

= κ2010 + a− c(τ − t̄) + µ(τ − 2010)

Eγ̂τ−x = ρτ−x−1950(γ̂1950 − β̂0 − β̂1 × 1950) + β̂0 + β̂1 × (τ − x)

= ρτ−x−1950(γ1950 + b+ c(1950− x− ȳ)− β0 − b− cȳ − (β1 + c)× 1950)

+ β0 + b+ cȳ + (β1 + c)× (τ − x)

= ρτ−x−1950(γ1950 − β0 − β1 × 1950)

+ β0 + β1(τ − x) + c(τ − x− ȳ)
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Hence, the expectation of ηx,t in Equation 31, after applying the invariant
transformations, becomes

Eη̂x,τ = α̂x + κ̂2010 + (τ − 2010)µ̂

+ ρτ−x−1950(γ̂1950 − β̂0 − β̂1 × 1950) + β̂0 + β̂1 × (τ − x)

= αx − a− b+ c(x− x̄) + κ2010 + a− c(τ − t̄) + µ(τ − 2010)

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950)

+ β0 + β1(τ − x) + c(τ − x− ȳ)

= αx + κ2010 + (τ − 2010)µ

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950) + β0 + β1 × (τ − x)

= Eηx,τ

We can therefore see how changes in the linear drift of the period functions
between the different cases cancel with the changes in the linear drift in the
cohort functions to give exactly the same expected projected mortality rates
in all four cases.32 We, therefore, see in practice what was derived theoreti-
cally in Section 5.3, namely that using a random walk with drift process for
the period parameters and an AR(1) around linear drift process for the co-
hort parameters gives well-identified projections for the classic APC model,
and so the projected mortality rates which do not depend upon the identifi-
ability constraints imposed.

Projections using an AR(1) process around a linear drift might be felt to
conflict with our desired demographic significance for the cohort parameters,
i.e., that they should exhibit no long-term trends. However, demographic
significance is subjective and so should not be used to override a greater
concern that the projected mortality rates do not depend upon the arbitrary
identifiability constraints. Fortunately, there are methods for obtaining well-
identified projections of the cohort parameters which do conform to our de-
sired demographic significance of trendlessness.

In order to lack trends, the drift coefficients of the process, β0 and β1,
should be zero. Looking again at Table 2, one might think that the values of
β0 and β1 are quite small, and therefore be tempted to test them statistically
with a view to setting them to zero. This, however, would be a mistake.

32For example, in all four cases Eη60,2020 = −4.6413.
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As shown in Section 5.3, the values of β0 and β1 change under the invari-
ant transformations of the classic APC model and, therefore, will depend
upon the identifiability constraints chosen. Consequently, the results of any
statistical analysis of their significance will also depend upon the arbitrary
identifiability constraints, which is not desirable.

The reason that β0 and β1 are “small” is because we have imposed this
via the identifiability constraints. All four sets of identifiability constraints
were chosen to set the level of the cohort parameters to be around zero
and to have no linear trends over the whole range of the data. Therefore,
we would expect to find low values of β0 and β1, which control the level and
drift to which the process mean-reverts. We could have chosen other, equally
reasonable constraints based on alternative subjective interpretations of the
demographic significance of the period and cohort parameters which would
have resulted in far larger values of β0 and β1 and given exactly the same
fitted and projected mortality rates. We therefore see that whether or not
these parameters are “small”, and consequently whether or not they pass a
statistical test of their significance, is solely dependent upon the arbitrary
identifiability constraints we have chosen.

The four cases in Section 5.2 were motivated by the same desired demo-
graphic significance for the cohort parameters - that they should be centred
around zero and not have any linear trends. However, the four different
cases used four different interpretations of these subjective requirements,
and therefore arrived at four different interpretations of what it means to be
centred around zero and trendless. These different interpretations resulted in
the four different sets of identifiability constraints. Using an AR(1) around
linear drift process to project the cohort functions introduces a fifth inter-
pretation for the meaning of being centred around zero and having no linear
drift, in this case, that the time series parameters β0 and β1 are equal to
zero. Therefore, we could use another set of parameters with the identifia-
bility constraints

Case 5:
∑

t κt = 0, β0 = 0 and β1 = 0

This set of constraints gives identical fitted and projected mortality rates to
the other cases, but gives projected cohort parameters which mean-revert
around zero, which accords better with our demographic significance. How-
ever, the restrictions in Case 5 cannot be known at the time of fitting the
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Figure 3: Projecting the parameters of the classic APC model: Cases 1 and
5

model to data, since the appropriate time series process that will be used to
project the cohort parameters cannot be known at that stage. To use this
set of constraints, we need to do the following:

1. fit the model to data, applying some convenient set of identifiability
constraints which can be known in advance of analysing the time series
structure of the parameters, e.g., those in Case 1;

2. estimate values for β0 and β1 for these historical parameters by fitting
the AR(1) around a linear drift process in Equation 28 to them;

3. use these estimated values for β0 and β1 in the transformations in Equa-
tions 5 and 6 to obtain a new set of (equivalent) age, period and cohort
parameters.

The period and cohort parameters for Case 5, compared with those for
Case 1, are shown in Figure 3. Using the Case 5 parameters may appear
unnatural as the cohort parameters in this case appear to possess a linear
trend. However, when we project using the well-identified AR(1) around
linear drift process, we find no linear drift in these parameters, merely mean
reversion to a level of zero, which fits well with the demographic significance
for the cohort parameters discussed in Hunt and Blake (2015f).
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5.5 Projecting the Plat model

We will now use this analysis to specify a set of well-identified projection
processes for the Plat model discussed in Section 4.1.1. As described in that
section, the invariant transformations of the model can be written in the
form of Equation 9 with

α̂x = αx − a1 − a2 − a3 − b+ c(x− x̄)− d(x− x̄)2 = αx − a(x)

κ̂
(1)
t = κ

(1)
t + a1 − c(t− t̄)− d(t− t̄)2 = κ

(1)
t − k(1)(t)

κ̂
(2)
t = κ

(2)
t + a2 + 2d(t− t̄) = κ

(2)
t − k(2)(t)

κ̂
(3)
t = κ

(3)
t + a3 = κ

(3)
t − k(3)(t)

γ̂y = γy + b+ c(y − ȳ) + d(y − ȳ)2 = γy + g(y)

by composing the transformations in Equations 4 (for each period function),
5, 6 and 13.

Starting with the cohort parameters, we may wish to retain the demo-
graphic interpretation that they should be stationary and mean reverting
and so wish to use an AR(1) structure. However, from the discussion in
Section 5.3 and the observation that g(y) is quadratic for the Plat model,
we therefore require that Γ(y) in Equation 26 is quadratic. In order to give
well-identified projections, we would therefore project the cohort parameters
using an AR(1) around quadratic drift process, i.e.,

(1− ρL)(γy − β0 − β1y − β2y
2) = εy (32)

Simple insertion of γ̂y = γy + g(y) into this shows that it does not change
structure under the invariant transformation and so is well-identified. In
principal, we could then decide to switch to an equivalent set of parameters
with the constraints β0 = β1 = β2 = 0 in the same manner as for the classic
APC model. This may be desirable as it gives projected cohort parameters
which mean-revert around zero, in line with our demographic significance.
In addition, when more complicated methods are used to project the cohort
parameters, it might be felt to simplify the process of projection.33

For the period parameters, we may wish to use a random walk with
drift structure as we did for the classic APC model on the demographic

33For an example where this is the case, see Hunt and Blake (2015b).
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interpretation that the period functions should be non-stationary. This would
be written as

(1− L)κt = ξ(t) + ǫt (33)

where κ =
(

κ
(1)
t , κ

(2)
t , κ

(3)
t

)⊤

as discussion in Section 2 and similarly for

ξ(t) and ǫt.

Using this notation, we can group the transformations of the period func-
tions as

κ̂t = κt +





a1 + ct̄− dt̄2

a2
a3



+





−c + 2dt̄
2d
0



 t +





−d

0
0



 t2

= κt + k0 + k1t+ k2t
2

In Section 5.3, we showed that in order to ensure identifiability, we needed

ξ(t) = (1− L)(k0 + k1t+ k2t
2)

= k0 + k1t+ k2t
2 − k0 − k1(t− 1) + k2(t− 1)2

= k1 − k2 + 2k2t

=





−c + 2dt̄+ d

2d
0



 + 2





−d

0
0



 t

Therefore, we see that, in order for the Plat model to have well-identified
projections, we require a constant drift component for κ

(2)
t (i.e., ξ(2)(t) = µ

(2)
0 ,

a constant) and a linear drift component for κ
(1)
t (i.e., ξ(1)(t) = µ

(1)
0 + µ

(1)
1 t,

a linear function of time). This can be written as

κt = κt−1 + µXt + ǫt (34)

where

µ =





µ
(1)
0 µ

(1)
t

µ
(2)
0 0
0 0




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and Xt =
(

1, t
)⊤

. We can see that this form of the random walk with drift
process extends naturally to allow for other unidentifiable trends by choosing
the “trend” matrix, Xt, and corresponding “drift” matrix, µ, appropriately.
The need to use a random walk with linear drift is often overlooked, for in-
stance in Plat (2009) and Börger et al. (2013) (who used a model which nests
the reduced Plat model) - see also Hunt and Blake (2015b).

We also see that different drifts are required for different period func-
tions in order to give well-identified projections of mortality rates. This runs
counter to the desire to treat all the period functions the same, as discussed
in Hunt and Blake (2015d). However, using the same drifts for all the pe-
riod functions can give projections which are not biologically reasonable.
For example, allowing for a quadratic trend in κ

(3)
t can result in apparent

changes in trend which are inconsistent with the historical data. In Hunt
and Blake (2015d), we also found that we can treat different period func-
tions differently in models with parametric age functions, because there were
no invariant transformations of the model which could be used to interchange
the age/period terms. It may, therefore, be preferable to allow for different
drifts in different period functions in the Plat (2009) model to obtain well-
identified projected mortality rates which are also biologically reasonable.34

We should, therefore, be prepared to override the desire to treat the period
functions identically if the alternative is to put biological reasonableness at
stake. See Hunt and Blake (2015b) for an example of this issue in practice.

5.6 Summary

APC mortality models which have unidentifiable trends at the fitting stage
require extra care when projected to ensure that the projections do not de-
pend on the identifiability constraints chosen. In general, we find that the
projection method used must preserve whatever trends were unidentifiable
at the fitting stage. For example, the processes which were well-identified
for the classic APC model discussed in Section 5.4 preserved linear trends,
which were shown to be unidentifiable in Section 3.

Such an approach generalises naturally for more complicated mortality

34Using different drifts for the different period functions will mean, however, that time
series processes will be required for equivalent models.
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models, such as the Plat model discussed in Sections 4.1.1 and 5.5. However,
models with higher order polynomial age functions have higher order uniden-
tifiable trends (as shown in Section 4.1), and so require projection processes
which allow for these trends. This may cause problems for long term projec-
tions.

For example, consider the model

ηx,t = αx + κ
(1)
t + (x− x̄)κ

(2)
t + ((x− x̄)2 − σx)κ

(3)
t + γt−x (35)

which extends model M7 of Cairns et al. (2009) with a static age function
(as was done in Haberman and Renshaw (2011)). We can see that a model
of this form possesses age functions which span the polynomials to quadratic
order. From Section 4.1, we know, without performing any additional analy-
sis, that it has unidentifiable cubic trends in both the cohort parameters and
κ
(1)
t which will need to be allowed for in projection. However small they may

be in the historical data, these cubic trends will eventually come to domi-
nate the long term evolution of mortality rates, potentially yielding projected
mortality rates which lack biological reasonableness due to apparent changes
in trend.

Consequently, it may be prudent to avoid unidentifiable cubic (and higher)
order polynomial trends in an APC mortality model. Such trends arise when
we use more complicated models with higher-order polynomial age functions.
It is therefore useful, when selecting such models, to have a larger “toolkit”
of age functions for use in the models than simply extending existing models
by using higher-order polynomial terms. Hunt and Blake (2014) proposed
such a toolkit, which allows for more complicated mortality models that do
not suffer from excessive identifiability issues and can give biologically rea-
sonable, well-identified projections of mortality rates, as shown in Hunt and
Blake (2015b,a,e).

6 Conclusions

In Hunt and Blake (2015d), we saw how AP mortality models are not fully
identified, and that in order to identify these models, most users impose ad-
ditional arbitrary identifiability constraints on them when fitting the models
to data. Some APC mortality models have extra identifiability constraints,
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caused by the collinearity between age, period and cohort, which are unlike
anything found in similar AP models. These depend upon the form of the
age functions in the model and so are specific to individual models. The
identifiability issues involve deterministic trends which cannot be uniquely
allocated between the age, period or cohort terms and so an arbitrary allo-
cation must be made via additional arbitrary identifiability constraints. The
nature of the unidentifiable trends present in specific models are summarised
in Figure 1.

These unidentifiable deterministic trends have important consequences
when we come to project the model. We must first determine the identi-
fiability issues in the specific model we are using, in order to find which
deterministic trends are unidentifiable. When this is done, we can specify
suitable time series processes for the variation around these trends. Only by
doing this can we ensure that our projected mortality rates are independent
of the arbitrary identifiability constraints imposed when fitting the model.

By understanding these identifiability issues, however, we can build more
complex mortality models, for instance, via the “general procedure” of Hunt
and Blake (2014), and be confident that they are founded on a secure knowl-
edge of the underlying mathematical structure of APC mortality models.
We are also able to use more sophisticated time series projection methods,
as in Hunt and Blake (2015b), Hunt and Blake (2015a) and Hunt and Blake
(2015e), knowing that our projections are free from dependence on the arbi-
trary choices we made when fitting the model to data.

A Identifiability in APC models with non-

parametric age functions

In discussing whether a model with non-parametric age functions has any
additional issues with identifiability when a cohort term is added, it is useful
to begin with a recap of some of the notation used and results from Hunt
and Blake (2015d).

47



A.1 Identifiability in AP models

In Hunt and Blake (2015d), we found that it was helpful to write Equation
1 in matrix form as

H = α1⊤T + βκ (36)

where

• H is the (X × T ) matrix of transformed data (i.e. H = {ηx,t}),

• α is a (X × 1) matrix of the static age function,

• 1T is a (T × 1) matrix of ones, and

• β and κ are the (X × N) and (N × T ) matrices of age and period
functions constructed above, respectively.

When expressed in this form, AP models can be analysed through the prism
of matrix algebra and linear mathematics. We can then see that there is
a lack of identifiability in the model which allowed us to perform certain
transformations on the parameters given in Equations 37 and 38 without
affecting the fitted mortality rates

{α̂, β̂, κ̂} = {α, βA−1, Aκ} (37)

{α̂, β̂, κ̂} = {α− βB, β, κ+B1⊤T } (38)

These invariant transformations can be used to impose additional arbitrary
identifiability constraints to set the “level” and “normalisation” of the age/period
terms and potentially to orthogonalise them.35 These freedoms allowed us to
impose our desired demographic significance on the parameters, but meant
that care had to be taken to ensure that projections from the model were
identifiable, i.e., were independent of our arbitrary identifiability constraints.
In Hunt and Blake (2015d), we also found that our treatment of the iden-
tification issues was subtly different depending on whether the model had
parametric or non-parametric age functions, as by defining the age functions
a priori, we were unable to use the transformations in Equation 37 without
altering the age functions and therefore fundamentally changing the model.

35In the sense of ensuring that
∑

x β
(i)
x β

(j)
x = 0 and

∑

t κ
(i)
t κ

(j)
t = 0 for i 6= j.
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A.2 Identifiability in APC models

Equation 36 can be extended to allow for cohort effects

H = α1⊤T + βκ+ γ (39)

where γ is an (X × T ) Toeplitz matrix, i.e., a matrix where the diagonal
elements are constant. It is clear that the transformations in Equations 37
and 38 are still invariant transformations of Equation 39 and therefore the
conclusions of Hunt and Blake (2015d) are still applicable in the wider con-
text of APC mortality models. Indeed, the transformation in Equation 4 of
the classic APC model is simply the transformation in Equation 38 applied
to this specific model.

Generalising Equation 5 in this context, we can see that the transforma-
tion

{α̂, β̂, κ̂, γ̂} = {α− c1X , β, κ, γ + c1X1
⊤
T } (40)

is common to all APC models of the form in Equation 39 (where 1X has a
similar definition as 1T above). This transformation was also discussed (us-
ing alternative notation) in Section 4. This allows us to set the level of the
cohort parameters - typically to be around zero to impose the demographic
significance discussed in Hunt and Blake (2015f).

To generalise the transformation in Equation 6 for more complicated in-
variant transformations, if we can find a Toeplitz matrix Γ such that36

Γ = a1⊤T + βk (41)

(with a an (X × 1) matrix and k an (N × T ) matrix), we then have the
transformation

{α̂, β̂, κ̂, γ̂} = {α− a, β, κ− k, γ + Γ} (42)

In the case of the classic APC model, we have β = 1X and so can find a
Toeplitz matrix Γ = c(1XT

⊤ −X1⊤T ) where X is the (X × 1) column vector
Xi = {i− x̄} where i runs from 1 to X (and similarly for T ).

36We actually require the more general statement that Γ = a1⊤T + bk with b a (X ×N)
matrix such that β = bA, i.e., the columns of b lie within the span of the columns of β.
However, without loss of generality, we define k̃ = Ak to obtain the result shown.
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Theorem 3 There are no invariant transformations of general APC mor-
tality models with non-parametric age functions, i.e., no such A, k and Γ
exist unless a specific shape for β is assumed in the model.

Sketch of Proof Consider the general term a1⊤T +βk, which is analogous
to the predictor structure of an AP mortality model. As we argue in Hunt
and Blake (2015d), this has dimension X +N(X + T )−N(N + 1), i.e., the
X parameters in a, the NX parameters in β, and the NT in k reduced by
the N(N +1) degrees of freedom in the transformations in Equations 37 and
38.

In contrast, in the general case, Γ has dimension X+T−1, i.e., one degree
of freedom for each diagonal. For Equation 41 to be true, these matrices must
have the same dimension and therefore

X +N(X + T )−N(N + 1) = X + T − 1

N2 +N(1 −X − T ) + T − 1 = 0 (43)

However, N , X and T are integers, set by the structure of the model and
the range of the data, and therefore Equation 43 will not generally be true.
Hence Equation 42 will not be an invariant transformation of a general APC
mortality model with non-parametric age functions.

The argument used in this proof relies on a1⊤T +βk being of full rank and
therefore breaks down if β is of lower dimension than the maximum possi-
ble. However, this is equivalent to imposing a parametric form on the age
functions and accordingly, the line of reasoning above is not possible in the
general case.

Therefore, general non-parametric APC mortality models do not possess
any other invariant transformations apart from the ones in Equations 37, 38
and 40. They require only identifiability constraints which set the normal-
isation scheme of the age functions, impose orthogonality between the age
and period functions (both using the transformation in 37), set the levels

of the period functions κ
(i)
t using Equation 38, and the level of the cohort

parameters γt−x using Equation 40.
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For instance, we see that for the H1 model of Haberman and Renshaw
(2009) and Hunt and Villegas (2015),

ηx,t = αx + βxκt + γt−x (44)

we cannot find an invariant transformation of the parameters similar to that
in Equation 6. This is because of the lack of shape in either age or period in
the βxκt term which can be used to decompose the cohort term. However,
this model does possess an “approximate” identifiability constraint, which
leaves the fitted mortality rates almost unchanged in the majority of cases.
This is caused by κt often having a form that is close being parametric, which
is discussed in detail in Hunt and Villegas (2015).

Some, especially demographers, have argued that all cohort effects are
simply mis-specified age/period effects and are best modelled as such.37 Al-
though this may be true in a strictly mathematical sense, a large number
of age/period terms are required to replicate any general cohort term in the
model. It is therefore more parsimonious to include a set of cohort param-
eters rather than multiple age/period terms. This, again, is similar to the
argument in Wilmoth (1990), which states that it is plausible and parsimo-
nious to include a single set of cohort parameters rather than an excessive
number of age/period terms which achieve the same effect.

Some datasets may show little or no structure across years of birth, in
which case the decision to include a cohort term becomes one decided on the
basis of the demographic and statistical significance of the parameters for that
dataset. Such a decision can be made only after all significant age/period
terms have been identified. We therefore recommend a procedure, such as
the “general procedure” in Hunt and Blake (2014), which only adds such a
term when justified by the data.

B Models without a static age function

As we discuss in Hunt and Blake (2015f), a number of APC mortality models
have been proposed which do not have an explicit static age function, αx, the

37For instance, Cairns et al. (2011) raised “the possibility that cohort effects might be
partially or completely replaced by well-chosen age and period effects” and also see Murphy
(2010)
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most prominent of which being the extensions of the CBD model in Cairns
et al. (2009). If the model does not have an explicit static age function,
the age functions in the model must be parametric and therefore known in
advance of fitting the model to data. The structure of the APC model in
this case is therefore

ηx,t =
N
∑

i=1

f (i)(x)κ
(i)
t + γt−x

The identifiability issues in such models can be considered in the same
fashion as in Section 4. In particular, we noted in Section 4.2 that the
invariant transformations of models with exponential or trigonometric age
functions did not involve the static age function, and therefore are also ap-
plicable in models without one.

The invariant transformations of models with polynomial age functions,
in contrast, did involve the static age function explicitly. The proof of The-
orem 1 involves expanding a polynomial function of year of birth, g(y), into
polynomial terms in x and t and then combining these in the appropriate
age/period terms. In particular, the term in this expansion with no t depen-
dence was combined into the static age function. This is seen most clearly in
the transformation in Equation 6, but also in the transformation in Equation
13 for the Plat model.

However, we can see that the lack of a static age function to absorb this
term in the expansion of g(y) is not an insurmountable problem as long as
there is an age/period term with the appropriate age function. This means
that if g(y) is a polynomial of order M , we must have age functions in the
model up to order M as well. This contrasts with models with a static age
function, which only require age functions up to order M − 1.

Theorem 4 APC mortality models with no static age function and age func-
tions spanning the polynomials to order M possess invariant transformations
which adds a polynomial of order M to the cohort function.

Sketch of Proof The proof is similar to that of Theorem 1. Take g(y),
a general polynomial of order M , and expand as a function of x and t.
This can then be regrouped into an equivalent form that corresponds to the
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age/period terms in the model, in order to see how g(y) can be absorbed into
the age/period structure

g(y) =

M
∑

n=0

any
n

⇒ g(t− x) =
M
∑

n=0

an(t− x)n

=
M
∑

n=0

an

n
∑

m=0

(

n

m

)

tm(−x)n−m

=

M
∑

n=0

n
∑

l=0

an

(

n

l

)

tn−l(−x)l

=
M
∑

l=0

(−x)l
M
∑

n=l

an

(

n

l

)

tn−l

=

M
∑

l=0

(−1)lf (l)(x)

M
∑

n=l

an

(

n

l

)

tn−l

=
M
∑

l=0

f (l)(x)k(l)(t)

which is of the form of Equation 9 if the age functions in the model are of
the form f (j)(x) = xj of j = 0, 1, . . .M .

To see this in practice, consider model M6 of Cairns et al. (2009)

ηx,t = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x (45)

and compare it with the reduced Plat model of Equation 12 in Section 4.1.1.
For the reduced Plat model, we saw that the transformation in Equation
13 was invariant, and involved adding a quadratic function of year of birth
to the cohort parameters, with adjustments to κ

(1)
t , κ

(2)
t and the static age

function αx. For model M6, this transformation is not permitted, as there is
no static age function to adjust in this model. Instead, the model only has
the simpler linear invariant transformation

{κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {κ

(1)
t − c(t− t̄), κ

(2)
t − c, γy − c(y − ȳ)} (46)
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We can also see this using the analysis of Hunt and Blake (2015f), where it
was shown that models without a static age function can be written as though
they do have one of a specific, parametric form that has been combined with
the other age/period terms in the model. In the case of model M6, we see
that this implies a static age function which is a linear function of age, which
then could not be used to absorb a quadratic age term coming from the
addition of a quadratic function of year of birth to the cohort parameters.
Consequently there is a trade-off: models without a static age function have
simpler identifiability issues than (otherwise similar) models possessing one,
but are unable to provide a good fit to mortality data across the full age
range, as discussed in Hunt and Blake (2015f).

C Maximal invariants

An alternative approach to using an arbitrary identification scheme was sug-
gested by Kuang et al. (2008b,a) and Nielsen and Nielsen (2014) for the
classic APC model. This is to change the parameterisation of the model to
an equivalent form with reduced dimensionality which does not suffer from
identifiability issues. The new parameters are known as “maximal invariant”
parameters, since they are the set with the largest number of parameters
(i.e., are “maximal”), and are injective38 and give the same fitted mortality
rates as the original model in Equation 1 (i.e., the reparameterisation is “in-
variant”) . We can think of this as finding a parameterisation of the model
which gives the same fit to data, but where every possible degree of freedom
in the model is fully utilised in fitting the data.

Kuang et al. (2008b) and Nielsen and Nielsen (2014) proposed an ap-
proach to generating a maximally invariant parameterisation for the classic
APC model based on finding the second differences of the age, period and
cohort terms. These second differences do not change under the invariant
transformations of the model and so have a meaning independent of the
identifiability constraints. In this Appendix, we review this approach and
discuss how it can be extended to deal with the identifiability issues in some
of the more complex APC mortality models. However, we also find that
it suffers from a number of limitations which make it unsuitable for many

38A transformation is injective if different points in the domain get mapped to different
points in the image of the transformation.
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APC models and which can cause projections to be biologically unreasonable.

First, the age, period and cohort functions in the classic APC model are
expanded as telescopic sums in terms of their second differences, i.e.,

αx = αX −
X
∑

i=x+1

∆αi

= αX −

X
∑

i=x+1

(

∆αX −

X
∑

j=i+1

∆2αj

)

= αX − (X − x)∆αX +

X
∑

i=x+1

X
∑

j=i+1

∆2αj

κt = κ1 + (t− 1)∆κ2 +

t
∑

i=2

t
∑

j=3

∆2κj

γy = γ1−X + (y − 1 +X)∆γ2−X +

y
∑

i=2−X

y
∑

j=3−X

∆2γj

In the case of the age function, αx, we work backwards from αX due to
the negative dependence of cohort on age. However, it is important to note
that this expansion has not changed the number of parameters in the model,
merely written them in a new form. This, of itself, will not solve the identifi-
ability issues. However, Kuang et al. (2008b) and Nielsen and Nielsen (2014)
then substituted the second difference expansions of the parameters into the
classic APC model and group the deterministic terms together

ηx,t = a0 + (X − x)a1 + (t− 1)b1 +
X
∑

i=x+1

X
∑

j=i+1

∆2αj +
t
∑

i=2

i
∑

j=3

∆2κj +
t−x
∑

i=2−X

i
∑

j=3−X

∆2γj

(47)

where

a0 = αX + κ1 + γ1−X

a1 = ∆γ2−X −∆αX

b1 = ∆κ2 +∆γ2−X
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In Kuang et al. (2008b) and Nielsen and Nielsen (2014), these new parameters
were introduced by considering three points of the fitted mortality surface.
The most important point about the procedure is that it replaces six parame-
ters in the original parameterisation with only three in the maximally invari-
ant parameterisation. The maximally invariant parameterisation therefore
contains 3 + (X − 2) + (T − 2) + (T +X − 3) = 2X + 2T − 4 free parame-
ters. This compares with 2X + 2T − 1 parameters and the three additional
identifiability constraints required by the three invariant transformations -
Equations 4, 5 and 6 - for the original parameterisation of the classic APC
model. Hence the maximally invariant parameterisation gives the same fitted
mortality rates with the same number of effective parameters but without
the over-parameterisation and consequent need for identifiability constraints
in the original formulation of the model.

However, by doing this, we have lost much of the demographic signifi-
cance associated with the original parameters in the classic APC model. For
example, whilst αx in the original parameterisation of the classic APC model
relates to an age effect specific to age x, ∆2αx relates to the curvature of
the mortality curve in the age dimension at age x and will impact mortality
rates at all ages below x. It is therefore harder to explain its demographic
significance to other model users or develop an intuition about what values
are reasonable in order to check the validity of the model. Although demo-
graphic significance is subjective, it is still not desirable to lose it if it can
be avoided. This may restrict the usefulness of the maximally invariant ap-
proach.

In order to project the model into the future, we need to analyse the ∆2κt

and ∆2γy parameters as time series. These are shown in Figure 4 for the same
dataset as used in Section 5.2. As can be seen,39 these parameters appear
to be stationary and so it is natural to project them using an ARMA process.

If we were to “integrate up” the double differences to recover our original
κt and γy parameters, these would both be I(2) processes. This conflicts
with the demographic significance for the cohort parameters discussed in

39We have removed the large outlier cohort effects for years of birth 1918/19 using
indicator variables, as they are believed to be data artefacts resulting from the surge of
births due to the demobilisation of soldiers after the First World War, based on similar
reasons as those presented in Richards (2008) and Cairns et al. (2014).
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Figure 4: Second differences from the classic APC model

Hunt and Blake (2015f). I(2) processes are also not likely to be biologically
reasonable, as the uncertainty in projected mortality rates would grow very
quickly. This would have important ramifications if the model is projected.

The maximal invariant approach also works with some other APC mor-
tality models. For instance, consider the reduced Plat model of Equation 12.
This model has X + 2T + (X + T − 1) = 2X + 3T − 1 parameters and, as
discussed in Section 4.1.1, we know that it requires five identifiability con-
straints to fully identify (two for the level of the period functions and one
each for the level, linear trend and quadratic trend in the cohort parameters).

In order to find a maximally invariant parameterisation, we follow the
same logic as in Kuang et al. (2008b) and consider the telescopic sums of the

parameters. However, as αx, κ
(1)
t and γy all possess unidentifiable quadratic

trends, we need to consider the third differences of these parameters, but
only consider the second differences of κ

(2)
t , since it only has unidentifiable
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linear trends

αx = αX − (X − x)∆αX +
1

2
(X − x)(X − 1− x)∆2αx −

X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk

κ
(1)
t = κ

(1)
1 + (t− 1)∆κ

(1)
2 +

1

2
(t− 1)(t− 2)∆2κ

(1)
3 +

t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k

κ
(2)
t = κ

(2)
1 + (t− 1)∆κ

(2)
2 +

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

γy = γ1−X + (y − 1 +X)∆γ2−X +
1

2
(y − 1 +X)(y − 2 +X)∆2γ3−X

+

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk

Combining these in Equation 12 and grouping the deterministic terms of the
same type reduces the dimension of the parameter set in the same manner as
for the classic APC model. Therefore, we find the maximally invariant form
of the reduced Plat model

ηx,t = a0 + (x− x̄)a1 + (x− x̄)2a2 + (t− t̄)b1 + (t− t̄)2b2 + (x− x̄)(t− t̄)c1

−
X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk +
t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k + (x− x̄)

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

+

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk (48)

The final step to prove that this is a maximally invariant parameterisation
would be to check that each of the parameters can be estimated uniquely
from the data. Alternatively and more easily, we can see that it is max-
imally invariant from a dimensional argument, since the parameterisation
has 6 + (X − 3) + (T − 3) + (T − 2) + (X + T − 4) = 2X + 3T − 6 free
parameters, which is the same as the number of parameters in the original
reduced Plat model less the number of identifiability constraints imposed.
Therefore, the freely varying parameter space has the same dimension as the
model space and gives the same fitted mortality rates as the original model,
and so the parameters represent maximal invariants. Because of this, the
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revised model does not possess any identification issues.

As in the case of the classic APC model, moving to a maximally invariant
form for the model means losing the demographic significance of the param-
eters. The maximally invariant form of the reduced Plat model is highly
unintuitive compared with the original parameterisation, and it would be
difficult to communicate the impact of the various parameters to anyone not
intimately familiar with the maximally invariant approach. As discussed in
Hunt and Blake (2015f), since demographic significance is a major reason for
choosing a model with parametric, as opposed to non-parametric age func-
tions, this is highly undesirable. Also, and again similar to the classic APC
model, the use of third differences for κ

(1)
t and γy leads naturally to using I(3)

processes when we project the model, which are unlikely to give biologically
reasonable projections.

Further, the maximal invariant approach does not work with all APC
mortality models. If we follow the same logic to try to find the maximally
invariant parameterisation for the full Plat model in Equation 11 we obtain

ηx,t = a0 + (x− x̄)a1 + (x− x̄)2a2 + (t− t̄)b1 + (t− t̄)2b2 + (x− x̄)(t− t̄)c1

−
X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk +
t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k + (x− x̄)

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

+ (x− x̄)+κ
(3)
1 + (x− x̄)+

t
∑

i=2

∆κ
(3)
i +

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk (49)

We know, from Section 4.1.1, that the Plat model has X+3T+(X+T−1) =
2X +4T − 1 parameters and requires six identifiability constraints (three on
the levels of the period functions and one each for the level, linear trend and
quadratic trend in the cohort parameters). However, the maximally invariant
parameterisation in Equation 49 has 7 + (X − 3) + (T − 3) + (T − 2) + (T −
1) + (X + T − 4) = 2X + 4T − 6 free parameters, i.e., one too many. This is

because the (x− x̄)+κ
(3)
1 term cannot be combined with the expanded form

of αx, since it is not a polynomial. Consequently, there is no dimensional
reduction with respect to this age/period term.

Because of this, we will still require an additional identifiability constraint
to fit the model in Equation 49 to data. However, it is no longer clear what
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this should be or what the underlying invariant transformation of the pa-
rameters is. The maximally invariant approach has therefore not solved the
identifiability issues for this model, but has made making an arbitrary iden-
tification considerably more difficult.

This will be true for any age/period term which does not have a polyno-
mial age function. As discussed in Section 4.3, such terms do not generate
any additional identifiability issues beyond the unidentifiable level of the pe-
riod function, as discussed in Hunt and Blake (2015d). It therefore may be
possible to deal with this using an approach similar to that proposed for
the model of Lee and Carter (1992) in Nielsen and Nielsen (2014) and dis-
cussed in the Appendix of Hunt and Blake (2015d). However, as these two
techniques for obtaining maximally invariant parameterisations are funda-
mentally different, it is unclear how to combine them in models which mix
polynomial and non-polynomial age functions, such as the Plat model.

In summary, the maximally invariant approach proposed in Kuang et al.
(2008b) and Nielsen and Nielsen (2014) for the classic APC model can be
generalised, but only to models with purely polynomial age functions. For
models with other forms for the age functions (or which mix polynomial
and non-polynomial age functions), the maximally invariant approach, at
best, offers a partial solution. However, in using such an approach, we lose
our desired demographic significance regarding the parameters in the model
and are likely to obtain projected mortality rates which are not biologically
reasonable, so this approach is not, in general, recommended.
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