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Abstract

A key feature of integrable systems is that they can be solved to obtain exact
analytical solutions. In this thesis we show how new models can be found through
generalisations of some well known nonlinear partial differential equations including
the Korteweg-de Vries, modified Korteweg-de Vries, sine-Gordon, Hirota, Heisenberg
and Landau-Lifschitz types with joint parity and time symmetries whilst preserving
integrability properties.

The first joint parity and time symmetric generalizations we take are extensions to the
complex and multicomplex fields, such as bicomplex, quaternionic, coquaternionic and
octonionic types. Subsequently, we develop new methods from well-known ones, such as
Hirota’s direct method, Backlund transformations and Darboux-Crum transformations to
solve for these new systems to obtain exact analytical solutions of soliton and multi-soliton
types. Moreover, in agreement with the reality property present in joint parity and time
symmetric non-Hermitian quantum systems, we find joint parity and time symmetries
also play a key role for reality of conserved charges for the new systems, even though the
soliton solutions are complex or multicomplex.

Our complex extensions have proved to be successful in helping one to obtain
regularized degenerate multi-soliton solutions for the Korteweg-de Vries equation,
which has not been realised before. We extend our investigations to explore degenerate
multi-soliton solutions for the sine-Gordon equation and Hirota equation. In particular,
we find the usual time-delays from degenerate soliton solution scattering are
time-dependent, unlike the non-degenerate multi-soliton solutions, and provide a
universal formula to compute the exact time-delay values for scattering of N-soliton
solutions.

Other joint parity and time symmetric extensions of integrable systems we take are of
nonlocal nature, with nonlocalities in space and/or in time, of time crystal type. Whilst

developing new methods for the construction of soliton solutions for these systems, we

Xiv



find new types of solutions with different parameter dependence and qualitative
behaviour even in the one-soliton solution cases. We exploit gauge equivalence between
the Hirota system with continuous Heisenberg and Landau-Lifschitz systems to see how
nonlocality is inherited from one system to another and vice versa.

In the final part of the thesis, we extend some of our investigations to the quantum
regime. In particular we generalize the scheme of Darboux transformations for fully time-
dependent non-Hermitian quantum systems, which allows us to create an infinite tower

of solvable models.
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Chapter 1

Introduction

The area of theoretical physics is the marriage of mathematics and physics with the
purpose of formulating mathematical descriptions of the reality we live in. A key area of
investigation is the modelling of natural phenomena and finding solutions to the models
obtained. For realistic systems, due to the natural nonlinearity and many factors
influencing the system, it is often difficult to find solutions and we usually have to resort
to numerical or perturbation methods to solve them. This is one of the most important
motivations for the study of integrable systems. The speciality and main aspect of
integrable systems are that they can be solved to obtain exact analytical solutions, which
are rare and powerful. They form the basis of finding numerical or approximate
solutions in perturbation theory for new realistic models we find. Hence, the increasing
interest to look not only at new solutions for some typical or representative models, but
also to discover new integrable systems.

Over the past two decades, an immense amount of investigations has been done for
non-Hermitian systems with joint parity and time symmetries [21]]. The interest comes
from breaking the long-held belief from quantum mechanics that only Hermitian
systems ensures unitary time evolution and possess real energies. Non-Hermitian
systems with joint parity and time symmetries were also found to possess real energies.
It is the interest of this thesis to explore how these symmetries can help us develop new
classical nonlinear integrable models of complex, multicomplex, degenerate and
nonlocal types, then extending to continuous spin models and the quantum regime for
investigations of time-dependent non-Hermitian systems.

In Chapter 2 we present a very brief selective history of the vast and rich area of

classical integrable systems and list some of the key equations to be investigated in this



thesis.  Following on, we give a short introduction also to joint parity and
time-symmetric non-Hermitian systems. In the second part of the chapter, we give a
review for various types of well-established methods developed over the years in
integrable systems for the construction of soliton solutions, that forms the foundation of
a large part of our work.

Our story begins in Chapter 3 [33, 30] on the investigation of complex extensions to
some well-known real nonlinear integrable systems. Integrability is a very delicate
property; usually taking deformations destroys this property. However, we show under
some particular complex joint parity and time-symmetric deformations, new models can
be constructed from real integrable ones, which preserves integrability properties.
Utilising well-established construction methods to construct soliton solutions, we derive
new complex soliton solutions for these systems. In particular, despite the solutions
being complex, the resulting energies are real, hence physically meaningful, and we
present the argument for this.

After carrying out work in the complex regime, a good question to ask at this point
is, what are the results and properties of higher order complex extensions, for example
with bicomplex, quaternionic, coquaternionic and octonionic types? In Chapter 4 [35],
we take the extensions for those and develop further models of multicomplex types. In
particular with the investigation of solution methods, new methods and solutions are
developed using idempotent bases and a ‘combined” imaginary unit for noncommutative
extensions. Here, we find fascinating properties associated with spectral parameters and
also reality of conserved quantities.

In Chapter 5, we provide an application for complex soliton solutions from Chapter
3. In particular, we see in this chapter how extensions to the complex domain can even
help regularise singularities that come about when taking degeneracies of real
multi-soliton solutions i.e. a single spectral parameter multi-soliton solution, through a
review for the Korteweg-de Vries equation following [41]]. Inspired by the success of this
application, we are led to investigate degeneracy for the sine-Gordon equation [29]].
However, in the sine-Gordon case, we are lucky to find no singularities are developed
when taking degeneracies of real multi-soliton solutions. Nevertheless, we develop an
easier and a much more convenient method of producing degenerate solutions, which is
a new recursive formula. Furthermore, we obtain new degenerate solutions with Jacobi
elliptic and theta functions. It is one of the defining features of classical multi-soliton

solutions to nonlinear integrable equations that individual one-soliton contributions



maintain their overall shape before and after a scattering event. The only net effect is
that they are delayed or advanced in time as a result of the scattering with other solitons
when compared to the undisturbed motion of a single one-soliton solution. For
non-degenerate multi-soliton solutions, time-delays tend to some constant in the
asymptotes. Investigating this feature for degenerate multi-soliton solutions, time-delays
are found to be time-dependent. Moreover, a universal formula for time-delays is shared
between the Korteweg-de Vries and sine-Gordon cases [[30, 29].

Another interesting example of degeneracy to think about is in the Hirota equation,
which can be seen as a joint parity and time-symmetric extension of the nonlinear
Schrodinger equation, and is already a complex system. We investigate in Chapter 6
[34] the degeneracy for this equation and compute new degenerate soliton solutions.
Conducting detailed analysis of scattering and asymptotic properties, interesting
scattering behaviours are found, and although the time-delays are time-dependent, they
are no longer of the same universal form as for the Korteweg-de Vries and sine-Gordon
cases.

Chapter 7 [31]] presents some new types of models from various transformations
with a combination of parity and/or time-symmetries. As a result, new Hirota systems
are found that are 'nonlocal” in space and/or in time, whilst retaining integrability
properties. We also develop here new methods which implement nonlocality to find
‘nonlocal” solutions. In particular, unlike the local case, we discover there two types of
solutions for the nonlocal scenario.

Interestingly, the nonlinear Schrodinger equation is related with the continuous
Heisenberg spin model through a gauge equivalence. Knowing that the Hirota equation
is an extension of the nonlinear Schrédinger equation, it is a natural step to extend our
investigations to look at the connection with an extended continuous Heisenberg spin
model and an extended Landau-Lifschitz model forming the work in Chapter 8 [32].
Independently from the Hirota case, we also develop new methods to construct
solutions for ’nonlocal” extended continuous Heisenberg and Landau-Lifschitz
equations. Then we extend the gauge equivalence for our new nonlocal Hirota systems
and their solutions to find the corresponding gauge equivalence in the spin models and
vice versa.

Up to now, we have only focused our investigations on the classical regime. In
Chapter 9 [36]], we move into the quantum regime, looking at fully time-dependent

non-Hermitian quantum systems. In particular, we develop a new scheme utilising



Darboux transformations from our classical investigations and the Dyson equation to
construct a hierarchy of solvable time-dependent joint parity and time-symmetric
non-Hermitian potentials. Extensions of the scheme to Lewis-Riesenfeld invariants are
presented, which are sometimes useful tools for solving time-dependent quantum
systems. As a result, we obtain a powerful scheme, presenting us with various paths to
build a solvable hierarchy of time-dependent non-Hermitian potentials, which we can

choose from depending which path is easier.



Chapter 2

Integrability, P77 -symmetry and

soliton solution methods

2.1 Classical Integrability

The early notion of integrable systems dates back to the mid 19th century in the sense
of Liouville integrability. Liouville’s theorem states that given a Hamiltonian system on a
2n dimensional phase space (n being a finite number), if we are able to find n number of
independent conserved quantities in involution, then the system can be solved analytically
by quadratures [113] [11]].

Towards the end of the 19th century, the experimental discovery of the solitary wave
by Russell [[146], a wave which behaves like a particle, preserving speed and shape as it
travels, along with theoretical work of Boussinesq and Rayleigh [25] [145]], Korteweg and
de Vries [[102] to describe such a phenomenon was the start of the development on the
theory of integrability for Hamiltonian systems with infinitely many degrees of freedom,
in particular integrable nonlinear partial differential equations (NPDEs). Since the
1960s, extensive work has been done in the area of integrable NPDEs. In 1965, Zabusky
and Kruskal carried out numerical investigations to look at scattering of multi-soliton
solutions to the Korteweg-de Vries (KdV) equation [174]]. A interesting property they
discovered was that after scattering, each multi-soliton constituent preserved its speed
and shape apart from a phase difference. Later, Gardner, Green, Kruskal and Miura
developed what we now call the inverse scattering transform to solve the KdV equation
for exact soliton solutions [[74]. In 1972, Wadati and Toda computed the exact form of

phase shifts from scattering, generally for a N-soliton solution (N arbitrary) [166]].



Meanwhile, many other new methods were being developed to find exact analytical
solutions for the KdV and other NPDEs and there have been a lot of discussions around
different types of definitions of integrability and there is in general no complete one
definition. Some common, necessary characteristics of integrability for NPDEs includes

possessing:
1. An infinite number of conserved quantities [[126} [152]].
2. Lax pair representation [[74} 110} [152].
3. Exact analytical soliton solutions [[74, 84,106, 121]].

4. Infinitely many local commuting symmetries [[123]].

Before we move on to introducing joint parity and time (P7") symmetries, we list first
various well-known integrable NPDEs that will form the basis for development of new
integrable models with P77 -symmetric deformations. Some of the systems we will explore

are:

The Korteweg-de Vries (KdV) equation
Uy + 6UUy + Ugpy = 0 (2.1)

This equation was first theoretically developed by Boussinesq and Rayleigh and
later Korteweg and de Vries [25| 145 102]]. It is famous for describing shallow

water waves.

The modified Korteweg-de Vries (mKdV) equation
vy + 240%0; + Vygw = 0 (2.2)

In 1968, the Miura transformation was found to relate the KdV equation with the

mKdV equation [[124]]. In Chapter 3, we present the map between (2.1)) and (2.2)).

The sine-Gordon (SG) equation

¢mt = Sil’l¢ (23)

The SG equation was first discovered by Bour [24] in mathematics in the context

pseudospherical surfaces in differential geometry. Later, this equation proved to



be of great physical significance in other areas such as particle physics [[141]] and

Josephson junctions [92]].

The Hirota equation

iQt +a (q:rx - QqZT) + Zﬁ (ch:(: - 6QTQI) = O, (24)

with » = =4¢* is the Hirota equation [87], which reduces to the nonlinear
Schrodinger (NLS) equation for 8 = 0 and complex mKdV equation for o = 0.
The Hirota equation is a higher order extension of the NLS equation originally
proposed by Kodama and Hasegawa [100] to model high-intensity and short

pulse femtosecond wave pulses.

The extended continuous Heisenberg (ECH) equation

B

S = 5[5, Sual = 5 (352 + S[S. Suvs]) (2.5)

The ECH equation, where S as a 2 x 2 matrix of SU(2) type, is the first member
of the corresponding Heisenberg hierarchy [[168]. For 8 = 0, it reduces to the
well-known continuous limit of the Heisenberg spin chain [134, 105, 162} 160]].

The extended Landau-Lifschitz (ELL) equation

~ N N I
stz—asxsm—§ﬁ(sx-sx)sx+ﬁsx(s><sm) (2.6)

The ELL equation is an interesting vector variant of the ECH equation (2.5 with
many physical applications that arises when decomposing S in the standard
fashion as S = § - & with Pauli matrices vector & = (01,02,03). For § — 0 this

equation reduces to the standard Landau-Lifschitz equation [[108] 17]].

2.2 Joint parity and time (P7) symmetry

In quantum mechanics, it is well-known that Hermitian systems possess real
energy eigenvalues and have unitary time evolution/conservation of probability.
These are closed systems, which are isolated and do not have any interaction with
their environment. The other case are open systems, which do interact with their

environment and probability is not conserved in the system. These systems are



termed non-Hermitian and have been long known to describe dissipation with
generically complex energy eigenvalues.

In 1998, Bender and Boettcher discovered a wider class of quantum systems
which can possess real energy eigenvalues, under the restriction of P7-symmetry
[19]. In particular, they discovered a range of non-Hermitian Hamiltonians with

PT-symmetry of the form
H =p* +2%(ix), e>—1 (2.7)

possessing real energy eigenvalues. Here, P7-symmetry implies that the

Hamiltonian is invariant under the action of the P7 operator defined as

P:x— —x,p— —D, (28)
PT :i— —i,x — —x,p — p. (2.10)

The conjugation of the i, for instance can be made plausible by requirement of the

canonical commutation relation to be satisfied, i.e.
PT : [x,p] =ih — —[z,p] = —ih. (2.11)

Note that when taking the time-dependent Schrodinger equation, the 7-operator
will also involve ¢ — —t for operators involving ¢. For the full time-dependent
case where we have an explicit time-dependence such as in Chapter 9, we must
be careful in distinguishing whether ¢ is part of a quantum mechanical operator
or just a classical parameter. In the latter case, we do not take ¢t — —t¢ [158} 23] 36]].

Reality of energy eigenvalues is the first indication that there is a possibility for
a non-Hermitian P7-symmetric systems to be a consistent quantum mechanical
system. The reasoning for reality of energy eigenvalues from P7-symmetry could
be explained by an argument already presented by Wigner in 1960 [[171]]. The PT
operator is actually a special case of an antilinear operator, which is some operator

A, with the properties

(1) A(f+g) = Af + Ag,
(2) Alef) = c*Af,



where f and g are any functions and ¢, an arbitrary complex constant with c*
denoting its complex conjugate. If we take a Hamiltonian H, with eigenstates v,

eigenvalues F and it satisfies the conditions

By = Hp = HAY = AHY = AE) = B* Ay = E*.

Hence, we have proved when the Hamiltonian and its eigenfunctions are both
invariant under the P7T operator, real energy eigenvalues are obtained. We call
this the unbroken P7T regime.

When the Hamiltonian is invariant under the P7 operator, but the
eigenfunctions are not P7 invariant, we no longer have real eigenvalues.
Instead, we have conjugate pairs of eigenvalues and we are in the broken P7T
regime. The critical points where there is a transition from the unbroken to the
broken P7T regime and real eigenvalues coalesce in the parameter space, are
called exceptional points [94, 83]].

For the unbroken P7 regime, with real eigenvalues, we now have a new
possibility of finding meaningful quantum mechanics from non-Hermitian
systems. To show a PT-symmetric non-Hermitian system is a consistent
quantum mechanical theory, one needs also to have wunitary time
evolution/conservation of probability and a well-defined inner product with
completeness for the Hilbert space of the system.

In Hermitian systems, Hermiticity guarantees orthogonality. For unbroken
PT regime, since H”7 = H, the natural choice of an appropriate metric for the

construction of a well-defined inner product would be the P7 inner product

lbdpr = f 08 (—a) i (@)de. (212)

Taking ,,,1, to be eigenfunctions with eigenvalues \,,, A, respectively, the



orthogonality condition is satisfied as

W Hypr = CH P[00 (2.13)
<¢m|/\nwn>737’ = <>‘m¢m|wn>737'7
(An - Am) <77Z)m|¢n>7>7' = 07

hence

For m = n, we need the inner product to be positive definite, which may not
always be the case. To remedy this, Bender, Brody and Jones [22] introduced the
operator CPT where C, with properties similar to the charge-conjugation operator,
will cancel the negativity from negative normed states by multiplying them with

—1. This provides us with positive definiteness

Wpln)epr (2.15)

and hence the completeness relation

Z [n) (nlepr = 1. (2.16)

n

The calculation for the C operator is generally a difficult problem as it relies on
knowledge of the complete set of eigenfunctions. One can use perturbation theory
to find C, utilising properties of the C operator such as being another symmetry

of the Hamiltonian and commuting with the P7 operator
C*=1, [H,C]=0, [C,PT]=0. (2.17)

Finally, we also have unitary time evolution with U = e *#* under the CPT

metric and hence probability is conserved

WONE)epr = <e*@'Htw<0>\e*“ﬁ Y(0))epr (2.18)
- Coprern),,
= ((0)[(0)epr
where
i, = Hy  with () = e "4(0). (2.19)

Therefore, we have found a well defined, positive definite inner product for a P7-

symmetric system to be the CP7T inner product.
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An alternative approach to find the CPT metric is to use the more general
concept of quasi/pseudo-Hermiticity [139, 53, 150, 129, 127, 128, [130]]. The key
idea is to find an operator 1 such that it becomes a similarity transformation

operator for the non-Hermitian Hamiltonian H with a Hermitian Hamiltonian h
h=nHn'=nYHyw=0r < H =pHp ", (2.20)

where p = n'n is Hermitian, invertible and positive definite. The eigenfunctions ¢

and ¢ of h and H respectively are related by

¢ =np. (2.21)

In addition, as H and h are related by a similarity transformation, both
Hamiltonians have the same eigenvalues.
We can prove when taking p as the new metric, / is Hermitian with respect to

the metric since

Wl Hip, = |t H,, = (|00, = CHY [0y, ) = (HAp, 40,0,

Therefore, eigenvalues are also real, eigenfunctions are orthogonal and we have a
well-defined inner product, hence a consistent quantum mechanical framework.

Taking a PT-symmetric non-Hermitian Hamiltonian the metric is
p=PC, (2.22)
since we can show
p 'Hip=H = (CPT)H(CPT) ! = (PC) *H'(PC),

and the C operator is

C=p'P. (2.23)

The study of PT-symmetry has grown tremendously over the past two
decades in many areas of physics, including the classical side, which we will

make a contribution to in this thesis.

Soliton solution methods

NPDEs are generally difficult to solve due to their nonlinearity. Over the

years, different methods have been investigated to help us construct exact

11



analytical soliton solutions for various NPDEs. In the following sections, we will
introduce various well-known methods that will form the basis for development

of new methods to solve new NPDEs.

2.3 Hirota’s direct method (HDM)

HDM was first developed by Hirota in 1971 [84] to directly construct exact
N-soliton solutions for the KdV equation. Later, this method was developed for
many other NPDEs, some of which we will explore, such as the mKdV [85]], SG
[86]], Hirota [87] equations. Given a NPDE, the key idea is to convert the nonlinear
problem to a bilinear one through a transformation of the dependent variable.
Then using the Hirota D-operator definition along with the various properties
and identities arising from it, we can transform ordinary derivatives to Hirota
derivatives. The resulting equation(s) will be called Hirota bilinear equation(s).

Before we present some examples, let us first present the definition of Hirota

D-operator and some of its properties.

Hirota D-operator for one independent variable

The Hirota D-operator for functions f and g of one independent variable x reads

13

Dy(f-g) = ;—ynf(af +yglz—y)| . (2.24)

y=0

Recalling the Taylor expansion for functions f(z) and g(z) of one independent
variable = around points y and —y respectively and multiplying them together, we
can rewrite the Taylor expansion of a product of two functions using the definition

of the Hirota D-operator as a generating function, that is

flz+y)g Z

With this, we can explicitly write out the first few Hirota derivatives.

S |@§

fg) =€ f-g. (2.25)

D.(f-9) = fug—9.f, (2.26)
Di(f-9) = fexg—2fcge+ [Gux, (2.27)
DI(f-9) = feexg = 3fea9e + 3fuGra — [ Guur , (2.28)
Di(f9) = froawd— 4fosae + 6fosGae — 4foGozs + [Gawas - (2.29)

12



More generally, the derivatives can be written similarly to the Leibniz rule, but

with alternating signs

P = X (1) S L), (230)

CL‘

Let us now consider some properties and identities of the Hirota D-operator,
which will help us to convert our NPDEs to Hirota bilinear equation(s).
e Property one

Due to the alternating signs of the Leibniz rule (2.30]), switching the order of
the functions f(z) and g(z), we find the property

\DE(f-9)=(=1)"Di(g-f)], (2.31)

obtaining also

D2 (f-f)=0|. (2.32)

e Property two

Take the Taylor expansions of function f(z) around points y and —y, then

applying the logarithm on the expansions and adding them together yields

In[f(z+y)fx—y)] = & nf(x)+e e nf(a), (2.33)

= 2cosh (y%) In f(x).

In addition, the left hand side of (2.33)) can also be expressed as

nlfe s el = w|gets regenrg|, @
Infeosh (4D, (£ - /)]

As a result, we obtain the following property in terms of cosh functions

2cosh(yZ) In f = In[cosh(yD,) (f - f)]|. (2.35)

Taylor expanding the cosh functions on the right- and left-hand sides of ([2.35))
and comparing the coefficients of the y terms, we can obtain the following

identities:

202In f = fJ; D (2.36)

13



2
204In f = LA g (%) , (2.37)

Identities for higher order derivatives may be derived similarly.

Hirota D-operator for two independent variables
The Hirota D-operator for functions f(x,t) and g(x,t) of two independent

variables reads

DyDy"f -g = 0,0 (:I:—i—y,t—l—s)g(x—y,t—s)‘ (2.38)

y:s:O

Using this definition and looking at the Taylor expansions of the functions
f(z,t) and g(z,t) with two independent variables = and ¢ around points (y, s)
and (—y, —s) respectively, then multiplying together, the Taylor expansion can be

rewritten in terms of Hirota derivatives as
o8] 1 k
fle+yt+s)glr—yt—s) = ) 7 WDs D) (f-9),  (2.39)
k=0
= P P(fg) .

From definition ([2.38)) or Taylor expansion of (2.39)), we also have the following
Hirota derivatives

Dath (fg) fxtg_fxgt _ftgac +fgxtz (240)

Di(f-9) = fou—fig- (2.41)

Letting ¢ = f, equation (2.40) produces the following identity for a function of

two variables

20,0,In f = BBl (2.42)

With these definitions and properties, we can convert ordinary derivatives into
Hirota derivatives and vice versa. Subsequently, this allows us to convert NPDEs

into Hirota bilinear equation(s), which we shall see in the following.

2.3.1 Hirota bilinear equation for the KdV equation

Applying the logarithmic transformation u = 2(Inr),, to the KdV equation
(2.1)), a bilinear form is obtained, as follows:

2(In7),,, +24(In7),  (n7),  +2(n7),,...=0. (2.43)

txx TTT
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Integrating and taking the integration constant to be zero for soliton solutions
leads to
(In7),, +6[(In7),,J> + (In7),,,, = 0. (2.44)

TXXTT

Then using Hirota properties (2.36)) and (2.37)), (2.42)) transforms the bilinear
form into the Hirota bilinear equation

DthT(QT.T)+3[D§(;-T)]2+@_3[@]2 — 0, (245)

(D + D,Dy) (r-7) = 0. (246)

2.3.2 Hirota bilinear equation for the mKdV equation

Similarly, but using an arctangent transformation

v = Oparctan (Z) , (2.47)

o
1 TpO — OgT

()

D,(7-0)

2 4+02 7

the mKdV equation (2.2)) becomes

0 lM] +24 [M]Z O [M] + 03 lM] =0, (248)

72 + 02 T2 + o2 72 + o2 72 4 02

which can be simplified to,
(0® + 7)) [(D2 + D) (1-0)| +3(Do(7-0)) [Di(T-T+0-0)] =0. (2.49)
Taking the following two Hirota bilinear equations to solve

(D2 +Dy)(r-0) = 0, (2.50)
Di(r-74+0-0) = 0, (2.51)

is a particular way to obtain soliton solutions.

2.3.3 Hirota bilinear equation for the SG equation

Letting the variable transformation be ¢ = 4arctan’ and using Hirota

properties with some trigonometric identities, the left hand side of SG equation

15



(2.3])) becomes

Oy = 4%% arctang , (2.52)
4(02 + 72) (120 — 0,7), — (T20 — 0,7) (6% + 7%),
(02 + 7'2)2

Then taking 6 = arctan 7, which gives cos ) =

hand side of SG equation ([2.3) becomes

Teiz andsinf = ———, the right

sing = sin (4 arctan Z) , (2.53)

o
= 2(2sinfcosb) (cos®d —sin®0) ,
4(c?* —1%) 710

(72 + 02)?
Equating the left hand side with the right hand side and using properties of the

Hirota derivative, we obtain
170D, Dy (17 —0-0)+ (6> =7°) DDy (1-0) = (6> —7°) 70 . (2.54)
Here, a natural splitting is the following Hirota bilinear equations

(D.Dy—1)(r-0) = 0, (2.55)
D, Di(t-T—0-0) = 0. (2.56)

2.3.4 Hirota bilinear equation for the Hirota equation

Taking the Hirota’s equation (2.4)), as ¢ is a complex field, we apply the

transformation ¢ = %, with g, a complex and f, a real function, then we have the

identity
FliDig- f +aD2g- f +i8Dig - fl+[3i8 (4. — g:) — ag| [D2f -  +2n gl
then we can make the choice of solving the following Hirota bilinear equations

iDyg- f+aDig- f+iBDlg-f = 0, (2.58)
Df - f+2k|g| 0. (2.59)

With the Hirota bilinear forms of NPDEs, the solution construction process

that follows is similar to perturbation theory. However, with a finite truncation of
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a perturbative series, we obtain an exact analytical solution, which is remarkable.
After solving the Hirota bilinear problem, we carry out an inverse transformation

back to the original dependent variable and obtain the solution for the NPDE.

2.4 Biacklund transformations (BTs)

The BT is a method that started very early on in the development of nonlinear
integrable theory, but coming from a different origin, the area of differential
geometry. It developed from the investigation of pseudospherical surfaces, to
explore how one can find a new pseudospherical surface described by the SG
equation from an old one [24].

For us, the key point is that a BT reduces the NPDE to a simpler lower order
problem by relating two solutions from the same NPDE as a pair of first order
PDEs. Then with Bianchi’s permutability theorem, which serves as a 'nonlinear
superposition principle” for solutions of the NPDEs, in analogy to the ‘linear
superposition principle” for solutions of linear equations, a fourth solution to a
NPDE can be found from three known solutions of the NPDE [[107]].

Let us demonstrate the process with two examples, the KdV equation [[167]

and the SG equation [[107]].

2.4.1 Backlund transformation for the KdV equation

When taking the transformation v = w, for the KdV equation (2.1) and
integrating with respect to z, then letting the integration constant be zero, the

KdV equation transforms to
Wy + 3w + Waee = 0. (2.60)

The BT is a pair of equations relating the two solutions w and @ to (2.60]), which

reads

1
Wy + W, = l{:—E(w—@)z, (2.61)

w+ W = (W= W) (W — Wyy) — 2 (wi + W2+ wxﬁ)’m) . (2.62)

where £ is a constant. For verification the BT is correct, we can see that repeatedly

differentiating (2.61]) and using (2.60]) produces (2.62)).
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To create the 'nonlinear superposition principle” for solutions of the KdV
equation, we need to make use of Bianchi’s permutability theorem. This theorem
can be nicely represented through the Bianchi-Lamb diagram in Figure This
diagram illustrates how to construct a new solution of the KdV equation wy

through three known solutions wy, w; and ws.

Figure 2.1: 2x2 Bianchi-Lamb diagram of four arbitrary solutions wy, w1, w2, w12 of the

KdV equation with each link representing a BT with a constant k; or ;.

The four solutions are related as shown in the diagram through two constants

k1 and k5 in the following way

(1) (wo), + (w1), = k1 — 5 (wo —w1)”,
(2)  (wo), + (w2), = ka2 — 3 (wo — wy) K (2.63)
(3) (w1), + (wi2), = ky — 5 (w1 —wia)”,
(4) (w2, + (wi2), = k1 — % (wy —wi2)”,

together with (2.62)). Taking the differences (2.63](1))-(2.63|(2)) and (2.63|(3))-
(2.63](4)), we can find the relation
ki — ko

w1 — W2

W12 = Wo + 2 (264)

This is the 'nonlinear superposition” relation, which we can use to construct a
fourth solution w,, to the KdV equation given three known solutions wy, w; and
wsy.

2.4.2 Backlund transformation for the SG equation

The 'nonlinear superposition principle’ for the SG equation (2.3) works

similarly. Suppose ¢, and ¢, are two solutions of the SG equations, then the pair
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of equations for the BT are

1 1 —
30 (000 = s (A% (265)
3000 -6) = asin(2E2). (2:6)

We can verify the BT by cross differentiating the pair ([2.65), (2.66]) and we will
see ¢, and ¢, are both solutions to the SG equation.

Now using and (2.66]) together with Bianchi’s permutability theorem
to relate four different solutions ¢, ¢, ¢,, ¢;, of the SG equation together as

diagrammatically shown in Figure

ay @ a9

Figure 2.2: 2x2 Bianchi-Lamb diagram of four arbitrary solutions ¢, ¢1, ¢, ¢15 of the SG

equation with each link representing a BT with a constant a; or as.

we obtain the relations

(1) 0 (8, — ) = 21 81n(¢1+¢o), (61 + 6g) = %Sm(qslg%) /
(2) 0 (dy — dp) = 2azsin (¢2+%) R N (%;%) e
(3) 0 (f1y — ¢1) = 2azsin (¢12+¢1> ;O (b1 + ) = Zsin (¢122—¢1> , :
(4) 0 (61— 6) = 2arsin (2272) | 0, (6rg + 6y) = 2 sin (22,22

Computing (2.67] (1))-(2.67 (2))+([2.67] (3))-(2.67] (4))=0 for 0; equations, then
.67/ (1))-(2.67] (2))-([2-67] (3) )+ [2-67] (4))=0 for 0, equations and adding them
together we obtain

4y sin (¢124— % , ¥ ; ¢1) — aysin (¢124

Using the trigonometric identity sin (A+ B) = sinAcos B + cos Asin B and
dividing both sides of (2.68|) by cos (¢21 ¢°) cos (¢2 ) results in

a; tan [%QT%] + a; tan [% ¢1] = aytan [%QT%} — ag tan [%Zﬁl] . (2.69)

b1o ¢y + 4arctan gzzfzg tan [%1‘1’1] . (2.70)
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This is the nonlinear superposition” for the SG equation, so knowing three SG
solutions, we can easily construct a fourth one.

In the following chapters, we will use the above derived 'nonlinear
superposition principles’ to construct multi-soliton solutions from known single

soliton solutions.

2.5 Darboux transformations (DTs) and Darboux-Crum

transformations (DCTs)

DTs are another powerful method to construct multi-soliton solutions. The
initial investigation was started in 1882 by Darboux [46]]. It was proposed that
taking a solvable time independent Schrédinger equation

Yyl +m). @)
one can construct infinitely many solvable Schrédinger equations all with the
same eigenvalue spectrum, m, possibly apart from a finite set of eigenvalues, but
a new potential function, f(x). Later, DTs were largely applied as a successful
tool in constructing solutions of many types of linear and NPDEs
[121},140, 14} 15| 156) 158, 44, 141, 143} 29| 31}, 34, 36]]. Continually applying DTs, we
can derive a recursive formula known as DCT, which helps us build
multi-soliton solutions in a convenient way. In the following, we show the

method of DT for the KdV, SG, Hirota and ECH equations following [[121} [168]].

2.5.1 Darboux and Darboux-Crum transformation for the KdV equation

To start, we introduce the Lax representation, an idea originating from
Gardner, Greene, Kruskal and Miura [[74]], later formally presented by Lax [110]].
This representation is often required as a necessary condition for integrability of

a NPDE. The Lax representation reads
which is the compatibility condition of the following two linear equations

Ly =\, My =1, (2.73)
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For specific choices of the operators L and M, also referred to as the Lax pair,
(2.72) is satisfied up to different NPDEs. In particular for the KdV equation (2.1),

we take the choices
L=—0—u, M=—40—6ud, — 3u,, (2.74)

where u is the KdV solution field. Substituting these choices back into (2.72]), this
reproduces the KdV equation. The linear Schrodinger form for the KdV can be

seen from the L operator equation of the Lax pair. Taking A = —%2, this reads as

2

To start the iteration we need an initial condition, so we take u = 0, the trivial
solution to the KdV equation, then ¢ = cosh ; (az — a’t) would be a resulting
solution to the system ([2.73)). To construct the Darboux operator, we need another

independent solution that can be obtained with different eigenvalue parameter,

so we take \ = —%%, then we have the solution ¢; = cosh  (yz — oft) and the
Darboux operator
LW =9, — Yz (2.76)
(Ch

The new Schrodinger equation after the first iteration of DT is
—pt) — My (D) = _a_2¢(1)7 (2.77)
P 1
where u(V) is the new potential and one-soliton solution to the KdV equation

uM = w+2(nyy),, =202 W; (¢y) | (2.78)

af 2 3
= 5 sech 3 (ozlx — ozlt) ,

with corresponding solution

() — [y = V2 r¥) 2.79
v Y W) (279)

Wy and W, are Wronskians with respect to . Denoting N = 1,2,-.-, the

Wronskian Wy is of the form

¥ S ) N (&

@ . 1) 1)
e | 1] a1

(2.80)

I oI [
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where [wj](k) = 0%, and ip; = cosh § (o —adt), j = 1,..., N — 1. As well as the
covariance of the stationary Schrodinger equation under DT, the equation (2.73))
governing the time dependence of ¢ is also covariant.

Note we can read the initial (2.75)) and iterated systems as equations

involving Hamiltonians
Hy=—-—u, and H; =—0°—uW, (2.81)

respectively. In this situation, the Darboux operator more generally can be
viewed as an intertwining operator [51, 50, 144 40, 14, [15} 135] intertwining the
two Hamiltonians as

LWHy, = H LW, (2.82)

To construct a multi-soliton solution to the KdV equation, one has to carry out
DT multiple times, yielding what is known as DCT. So for a two-soliton solution,
we carry out DT twice. The first step is to find another independent solution to

the iterated Schrodinger equation, (2.77]). For this, we take another solution to the

original Schrodinger equation, (2.75)), with eigenvalue parameter A = —%%

1
1y = cosh 5 (cpz — ait), (2.83)

then with ¢/, we can obtain another independent solution to (2.77)) as

W (1/)17 1/]2)
Wl (77Z}1) '

Now we can take the second DT, which involves taking the Darboux operator

Y = LWy, = (2.84)

1
ox g)

@ _ 9 [Sqm (2.85)

and the resulting second iterated Schrédinger equation is
2
(0%
—Y) = uPy® = =g, (2.86)
with potential

u? = ww+2pn¢9] , (2.87)

Trxr

= w+202In[Wa (¢, ¥,)],
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and solution

W@ = Oy (2.88)
W3 (77Z)17 77Z}2’ 1/})
Wa (wla ¢2) .

The function u(® is the two-soliton solution to the KdV equation with two
parameters a; and oy, which is usually called spectral or speed parameters, as
the speed of the soliton solutions depend on these parameters. Repeatedly

applying the Darboux iteration N times results in the Nth iterated Schrédinger

equation
2
—p) — My = — =y, (2.89)
with new potential and N-soliton solution
™) = w4 20 I [Wy (1,0, )], (290)

and eigenfunction

_ WN-H (@Z)lan?"':wNﬁ/})'

Y = LM N1 LDy
WN (¢17¢2’ ce 7¢N)

(2.91)

2.5.2 Darboux and Darboux-Crum transformation for the SG equation

For the SG equation (2.3)), we show a more generalised method of DT, which
involves carrying out the transformations on the zero curvature (ZC)
representation of the SG equation. The ZC representation of NPDEs can be
derived from taking the matrix formalism of the Lax representation [5]. In
geometry, when the curvature of a connection on a vector bundle is flat, we say it
has ZC.

Take a pair of first order linear differential equations for an auxiliary function

® and the pair of operators U and V such that

O, =UD , &,=VD , = v , (2.92)
'
then the resulting ZC condition reads
U, —V, +[U,V]=0. (2.93)
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To rewrite the SG equation as a ZC representation we can take the matrices U and

V to be of the form

i o 0 Leid
U= o 2 | V= o 2 , (2.94)
% _% p 21046 @ 0

and the ZC condition holds if and only if ¢ satisfies the SG equation. This can be
verified by substituting U and V" into the ZC condition, which reproduces the SG
equation. Taking the ZC representation ([2.92)), we obtain the following system of

auxiliary equations

7 o 7 «
= - — = —— — 2.
Y, 2¢w + 5, Oy 2¢x90+ 21/), (2.95)
1, 1.
= _— Z(b = —_— 72¢
Y, 50 C P Yi = 5o€ .

Note, we can also decouple the equations (2.95)) into two Schrédinger equations
by computing v, and ¢,

o? o?
with potentials
1, o i
= —— + —h,. 297

However, in this case, we will not carry out DT directly with the coupled
Schrédinger equations as the potential is not directly a solution to the SG
equation. Instead, we apply DT to the ZC representation. To initiate DT we can
again take the initial condition to be the trivial solution to the SG equation,

¢ = 0, then the above system of equations ([2.95)) can be solved by

w = e%(am"';) + e é(o‘gﬁ' ), (298)
(o t3) _ je-3(aet3) (2.99)

N

p = e
For DT, we need another set of solutions with a different eigenvalue parameter
o =
W, = e%(al‘”a) + ie‘%@l“?l), (2.100)
o = elmerd) _jotawrd) (2.101)
then the first Darboux iteration can be performed to produce the new set
o a1 Pq

= %o a8 - 2y-uhy,

, 2.102
2 2 Yy 2 ‘Pl ( )
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accompanied by the new one-soliton solution for the SG equation

oV = —2i1n%, (2.103)
1

o+
= Jdarctane™ " o1,

Similarly to the KdV case, we can carry out multiple Darboux iterations, i.e.

DCT. For the Nth iteration we have

AY A%
Py = DN ) TN (2.104)
AY, A%

*

together with the N-soliton solution to the SG equation, with ¢, = 1;

(2

[

o) = —22’111%, (2.105)
N

Im[Wy (¢ ... ¥y)]

Re[Wn (¥ ... 9n)]

where A%, and A%, are determinants, det, of the following matrices

= —4arctan

1\’ 1\’
AY = det (éai) Xij |, A% = det (5%) &l (2.106)
(5 (j Odd) 2 (j Odd)
¢; (j even) Y; (j even)

with eigenfunctions of different eigenvalue parameters denoted by index ¢

g = edlomrar) ygerlowra), (2.108)
o = ep(omra) oo, (2.109)

forj=1,2,...Nandi=1,2,... N.

2.5.3 Darboux and Darboux-Crum transformation for the Hirota equation

To show the construction of DT and DCT for the Hirota equation (2.4)), we
first present the Hamiltonian for carrying out the iterations. Let us take the ZC

representation of the form

v, =UY , U, =V, = Z (2.110)
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where
—iA q A B
U= , V= : (2.111)
oA c -A
It is then easy to see that the first differential equation in x of the ZC representation
(2.110)), can be rewritten as a one-dimensional stationary Dirac type Hamiltonian

system [[135, 42, 143| 31]]

Hp= =, o=|"], (2.112)
0
where
—i0, 1q .
H— = —i030, + Qp, (2.113)
—ir 10,

o3, one of the Pauli matrices and (), acting as a matrix potential given as

1 0 0
o3 = . Qu = 1. (2.114)
0 —1 —ir 0

In Qp, the terms ¢ and r satisfies the ZC representation (2.110)) and will also be
solutions of the NPDE.
Now suppose that we have a new Hamiltonian system of the same structure

as the original Hamiltonian being
HOpW = V) (2.115)

where

HY = —ios + QY. QY = (2.116)
—ir) 0

We assume the original H and iterated Hamiltonian H() are related by a Darboux

or intertwining operator L(
HOLW = 1V g, (2.117)
then the new solution " to H® will be
» D = LWy, (2.118)

Up to this point, we still have to find the form of LY that will give us such a

relation, so we take the ansatz

L =c¥ 4+ 4, (2.119)
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with function GY" to be found. Substituting the ansatz L) back into the
intertwining relation (2.117]), we obtain the equations

D Qy +i [Gg>, 03] - 0, (2.120)
i (6), QG - Qu— @i, - 0. @)
which we can combine as
(@n+ ¢03G(Ll>)z +|60,Qu| + 16D o] G 0. (2.122)
If we take as suggested in [[135]
G = —ugu !, (2.123)

then this enables us to find the following result

(™' Hu) = u‘1[<QH+z‘03G(Ll))I+[G(Ll),QH]+i[G(Ll),03} ¢ |u (2124)
~ 0

and integrating this equation leads to
Hu = uA, (2.125)

where A = constant matrix, u, the solution matrix. Taking two eigenfunctions of

(2.112)) with independent eigenvalues

le = _>\1¢1 ) sz = _>\2w2a (2-126)
we define
- 0
u=(Y,,) , A= . (2.127)
0 =X

Consequently, G(Ll) will be

1 det D} —det D?
GV = —yut = — ! ! (2.128)
det 1 \ det D7 det D?
where
Q, = 01 Py 7 D(II _ 90,1 ¥1 L D= ¢/1 1 7 (2.129)
Py Py P2 P2 Gy Py

27



’

D} _ 90:1 N ’ D% _ ¥1 Qb}
0y Oy Py Gy
with
P, =¥ (/\j) ) ¢j =9 (Aj) . (2-130)

So the first Darboux iteration results in the new potential matrix Q(hl,) and

Hamiltonian system H")

0 iqH
HO = —ios + Q) Q' = | . (2.131)
—ir 0
where
det D] detDj
M —g+2 L O e it 2.132
a 7 d@th ’ " " deth ( 3 )
From substituting (2.128)) into (2.120]). Taking /N iterations, we have in general
det D% det D),
(N) — 9 N N) —p_9 N 2.1
TOT T ey T T T Sdany (2133)
where

[ (< N)
Wn)ij = . , 2.134
) [6]*Y (j > N) ( )

(2

(N=j=1) (.
(D), = [:] (j <N) | (2.135)

[ (= N)
: [0 <N +1)
(D) = ovep , (2.136)
[ G>N+1)
Now we can easily implement this Darboux procedure for the Hirota equation

with the ZC representation being a special case of (2.111]) where

A = —iagr —2iaX’ + B (rg, — qre — 4iX* — 2iAgr) (2.137)
B = iag, +2a\q+ B (2¢°r — oo + 2iAg, + 4Xq) (2.138)
C = —iar,+2alr+ [ (2q7“2 — Ty — 20ATy + 4)\27“) ) (2.139)

Taking the ZC condition, we obtain the Ablowitz, Kaup, Newell and Segur
(AKNS) equations [2]

i + o (quo — 27"q2) + 0 (qeaz — 67qq:) = O, (2.140)
iry — o (Typ — 2qr%) + 8 (ryge — 6qrry) = 0. (2.141)
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Letting » = ¢*, where the asterisk denotes conjugation, the AKNS equations
reduces to the Hirota equation. DT and DCT can be taken as before with a trivial
solution to the Hirota equation, ¢ = 0 and solutions to the ZC representation

@ II02.111))

p; = efmjxf2u§(a+2,8,\j)t7 (2.142)

¢j —  eiNr 2 (a+28X)t (2.143)

2.54 Darboux and Darboux-Crum transformation for the ECH equation

The final type of DT we present will be for a matrix form NPDE, being the
ECH equation (2.5)). In particular, we show here that DT is a specialisation of
gauge transformations.

Many integrable systems are related to each other by means of gauge
transformations, often in an unexpected way. Such type of correspondences can
be exploited to gain insight into either system from the other, for instance by
transforming solutions of one system to solutions of the other. Often this process
can only be carried out in one direction.

In general, we consider here two systems whose auxiliary functions > and ")

are related to each other by means of an gauge operator D)
Y = DMy, (2.144)

Formally, the systems can be cast into two gauge equivalent ZC representations
for the two sets of operators, U, V and U W, v, involving the auxiliary function

¢ and by

¥
0
and
gp(l)
UMyt = gD, vOyp® = g g0 = - (2.146)
¢(1)
Given the transformation from v to w(l), the operators U, V and U @O, v are
related as
e pOU [DW] 4 DO [DO] (2.147)
v = pOy[pO] + pM [p1] (2.148)



This is the gauge transformation and is entirely generic, providing a connection

between two types of integrable systems, assuming the invertible gauge

transformation map G exists. Specific systems are obtained by concrete choices

of the two sets of operators U, V and U™, V(1),

For special choices of DY), we can tune the relation (2.147)) into an intertwining

relation between two ZC representations and this is DT. We proceed to see this

through constructing DT for the ECH equation.

Let us take U, V' to be the ZC representation for the ECH equation, hence U, V/

will be matrices of the form
U=\, , V=AVi+\V,+ NV,

where

U, = —iS,

S is the solution to the ECH equation, of the form
wou )
S = with w*+uv =1

and

3
VYI = (57'5 - O{> Ulle - ﬁlexa
Vo = 2aU, —28U,U,,
Vi = 4pU;.

The relation (2.147]) becomes an intertwining relation
UMM = Wy
when taking the special choice of gauge operator DU to be
DM = QW — 1,

where

QW =HA'H?, H= (

S
S
>~
N

\\./

=
>
2
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(2.150)

(2.151)

(2.152)
(2.153)
(2.154)

(2.155)

(2.156)

(2.157)



Then it follows that we can iterate the solution S, to the ECH equation as
SO = QWs[W] " (2.158)
and the N'" iteration reads
N = QMg [Q(N)]_l, where O™ = QW) .. QO (2.159)
where @(N )is a 2 x 2 matrix with terms

1 det éﬁv) det Q%V)
det Q) | get égﬁv) det ééé“

MV, (<N

5 = (2.160)

NN g (5> N)

~ N, (SN <N
N Ng (>N) AJ 6 (j>N)
~ N (j<N) N7 (S N+1)
Q) =< .y . (2.163)
NN (j=N) NN e (j>N+1)
and ¢, = ¢ (M), 0, = ¢ (A\g) and 4,7 = 1,...,2N. As a result, S*Y) becomes
g — | TN (2.164)
UN wWN
where
un = (A?\IUIO — BJQVU() + QANBNU}()) /XN? (2165)
vy = (DRwe — CXug — 20y Dywy) /X, (2.166)
wN = [ANCNUO — ByDyvg + (ANDN + BNCN)UJ()] /XN, (2167)
and
det O det O det Of}”
Ay = By =—=—" (Cy= 2.168
NS o BT qgam O T ey (2168)
det Q(N) ~
Dy = — ), 2.169
N dorq X = detQ ( )

We also observe the identity

(Ax), Dy — By (C), = Ax (D), — (By), Cy = 0, (2.170)
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which becomes useful in Chapter 8, where we use them to simplify gauge relations

between the Hirota and ECH equations.

Now taking Darboux iterations works analogously to previous examples. For

example, taking an initial seed solution to the ECH equation as

-1 0
S = :
0 1
U,V ZC matrices become
ix 0 2iar? + 4i N3 0
U= ., V=
0 —i) 0 —2ia\® — 4iB\3

As a result, we can solve the ZC representation equations ([2.145)) by

o = ei/\x+2i)\2(a+26)\)t

Y

ef(i)\x+2i)\2(a+2,8)\)t)

and utilise these for Darboux iterations.
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Chapter 3

Complex soliton solutions and reality

conditions for conserved charges

With investigations showing how P7T-symmetry can help us with the
generalisation of quantum systems, it is worth investigating whether we can also
generalise classical systems with P7-symmetries, in particular integrable
NPDEs.

Taking the concept of PT-symmetry from quantum mechanics,
PT-symmetry for the classical side will also be of space and time reversal with
conjugation, P7: x — —z,t — —t,7 — —i. It is natural to question whether the
properties seen for PT-symmetric quantum models can be extended for classical
models. In particular reality of energy, when both the Hamiltonian and solutions
are PT-symmetric.

Some PT-symmetric deformations have been explored for various classical
integrable models, including for the KdV equation [20, 63} 13| 28]] and Burgers
equation [10]. Integrable models are very delicate systems, deformations
(including PT-symmetric ones) usually destroy the integrability properties,
although some rare cases pass the Painlevé test [[10] indicating that they are
likely to remain integrable.

More recently, Khare and Saxena found some interesting novel P7-symmetric
soliton solutions to various types of NPDEs that appear to have been overlooked
this far [97]]. Their approach is to start off from some well-known real solutions to

these equations and then by adding a term build around that solution a suitable
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complex ansatz including various constants. In many cases they succeeded to
determine those constants in such a way that their expressions constitute solutions
to the different types of complex nonlinear wave equations considered.

In this chapter, we will introduce some new P7T-symmetric deformations of
well-known integrable NPDEs by extending real solution fields to the complex
plane [33]. Applying some methods for soliton solution construction from the
previous chapter, we will also show how we can generalise these to help us in the
construction of complex soliton solutions for these new systems. In particular, we
find that some special cases of our complex soliton solutions are exactly the ones
obtained in [97], moreover they can be viewed as physical as they possess real

conserved charges [133,30].

3.1 The complex KdV equation

The complex KdV equation is obtained from taking the solution field of the
KdV equation u(z, t) to be the complex field as u(z, t) = p(z,t) +ig(z, t), to obtain

G+t = 0 < Pi + 6ppr + Puze — 694 = 0, (3.1)
G+ 6(Pq), + Graa = 0.

The coupled equations reduce to the Hirota-Satsuma [[89] or Ito system [91]]
when setting (pq), — Pgz O ¢z2x — 0 in the second equation, respectively. Other
complex PT-symmetric deformations of the KdV equation that have been
previously explored includes deformations on the nonlinear term by taking
uu, — —iu(iu,)® [20], deformations for derivatives u, — —i(iu,)® [63] and
deformations on the solution field u — —i(iu)® [28], where € € R in all cases.

In our investigation, we consider the space, time and speed parameters to be
real. However, one may still wonder if the complex deformation on the solution
field could still have physical meaning. Indeed it does, because from the
deformation, we obtain a pair of real coupled equations and finding a solution to
the complex system is then equal to solving the coupled real system and vice
versa.

These equations () remain P7 invariantunder P7T: v — —x,t — —t,1 — —i,

u — u, p — p, ¢ — —q. For invariance, it is important to note that not all solutions
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to (3.1)) need to be PT-symmetric since the symmetry could map one solution,
say uy(z,t), into a new one u; (—x, —t) = ug(z,t) # ui(z,1).
3.1.1 Complex one-soliton solution from Hirota’s direct method

Following the explanation of HDM from Chapter 2, we show the explicit
construction of soliton solutions. We take the bilinear Hirota form derived for

the KdV equation (2.46|) and expanding the Hirota variable 7 as a power series
T=14+M1+ X+ Xr5+..., AeR . (3.2)

Extracting different orders of A from expansion of the Hirota bilinear form, the

following equations are obtained

PR (D} + D,D)(1-1) = 0, (3.3)
A (Dy+ DeD)(1-71+71-1) = 0,

A2 (D 4+ D, D)1 -1y +T1-T1+72-1) = 0,

PR (Dy+ DyDy)(1-75+ 71 To+T2-T1+73-1) = 0,

A" n'" order \ equation .

Equation of order A’ is trivially satisfied. Taking equation of order \' and
integrating this equation with respect to z, then from asymptotically vanishing
boundary conditions for soliton solutions, we also let the integration constant to

be zero to give

(T1)aze + (1) = 0. (3.4)

We take 7, to be a complex function solution by choosing the integration constant
to be complex, that is

7 = PPt e C . (3.5)

Letting 2, = ar — a’t + vg and 25 = Bx — Bt + p1, and looking at general Hirota

derivatives of the form

DD} (e - e*) = DpDp(ees et T, (3.6)

omar <6a(x+y)—a3(t+8)+Vo eﬁ(w—y)—ﬁs(t—S)Jruo)

— (Oé _ﬁ)m(ﬂi’» _ a3)neza623 ,

s
y=s=0
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if we choose 3 = «, then we have the following property
DI'Dp(e* -e*) =0, (3.7)
so that
(Dy + DoDy)(11-71) = 0. (3.8)

This allows the \? equation to become

(Di+ D,Dy)(1-m2+72-1) = 0, (3.9)
(7—2)zxx:p + (7—2)11‘, = 0. (310)

Letting 7, = 0,Vn > 2, we are truncating the power series and this is the key
step to obtain an exact analytical soliton solution. The remaining higher order A

equations can be shown to be satisfied. Taking 1 = p, + In A, we have

T = 14 A1q, (3.11)
= 14k Ptn

Applying the inverse bilinear transformation gives a complex one-soliton solution

to the KdV equation

ug (z,t) = 2(In7)4, (3.12)

3.1.2 Properties of the KdV complex one-soliton solution

The complex one-soliton solution ([3.12)) is a generalisation of well known real

hyperbolic KdV soliton and cusp solutions

u(z,t) = %2 sech” [2(Bz — 8°t)] and wu(x,t) = %2 csch® [$(Bz — 8%t)], (3.13)

which can be obtained with the special choices of ;1 = 0 or = i respectively.
In general, with i being purely imaginary, the solution is P7-symmetric with
r— —x,t - —t,1 — —i, 80 u — u. For the special case u = i yields

2

(x,t) = % sech? %(ﬁx — B+ zg) , (3.14)

= (?sech?(Bz — 3°t) F i sech(Bx — £°t) tanh (Bz — %) .
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This is the complex P7T-symmetric soliton solution found by Khare and Saxena
[97] up to a minus sign difference in the KdV equation.

By letting n = n +i0 , 7,6 € R, we find infinitely many new complex soliton
solutions that have been overlooked so far. P7-symmetry, excluding the special
cases is broken for these solutions, however can be mended with either a space

shift
n

r—r+ =, 3.15
5 (3.15)
which leaves the solution invariant under P7 : x+% — — (w + %) > —t i — —i
,50u — u . Or we can apply a time shift
tst— % (3.16)

which leaves the solution invariant under P7 : ¢t — @ — — (t — %) LT — —X, 1 —
—1,50U — U .

Expressing the general complex soliton solution in terms of real and imaginary
parts gives

B2+32 cos@cosh(ﬁxfﬁst—i-n) . B2 sinQSinh(BxfB:‘t—i-n)
[cos 9+cosh(6:{:7ﬁ3t+n)]2 ! [COS 9+COSh(,BI7ﬁ3t+T])]2

uy (z,t) = (3.17)

We can plot the real and imaginary parts separately as in Figure For the real

part, the solution has one maximum and two equal minima given by

H, = %286(32 8 L, = %2 cot? 6 (3.18)

respectively, with 6, = %arccosh(cos@ — 2secf). For the imaginary part, the

magnitude of the maximum and minimum is

M 862 sin 0\/5-&-003 204+/2 cos 0+/17+cos 20
[6 cos 0++/2+/17+cos 2 ]

(3.19)

with §; = arccosh [ cos 0 + f\/ 17 + cos 2 ] These values shall help us when
computing dlsplacements and time-delays for multi-soliton solutions as a result
of scattering.

3.1.3 KdV complex two-soliton solution from Hirota’s direct method

For the construction of a complex two-soliton solution, we just take a different

71 to solve the equation at order A" (3.4)). In particular, as this is a linear differential
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Figure 3.1: KdV complex one-soliton solution’s real (left) and imaginary (right) parts for

— — ; 8 —
=1, u=2+ijgandt =2

equation, a linear superposition of two solutions is also a solution. As a general

two-soliton solution has two speeds, we take two speed parameters a and 3, hence
T = eoz:cfoz3t+vo + eﬁxfBStJruO , (320)
= €Za + ezﬁ ,

where v, € C and g, € C. Along with (3.6)), the equation resulting at order A\ is

(72) 0t + (T2) e = — [(@ = B)* + (@ = B)(a® = B7)] ™5 . (3.21)
Comparing both sides of the equation, we assume a 7, solution to be of the form
T9 = e with v =v(a, ), (3.22)

which when substituting into (3.21]), rearranging, then simplifying we find to be

_ (a—p)?
v = TR (3.23)

Next, we solve the equation at order \*

(D2 4+ D, D)1 -T3+7 - To+To-T1+73-1)=0. (3.24)

Note that the second and third terms vanish, which is easily seen using the identity

(B.6)), so the equation becomes

(7—3)9015 + (7_3)9596901 = 07 (325)

for which we can truncate the power series from here, with the choice

7, = 0,Vn > 3, satisfying the remaining higher order A\ equations and to obtain
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an exact analytical solution

T = 1+ A +e%)+ )\2—EZ ; gizez‘”zﬂ , (3.26)

2
ar—adttv Br—B3t+p (Oé _ ﬁ) (az—aBt+v)+(Br—B3t+u)
1+e +e + 5€ ,

a+f)
after taking A = 1.
Using the inverse bilinear transformation, the KdV complex two-soliton

solution from HDM is

ull; 20%(InT), (3.27)

3 3 3 3
2 (BQGQQ t+v+px+pot + a26ax+a t+208 t+,u)

(ea3t+63t 4 ea3t+v+ﬁr 4 ea3t+ﬁx+,u 4 76aw+v+ﬁm+u)2

2,Yeu+u[2(a+ﬂ)26am+a3t+ﬁz+ﬁ3t+a2€am+a3t+v+25x+B262az+ﬁm+ﬁ3t+#]

(ea3t+ﬁ3t+ea3t+v+ﬁw +ea3t+6w+u+veaw+v+6m+u)2

This solution is generally not P7-symmetric. However, using the arbitrariness of
wand v, if we take u — p + In (—3—:“?) and v - v + In (g—fg), the solution will
become the same solution as the complex two-soliton solution obtained from the
BT and PT-symmetry can be restored with space-time shifts, as we shall discuss
in the next section. In addition, we will also see later that their corresponding

energies are real.

3.1.4 KdV complex two-soliton solution from Bicklund transformation

Recalling from the methods chapter, construction of multi-soliton solutions
by BT uses a monlinear superposition’ of soliton solutions by (2.64). For a
complex two-soliton solution, we take a trivial solution and two complex

one-soliton solutions of the KdV equation

a’ 2 1 3

U = sech §(ozx —at+v), (3.28)
_ Bl 3

upg = o sech 5(537 — [t + p) (3.29)

and integrate the soliton solutions with respect to z setting the integration

constant to zero to obtain
1 3
w, = «atanh 5(04:10 —a’t+v), (3.30)

ws = [tanh %(ﬁx — Bt +p) . (3.31)
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Using ([2.63]), we can compute the relation constants
ko = —, ky=". (3.32)

Now we have all the ingredients to construct a KdV two-soliton solution using

Bianchi’s permutability theorem ([2.64))

koo — k
why = 27 "7, (3.33)
Wq — Wp
042—/82

atanh 2 (az — a3t + v) — Btanh 2(Bz — Bt + p)

and taking the derivative with respect to x, the KdV two-soliton solution from the
BT is
B (Oé2 — BQ) (ﬁQ seCh2 %(ﬁx — 6315 + :U/) _ 042 sech2 %(OA’L’ o Oé3t + 7/))
e 2[atanh }(ax — a3t + v) — Btanh 3(Bx — 8% + p)]” o 33

where

vV="1,+i00, p=mn5+ibg. (3.35)

We notice that when i and v are chosen to be real, singularities will appear for
certain = and ¢ values, thus complex values for i and v can be used to regularize
this expression.

Furthermore, like the complex one-soliton solution from HDM, this solution
is PT-invariant for purely imaginary choices of ;1 and v. However, when the real
parts of 1 and v are nonzero, PT-symmetry is broken, but with a real space and
time shift, we can restore P7 -symmetry.

Take a and b to be the space and time shifts respectively

3. _ 3 _
a4 = B 77& o Zﬁ , b _ 677(1 0577@ , (336)
3B —af 3B —af
the solution ([3.34)) can be rewritten as

uB. (a2—p2) (82 sech? §[B(z+a)—B3(t+b)+i03 | —a? sech? L[ a(z+a)—ad(t+b)+i0a])
af = 2(& tanh %[a(x+a)fa3 (t4+b)+10o]—pB tanh % [ﬁ(x+a)fﬁ3(t+b)+i95] )2

(3.37)

In this form, it is evident P7-symmetry is present with z + ¢ - —(z +a),t + b —
—(t+b),i > —isou— u.

Following the same principles of the construction of two-soliton solutions,
higher order multi-solitons from the HDM or BT can be constructed. However,

PT-symmetry is now generally broken and cannot be repaired for N-soliton
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solution, with N greater than 2. The reason being is that now we generally have
N integration constants and with only two real variables = and ¢, so we do not
have enough variables to absorb all the real parts coming from the integration

constants to restore P7-symmetry of the N-soliton solution.

3.2 The complex mKdV equation

The mKdV equation possesses two types of PT-symmetries. PT z — —z,t —
—t,1 — —i, v — +v. This equation is closely related to the KdV equation and
through a Miura transformation, we can relate a solution to the KdV equation with
a solution of the mKdV equation. We can complexify the equation with v(z,t) =

n(z,t) + im(x,t) to obtain the coupled real equations

ne — 48nmmy + 24(n* — m*)ng + Ngee = 0,

v + 24020, + Vppe = 0 & (3.38)

my + 48nmmng, + 24(n? — m?)my + Meee = 0.

3.2.1 Complex one-solition solution from Hirota’s direct method

Taking the bilinear form of the mKdV equation (2.50)) and ¢ = 1, the bilinear

form simplifies to

Tt + Tozs = 0 ’ (339)

(71)2 — ToeT = 0.

Without much effort, we can easily find a particular solution 7 = e#*~F°*+# to the
coupled equations (3.39) and carrying out an inverse bilinear transformation, the

complex mKdV solution from the HDM is obtained as

v = 0,arctane® e (3.40)

= gsech(ﬂx — B% + )

with = n+1i0,n,0 € R. Now we can re-write the solution in terms of real and

imaginary parts for general ;1 = 71 + if as

[ cos 0 cosh (ﬁx — BBt + 77) — i3 sin 6 sinh (ﬂx — Bt + 77)

1) = .
v(@.1) 2 cos? 6 cosh? (63: — Bt + 77) + 25sin? 6 sinh? (ﬁx — Bt + 77)

(3.41)
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3.2.2 Complex Miura transformation
Using an ansatz of the Miura transformation of the form
u = av? + Bu,, (3.42)

where a and (3 are arbitrary constants, we find the KdV (3.1) and mKdV (8.38)

equations are related through complex Miura transformation
u = 4v* + 2iv, . (3.43)

This provides us a new way to obtain complex KdV soliton solutions from real or

complex mKdV soliton solutions. Taking the mKdV solution
v = gsech(ﬁx — B+ ), (3.44)

with ¢ = 1+ 46 and 7,6 € R and the Miura transformations, the corresponding

KdV solutions are

M B2 F 32 sin@cosh(ﬁx — 3Bt + 77) i 52 cos@sinh(ﬁx — 3Bt + 77) . (3.45)

[sinﬁ — cosh(ﬁx — Bt + 77)]2 [sin@ — cosh(ﬁ:c — Bt + 77)]2

We may notice that this solution is precisely the KdV complex one-soliton solution

obtained from the HDM after a phase shift of § — 6 F 7, hence we have a new way
of constructing the same set of KdV complex soliton solutions. Next, we look at

some different kinds of solutions in terms of Jacobi elliptic functions.

3.2.3 Complex Jacobi elliptic soliton solutions

There are many ways to understand Jacobi elliptic functions, one of them is
from the equation of motion for a pendulum [109] 170]. Let us start with the

rewritten form of the equation of a pendulum as

o\’
(@) — 1+ msin®6 = 0, (3.46)

where 0 < m < 1, then we can show

¢ de
u(p,m) = L —ﬁ ——— (3.47)

which is called the elliptic integral of the first kind. If we solve ¢ as a function of

u, this gives the amplitude function

¢ = am (u,m) (3.48)
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and we can define the Jacobi elliptic function
sn (u,m) = sin ¢. (3.49)

A lot of formulae for Jacobi elliptic functions are similar to trigonometric
formulae. One key features of Jacobi elliptic functions is they are doubly

periodic on the complex plane. Jacobi elliptic functions are written in the form
pq [u,m] (3.50)

where p or ¢ can be the letters ¢, d, n or s. Three basic Jacobi elliptic functions are

cn(u,m)  with periods 4K, 2i K’ , (3.51)
sn(u,m)  with periods 4K,2(K + iK"), (3.52)
dn(u,m)  with periods 2K, 4i K", (3.53)

where K and K’ are defined as

2 do
K(m) = e 3.54
(m) Jo 1—msin®@ ( )

K'(m) = K(1—m). (3.55)

K is known as the complete elliptic integral of the first kind. The elliptic integral

of the second kind is defined as
]
E(g,m) - J V1= msine. (3.56)
0

Similarly, the complete elliptic integral of the second kind is defined by taking
6=1.

The other Jacobi elliptic functions are related with trigonometric functions as

cn(u,m) = coslam(u,m)], (3.57)

dn(u,m) = \/1 — msin®(am(u, m)) . (3.58)

After this brief introduction to Jacobi elliptic functions, we now look at some
solutions formulated from these functions. With the shifted Jacobi elliptic solution

to the mKdV equation [97]]

v (z,t) = gdn [ﬁx — B2 —m) + p, m] , (3.59)

43



from the Miura transformation we obtain the corresponding solution to the KdV

equation to be
udt(z,t) = 8% dn [2,m]* + imB* en [2, m]sn [2,m] (3.60)

where we abbreviated the argument 2 = Bz —3%t(2—m)+u. The elliptic parameter
is denoted by m as usual. Likewise from the shifted known solution to the mKdV

equation [97]
v (2, t) = gmcn [Bz — B°t(2m — 1) + p,m] , (3.61)
we construct
u(z,t) = mpB%en [2,m]” £ iv/mB2 dn [2,m]sn [2, m] (3.62)

with 2 := Bz — 8%(2m — 1) + p. In particular, taking v®(x,t) and v**(z,t) as
solution to the mKdV equation, with the choice of ;1 = 0, leads to the complex
PT-symmetric solutions for the KdV equation reported in [97] up to a minus

sign in the equation.

3.3 The complex SG equation

The quantum field theory version of the complex sine-Gordon model has been
studied for some time [[117, [116] 49| 55, 9] [136]]. Here we demonstrate that its
classical version also admits interesting P77 -symmetric solutions. By taking the
solution field of real SG equation to be complex, ¢(xz,t) = ¢(z,t) + ip(x,t), we

obtain the coupled real equations

— he),
b, —sing o | Pm=smpcoshy (3.63)

Y, = cospsinh .
We observe that the equations admit an infinite number of P7-symmetries, PTS_:L)
x> —x,t—> —t,i—> —i,¢p > +p+2wn,p > +p+2mn,9Y > FpwithneZ.
3.3.1 Complex one-soliton solution from Hirota’s direct method
Taking the Hirota bilinear form for the SG equation and setting o = 1, results

in
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Tet = T, (3.64)
TTat = TaTt. (3.65)

Solving () and ), we obtain 7 = ¢’ with ;i = 7 + i0 and with the

inverse bilinear transform, we obtain
H B+ L 4n+i0
¢z = darctane” "5 : (3.66)

This is the complex one-soliton solution for the SG equation from the HDM.

3.3.2 Properties of the SG complex one-soliton solution

This solution can be separated into real and imaginary parts with z = Sz + % +

n + 16 and the well-known relation arctan z = —i/2In[(i — 2)/(i + 2)]

o = ZmiC (3.67)

, 1 —e?
+1arg (i+ez)] .

can be rewritten with real and imaginary parts using trigonometric identities

z

1+ e

i—e”
i+e*

yielding

¢g = 2arg[

fsinh(ﬁer%Jrn) +icosf . sinh? (ﬁer%Jrr]) +cos? @
cosh(ﬁm+%+n)+sin9 (cosh(,@er%Jrn) +sin 6)2

] . (3.68)

Then the argument can be expressed as an arctangent function, separating the

cases for 0 = +5 for the function to be defined for all § as

cos 0

4 ¢ |‘\/sinh2 (ﬁ:v-i—%-i—n) +cos? 9+sinh(ﬂz+;+n)]
arctan

0#+

T

sinh? (,Ber % +77) +cos? 0

gzsg = < —iln |:(cosh(,8z+é+r])+sin9)2:| (369)

—iln [( sinhQ(ﬂer%Jrn) :| : 0=+

COSh(ﬁx+%+77)i1)2

N

\

For the case where nn = 0 and # # 0, we note that the solution is P7 invariant
under P7T : ¢ —» —x,t - —t,1 — —i and gzﬁg — igngr 2nm ,n € Z . Similarly as
for the KdV case, when in general for  # 0 and 6 # 0, we have PT-symmetry
broken, however, this can be mended with a space or time shift.

Note that for the choice of # = 7 the imaginary part of the SG complex soliton
solution will have singularities for certain values of z and ¢. In fact the imaginary

part becomes a cusp solution.
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We can again plot the real and imaginary parts of the SG complex one-soliton

solution, Figure and compute their extrema

M,

Re(¢)

S 2N W h Ao
Im(¢)

©C = N W » OO

Figure 3.2: SG complex one-soliton solution’s real (left) and imaginary (right) parts for

/8:1,,u:2+z§andt:—2

M, = 27 and M; = In 1——511119 )
1+ sinf

3.3.3 SG complex two-soliton solution from Hirota’s direct method

To obtain a two-soliton solution, we take the solutions 7 and o of the Hirota

bilinear form as

t t
o= et 4 66x+ﬁ+'u ,

o = 1 + Aeaz—ﬁ-é—kyeﬁa}-l—%—i-u , (370)
with
(a—pB)°
CEY K (3.71)

and v, € C. So carrying out the inverse bilinear transformation, the complex

two-soliton solution for SG is

-
gbfﬁ = 4arctan —, (3.72)
o
A . eaeréJru + 65$+%+M
= 4arctan 1_ Ea,ggzeaﬂiweﬁﬁgw
a+

This solution is also generally not P7-symmetric like for the KdV case, but

becomes the solution obtained by BT, as we shall see in the next section, after

taking 4 — p + In (%) and v — v +1In (—Z—J_rg) Consequently, the solution can
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be made P7T-symmetric under some space-time shifts, which we will also

discuss in the following.

3.3.4 SG complex two-soliton solution from Backlund transformation

Using two known soliton solutions and taking one trivial solution, then we can
derive a new solution from the BT for the SG equation. For a complex two-soliton

solution, we take two one-soliton solutions with different speeds
¢, = 4arctan et e ot e (3.73)
¢s = 4arctan et 5T+, (3.74)

With the nonlinear superposition principle (2.70)), the two-soliton solution can be

found as

beﬁ = —4arctan ((a *B) e — &) ) / (3.75)

(0= B) (L e72)
where z, = az + £ + 1, +ifa and z5 = Bz + § + 15 + 0.

Similarly, through some real space and time shift, « and b respectively, this
solution is PT-symmetric with PT : z +a — — (v +a),t +b— —(t +b),i —> —i
giving ¢J; — +¢5+2nm, n € Z, with no phase shift. The space and time shift

values are

an, — Bng b aB(ang — Bn,)
a=—""/">5 0= 2 .

o —f o —pf

PT-symmetry for general higher order SG N-soliton solutions is also generally

(3.76)

broken for the same reason as for KdV N-soliton solutions.

3.4 PT-symmetry and reality of conserved charges

In the previous sections, we have seen how to construct various complex
soliton solutions to the KdV, mKdV and SG equations. In the following, we find
it surprising at first, that all these complex soliton solutions, with some of them
not PT-symmetric, possess real energies. We will provide here a detailed
analysis of scattering and asymptotic properties of complex soliton solutions in
order to find the explanation for reality of energies. In the latter part, we show in
fact, that for KdV complex soliton solutions, all conserved charges are real.

First, we look at the energy from the different equations for complex

one-soliton solutions.
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3.4.1 Energy of the KAV complex one-soliton solution

The Hamiltonian  leading to the KdV equation (3.1]) reads

1
H=—u®+ -u

SUs - (3.77)

We can verify this yields the equation (8.T)) using the Hamiltonian form [[73]] with

Hamiltonian operator 0,

O0H
= o (=), 3.78
w = o () (378)
= —0UlUy — Ugzs
where ‘fs—f denotes the standard functional derivatives
SH & . dv OH
50~ 24 (379)

With (3.77)) as the Hamiltonian density function for the KdV equation, we can

calculate the energy of a soliton solution as
E = JOO Hlu(z,t), uy(z,t)]dz . (3.80)
Taking the derivative of the KdV complex one-soliton solution (3.12)), we find
[uff], = F[uf]\/68°—2[ul], (3.81)

the energy is computed to be

B [ (Clr e ) e,
[l + S0, E ]
.
_ 2

where we have z = §(6z — 8°t + p) and (In[ufl]) — T3, [uff] —0,[uf] > 0as
T — 0.

As 3, the speed parameter is real, this shows the complex KdV one-soliton
solutions has real energies for any choice of complex p constant. The reason
behind this is the fact that the complex one-soliton solution is either
PT-symmetric in the case Re[u] = 0, or in the case Re[u] # 0, the solution is

PT-symmetric up to a shift in space or time, as explained in Section 3.1.2. Both
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types of shift are permitted, as the shift in x can be absorbed in the limits of the
integral and the shift in ¢ is allowed since H is a conserved quantity in time. With
a PT-symmetric integrand, despite the Hamiltonian density function being
complex, reality of energy is ensured on symmetric intervals [63] as one can

check
E=| Hdx=| H'dx=E" (3.82)

3.4.2 Energy of the mKdV complex one-soliton solution

For the mKdV equation (3.38]), the Hamiltonian density function is given by

1
H=—20"+ 511325 , (3.83)
which can be verified to yield the mKdV equation by using Hamiltonian form,
similarly as for KdV case
0H
— T _— 3 . 4

= —240%0, — Vpgs -

As a result, energy evaluated for the hyperbolic complex one-soliton solution

(B.40)) is

E = H[v (1), v (2, 1)]dx, (3.85)

For Jacobi elliptic solutions, they have the two periods 4K (m)/f and 4K (1 —
m)/B in z. Thus we have to restrict the domain of integration for £ in order to

obtain finite energies. For the solution v™ in (3.59) we have

2K(m)/p
E = J H[v"(x,t), (v (2,1)), ] de, (3.86)
—2K(m)/B
= 0 Gn = DB fam (4K (m)lm) ,m] + 4K om)(m — 1]

where am (u|m) denotes the amplitude of the Jacobi elliptic function and £ [¢, m]
the elliptic integral of the second kind. Similarly for the solution v in (3.61]) we
find

2K(m)/p
B | HDE 0, 07 ), (387)
—2K(m)/B
— 5—4 [(1—2m)E [am (2K (m)|m) ,m] — 4K (m)(3m* — 4m + 1)] .
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We observe that in the limit m — 1 for the energies computed from the Jacobi
elliptic solutions, we obtain twice the energy of the hyperbolic solution. Again all

energies are real with the same reasoning as the KdV case in the above section.

3.4.3 Energy of the SG complex one-soliton solution
For the SG equation (3.63)), the Hamiltonian density reads
H=1—-cos¢. (3.88)

Again it can be verified that this is the Hamiltonian density using the Hamiltonian

form with Hamiltonian operator d;!

o0H
_ -1
¢t - az <(5'LL) /

¢xt = Sin¢‘ (389)

Using the Hamiltonian density function (3.88]), the energy of the complex one-

soliton solution (3.66|) to the SG equation can be computed and is again real

E = ﬁo%[gbg(x,t)]dx, (3.90)
4

5
3.4.4 Energy of the complex multi-soliton solutions

From numerical calculations, we can also confirm that the energy values for
all our complex two-soliton and three-soliton solutions are real, in particular the
energy values are found to be the sum of the energies from the corresponding
one-soliton solutions. This result remains true whether or not the solution is P7 -
symmetric.

Recalling properties of complex soliton solutions in the sections above, we can
explain the reasoning for this result for complex two-soliton solutions, because we
know that any P7T-broken symmetry solutions can be made P7-symmetric again
through space and time shifts.

However, for higher order complex multi-soliton solutions, they are generally
not PT-symmetric, as with three or more complex constants, we have not
enough variables for us to absorb the real parts of the constants to mend P7T

broken symmetry.
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To see the reality of energies for general complex N-soliton solutions, we
resort to looking at lateral displacements or time-delays, which is a result of the
scattering of an N-soliton solution compound, simultaneously with the
asymptotic properties and structures of the energy densities. We will conduct

such analysis for solutions of the KdV equation.

Lateral displacements or time-delays for KdV complex two-soliton solutions
One of the prominent features of multi-soliton solutions is that the single
soliton constituents within the compound preserve their shape after they scatter
with the only net effect being a lateral displacement or time-delay when
compared with the corresponding one-soliton solutions for each constituent.
Reviewing the classical scattering picture [70], the lateral displacement for a
single particle or soliton constituent is defined to be the difference, A,, of the

asymptotic trajectories before, z;, = vt + @ and after, z, = vt + (9 collision
A, =2 — 2O (3.91)
consequently the time-delay is defined as

, A
Ay =t -0 = 2 (3.92)

v

where v is the speed of the particle or constituent.

Negative and positive time-delays are interpreted as attractive and repulsive
forces, respectively. In a multi-particle scattering process of particles, or soliton
constituents, of type k, the corresponding lateral displacements and time-delays
(A,)r and (A,), respectively, have to satisfy certain consistency conditions [70]].

Demanding for instance that the total centre of mass coordinate

X = % (3.93)
remains the same before and after the collision, i.e. X = X (), immediately
implies that

S (A =0, (3.94)

with m;, being the mass of the k type particle or constituent.

Furthermore, given that mA, = —mvA; = —pA, yields

2, pe(A0k =0, (3.95)
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where pj, is the momentum of a particle of type k.

KdV complex two-soliton solutions

Let us consider the KdV complex two-soliton solution from BT with speed
parameters o and 3 along with its corresponding two one-soliton solutions, one
with speed parameter o and the other 3, matching the multi-compound
constituents. If we plot the three solutions at large times before and after
scattering as in Figure we see that the shapes of each multi-compound
constituent matches its corresponding one-soliton solutions, but there is a
distance between them, X, for the faster peak or § X for the slower one. This is
a result of the lateral displacement or time-delay. Note that although Figure

shows only the real part; the imaginary part has the same properties.

Before After
x=att -

v x=8%t

; S

| 1 2

/ HAB)
\;‘.._A-----.H, | I

0Xg
-10 -5 0
X X

Figure 3.3: Snapshots of before ¢ = —9 and after ¢ = 9 scattering of the real part of KdV
complex two-soliton solution from BT (red), with corresponding real parts of complex

one-soliton solutions (blue/green), where o = 1.1, 3 = 0.8 and pp = v = i5.

To calculate these distances, we need to carry an asymptotic analysis of the
two-soliton solution constituents one at a time and make use of the properties we
found in the previous section for the KdV complex one-soliton solution.

Let us calculate, for example, the distance X, before scattering, for the
two-soliton constituent with speed o?. We need to first decide on the reference
frame to track the soliton solutions; this will be decided by choosing a point on
the one-soliton solution we want to track. For simplicity of expressions, let us
take the maximum point and consequently we take z = o*. Now we want to

match the constituent of speed o? with the speed o? one-soliton solution
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asymptotically, hence we want to solve the asymptotic relation
Re[ulls(a®t + 6X,,t)] ~ Re[ull (o*t,1)] = o (3.96)

as t — —oo for 6.X,, where Re denotes the real part. As a result, we find

2 a+ S
0Xo = - In (a — 5) (3.97)
and similarly,
2 a+ S
0Xp = Bln (& — 5) , (3.98)

for the two-soliton constituent with speed 52

Utilising the snapshot of the soliton solutions for large time before and after
scattering, we can compare the distances between the two-soliton constituents
with the corresponding one-soliton solutions and find the lateral displacements

and time-delays as

A, = 25X., (3.99)
p

A= ——6X, (3.100)
(8%

for the constituent with speed o and

A, = —206Xg, (3.101)
2

5
for the constituent with speed 3°. It is easily checked that the consistency relations

for masses (3.94) and momenta (3.95)) are also satisfied.

A, 5X 5 (3.102)

With the same asymptotic analysis, we can take the complex two-soliton
solution from HDM and also compute for large time, before and after scattering,
the distances between the two-soliton compound constituents and their
corresponding one-soliton solutions, as shown in Figure Although for the
HDM case, the distances before and after scattering are different compared with
the BT case, the lateral displacements and time-delays are found to be the same

in both cases.

Reality of conserved charges for the KdV equation
The snapshots of the complex soliton solution are in fact, as we shall see shortly,
mass densities of these solutions. The value of mass is then computed from taking

the integral of the mass density on the whole real line in space.
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Before

Re(u)
Re(u)

Figure 3.4: Snapshots of before ¢ = —9 and after ¢ = 9 scattering of real part of the KdV
complex two-soliton solution from HDM (red), with corresponding real parts of complex

one-soliton solutions (blue/green), wherea =1.1, 5 =0.8and pp = v = i%.

For each of the complex one-soliton solutions in their moving reference
frames, we see the real and imaginary parts are always an even and odd function
respectively, as they are P7T-symmetric or can be made P7-symmetric with a
shift in space or time. With this fact, along with the fact that asymptotically, the
complex two-soliton solution can be seen as sum of one-soliton solutions up to
some displacements, which is also a property of integrability, we can conclude
the imaginary part’s contribution to mass from the complex two-soliton
compound from any method is always zero. Furthermore, the value of mass will
be sum of corresponding real parts of the complex one-soliton solutions,
explaining reality of mass for complex two-soliton solutions. This reality of mass
explanation can be extended for general complex N-soliton solutions from HDM
or BT.

We now proceed to provide an argument that P7-symmetry together with
integrability will guarantee that we have reality for all conserved charges of the
KdV equation through looking at the structure of charge densities.

First we provide a brief review of the construction of conserved charges from
the Gardner transformation [[126, [125, 104, 30]]. The central idea is to expand the
KdV-field u(z,t) in terms of a new field w(z, t)

u(z,t) = w(r,t) + ew, (v, t) — e*w?(z, 1), (3.103)

for some deformation parameter ¢ € R. The substitution of u(z,t) into the KdV
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equation ([3.1)) yields
(1 +ed, — 252w) [wt + (wm + 3w? — 252w3)x] = 0. (3.104)

Since the last bracket is in form of a conservation law and needs to vanish by itself,
one concludes that {”  W(z,t)dr = constant (independent of ¢). Expanding the
new field as

= i 5”wn(gj’ t) (3105)

implies that also the quantities I,, := Sio o Wan—2(w,t)dx are conserved. We may
then use the relation (3.103|) to construct the charge densities in a recursive

manner
n—2

Wy, = Ubp0 — (Wp-1), + Z WpWy— o2 (3.106)
k=0

Solving ([3.106]) recursively, by taking w, = 0 for n < 0, we obtain easily the well

known expressions for the first few charge densities, namely

wo = (3.107)
w; = —(wp), = (3.108)
wy = —(wy), + Wa = Uy + U, (3.109)
wy = —(wa), + 2WoW1 = —Uggr — 2(u?)s, (3.110)
wy = —(w3), + 2wows + W = Upgas + 6(urty), + 2u® —uZ.  (3.111)

The expressions simplify substantially when we drop surface terms and we
recover the first three charges of the KdV equation, given by Iy, I3, I>.
For the charges constructed from the KdV complex one-soliton solution we

obtain real expressions

o]

2

I, = J Wap—o(x, t)dr = a?nt and I = 0. (3.112)
® 2n —1

The reality of all charges built on one-soliton solutions is guaranteed by P7T -
symmetry alone: When realizing the P7-symmetry as P7: v — u, v — —z,
t — —t,1 — —i it is easily seen from that the charge densities transform as
wy, — (—1)"w,. This mean when u(x,t) is PT-symmetric so are the even graded
charge densities ws,(x,t). Changing the argument of the functional dependence

to the travelling wave coordinate ¢, = = — ot this means we can separate ws,,(,,)

55



into a PT-even and PT7-odd part ws,(¢,) € R and w3, (¢,) € R, respectively, as
wan(C,) = w5, (C,) + w3, (¢,), which allows us to conclude

I(a) = joo Won—o(x, t)dx (3.113)

—0

_ J " 2(C) + i H(C] dC.

— 0

= J wgn—Q(Ca)dCa €R.

—

It is easily seen that the previous argument applies directly to the charges built
from the KdV complex one-soliton solution, i.e. the real part and imaginary part
are even and odd in ¢, respectively. When the parameter i has a nonvanishing
real part the P7-symmetry is broken, but it can be restored by absorbing the real
part by a shift either in ¢ or z.

In order to ensure the same for the multi-soliton solutions we use the fact that
the multi-soliton solutions separate asymptotically into single solitons with
distinct support. As the charges are conserved in time, we may compute [, at

any time. In the asymptotic regime, any charges built from an /N-soliton solution

(™)

Ui, i0rion...ans d€COMposes into the sum of charges built on the one-soliton

solutions, that is

0
L(ag,...,ay) = J (wz(é\lf?,,.;i@]v'al ...aN) (x,t)dz, (3.114)

—o0 e 2n—2
© AN

_ (1)

N J—CD Zk=1 [(wiek;ak)2n2 (gak)] dCak7 (3115)

~ Zlefn(ak), (3.116)
2 N 2n—1

= (3.117)

We used here the decomposition of the N-soliton solution into a sum of
. . . . (N) N (1) .

one-solitons in the asymptotic regime w;y,’ o .0 (0~ Zk:l (uwk;%), which

we have seen in detail above. Since each of the one-solitons is well localized we

(1) (1)
U

100 07500

(V) m N (1) " N @ \"
I:le ..... ON;Q1 .y aN:| ~ I:Zk=1 (uiﬁk;oak):| ~ Zk:l (uigk;ak) . (3118)

As all the derivatives are finite and the support is the same as for the us, this also

always have u ~ 0 for N > 2 when k # [, which implies that

implies
N m N 1 m N 1 m
[(ugel?...,w,\,;al ,,,,, aN>nz} ~ [Zkzl (Ugaz;ak>n$} ~ Zk:l <u§9i;ak)nx’ (3119)
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and similarly for mixed terms involving different types of derivatives. As all

charge densities are made up from v and its derivatives we obtain

(V) N (1)
(wwl ----- ON;al,..., aN>2n_2 ~ Zkzl (wi9k;ak>2n_2 (3'120)
in the asymptotic regime, which is used in the step from (3.114]) to (3.115)). In the

remaining two steps (3.116]) and (3.117)) we use (3.112)).

Thus, PT-symmetry and integrability guarantee the reality of all charges.

3.5 Conclusions

In this chapter, we have shown how one can generalise some well-known
NPDEs including the KdV, mKdV and SG equations to the complex field whilst
preserving PT-symmetries and in particular, integrability in the sense of
possessing soliton solutions and in the KdV case, also an infinite number of
conserved charges.

We are able to derive new complex soliton and multi-soliton solutions for
these models through making adjustments with HDM and BT. For all the
complex soliton solutions derived, we found they possess real energies. In the
one-soliton case, this reasoning is due to P7-symmetry of the Hamiltonian
density and solution. However, for complex multi-soliton solutions, whether
PT-symmetric or not, we found they all possessed real energies due to the
additional property of integrability; how each complex multi-soliton solution
asymptotically separates into complex one-soliton solutions which are
PT-symmetrizable up to some lateral displacements or time-delays. In

particular, for the KdV equation, we proved all charges are real.
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Chapter 4

Multicomplex soliton solutions of

the KdV equation

Similar to the previous chapter, we will investigate here further extensions of
the real KdV equation not in the complex [33} 30]], but the multicomplex regime
[35]. These are higher order complex extensions, in particular they will be of
bicomplex, quaternionic, coquaternionic and octonionic types.

Extending quantum systems to the multicomplex regime has been proved
useful in different ways. The application of bicomplex extension to extend the
inner product space over which the Hilbert space is defined was found to help
unravel the structure of the neighbourhood of higher order exceptional points
[47, 54} 82]], where we have more than two eigenvalues coalescing. Quaternions
and coquaternions have been long studied in the quantum regime, as it was
found they are related to many important algebras and groups in physics
[61, 77, 6] and have recently been suggested to offer a unifying framework for
complexified classical and quantum mechanics [26]. Octonionic Hilbert spaces
have been utilised in the study of quark structures [80].

We first review some properties of multicomplex numbers. For more detailed

introductions, we refer the reader to [39,93] 143]].

4.0.1 Bicomplex and hyperbolic numbers

Denoting the field of complex numbers with imaginary unit : as

C(r) = {z +w|z,y € R}, (4.1)
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Table 4.1: Bicomplex Cayley table

the bicomplex numbers B form an algebra over the complex numbers admitting

various equivalent types of representations

B = {z + j2|z1,20€ C(1)}, (4.2)
= {w; 4+ wwsjwy, we € C(9)}, (4.3)
= {ag + a2 + agy + ask|ag, a1, az, a3 € R}, (4.4)
= {vie; + ves|v; € C(1),v2 € C())}. (4.5)

The canonical basis is spanned by the units 1, i, j, k, involving the two
imaginary units 2 and j squaring to —1, so that the representations in equations
(#-2) and (#.3]) naturally prompt the notion to view these numbers as a doubling
of the complex numbers. The real unit 1 and the hyperbolic unit & = 1y square to
1. The multiplication of these units is commutative and we can represent the
products in the Cayley multiplication table The idempotent representation
@.5) is an orthogonal decomposition obtained by using the orthogonal
idempotents

1+ k 1—k

€= ——, and €9 1= ———, (4.6)

with properties €3 = e, €3 = ey, e165 = 0 and e; + e; = 1. All four representations
(#.2) - (4.5) are uniquely related to each other. For instance, given a bicomplex

number in the canonical representation (4.4)) in the form
Ne = Qg + a1 + as) + ask, (4.7)

the equivalent representations (4.2), (4.4) and (§.5) are obtained with the

identifications
Z1 = ag +1aq, Zo = a9 + a3,
wy = ag + jas, wy = ay + jaz, (4.8)

v = (ag + a3) + (a1 — ag)r, v§ = (ap — a3) + (a1 + az)y.
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Arithmetic operations are most elegantly and efficiently carried out in the
idempotent representation (4.5)). For the composition of two arbitrary numbers

n, and n; we have
ng omy = v% ovle; + vl ovhey, witho=4+,. + (4.9)
The hyperbolic numbers (or split-complex numbers)
D = {ag + ask|ag, az € R} (4.10)

are an important special case of B obtained in the absence of the imaginary units
» and j, or when taking a; = as = 0. Similar to how we can represent complex
numbers in polar form, we have the same for hyperbolic numbers [[155], as show

in Figure W represents a hyperbolic number with several representations as

w = o+ kf, (4.11)
= pet?, (4.12)
= p(cosh ¢ + ksinh ¢), (4.13)

where p = v/a2 — 3? and ¢ = arctanh g

2
L s a2_ﬁ2= I

1f pcosh,d)'
L z w
I psinh¢ |

Q 0 s

b P

_1}

_27‘ u"‘ PR R B Y PR SR R ST ‘\\\ ‘7
=2 -1 0 1 2

a

Figure 4.1: Geometrical representation of Hyperbolic numbers

Bicomplex functions
For bicomplex functions, we have the same arithmetical rules as for numbers.
In what follows we are most interested in functions depending on two real

variables = and ¢ of the form f(x,t) = p(x,t) + wq(x,t) + yr(z,t) + ks(z,t) € B
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involving four real fields p(z,t), q(z,t), r(z,t), s(z,t) € R. Having kept the
functional variables real, we also keep our derivatives real, so that we can
differentiate f(z,t) component-wise as

Ouf(x,t) = Oup(z,t) +10,q(z, t) + 70,7(x,t) + kdys(x, t) and similarly for 0, f(z, ).

Bicomplex extended P77 -symmetries

As there are two different imaginary units, there are three different types of
conjugations for bicomplex numbers, corresponding to conjugating only ¢, only ;
or conjugating both ¢ and ; simultaneously. This is reflected in different
symmetries that leave the Cayley multiplication table invariant. @ As a

consequence we also have three different types of bicomplex P7T-symmetries,

acting as
PT, : 1—>—1,)—> —)k—>kx——xt—>—t (4.14)
PTuw : 1— —1,)— k> —k,x— —x,t—> —t, (4.15)
PTyg @ 1—1,)—> —3,k— —k,z— —z,t > —t, (4.16)

see also [[12}35]].

4.0.2 Quaternionic numbers and functions

—k| -1 1
kKlk| 53 | =] -1

Table 4.2: Quaternion Cayley table

The quaternions in the canonical basis are defined as the set of elements
H = {ag + a11 + azy + ask|ag, a1, az, a3 € R} . (4.17)

The multiplication of the basis {1, s, 7, k} is noncommutative, with s, 7, k denoting
the three imaginary units with > = j> = k* = —1. The remaining multiplication
rules are shown in table The multiplication table remains invariant under the

symmetries PT,,, PT ,, and PT . Using these rules for the basis, two quaternions
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in the canonical basis n, = ag + a1t + asy + ask € Hand ny, = by + b2 + by + b3k € H

are multiplied as

NgMyp = (Clobo — (llbl — a2b2 - a3b3) + (a0b1 + albo + CL2b3 - (lng) [ (418)

+ (a0b2 — a1b3 + agbo + agbl)j + ((Iobg + CleQ - a2b1 + agbo) k.

There are various representations for quaternions, see e.g. [147]], of which the
complex form will be especially useful for what follows. With the help of (4.18))

one easily verifies that

1
&= ./Tf (a12 + ag) + ask) with N :\/m (4.19)

constitutes a new imaginary unit with ¢ = —1. This means that in this
representation we can formally view a quaternion, n, € H, as an element in the
complex numbers

ne = ag + EN € C(8), (4.20)

with real part ap and imaginary part V. Notice that a PT ¢-symmetry can only be
achieved with a PT,-symmetry acting on the unit vectors in the canonical
representation.  Unlike the bicomplex numbers or the coquaternions, the

quaternionic algebra does not contain any idempotents.

4.0.3 Coquaternionic numbers and functions

7191 —-k|1] —

kKlk|] 72 || 1

Table 4.3: Coquaternion Cayley table

The coquaternions, often also referred to as split-quaternions in the canonical

basis, are defined as the set of elements
P = {ag + a11 + agy + aszk|aog, a1, as, a3 € R} . (4.21)

The multiplication of the basis {1,7,7 k} is noncommutative with two

hyperbolic unit elements 3, k, j* = k* = 1, and one imaginary unit :* = —1. The
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remaining multiplication rules are shown in the Cayley table The
multiplication table remains invariant under the symmetries P7,, P7T, and
PT . Using these rules for the basis, two coquaternions in the canonical basis

N = ao + a1t + az) + azk € P and ny, = by + byt + byy + bsk € P are multiplied as

NgMp = (aobo — albl + a2b2 + a3b3) + (a0b1 + a1b0 — a2b3 + agbz) 2 (422)

+ (aobg — albg + Clgb() + CLgbl) 7+ k (&ng + (Zlbg — a2b1 + agbo) k.

There are various coquaternionic representations for numbers and functions.
Similar as a quaternion one can formally view a coquaternion, n, € P, as an

element in the complex numbers
ne = ap + (M e C((), (4.23)

with real part ag and imaginary part M. The new imaginary unit, (* = —1,

1
Cim g (ot o+ agk) with M = o} — 3 — (4.24)

is, however, only defined for M # 0. Similarly as for the P7 ¢,-symmetry also the

PT-symmetry requires a P7T,,-symmetry. Unlike the quaternions, the

1+k

coquaternions possess a number of idempotents e; = =3

, €9 = % with €2 = ¢,

1 - .
€2 = ey, e169 = 0 Or ez = %, es = —? with e3 = e3, €5 = ey, e3e4 = 0. So for

instance, n, is an element in

P = {e1v1 + eaua|v; € D()), v9 € D(y)}, (4.25)
where the hyperbolic numbers in (4.25) are related to the coefficient in the
canonical basis as v; = (ag + a3) + (a1 + a2)7and vy = (ag — a3) + (az — a1)y.
4.0.4 Octonionic numbers and functions

Octonions or Cayley numbers have a double the dimensions of quaternions
and not only non-commutative, but also non-associative. In the canonical basis

they can be represented as
O = {agep + are1 + agzes + ases + aseq + ases + ageg + arzer|a; € R} . (4.26)
The multiplication of the units is defined by noting that each of the seven

quadruplets (60, 61762763), (60761, €4, 65), (60761767766)/ (60, €2, 64766)1 (60762765, 67),
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* €0 €1 €92 €3 €4 €5 €6 (&g
€0 €0 €1 €2 €3 €4 €5 €6 er
€1 €1 —€Q €3 —€Q €5 —€4q —er €6
€2 €92 —€3 —€0 €1 €g €7 —€4 —€5
€3 €3 €2 —e] —€0 e7 —€g €5 —€4
€4 €4 —€5 —E€4 —er —€0 €1 €9 €3
€5 €5 €4 —e7 €6 —€1 —€0 —€3 €9
(& (& er €4 —€5 —€9 €3 —€0 —€1
(&4 (&4 —€q €5 €4 —€3 —€9 €1 —€0

(€0, €3, €4, e7) and (e, 3, €6, €5), constitutes a canonical basis for the quaternions
in one-to-one correspondence with (1,+, 7, k). Hence, the octonions have one real
unit, 7 imaginary units and the multiplication of two octonions is
noncommutative. Similarly as for quaternions and coquaternions we can view

an octonion n, € O as a complex number

ne = ap + 00 € C(o) (4.27)

with real part ay, imaginary part O and newly defined imaginary unit, 0* = —1,
_ LN h o [ 4.28
0:= 521':1 a;e; where = Zi:l az. (4.28)

In order to obtain a PT ,-symmetry we require a P7T ¢, cyeqeseseqe,-Symmetry in
the canonical basis.
4.1 The bicomplex KdV equation

Using the multiplication law for bicomplex functions, the KdV equation for a

bicomplex field in the canonical form
u(z,t) = p(x,t) +1q(z,t) + gr(z,t) + ks(z,t) € B, (4.29)

can either be viewed as a set of coupled equations for the four real fields p(z, t),
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q(z,t), r(z,t), s(x,t) e R

( P + 6pp, — 6q9q, — 617, + 65Sy + Przs

?

+ 6gp, + 6pg, — 651, — 675, + Quzx ,
4t qp Pq q (4.30)

Y

Uy + 6uly, + Upyy = 0 < <
re + 67rpy + 6pry — 69, — 68Qs + Trre

~0
=0
=0
=0

St + 6sp, + 6ps, + 6qry, + 67qs + Spas

\ ?

or when using the representation (§.5)) as a couple of complex KdV equations
v + 60V, + Vppr = 0, and wy + 6ww, + Wepe = 0, (4.31)
related to the canonical representation as

v(z,t) = [p(x,t) + s(z,t)] +2]q(z, t) —r(z,t)] € C(r), (4.32)
w(z,t) = [plz,t) — s(z,t)] + 7[q(z,t) + r(z,t)] € C(y). (4.33)

We recall that we keep here our space and time variables, « and ¢, to be both real
so that also the corresponding derivatives 0, and 0, are not bicomplexified.

When acting on the component functions the P7-symmetries (4.14])-(4.16]) are
implemented in (4.30) as

PT, : ©——x, t—>—t,p—>pq—>—qr——rs—su—>u, (434)
PTw : ©— —x, t— —t,p—>pq— —q,r—>rs——su—u, (4.35)

PTy : v—>—x,t—>—t,p—>pq—qr——r,s——s,u—u, (436)

ensuring that the KdV-equation remains invariant for all of the transformations.
Notice that the representation in (4.31) remains only invariant under P7,,, but

does not respect the symmetries P7T ,, and PT .

4.1.1 Hyperbolic scaled KAV equation

We observe that (4.30]) allows for a scaling of space by the hyperbolic unit £ as
xr — kx, leading to a new type of KdV-equation with v — h

-

S¢ + 6ppx - 6q(b& - 67"/“96 + 6559& + Piazx = 07

T — 6qpy — 6pqy + 6515 + 6755 — Quare = 0,
Khy + 6hhy + e = 0 <> 4 1 P2 TP 1 (4.37)

qr — 6rp, — 6pry + 69S; + 65q; — Tzwe = 0,

Pt + 6spy + 6ps, + 6gry + 61q, + Sppe = 0,
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that also respects the PT,-symmetry. The interesting consequence of this
modification is that travelling wave solutions u() of (4.30) depending on real
combination of x and t as £ = z + ¢t € R, with ¢ denoting the speed, become
solutions /(¢) dependent on the hyperbolic number ¢ = kx + ct € D instead.
Interestingly a hyperbolic rotation the number ( with ¢ = arctanh(v/c)
constitutes a Lorentz transformation [[155, [163]]. Taking ¢ and performing a

hyperbolic rotation, we have

¢ = e (4.38)
— k(xcosh¢ — ctsinh ¢) + c(t cosh ¢ — — sinh ¢), (4.39)
C
then with
1
cosh (arctanh E) =——— , sinh (arctanh E) S (4.40)
c B Z_; c 1 — Z_;

we have a Lorentz transformed ¢ given by

(" =ka' + ct', (4.41)

with t' = y(t — 5z), 2’ = y(z — vt) and v = 1/4/1 — v?/c2.
Next we consider various solutions to these different versions of the bicomplex

KdV-equation, discuss how they may be constructed and their key properties.

4.1.2 Bicomplex soliton solutions

Bicomplex one-soliton solution with P7-symmetry broken
We start from the well known one-soliton solution of the real KdV equation

2 1
Uy (T, 1) = % sech? [a(ax — ot + u)] , (4.42)

when «, i€ R. Since our differentials have not been bicomplexified we may take
11 to be a bicomplex number p® = 1, + 01 + 017 + 1, ke B with 1, 0y, 01,7, € R, so
that (4.42) becomes a solution of the bicomplex equation (4.30). Expanding the
hyperbolic function, we can separate the bicomplex function u,z., (z, t) after some

lengthy computation into its different canonical components

UyB,q = % (er;a +pf;a) + % (qu;a + qf;a) + % (q+;a - qf;a) + % (er;a _pf;a)7
(4.43)
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when using the two functions

pen(it) = a? + a? cos 5 cosh(ax — a3t + 77;) | (4.40)
[cos O+ + cosh(ax — ot +1,)]
o?sin 04 sinh(ax — ot + n+)

[cos 04 + cosh(ax — adt + 7];)]27

G+alT,t) = (4.45)

wheren,.=1n,+xn, and 0.= 0, £ 6.
Noting that if we let ,=6,=0, n,=1n, 6o=0, the complex solution, i.e. ;x = n+1if
as studied in Chapter 3, (3.17)), can be expressed as

ui@;a(xv t) = ﬁn,@;a(x - U/Oé; t) - iz]\n,e;a(x - 77/% t), (446)

where
ﬁnﬂ;a(mvt) = {pi;a($at)|771: 01=0, ny =n, 6o = 0}, (4.47)
Z]\n,G;a(fL‘vt) = {qi;a(%tﬂm: 01=0, ng =1, b = ‘9}~ (4-48)

We can also expand the bicomplex solution (4.43]) in terms of the complex solution

as
1 R n_
uu]B;a = 5 |:ui0,;a (l’ + E,t) + Ui9+;a (ZE + E,t):l (449)

k
i (o4 50) g (4 1=0)].
2 o a

In Figure 4.2 we depict the canonical components of this solution at different
times. We observe in all of them that the one-soliton solution is split into two
separate one-soliton-like components moving parallel to each other with the
same speed. The real p-component can be viewed as the sum of two bright
solitons and the hyperbolic s-component is the sum of a bright and a dark
soliton. This effect is the results of the decomposition of each of the components
into a sum of the functions p;., or ¢+, as defined in ) with 0. and 7.
controlling the amplitude and distance, whereas o regulates the speed, so the
constituents travel at the same speed. This is a novel type of phenomenon for
soliton solutions previously not observed.

In general, the solution (4.42) is not P7-symmetric with regard to any of the
possibilities defined above. It becomes PT,-symmetric when 1, = 1, = 0, PT -

symmetric when n, = 6; = 0 and P7T j,-symmetric when 7, = 0, = 0.
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Figure 4.2: Canonical component functions p, ¢, » and s (clockwise starting in the top
left corner) of the decomposed one-soliton solution s, to the bicomplex KdV equation
with broken PT-symmetry at different times for « = 0.5, ny, = 1.3, 6p = 0.4,
01 =2.0and n; = 1.3.

A solution to the hyperbolic scaled KdV equation (4.37)) is constructed as

042

1
hyo(z,t) = 5 sech? 5(043:/{ —a’t+ )|, (4.50)

which in component form reads

huB;a = % (ﬁf;a +p+;a) + % (qu;oz + qf;a) + % (qu;a - qf;a) + g (p+;oz - 157;04)7
(4.51)
where we introduced the notations p_..(z,t) = p_.(—=2,t) and G.o(z,t) =

Gria(—, 1)

In Figure[4.3|we depict the canonical component functions of this solution. We
observe that the one-soliton solution is split into two one-soliton-like structures
that scatter head-on with each other. The real p-component consists of a head-

on scattering of two bright solitons and the hyperbolic s-component is a head-on
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collision of a bright and a dark soliton. Given that u,z., and hz.,(, t) differ in the

way that one of its constituent functions is space-reversed this is to be expected.

0.414 0.230
0.368 0.184
0.322 0.138
0.276 0.082
- G5 | e 0.046
0.184 »
-0.046
0.138
-0.092
0492 -0.138
0.046 -0.184
0 -0.230
X
10 0.184
0.092
0.138
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20 i 0.092
e 0 L ' 0.046
-0.046 0
_o‘ 092 _0.0‘46
-0.092
-0.138 -20
-0.138
-0.184
-0.184
-40- . ; :
0.230 20 -15 -10 -5 0 5 10 -0.230
X X

Figure 4.3: Head-on collision of a bright soliton with a dark soliton in the canonical
components p, ¢, 7, s (clockwise starting in the top left corner) for the one-soliton solution
hp.0.6,x;a to the bicomplex KdV equation with broken PT-symmetry for a = 0.5,
no = 1.3,0p = 0.1, 01 = 2.0 and 7; = 1.3. Time is running vertically, space horizontally

and contours of the amplitudes are colour-coded indicated as in the legends.

Bicomplex one-soliton solution with P7;;-symmetry

An interesting solution can be constructed when we start with a complex P7
and a complex PT ;;, symmetric solution to assemble the linear decomposition
of an overall PT,-symmetric solution with different velocities. Taking in the
decomposition v(z,t) = Wp, 0, (2, t) and w(z,t) = up,.q, (2, ), we can build

the bicomplex KdV-solution in the idempotent representation

17’2917]92;&1,012 (SU, t) = Uy, ('T7 t) €1 1 Uyhs,an (CC7 t) €2. (452)
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The expanded version in the canonical representation becomes in this case

Ua01 902500 ,000 = 5 [p0701§a1 + p0,92;a2] +

J
+§ [%,02;&2 - QO,01;041] + 5 [p0,91;a1 - p0,92;042] )

which is evidently PT,,-symmetric.

[qoael e + q0)02 ,O‘Q]

N}

(4.53)

This solution contains an arbitrary

multicomplex shift, however in each component, we now have two solitonic

contributions with different amplitude and speed parameter. As we can see in

Figure in the real p-component a faster bright soliton is overtaking a slower

bright solitons and in hyperbolic s-component a faster bright soliton is overtaking

and a slower dark soliton.
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Figure 4.4: A fast bright soliton overtaking a slower bright soliton in the canonical

component functions p, ¢, r and s (clockwise starting in the top left corner) for the one-

soliton solution U9, ;6,:a,,a, to the bicomplex KdV equation (4.30) with P7T;;-symmetry

for a1 = 2.1, Qg = 1.1, 491 = 0.6 and 02 = 1.75.
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Bicomplex N-soliton solution
The most compact way to express the N-soliton solution for the real KdV

equation in the form ([2.1]) is seen from DC transformations

ul(,L]I/:)MQ,...,;,LN;al,042,...7041\] (.CL" Zf) = 2&5 [ln WN(¢u1,a17¢y2,a2? ce 7w,u,N,aN):| ) (4'54)

where Wy denotes the Wronskian and the functions 1, are solutions to the
time-independent Schrodinger equation for the free particle. Taking for instance
Y ,o(x,t) = cosh[(ax — &t + p)/2] for N = 1 leads to the one-soliton solution
(4.42).

We could now take the shifts s, p15, ...,y € B and expand into its
canonical components to obtain the N-soliton solution for the bicomplex equation.
Alternatively we may also construct N-soliton solutions in the idempotent basis
in analogy to ({.53)). We demonstrate here the latter approach for the two-soliton
solution. From (4.54)) we observe that the second derivative will not alter the
linear bicomplex decomposition and it is therefore useful to introduce the quantity

w(z,t) as u = w,. Thus a complex one-soliton solution can be obtained from

wnﬂ;a = w’;ﬁ;a + Zw;,@;a (455)
with
. _ 3 i
W o smh(aac « t—I—n) i o sin @ (456)
ndie " cos O4-cosh(ax—adt+n)’ nbie — cos@+cosh(az—adt+n)

Recalling now the expression
a? — B2

)
Wa, b — We,d; 8

(4.57)

wa’bﬁcﬁd;a76 =

from the BT of the complex two-soliton solution from Chapter 3, we can express

this in terms of the functions in (4.56])

Wnosas = (o® = 5%) [(w:;,o;a - “;2,5;5) - g (w%,a;g — u;é,&;ﬁ)] (4.58)
(W] .o = WEs5) " + (Wh g0 — Wiis)

= Wypoesios T Wyoesap (4.59)

Using (4.59) to define the two complex quantities wy = wy, g, ¢, 5:501,8, € C(2)

and wy = Wy, 0, ¢,.50:00,8, € C(7) we introduce the bicomplex function

wh = wie; + wye, (4.60)
= (W] 4+ wh)e; + (W + 7W%)es (4.61)

1 r r L ) 7 J % ) k r r
= 3 (w] +wjh) + 5 (w1 + w2) + 5 (w2 — wl) + B (w] —wh). (4.62)
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Then by construction ) 4. ¢ 5.0 50 c 5000 5,0, = Ox(wih) is a bicomplex two-
soliton solution with four speed parameters. In a similar fashion we can proceed
to construct higher order N-soliton solutions for N > 2, i.e. independently
constructing two complex N-soliton solutions, then using idempotent basis to

form a bicomplex soliton solution.

4.1.3 PT-symmetry and reality of conserved charges for bicomplex soliton

solutions

When decomposing the bicomplex energy eigenvalue of a bicomplex
Hamiltonian H in the time-independent Schrédinger equation, Hy = Ev), as
E = Ey + Eyv + Eyj + Esk, Bagchi and Banerjee argued in [[12] that a P7 -
symmetry ensures that &y = FE3 = 0, a PT j,-symmetry forces Iy = E3 = 0
and a PT ,,-symmetry sets £} = Ey = 0. In Chapter 3, we argued that for complex
soliton solutions the PT-symmetries together with the integrability of the model
guarantees the reality of all physical conserved quantities. One of the main
concerns in this section is to investigate the roles played by the symmetries (4.14))-
(B.16) for the bicomplex soliton solutions and to clarify whether the implications
are similar as observed in the quantum case.

Decomposing a density function for any conserved quantity as

p(x,t) = po(x,t) + 1p1(x, 1) + Jpa(2, 1) + kps(z,t) € B, (4.63)

and demanding it to be P7-invariant, it is easily verified that a P7T ,,-symmetry
implies that p,, p, and p,, p; are even and odd functions of z, respectively. A
PT ,-symmetry forces p,, p, and p,, p; to even and odd in z, respectively and
a PT,-symmetry makes p,, p; and p;, p, even and odd in z, respectively. The

corresponding conserved quantities must therefore be of the form

- Qo + Qg for PT ,-symmetric p
Q= J plx,t)dr = § Qo+ Qv for PT -symmetric p (4.64)
Qo + Qsk for PT,,-symmetric p

o0
where we denote ; := J pi(z,t)dr with i = 0,1,2,3. Thus we expect the

0
same property that forces certain quantum mechanical energies to vanish to hold
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similarly for all classical conserved quantities. We only regard ¢y and @3 as

physical, so that only a PT,,-symmetric system is guaranteed to be physical.

Real and hyperbolic conserved quantities
We compute the first conserved quantities, namely the mass m, the momentum

p and the energy E of the KdV equation

o0

m(u) = J udx = mg + myr + may + msk, (4.65)
?DCD

_ 2. _

p(u) = f w’dx = po + p1t + pay + psk, (4.66)
© /1

E(u) = J (éui = u3) dr = Ey + En+ Eay + Esk (4.67)
—o0

Decomposing the relevant densities into the canonical basis, u as in (4.29)), u?

as
u? = (p2 — ¢ —r+ 52) + 2(pg —rs)u+ 2(pr — qs)y + 2(qr + ps)k (4.68)

and the Hamiltonian density H(u, u,) = u2/2 — u® as

(4.69)

2 _ 2.2, 2
—q¢—12+s
H = [3p(q2+7"2—32)+px G~ T p3]

. T Ggrs —
+ [¢® — 3p°q + page + 6prs + 3q (r* — %) — rus. ]2
+ [+ 6pgs + 31 (¢° — 5% — p?) + Pt — €u5a| )
+[3s (r* = p* + ¢°) — 6pgr + pus, + qure — 5°| K,

we integrate component-wise. For the solutions u,z., and h,:z., with broken P7T-

symmetry we obtain the real conserved quantities

m(ue,) = m(hp,) = 20, (4.70)
2
p(uuﬁ;a) = p(hug;a) = gaga (471)
1
E(U#]B;a) = E(h#B;a) = —5045. (472)

These values are the same as presented in Chapter 3 for the complex soliton
solutions. Given that the P7-symmetries are all broken, this is surprising at first
sight. However, considering the representation this is easily understood,
as m(u,zs.,) is simply 1 (2a +2a) + 4(2a — 2a) = 2a. We can argue similarly for the

other conserved quantities.
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For the PT,j-symmetric solution @,g, 4,9, 0,3 We obtain the following hyperbolic

values for the conserved quantities

m(awo-&-ﬁl;a,ﬁ) = (a + 5) + (O./ - B)k% (473)

P(Uiggt01:0.8) = % (a3 + 63) + % (a3 — Bg) k, (4.74)
R B CYS BE) 65 045

E(U190+j91;a,6) = — (1—0 + 1—0> + (E — E) k. (475)

The values become real and coincide with the expressions (4.70))-(4.72) when we
sum up the contributions from the real and hyperbolic component or when we

take degeneracy, i.e. the limit 8 — a.

4.2 The quaternionic KdV equation

Applying now the multiplication law (4.18) to quaternionic functions, the KdV
equation for a quaternionic field of the form u(zx,t) = p(z,t) +1q(z,t) + yr(x, t) +
ks(z,t) € H can also be viewed as a set of coupled equations for the four real fields

p(z,t), q(x,t), r(x,t), s(z,t) e R
( Dt + GPPz - GQQx - 6TT$ - 65396 + Pzzx

. (4.76)

g + 3 (Ul + Ugt) + Uy = 0 S <
e + 67ps + 6pry + Trse

=0
@ + 6gpz + 6pgy + Guaw = 0
=0
=0

S¢ + 65p, + 6pS, + Sy =

Notice that when comparing the above system with the bicomplex KdV
equation (), the nonlinear term 6uu, has been replaced with 3 (uu, + u,u),
which is a very natural modification when keeping in mind that the product of
quaternionic functions is noncommutative [[138]]. In the paper, it is shown that
under some symmetry reductions, this equation and similar extensions to various
equations, including mKdV and NLS equations, leads to Painlevé type equations.

The remaining set of equations is in addition, the aforementioned P7T -

symmetric
PT: x——x,t——t 1—>—1, 3> —) k— —k, (4.77)

P—p, 4q—>—q 7T —=>-T §—=> =S5 U—=>1U.
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4.21 Quaternionic N-soliton solution with P7T,,;-symmetry

Due to the noncommutative nature of the quaternions it appears difficult at
first sight to find solutions to the quaternionic KdV equation. However, using the
complex representation (4.20]), and imposing the PT,,-symmetry, we may resort
to our previous analysis on complex soliton solutions. Considering the shifted

solution (#.42)) in the complex space C(¢) yields the solution

ano,N,a = ﬁao»N;a - ga ZI\OLO,/\f;oz (4.78)
N a1t + as) + ask .
Pag N — N, Gao.N;a (479)

This solution becomes PT,,-symmetric when we carry out a shift in x or
t to eliminate the real part of the shift. The real component is a one-solitonic
structure similar to the real part of a complex soliton solution and the remaining
component consists of the imaginary parts of a complex soliton solution with
overall different amplitudes. It is clear that the conserved quantities constructed
from this solution must be real, which follows by using the same argument as
for the imaginary part in the complex case, as in Chapter 3, separately for each
of the 1,7,k-components. By considering all functions to be in C(&), it is also clear
that multi-soliton solutions can be constructed in analogy to the complex case C(z)
treated in Chapter 3, with a subsequent expansion into canonical components.

Since the quaternionic algebra does not contain any idempotents, a
construction similar to the one carried out for the bicomplex one-soliton solution
with PT;;-symmetry (4.52) does not seem to be possible for quaternions.
However, we can use for two complex solutions wfoj Nea = Who NiaTEaWy Ao
, w% Ng = Wiy wrp + EWh w5, Where the imaginary units are defined as in (4.19)
with £, (a1, as,a3) and &,(by, b, b3). Expanding that expression in the canonical

basis we obtain

9 2
0 a®—f

w L= Wo — W1 — Jwa — kw 4.80
@0,bo;ex,8 w%—i—w%—l—w%—i—w%( 0 17 Jw 3) ( )

with

A by
Wop = UJZO’N;Q - wZo,N;ﬁ7 Wm = /\—/,wflo,N;a - j\—/,bw;)07/\/;13 3 m = ]., 2, 3. (481)

a

A quaternionic two-soliton solution to (4.76]) is then obtained from (4.80) as

Q _ Q
Uag,bosa,8 = \ Wag,bosa,8 .
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4.3 The coquaternionic KdV equation

Applying now the multiplication law ) to coquaternionic functions, the
KdV equation for a coquaternionic field of the form u(x,t) = p(z,t) + 1q(z,t) +
gr(z,t) + ks(x,t) € P can also be viewed as a set of coupled equations for the four
real fields p(x,t), q(x,t), r(x,t), s(z,t) € R. The coquaternionic KdV equation then

becomes

.
Py + 6pp,. — 6qq, + 655, + 677 + Dasa

dt qp P4z T 4 . (4.82)

w4+ 3(Utly + Uplt) + Ugyy = 0 S <

=0
=0
e+ 67rpy + 6pry + Tipe =0
=0

S¢ + 65p, + 6pS, + Spuz

\

Notice that the last three equations of the coupled equation in (4.82) are identical
to the quaternionic KdV equation (4.76]).

4.3.1 Coquaternionic N-soliton solution with P7, ;-symmetry

Using the representation (4.23]) we proceed as in Subsection[4.2.Tjand consider
the shifted solution (4.42)) in the complex space C(()

C ~ ~

uaoc;?/\/l;a = DPagM;a — Ca Qao, M;a (483)
~ a1t + ag) + ask .

pao,/\/l;a - M an,,/\/t;a (4.84)

that solves the coquaternionic KdV equation (4.82)). There are two cases, for M #

0, we obtain the solution

a?+a? cos M cosh(ax—a3t+a0) a? sin M sinh(am—a3t+ao)

cQ o .
Hao,Mia™ [cos M+cosh(az—a3t+ag)]? G [cos M +cosh(az—a3t+ap)]? (4.85)
and for M — 0,
2 o? sinh(az—a3t+ag
oo - — (a12 + agy + azk) ( ) (4.86)

Uag, Mia= 1+cosh(az—a3t+ap) [1+cosh(az—aBt+ag)]?"

Both solutions are PT,,,-symmetric when we take a shift in « or ¢ to absorb the
real part. Multi-soliton solutions can be constructed in analogy to the complex

case C(2) treated in Chapter 3.
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4.4 The octonionic KdV equation

Taking now an octonionic field to be of the form u(z,t) = p(z,t)eq + q(x, t)e; +
r(x,t)es + s(x,t)es + t(x,t)es + v(z, t)es + w(z, t)es + 2(z, t)er € O the octonionic
KdV equation, in this form of (4.82]) becomes a set of eight coupled equations

+ 6pp, — 6qq, — 611y — 688, — 6tt, — 6vVU, — bww, — 6224 + Prer = 0,
2 pp qq b (4.87)

Xt + 6xPe + 6pXy + Xowe = 0,

with x = ¢, 7, s,t,v,w, 2. Setting any of four variables for y to zero reduces (4.87)

to the coupled set of equations corresponding to the quaternionic KdV equation

E©76)-

44.1 Octonionic N-soliton solution with P7 ., c,c.c ese5e,-Symmetry

Using the representation (4.27]) we proceed as in Subsection[4.2.Tjand consider
the shifted solution (4.42)) in the complex space C(o)

o o~ ~
Ugy,0;0 =  Pag,0500 = 0Gay,0;a (4.88)

7
a;e;
i=1 " '~

ﬁao,o;a - Tan,(’);a (489)

that solves the octonionic KdV equation (4.87). The solution in (§.88) is
PT ciesesesesese--Symmetric. Once more, multi-soliton solutions can be constructed

in analogy to the complex case C(z) treated in Chapter 3.

4.5 Conclusions

In this chapter, we have shown that the bicomplex, quaternionic,
coquaternionic and octonionic extensions of the real KdV equation display
properties that are typical of integrable systems, such as having multi-soliton
solutions with novel qualitative behaviours. A particularly interesting case is the
N-soliton solution from the idempotent basis decomposes into 2N one-soliton
solutions, with each of the 2N constituents involving an independent speed
parameter. Unlike for the real and complex soliton solutions, where degeneracy

poses a non-trivial technical problem [41] 29], here these parameters can be
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trivially set to be equal. For all noncommutative versions of the KdV equation,
i.e. quaternionic, coquaternionic and octonionic types, we found multi-soliton
solutions based on complex representation in which the imaginary unit is
built from specific combinations of the imaginary and hyperbolic units. In the
bicomplex case, the first few conserved charges are also presented and higher
order charges should also be possible. It would be interesting to conduct a
more thorough investigation not only of higher order conserved charges for
the bicomplex case, but also the other multicomplex cases where properties of

noncommutativity and nonassociativity comes into play.
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Chapter 5

Degenerate multi-soliton solutions

for KAV and SG equations

Up to now, the multi-soliton solutions we have been constructing are
nondegenerate. This means the compound soliton solutions are made of one-
soliton constituents that are all independent in terms of speed and amplitude.
In this chapter, we look at the degenerate case, in which multi-soliton compounds
have one-soliton constituents of the same speed and amplitude. In particular, we
find an interesting property for degenerate multi-soliton solutions, namely that
they have different properties at different timescales.

At a small timescale the one-soliton constituents travel simultaneously at the
same speed and with the same amplitude. Due to this property the collection
of them could be regarded as an almost stable compound. In this regime, the
solutions behave similarly to the famous tidal bore phenomenon, which consists
of multiple wave amplitudes of heights up to several meters travelling jointly
upstream a river and covering distances of up to several hundred kilometres, see
e.g. [38]. At very large time the individual one-soliton constituents separate from
each other with a time-dependent displacement, which can be computed exactly
in closed analytical form for any number of one-solitons contained in the solution.

In this chapter, we explore degeneracy in the KdV [41]] and SG [29] equations
with HDM, BT and DCT. The natural way to obtain a degenerate multi-soliton
solution would be to take the limit of all speed parameters in a nondegenerate

multi-soliton solution to one particular speed parameter, however, we shall see
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that this does not work in general. We investigate the construction of degenerate
multi-soliton solutions with various methods including HDM, BT and DCT.
Furthermore, when comparing the time-dependent displacements, we find a

universal pattern for KdV and SG degenerate multi-soliton solutions [30, 29]].

5.1 KdV degenerate multi-soliton solutions

In the KdV case, the direct limiting process of the usual real multi-soliton
solutions to one velocity leads to cusp type solutions, hence singularities.
However, we will demonstrate that taking the degeneracy of complex multi-
soliton solutions from the previous chapter produces finite degenerate multi-
soliton solutions [41]]. The complex extensions help to regularize the singularities

that can arise from imposing degeneracy.

5.1.1 Degeneracy with Darboux-Crum transformation

In Chapter 2, we demonstrated how a nondegenerate N-soliton solution can be
constructed via DCT with N independent solutions to the Schrédinger equation
with different eigenvalue parameters. For a degenerate N-soliton solution, the
criteria of N independent solutions is still required for a non-trivial solution,
but with the same eigenvalue parameter for degeneracy. We now show how
these solutions will be constructed; they are the so-called Jordan states [44]]. To
start, we take the Schrodinger equation with Hamiltonian, H, solution v and

eigenvalue/energy A\ = £ = %2, to be the same as for the non-degenerate case

Hip = (—5§—u+0‘£)¢=0. (5.1)

For the next independent solution, rather than taking another i with an
independent eigenvalue parameter, we take a Jordan state, %, which is a null

vector for H?. In particular, g—ﬁ is also a solution

0

HH <£w> — —ZHyp =0, (5.2)

Carrying on this procedure, we can construct N Jordan states for a N-soliton

solution, which will be given by {w, 2., 2 w}.

Y 0aN
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Hence, the N DT iteration will give the iterated Schrédinger equation

2
o
—(Vo))zz + Ug) WY av) = —Z%Da(zv), (5.3)

with potential, u,,~), hence the degenerate N-soliton solution to the KdV equation
is
N aN —1
Uy (N) = 2696 In WN <¢, ’QD, ey Wiﬂ) (54)
and the corresponding wave function is

aNl

Wit (¥ 20, Eoxer it )

Yoy = Wzv(%%?ﬁ,.--,g%?ﬂ) )

(5.5)

where ¢ is the second independent solution to the Schrédinger equation (5.1)), so

we can take for example
1
v = cosh= ( azr — &t + p), (5.6)
¢ = wf = smh ax — ot + pu) . (5.7)

It is important to point out that i needs to have a non-zero imaginary part to

regularise singularities from our degeneracy procedure.

5.1.2 Degeneracy with Hirota’s direct method and Bicklund transformation

Another two methods we can use to construct multi-soliton solutions are HDM
and BT, as seen in Chapters 2 and 3. Taking the two types of two-soliton solutions
from each case, if we try to carry out degeneracy by taking the direct limit of one
speed parameter to the other in the generality, we obtain a one-soliton and trivial
zero solution, respectively. To obtain a true degenerate two-soliton solution from
HDM or BT, we need to implement some shifts at the initial stage of the methods
before taking the equal speed limit.

For the case of using HDM, a two-soliton solution is known to be constructed

with an initial 7; function
—a3 _ A3
T1 = e PrB (5.8)

which is a solution to the order \' equation from expansion of Hirota’s bilinear

form (3.3), where 7, , 7, are arbitrary constants and c; , ¢, are to be determined.
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In general, the degenerate limit will result in a one soliton solution. However, for

the choices

a—f3 a—f3
7 =i —

a+p 2= A a+p

carrying out HDM and then taking the limit 5 — «a the resulting expression is the

V=4t v, (5.9)

degenerate two-soliton solution

. 202 [(ax—3a3t+i9y) sinh(aﬂc—ag’t'f'w#)_2COSh(ax_a3t+wu>_2] 5.10
Upz) = [ax—3a3t+i0, +sinh(az—a3t+i0,)]? 10

where we have taken complex parameters y = i6,, v = 0, with Siﬁ”eu > —1to
obtain a PT-symmetric solution that is without singularities and asymptotically
finite.

For the case of BT, if we choose the two one-soliton solutions to have the same
shifts, v, 75, and conditions as taken for the HDM for the soliton solutions with

speed parameter o and [ respectively:

2
_ @ 21 N a—p3
Ua = sech 5 (ozx a’t + p+ oc—i—ﬁy)’ (5.11)
2 1 _
ug = %SGChQ 3 (B:Jc — Bt +pu— Z+ gy) , (5.12)

then the 'nonlinear superposition principle” and degenerate limiting results in the
same degenerate two-soliton solution ([5.10)).

For higher order degeneracies in both the HDM and BT, we need to implement
the right shifts to obtain a degenerate multi-soliton solution. Up to now, there
are no known systematic methods to do this for general degenerate N-soliton

solutions.

5.1.3 Properties of degenerate multi-soliton solutions

Similar to nondegenerate multi-solitons solutions as seen in Chapter 3,
degenerate KdV multi-soliton solutions also admit lateral displacements and
time-delays as a result of scattering. These can be computed as in the previous
cases through tracking a particular point on the soliton solution, usually the
maxima or minima for simplicity.

Taking the degenerate two-soliton solution (5.10]) in the asymptotic limit when
t — oo, we can see the soliton constituents regain the same shape and amplitude

as the corresponding one-soliton solution up to some displacements by plotting
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the solution with the corresponding one-soliton solution at large times in Figure

6.1l

2.0 ‘ : : : 1.5- ‘
1.5¢ 1 1.0t AX()
__ 1.0 i 1 0.5—/\ N
“ 00 L T 05 \/ \/
-0.5¢ AX(f) AX(f) ] -1.00 AX(f)
-1.00— ‘ ‘ ‘ ‘ -1.5" ‘ ‘ ‘ ‘
15 20 25 30 35 15 20 25 30 35
X X

Figure 5.1: Real (left) and imaginary (right) parts of KdV degenerate two-soliton solution
witha = 1.1, uy = v =45 and t = 20.

In particular, we find the lateral displacements will tend to an explicit time-

dependent logarithmic function AX () in asymptotic time
1
AX(t) = =In (40’ |t]). (5.13)
o}

For the right constituent in the imaginary part, the same displacement expression
also holds with a shift of i, in 1, of the one-soliton solution.

For degenerate N-soliton solution, we conjecture the generalised displacement

expression
1 (m —1)! N
AXpur, (1) = —In | —————[4a’t|* " 5.14
lk() Oén(m+l—/{3)!|a| ) ( )
with
1 , for N even
E = : (5.15)
0 ,for N odd
N—-1+k
m = TJF (5.16)
I = I["constituent from soliton compound centre. (5.17)

As these shifts are logarithmic in time, the change is very slow and when confined
to some finite regions they may be viewed as a N-soliton compound, hence similar
to the tidal bore phenomenon. We verified these properties up to degenerate 10-
soliton solutions.

We can also compute conserved charges as in Section 3.4.4, for our complex

degenerate N-soliton solution. The total charge will be N times the corresponding
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single soliton solution and real, due to the asymptotic limit of the compound
solution being the sum of N one-solitons up to some lateral displacements or time-

delays and the solution possessing P7-symmetry.

5.2 SG degenerate multi-soliton solutions

Contrary to the KdV case, for the SG equation, the degeneracy limit could even
be taken with real SG multi-soliton solutions and we will look in this section at
various types of degeneracies including multi-kinks, multi-breathers and multi-
Jacobi-elliptic solutions. We abbreviate solutions with a m-fold degeneracy in o
aS Qp(may,,1ay (T, 1). This denotes an N-soliton solution with a; = a; = ... =

A = Q.

5.2.1 Degenerate multi-soliton solutions from Bicklund transformation

From the nonlinear superposition principle for the SG equation (2.70]), a new
solution ¢,, can be constructed from three known solutions ¢,, ¢,, ¢,. However,
one can easily see that degenerate solutions cannot be obtained directly in general
from (2.70)), as that would give the trivial zero solution. We will now demonstrate
how the limits may be taken appropriately, thus leading to degenerate multi-
soliton solutions. Subsequently, we study the properties of this solution.

At first we construct an N-soliton solution with an (/N —1)-fold degeneracy. For
this purpose we start by relating four solutions to the SG equation as depicted in
the Bianchi-Lamb diagram in Figure[5.2] with the choice ¢y = dov-2), ¢1 = Gov-1),
Py = Qnn-25 and constants a; = é and ay = %, such that by () we obtain

Pon-1)5 = Qnv-2) + 4arctan [Z t g tan <¢Q(N2)'B4_ Xl >] ) (5.18)

Using the identity (see Appendix A for a derivation)

a+p tom DPon-25 = Paiv-1 | .« i¢
4 T 2(N—1)da "

lim

B—a (v —

(5.19)

we can perform the non-trivial limit 3 — « in (5.18)), obtaining in this way the

recursive equation

G = M Gunnp = G- — darctan [m%%(w], for N =2, (5.20)
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Figure 5.2: Bianchi-Lamb diagram for four arbitrary solutions ¢ v-2), ¢, v-2) 8r Pa(N-1),
Pu(N-1)3 of the SG equation, with each link representing a BT with constants o and

chosen as indicated.

with ¢, = 0 for N < 0. In principle equation (5.20) is sufficient to compute
the degenerate solutions ¢, ) recursively. However, it still involves a derivative
term which evidently becomes more and more complicated for higher order.
We eliminate this term next and replace it with combinations of just degenerate
solutions. By iterating the BT (2.65{2.66]) we compute the derivatives with respect

to xz and ¢ to be

(G, = 203, (-1 hsin (ST 0)  an)

(Gaw)e = >3 sin (%) (522)

Taking the relation (see Appendix B for a derivation)

A (Da)y = T (Do), —t (Do), (5.23)

we convert this into the derivative with respect to a required in the recursive

relation (5.20]), that is

N

) —¢ (o . + (o
%%%AN—D =) [(—1)N+kxo¢81n (w) — ésm (w)] . (5.24)
k=1

Therefore for N > 2 equation ([5.20)) becomes

. _ 1 G e N NN ) b (P FO -1
Don) = av—2) — darctan [IN kgl [( )Mz sin (72 ) + Zsin (72 )H
(5.25)
This equation can be solved iteratively with an appropriate choice for the initial

condition ¢,,. Taking this to be the well-known kink solution

+ za, (5.26)

t
¢, = 4arctan (eg+) , with &, = —
T«
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we compute from (5.20)) the degenerate multi-soliton solutions

Doe = 4arctan( & >, (5.27)

cosh
cosh &, — &% sinh

€y 25+ 55 §+)+¢m
§2 +cosh” &,

_ —€_ €2 +362 —(3+2¢2 ) cosh? £, +3¢, sinh2¢
= 4 arctan |:3cosh§+ §f+§i+2§Q_+COSh2 §+_2§2_§+ tanh ¢, + ¢aa' (529)

Pooa = 4arctan( (5.28)

¢O¢O¢()!Oé

Snapshots of these solutions at two specific values in time are depicted in Figure
5.3l for some concrete values of a. The N-kink solution with N = 2n exhibits n
almost identical solitons travelling at nearly the same speed at small time scales.
When N = 2n + 1 the solutions do not vanish asymptotically and have an

additional kink at large values of x.

¢ ¢
6 , n=1 5 7
[ im== N=3
SRR A A T | N n=5 o
3F n=1 3k
S (O n=3 F
2F 2L
I T - A - S S n=5
1F n=7 s
L L Il L L L X L X
200 250 -200
0} ?
. X
i 200 250 —n=2 6F
|| & == N=4
E ------ n=6 2
2L
[ n=8 4L
-3 g 3F
t n=2
-4L 2L
L« 7§ 1 A o .} & | ==m—— n=4
-5 SR S R ] S S R n=6 1L
-6 , n=8 " e X
[ -250 -200

Figure 5.3: SG degenerate N-kink solutions at different times ¢ = —10 (left panels) and

t = 10 (right panels) for spectral parameter o = 0.3.

It is clear that solutions constructed in this manner, i.e. by iterating (5.25]), will
be of a form involving sums over arctan-functions, which does not immediately
allow to study properties such as the asymptotic behaviour we are interested
in here. Of course one may combine these functions into one using standard

identities, although these become increasingly nested for larger NV in ¢ ). This
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can be avoided by deriving a recursive relation directly for the argument of just

one arctan-function. Defining for this purpose the functions 7y via the relation
Govy) = darctan Ty, (5.30)

we convert the recursive relation (5.20]) in ¢ into a recursive relation in 7 as

drn_

Tn—2(1+ T3 _ 1)__1\?51—?&1 1

TN = A1 (53)
1+TN1+N17—N2da

Similarly as to the derivatives for ¢, we may also compute them for the functions

7 using (5.30)). Computing first

. = e AT OIS, e
1 2 N (T 4+ Trpo)(1 = Tro1Tr)
(TN)t - E(l + TN) Zkzl (1 + 7_%_1)(1 + T%) ) (533)

and using a (7n), = # (Tn), —t (Tn), we obtain the derivative of 7 with respect to

(0%

N
dry Z [ YN+ (Tk_Tk—l)(l‘H'k—lTk) . L(Tk‘H'k—l)(l_Tk—lTk):l
Y

(1+TN) da (1+T%71)(1+Ti) «@ (1+Ti71)(1+7'i)
(5.34)
which we use to convert (5.31)) into
(N - 1)’7’]\7,2 - 237-
= 5.35
TNTUN ) 1 27y S, (5:35)
where
5 _ Nzl [aaz(1)N+k—1(7ka1)(1+Tka1)§(7k+7k1)(17kz7k1)] (5.36)
T = (1+7‘i)(1+7’i_1) ) ’
Using the variables £, instead of z, ¢ we obtain
NZ 1)N+k— 1TE— 1(7-k — 1) + 5( 1)N+k7'k(7'k 1 1) ' (537)
= T+ ) +77)

These relations lead to simpler compact expressions allowing us to study the

asymptotic properties of these functions more easily. Iterating (5.31)) we obtain
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the first solutions as

T, = e+, (5.38)

2614 £
= = 5.39
2 1+73  cosh¢’ (5-39)

1+2 262 3
S (1+28, + 5—)71;‘ 7217 (5.40)
14+ (1—26, + 28 )77

A (B3 + )T H4E_ (3 -3¢, + )T
T 34 (6+ 1262 +4¢0)72 4 374 ’ (541)

3¢,y +2d. T3 + 978
= 5.42
" 9+2r3d +3c 7t (5:42)

cr = 6% £126,&% +12¢, + 260 +18¢€2 + 3,

.
+
I

+18¢3 +18¢2¢% —9¢% F6£,6* F366,€% +18¢, +26° +3¢* +2762 +9.

It is now straightforward to compute the 7y for any larger value of N in this
manner.

It is clear that by setting up the nonlinear superposition equation (5.18]) for
different types of solutions will produce recurrence relations for new types of
degenerate multi-soliton solutions. We will not pursue this here, but instead
compare the results obtained in this section with those obtained from different

methods.

5.2.2 Degenerate multi-soliton solutions from Darboux-Crum transformation

We can carry out the procedure to produce the degeneracy of various multi-
soliton solutions to the SG equation by replacing eigenstates in the Wronskians of
SG DCT ([2.105]) with Jordan states similar to what was done for the KdV case in

Section 5.1.1 to obtain degenerate KdV multi-soliton solutions.

Degenerate kinks, antikinks, breathers and imaginary cusps from vanishing
potentials

We start by solving the four linear first order differential equations (2.95) to
the lowest level in the DC iteration procedure for some specific choices of ().

Considering the simplest case of vanishing potentials Vi = 0, by taking ¢”) = 0,
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the equations in ([2.95)) are easily solved by
Vo (1) = 1€+ 4 cpe™5+2 and o, (z,t) = ce5+/? — cpe5+/2, (5.43)

Evidently, the constants ¢y, ¢; € C determine the boundary conditions. Imposing

the PT ,-symmetry
PT,:o——x,t—>—ti—>—i,¢ > —0¢,x— ey, for x = 1, ¢, (5.44)

on each of these solutions selects some specific choices for the constants. For
instance, for ¢; = ¢, the fields in (5.43)) obey the symmetries P7T, : ¥, — v,
PT=x: ¢, — —¢, and we obtain from the DT (2.103)) the purely imaginary cusp

solution

¢ = —2iln <tanh %) . (5.45)

Imposing instead the symmetries PT _,; : ¢, — b, PT _z/2 : 0, — —ip, on the
fields in (5.43)) the kink and anti-kink solutions

¢, = 4arctan (e§+) and ¢, = 4arccot (€£+) , (5.46)

are obtained from ¢, = ic; € Rand ¢; = icy € R, respectively. We notice that the
remaining constant ¢; or ¢, cancel out in all solutions in (5.45)) and (5.46)). Iterating

these results leads for instance to the following;:

Degenerate kink solutions

For the choice ¢, = ic; we obtain the degenerate solutions
W [ 0aPas 020, - - 0N o, |
W [Yu, Oate, 02y, .., 0N 11, ]
which when evaluated explicitly coincide precisely with the expressions
previously obtained in (5.27}5.29)) in a recursive manner.

gba(N) = —2¢In

(5.47)

Degenerate complex cusp solutions

In a similar way we can construct degenerate purely complex cusp solutions.
Such type of solutions are also well-known in the literature, see for instance [95]]
for an early occurrence. These solutions appear to be non-physical at first sight,

but they find applications for instance as an explanation for the entrainment of air
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[56]]. For the choice ¢; = ¢, we obtain

c _ [9000 a@a] _ . Sinh£ +€—
e s e Crre ] (045
Goy = —2iln W lPa: Co Catal (5.49)

[¢a’aawa7 a¢ ]
[ cosh(3¢, /2)+2¢, sinh(g, /2)—(1+2¢2 ) cosh (€, /2)
= —2¢In - R .
smh(3§+/2)—2§+ Cosh(§+/2)+(1—l—2§_) 51nh(§+/2)

Similarly we can proceed to obtain the solutions ¢, for N > 3.

Degenerate breather solutions
Breather solutions may be obtained in various ways. An elegant real solution
can be constructed as follows: Taking as the starting point the two-kink solution

with two distinct spectral parameters a and 3, that is

inh | (£ — L)Y(t —
¢aﬂ =—2iIn M = 4 arctan ot B0 [(2[3 QQ)( xaﬁ)} , (5.50)
W [0 0] =B eosh (5 + )t + ap)]

we obtain a breather by converting one of the functions in the argument into a

trigonometric function. Taking first 5 — 1/a we obtain a kink-antikink solution

o? 4 1sinh [3(a —i)(t—x)]]
2—Tcosh[f(a+H(t+a)] |

Ga1/a = 4arctan [ (5.51)

Thus by demanding that (a® + 1)/(a®* — 1) = i and (o — 1)/2 = —if for some
constants for 6,0 € R we obtain an oscillatory function in the argument of the
arctan. Solving for instance the first relation gives o = (6 — 7)/ V1 + 6 so that
=1/ V1 + 6% The corresponding breather solution then results in the form

)5 [(t—x)/\/1+92]
cosh [9(15 + )/ 1+ 02] '

This solution evolves with a constant speed —1 modulated by some overall

D1/ = 4arctan [ (5.52)

oscillation resulting from the sine function. Similarly we can construct a two-

breather solution from two degenerated kink-solutions, given by

W [@a: 0aur 95, 053]
w [waa a(lq?ba? ¢B7 aﬁwﬁ] ,

by using the same parametrisation ¢; 5 1/51/a-
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5.2.3 Cnoidal kink solutions from shifted Lamé potentials

The sine-Gordon equation also admits a solution in terms of the Jacobi

amplitude am(z, m) depending on the parameter 0 < m < 1 in the form

6® = 2am (x\/_ﬁt,u) (5.54)

for any 0 < p(m) < 1. The potentials (2.97)) following from the solution (.54)) are

1 x—t x—t xr—t
e _ —_dn2( | )mn (_ )n(_ ) 5.55
: po Uy ! i) ) 6

Vvm r—t _1 Lo 1 —1/2
= TSH S 2K',m _Z_L( mY? 4 m~1?), (5.56)

where we used the parametrisation p = 4y/m/(1 + y/m)? with K (m) denoting the
complete elliptic integral of the first kind and K'(m) = K(1 — m). Notice that
this is a complex shifted and scaled Lamé potential [[90] 170] invariant under any
PT-symmetry as defined in (5.44). Such type of potentials emerge in various
contexts, e.g. they give rise to elliptic string solutions [[16] or the study of the
origin of spectral singularities in periodic P7-symmetric systems [45].

Next, we require the solutions ¢ and ¢ to the auxiliary equations from the
SG ZC representation (2 ) corresponding to the sine-Gordon solution ¢{). We
have to to distinguish the two cases 0 < o < 1 and a > 1. In the first case we

parametrise o = m'/* finding the solutions

~ —t 1 . , —t 1
¥, (x,t) = cen [27::11/4 — —K',m] . P, (x,t) = —icen [2‘;:%1/4 + §K',m] :

2
(5.57)
and for the second case we parametrise a = m~!/* obtaining the solutions
~ iy r—t 1, ~ B r—t 1,
¥, (z,t) = icdn [W = §K ,m] , Pp(x,t) =cdn [W + EK ,m] , (5.58)

with integration constant c. For real values of ¢ we observe the P7-symmetries
7),7-01\;771 = ZZma PTﬂg\bm = ¢m7 PTW{/\}m = @mv PTO@m = @m (559)
The DT (2.103]), then yields the real solutions for the sine-Gordon equation

g?)f,?(x,t) = 2am<f,u) — 4 arctan [dn(Qile)sn( P )] —m, (5.60)

cn
2m1/4’

%ﬁ?@:,t) = 2am (\f : ,u) — 4 arctan [\/ﬁcn () Sn(z;;‘“m)] —, (5.61)

dn( 1/4,m>
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after using the addition theorem for the Jacobi elliptic functions, the properties
en (iK'/2,m) = A/1+m/mY, sn (iK'/2,m) = i/m"Y, dn (iK'/2,m) =
\/1+ y/m, and the well known relation between the In and the arctan-functions.
Notice that the cn-function can be vanishing for real arguments, such that gvb( :

a discontinuous function. Furthermore, we observe that this solution has a fixed
speed and does not involve any variable spectral parameter. For this reason we
construct a different type of solution also related to ¢ that involves an additional
parameter, utilising Theta functions following [170]].

These type of solutions can be obtained from

Hy+p) . OWw+h) -
gt _ e+yZ(ﬂ), ot _ e+yX(B)7 5.62
W= "o M= o) (5:62)
which are solutions of the Schrédinger equation involving the Lamé potential V7,
that is
~,, + VU = B30, with Vg, = 2msn(y,m)” — (1 +m), (5.63)
with B3 = —msn (8,m)* and Es = —1/sn(8,m)?, respectively. The functions

H,©, Z and X are defined in terms of Jacobi’s theta functions ¥;(z, ¢) with i =
1,2,3,4, k = 57z and nome ¢ = exp(—7K/K') as

H(2):=71(2r,9), ©O(2):=94(2k,q9), X(z):= mlg(z), Z(z) = m%’((j)).
(5.64)
With a suitable normalization factor and the introduction of a time-dependence

the function U*(y) can be tuned to solve the equations (2.95)). We find

X R rT—t 1o,\ 4 t 7 coBm) dn(fm)

Uy mpla,t) = Vo (Zm_1/4 2K) e : (5.65)

Y €T — t t cn(B,m) dn(8,m)

(I)i,m,ﬁ(x,t) _ $ Z(B)Jrzﬁn\l,mﬁ (2 i + 2K) R A CED (5.66)
for o = m*sn (3, m) and

o g T—t 1\ gt a@mdn@m

Vimp(z,t) = @ 4 (m — §K> eF oA saEm) (5.67)

~ x—t 7 —__t_cn(B,m)dn(B,m)
Domsla,t) = FeHHXOTgL <W+§K') TG (5.68)

for « = 1/(mY*sn(B8,m)). The corresponding solutions for the sine-Gordon

equation resulting from the DT ([2.103)) are

,ME o (ME)* R
¢i(,lr)n,,3(x,t) = ¢\ + 28k — 4 arctan lZM-;EJF—(ME)*] , =7, (5.69)
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with the abbreviations

~ T — r—1t 1 _,
My = H<2 1/4_B+ K>@<W_§K)’ (5.70)
—~ T — r—t 1,
M, = @(2 1/4+B+ K)@(W—§K). (5.71)

We depict this solution in Figure We notice that the two solutions depicted
are qualitatively very similar and appear to be just translated in amplitude and
z. However, these translations are not exact and even the approximations depend

nontrivially on 4 and m.

Figure 5.4: SG cnoidal kink solution gAbSrl)m 5 (w,t), left panel, and degenerate cnoidal kink
solution %im s (z,t), right panel, for spectral parameter 8 = 0.9 and m = 0.3 at different

times.

Taking the normalization constants in (5.57) and (5.58)) respectively as ¢ =
+m!/*/(1—m)¥* and ¢ = i/(1—m)'/* we recover the simpler solution with constant

speed parameter from the limits

¢ _ 1

/}gr[l( ‘IjJr m,ﬁ(ma t) - ?ﬂm(l’at), (572)
_ 4

ﬁh_I)IIl( CI)-‘:— m,,@(xvt) - QOm(fI),t), (573)
_ ¢

ﬂh_I)IIl{ ¢i,m,ﬂ (‘Ta t) - ¢m($’ t)? (574)

such that (5.65]) and (5.68)) can be viewed as generalizations of those solutions.
It is interesting to compare these type of solutions and investigate whether they
can be used to obtain BT. It is clear that since ¢ does not contain any spectral
parameter it cannot be employed in the nonlinear superposition (2.70]). However,
taking ¢, = <bi(71,3w(:c,t), ¢, = qbi(l% (x,t) and ¢y = qﬁ(lmy(:c,t) we identify from
([2.67) the constants a; = +m'*sn (o — 8,m) and ay = +m"*sn (a — v, m), such
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that by (2.70]) we obtain the new three-parameter solution

£(1) £(1)

qsi(i)zﬂfy,m _ gi(,lgz,oz + 4 arctan [sn(a B,m)+sn(a—y,m) tan (W)] (575)

(a=B,m)—sn(a—~,m)

As is most easily seen in the simpler solutions and (5.61) the solutions for

¢ =" are also regular in the cases with spectral parameter.

Degenerate cnoidal kink solutions

Using the solution ¢?) as initial solutions and the solutions ) and ()
to the linear equations from SG ZC representation (2.95]), we are now in a position
to compute the degenerate cnoidal kink solutions using the DT involving Jordan

states from , ,
W24 5 08P s

0% s = O — 2iln . (5.76)
smes W [\Iji,m,,& aﬂqji,mﬂ]
A lengthy calculation yields
NZ o (NZ )*
ot AV +
% m.ps = ¢ + 48Kk — 4 arctan [ZNJ{ (N-{)*] (5.77)
where we defined the quantities
~ r—1t 1 _, T —
N+:@2(W_§K>{H2<2 1/4+5+ K)Wﬁ ©(B)] (5.78)
T — x
corm (Lot i) o (2m1/4+5+ K)]}
~ r—t 1 _, T —
N, = e? (W_§K){@2(2 1/4+5+ K)Wg ). H(B)] (5.79)

xr—

+ H? (8) Wy [@ <2 T E B+ K> 050 (2 0+ K)]}
Notice that the argument of the arctan is always real. These functions are regular
for real values of 3. Furthermore we observe that the additional speed spectral
parameter is now separated from x and ¢, so that the degenerate solution has only
one speed, i.e. the degenerate solution is not displaced at any time. We depict this

solution in Figure

5.2.4 Degenerate multi-soliton solutions from Hirota’s direct method

Finally we explore how the degenerate solutions may be obtained within

the context of HDM for the SG equation. In Chapter 2, we saw how the SG
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equation could be converted into bilinear form with an arctan transformation.
In this section, we introduce another transformation to help us convert the SG
equation into bilinear form; this is the logarithmic parametrisation ¢(z,t) =
2iIn[g(z,t)/f(x,t)] found in [88] and hence converting the SG equation into the

two equations

1 1
DuDif - f+5(g" =) = Af?, and D.Dig-g+5(f*—¢*) = Ag*,  (5.80)

with D,, D, denoting the Hirota derivatives. Explicitly we have D,D,f - f =
2f%(In f)y. Taking g = f* the equations (5.80) become each other’s conjugate
and with A\ = 0 can be solved by the Wronskian

f=Wla,: ays -5 Vayl; (5.81)

where
Y, = e+ +ice 52, (5.82)

For simplicity we ignore here an overall constant that may be cancelled out
without loss of generality and also do not treat the possibility {, — —¢,

separately. This gives rise to the real valued N-soliton solutions

¢ =2iln A 4 arctan <zf* — f> = 4arctan i (5.83)

f fr+f £

where f = f, + if; with f,, f; € R. For instance the one, two and three-soliton

solution obtained in this way are

b, = 4arctan(cae’5i), (5.84)
cﬁefi — et ]

Y
1+ cocpest s

(5.85)

Gop = 4arctan [Fag

B LY Y o, B
£L +¢€ §L+¢€ £L+E€
cacgeytcal' gplaye™t "t +cglga et "t 4 I'yalyge™t "+
4arctan[ R T ad nn 2 o ], (5.86)

Pagy = 0503 DTy e +c0es Dgal e F +cacaTyall et + +ef5FE4+EL

where I';, := (z + y)/(x — y). We kept here the constants c,, ¢z, ¢, generic as it

was previously found in [4]]] and discussed in Section 5.1.2, that they have to be

chosen in a specific way to render the limits to the degenerate case finite.
Following the procedure outlined in [41]] and discussed in Section 5.1.1, we

replace the standard solutions to the Schrédinger equation in the non-degenerate

solution by Jordan states in the computation of f in (5.81]) as

f=Wlta, 0atba, Oathas - - -+ 00 thal. (5.87)
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We then recover from (5.83]) the degenerate kink solution ¢, and ¢, in (5.27))
and (5.2§), respectively, with ¢, = —1 in (5.82)). Unlike as in the treatment of the
KdV equation in [41]] or in Section 5.1.2, the equations are already in a format that
allows to carry out the limits limg o ¢,5 = ¢, and limg ;0 @5, = D0 With the

aocx

simple choices ¢, = cg = 1 and ¢, = cg = ¢, = —1, respectively.

5.2.5 Asymptotic properties of degenerate multi-soliton solutions

Let us now compute the time-dependent displacements by tracking the one-

soliton solution within a degenerate multi-soliton solution.

Time-dependent displacements for degenerate multi-kink solutions

Unlike standard multi-soliton solutions, one cannot track the maxima or
minima for the kink solutions as they might have maximal or minimal amplitudes
extending up to infinity. However, they have many intermediate points in
between the extrema that are uniquely identifiable. For instance, for the solutions
constructed in Sections 5.2.1 and 5.2.2, a suitable choice is the point of inflection
at half the maximal value, that is at ¢, ) = 7 corresponding to 7y = 1. For an
N-soliton solution ¢~ with N parametrised as N = 2n+1—x we find the pattern

that these NV points are reached asymptotically

t
lim Ton+1l—k (——2 + Aml’,{, t) = 1, (588)
t—0 (84
for the time-dependent displacements
1 (m —0)! 20—
AXpp (1) = —In | ——————— |davt|*" 5.89
o (1) anl(m+€—/€)!|av| (5:89)
with
1
Vo= o (5.90)
1 for N even
ko= , (5.91)
0 for N odd
N—-1+k
m = TJF (5.92)
| = ["constituent from soliton compound centre. (5.93)

For example, given a degenerate 5-soliton solution ¢,y we have m = 2, k = 0
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and ¢ = 0, 1, 2, so that we can compare it with five laterally displaced one-soliton

solutions as depicted in Figure

@5a(X.t)

Pa(X+A21,0,t
Pa(X-D21,0,t
Pa(x+A220,t

)
)
)
Pa(x-D220,t)

—cne” i L L 1 L L L L 1 X
-450 -400 -350 -300 -250

Figure 5.5: Degenerate 5-soliton solution compared with five time-dependently laterally

displaced one-soliton solutions for o = 0.3 at time ¢ = 35.

Let us now derive this expression for the first five examples. Introducing the

notation z; := — 5 + éln 0, assuming that 6 ~ t#, 4 > 1 and taking y to be a

polynomial in ¢, we obtain the useful auxiliary limits

iy e =l o)~ limy, (584)
. . . 2t _ . 2t

lim lim (y+¢_) = lim (y +—F ln(5) ~ lim (y + —> : (5.95)

t—0 T—>T+ t—0 o t—00 e}

Using these expressions in (5.3815.42)) and the notation d,, ¢, = aexp(AX,, ),
T = |2| we derive the asymptotic expressions for the N-soliton solution for the

lowest values of N

g%ﬁ~£f%%=£§=l (596)
fiy 7 iy o = @57
e

ggW%ﬂﬁmiag—l (556)
;§R*£Q£i$$§1 (5%9)
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where

To: 0% = 2T =0,,4, (5.100)
T30 6 =1 or 6 =2T%=6,,, (5.101)
T4 0t =T =06, or 0= %T?’ = 8991, (5.102)
751 0T =1 or 6t= §T2 =0y10 OF 6F= §T4 = 220, (5.103)

for constituents counting outwards from the centre of the multi-solution
compound respectively. The limits need to be carried out in consecutive order,
i.e. first take z — 2, and then compute the limit ¢ — co. These are the first explicit
examples for the asymptotic values all confirming the general expression for the
time-dependent displacements (5.89)). Similarly we have computed examples for
higher values, up to N' = 10 that may also be cast into the form of (5.89)). So far we
have not obtained a general proof valid for any N. Having computed the lateral
displacement A, the time-displacement is obtained as usual from A, = —A, /v,
where v = 1/a? in our case.

Note also that the displacement ([5.89) is of the same form as for KdV degenerate
multi-soliton solutions, where the velocity parameter is v = o. So the expression
of time-dependent displacements is universal for KdV and SG degenerate multi-

soliton solutions and possibly other nonlinear systems.

Time-dependent displacements for breather solutions

For the breathers it is even less evident what point in the solution is suitable
for tracking due to the overall oscillation. However, since we are only interested
in the net movement we can neglect the internal oscillation and determine the
displacement for an enveloping function that surrounds the breather and moves
with the same overall speed. For the one-breather solution an enveloping function

is obtained by setting the sin-function in (5.52)) to 1, obtaining

0
o/ = 4arctan : (5.104)

cosh [9(15 +z)/A/1+ 92]

This function is depicted together with the breather solution in Figure 5.6 having

a clearly identifiable maximum value 4 arctan § which we can track.
We compare this now with the breather solution ¢, /41, constructed
in Section 5.2.2. Taking for that solution sin [(t—$)/\/1 +02] — 0 and
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Figure 5.6: One-breather solution surrounded by enveloping function +¢7%,, att = 25
for § = 1/5, left panel and degenerate two-breather solution surrounded by enveloping

env

function +¢7' |/, 1/, att = 100 for § = 4/3, right panel.
cos [(t —z)/A/1+ 02] — 1 we obtain the enveloping function

V1+62

202 (t—1)2 42 241460~24+(1+0~2) cosh | 201t2)
0% (t—x)2+2(t+x)?+14+0~“+(14+60~7) cos (m

4(t—x)04/1+62 cosh (M>

env _
¢a7a,1/a71/a = 4 arctan

. (5.105)
)

This function tends asymptotically to the maximal value of the one-breather

enveloping function
tlgg Dot /atja (—t £ Daat/aija,t) = 4arctan (6), (5.106)

when shifted appropriately with the time-dependent displacement

1 46%t
AXgat/aije(t) ==V1+6*In (— . (5.107)
o Z Vit

Similarly we may compute the displacements for the solutions ¢,, , 4.1/a.1/a,1/a €tc.

5.3 Conclusions

We have seen the construction of various types of degenerate multi-soliton
solutions for the KdV and SG equations based on BT, DCT and HDM. Many of
them exhibit a compound behaviour on a small timescale, but their individual
one-soliton constituents separate for large time. Exceptions are degenerate cnoidal
kink solutions that we constructed from shifted Lamé potentials for the SG
equation. These type of solutions have constant speed and do not display any

time-delay.

99



Comparing the various methods, we see degeneracy has to be implemented
in different ways for different equations and methods. For the KdV case, the
key point to obtain regularized degenerate multi-soliton solutions is to add some
complex shifts. The most straightforward and simplest way to obtain a KdV
degenerate N-soliton solution is through DCT with Jordan states. Other methods
such as HDM and BT involve guessing some appropriate constants which will
allow non-trivial degenerate limiting.

For the SG case, we have a different story. Using the recurrence relations
constructed from BT was found to be the most efficient way to obtain N-soliton
solutions for large values of N. These equations are easily implemented in
computer calculations. By just requiring a simple solution to the original NPDE
they also have a relatively easy starting point. However, the equations are less
universal than those presented using Jordan states in DCT. The disadvantage of
DCT is that they also require the wave functions for the SG ZC representation. For
large values of N the computations become more involved than the recurrence
relations for the BT. The HDM for the SG model follows similarly as for the
KdV model. The degenerate limit for a NN-soliton solution with different
spectral parameters to one particular spectral parameter could only be taken with
appropriate choice of some constants, for which a general systematic way has not
been found up to now.

Looking at the asymptotic behaviour of the solutions, we present general
analytical time-dependent expressions for displacements between the one-soliton
solution and individual constituents of degenerate multi-soliton solutions. When
expressed in terms of the soliton speed and spectral parameter, the expression
found appears to be universal for the KdV and SG equations, although in general,

the form of this is conjectural.
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Chapter 6

Asymptotic and scattering behaviour
for degenerate multi-soliton

solutions in the Hirota equation

In this chapter, we continue the study of degenerate multi-soliton solutions
with the Hirota equation, a particular example of a higher order NLS equation.
For the NLS equation, degenerate solutions have been studied in the context of
the inverse scattering method [137, [149] where they were referred to as multiple
pole solutions, which make use of poles from kernels of the Gel’fand-Levitan-
Marchenko equations. In our previous analysis for the KdV and SG equations,
we showed how to derive these type of solutions by employing HDM, BT, DCT
or recursive equations derived from BT. Here we follow a similar approach for
the Hirota equation in the construction of the degenerate multi-soliton solutions.
Subsequently, we study their asymptotic and scattering behaviour at the origin

[34].

6.1 Degenerate multi-soliton solutions from Hirota’s direct

method

Taking the Hirota bilinear form of the Hirota equation (2.5842.59)), exact multi-

soliton solutions can be found in a recursive fashion by terminating the formal
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power series expansions

ee)

— Z e for(x,t) and g(z,t) = Z ok (w,t), (6.1)

at a particular order in ¢, similarly as was done previously for other equations.

6.1.1 One-soliton solution

For € = 1 a one-soliton is obtained as

(=, . et
Qe t) = 2 with gl (e,t) = 7, and  f(n,1) = T2 (62)

The building block is the function
Tu(z,t) = ehetptlia=pu)t (6.3)

involving the complex constants c,;c € C. More explicitly, for ¢ = 1 we have

2 @ (3+i€)+it(6+i€)2 (a+iBo—BE) 2 5[“ t(20e48(5%-3¢%) )]
qlll(‘%t) - 4(5162+e261726t[2u£+ﬁ(5273§2)] ) |qil(x7 )| - j;QJreza[l t(2a€+8(5%2-3¢2))] (6 4)
with p = § +i&, 6, € R. Defining the real quantities
Ala,t) = a€+t[a(d® —€)+ 55(5 —36%)], (6.5)
o = t[2a€ + B(6* — 3¢%)] + ln(25) (6.6)

we compute the maximum of the modulus for the one-soliton solution from

¢ (x + 255, t) = §sech(zd)e i@+l 1) = =16]. (6.7)

H(alt )
max

Thus while the real and imaginary parts of the one-soliton solution exhibit a
breather like behaviour, the modulus is a proper solitary wave with a stable
maximum value 0. The solution ¢} becomes static in the limit to the NLSE g — 0

for real p, i.e. £ = 0, and also in the limit to the mKdV equation @« — 0 when

5% = 3¢%

6.1.2 Nondegenerate and degenerate two-soliton solutions

At the next order in ¢ of the expansions (6.1) we construct a general

nondegenerate two-soliton solution as

91" () + g5 (2, 1)
L+ f3"(x,t) + f17" (x,t)’

@ (x,t) = (6.8)
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with functions

g’ =T+ 0Ty, (6.9)

2 2
95" = C 2 ) 5CTy |C7'u|2 + - 2 2 2CTp |ETV|2’ (6.10)

(4 p*)* (v + p*) (o4 ve)" (v +v7)

v emaft EmetT o en@ry o fenf
. + + v , 6.11
N PR PR A P g P (oD

2/ % #\2
Y pw—v) (u*—v ~

fir = ( )" ) 5 AR (6.12)

()" (v ) (4 07) (v + %)
We have set here also ¢ = 1. As was noted previously in Chapter 5, the limit
p — v to the degenerate case cannot be carried out trivially for generic values of

the constants ¢, ¢. However, we find that for the specific choice

_ ) urvt) o ) (vt )

(w=v) (n—=v)
the limit is nonvanishing for all functions in (6.9)-(6.12)). This choice is not unique,
but the form of the denominators is essential to guarantee the limit to be nontrivial.

With c and ¢ as in (6.13)) the limit ;1 — v leads to the new degenerate two-soliton

, (6.13)

solution R R )
Lh . (N+H*)7u [(2+7—u) + (Q_Tlt) |7_u| ] 6.14
@ (x,t) = T 7 7 (6.14)
I+ (2 + |7—u| ) |Tlt| + |7'“|
where we introduced the function
Tu(z,t) = o+ pt(2ic — 36p) (+ p*) . (6.15)

We observe the two different timescales in this solution entering through the
functions 7, and 7,, in a linear and exponential manner, respectively, which is

a typical feature of degenerate solutions.

6.2 Degenerate multi-soliton solutions from Darboux-Crum

transformations

In Section 2.5.3, we saw the construction of multi-soliton solutions to the Hirota
equation using DCT. Degenerate solutions can be obtained in principle by taking
the limit of all speed parameters to a particular speed parameter, which however,
only leads to nontrivial solutions for some very specific choices of the constants

as discussed in the previous section. The other method to achieve degeneracy is
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to replace the standard solutions of the ZC representation with Jordan states, as

explained in more detail in the previous chapter

Do = O, oy — —Oh 0, (6.16)
Gop1 = Op 'O, by = Oy, (6.17)
fork =1,...,n where
o = elrtlio=2put (6.18)
_ e—M$—2M2(ia—2ﬂM)t’ (6.19)
(6.20)

and the asterisk denotes conjugation. Explicitly, the first examples for the matrices

IN)n and Wn related to the degenerate solutions are

B ) wm=[ " ?) (6.21)
—¢, —¢° —¢* o

¢ Paa Pq ¢
ouQ [au o] P [au ©la Ousp

Oy " _[6u*¢*]wx _[5u*¢*]x _au*¢*

Py © Py ¢
[0u], Opp [0.9], Op®
- [(9#* ¢*]x —6#* QZ5* [(}m* QO*]I 6#* QO*

The degenerate n-soliton solutions are then computed as

detf)
(g ) = 29— 6.23
' (z,t) i, (6.23)
where
By 4 (= 2= [H1] V== (j < N); [ok=1]@N=D), (j = N) (6.2
N )i — . . .
"ol =2m)] [V, (< N); [T @YD, (= N)
iy — 0= %= D] (1ol V=D (j < N); [0E1g]CN-D, (j > N) (6.25)
N )i — . . .
T =2k [N, (< N); [B1 @YD, (> N)

and for any function f, the derivatives with respect to z are denoted as [f]™ =

o' f. The result is that only one spectral parameter, 1, is left.
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6.3 Reality of charges for complex degenerate multi-solitons

Recalling the ZC representation of the Hirota equation (2.110[2.1T1]) from
Section 2.5.3, the conserved quantities for this system are easily derived from an
analogue of the Gardner transform for the KdV field [[126,125] 104, 30]] and match
the ones for the NLS hierarchy [[175]. Defining two new complex valued fields
T(x,t) and x(z,t) in terms of the components of the auxiliary field ¥ one trivially

obtains a local conservation law

T:=72,  x=-2 STy =0 (6.26)
' ¥
From the two first rows in the equations (2.110|) we then derive
Tzq?—z')\, X = —A—B?, (6.27)
' '

so that the local conservation law in (|6.26]) is expressed in terms of the as yet
unknown quantities A, B and T’
AB B
T, — (A L1227 —T) —0. (6.28)
q qa /g

The missing function 7" is then determined by the Ricatti equation
Oz 2 4z 2
T, =iA\—=4+rq—\"+=T-T-, (6.29)
q q

which in turn is obtained by differentiating 7" in ([6.26]) with respect to z. The
Gardner transformation consists now on expanding 7" in terms of A and a new
field w as T = —i\[1 — w/(2)\*)]. This choice is motivated by balancing the first
with the fourth and the third and the fifth term when A — co. The factor on the
field w is just for convenience and renders the following calculations in a simple
form. Substituting this expression for T" into the Ricatti equation ([6.29) with a

further choice A = i/(2¢), ¢ — 0, made once more for convenience, yields
w+e <w$ — q—‘rw> +2w? —rq=0. (6.30)
q

Up to this point our discussion is entirely generic and the functions r(z,t) and

¢(x,t) can in principle be any function. Fixing their mutual relation now to

r(z,t) = —q*(x,t) and expanding the new auxiliary density field as
w(x,t) = Z e"wp(x,t), (6.31)
n=0
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we can solve ((6.30)) for the functions w,, in a recursive manner order by order in e.

Iterating these solutions yields

wn = Ly — (wnr)e — > wpw, o, forn=1. (6.32)
q

We compute the first expressions to be

wo = —|qf, (6.33)
1L, 1,
w = 3 (997 — ¢"qz) + 3 lql, , (6.34)
1 ES E3 1 ES *
wy = |g.)*—lq" - 5 90+ q"), + 5 (00 — 907), (6.35)
1 * * * ES
wy = o (3¢lal” a2 — 3¢" 141 @ + ¢ Gow — 424%) (6.36)

5 1 1
17 lql* + 5 (00, + " @oe — |a|) | + 5 (90, — 4" ea), -
xT

When possible we have also extracted terms that can be written as total
derivatives, since they become surface terms in the expressions for the conserved
quantities. We note that with regard to the aforementioned P7-symmetry we
have PT (w,) = (—1)"w,. Since T is a density of a local conservation law, also
each function w,, can be viewed as a density. We may then define a Hamiltonian

density from the two conserved quantities w, and ws as

H(q, @uy Gua) = QW + ifwy (6.37)

= a (gl = la*) =% (@a?, — ¢*de) — %2 [(@*) (6), — ¢ (¢*)], (6.38)

with some real constants «, (3, where we have dropped all surface terms in ([6.38)).
We also included an ¢ in front of the ws-term to ensure the overall P7-symmetry
of H, which prompts us to view the Hirota equation as a P77 -symmetric extension
of the NLSE. This form will ensure the reality of the total energy of the system,
defined by E(q) := Siooo H(q, ¢zs ¢zz)dx for a particular solution. It is clear from
our analysis that the extension term needs to be of a rather special form as most
terms, even when they respect the P7T-symmetry, will destroy the integrability of
the model, see also [|64]] for other models.

It is now easy to verify that functionally, the Hirota equation and its conjugate
result from varying the Hamiltonian H = { Hdx

0H 0 d* oH 0H 0 ar oH
) == == —_ n — 1 * = — — _— 1 n — .
14t 5q* E n:0( ]‘) d.ﬁlfn aq;x ) th 5q : n:O( ) dﬂfn aqnx ) (6 39)
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with Hamiltonian density ([6.38)).At this point, noting that (2.137}{2.139)) for » =
—q* are solutions to the ZC representation (2.1102.111)) if and only if the Hirota

equation holds. They serve to compute the function y occurring in the local

conservation law (|6.28)).

6.3.1 Real charges from complex solutions

Let us now verify that all the charges resulting from the densities in (6.32]) are
real. Defining the charges as the integrals of the charge densities, that is
el
Qn = f wydz, (6.40)
-0
we expect from the PT-symmetry behaviour P7 (w,) = (—1)"w, that Q3, € R
and Q2,11 € iR. Taking now ¢, to be in the form ) and shifting x — = + xi’g in
(6.40), we find from (§6.32)) that the only contribution to the integral comes from

the iteration of the first term, that is

Qn = foo (%”) wodz. (6.41)

Itis clear that the second term in (6.32)), (w;,—1)., does not contribute to the integral
as it is a surface term. Less obvious is the cancellation of the remaining terms,

which can however be verified easily on a case-by-case basis. For the one-soliton

solution (|6.7) the charges (6.41)) become

Q, = —52JOO [i€ — 6 tanh(20)]" sech?(x:8)dx (6.42)
= — |9 3 (i€ — ou)" du (6.43)
= —19| ZZZO T 1;&; — k)!a’f(ig)"—k [1+ (—1)F]. (6.44)

Since only the terms with even £ contribute to the sum in (6.44]), it is evident from
this expression that ()3, € R and Q2,11 € iR.

Of special interest is the energy of the system resulting from the Hamiltonian
(6.37)). For the one-soliton solution ([6.7]) we obtain

B = Qi =2pl o (€= T )+ ac@-¢)|. (649

The energy is real and hence we can once again confirm the theory that P7-

symmetry guarantees reality despite being computed from a complex field.
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The energy of the two-soliton solution (|6.14]) is computed to
E(gy") = 2E(qY). (6.46)

The doubling of the energy for the degenerate solution in when compared
to the one-soliton solution is of course what we expect from the fact that the model
is integrable and the computation constitutes therefore an indirect consistency
check. We expect (6.46]) to generalize to E(q3") = nE(q{), which we verified
numerically for n = 3 using the solution ([6.23)).

6.4 Asymptotic properties of degenerate multi-soliton solutions

Next we compute the asymptotic displacement in the scattering process in
a similar fashion as discussed in the previous chapter. The analysis relies on
computing the asymptotic limits of the multi-soliton solutions and comparing
the results with the tracked one-soliton solution. As a distinct point we track the
maxima of the one-soliton solution within the two-soliton solution. Similarly
to the one-soliton, the real and imaginary parts of the two-soliton solution depend
on the function A(z,t), as defined in (6.5]), occurring in the argument of the sin
and cos functions. This makes it impossible to track a distinct point with constant
amplitude. However, as different values for A only produce an internal oscillation
we can fix A to any constant value without affecting the overall speed.

We start with the calculation for the degenerate two-soliton solution and
illustrate the above behaviour in Figure[6.1|for a concrete choice of A.

The functions with constant values of A can be seen as enveloping functions
similar to those employed for the computation of displacements in breather
functions, see e.g. [29]. Thus with A(z,t) = A taken to be constant we calculate

the four limits

B62 cos A—5(a—35¢€) sin A + ié(a—BBé) cos A+B6%sin A

limy s0gh (258 + AX (1),t) = +

VB350 T /PP H(a—36)°

2 i ®si
e 56 AX _ - B8%cos A+8(a—3B¢) sin A + - §(a—3pE) cos A—5° sin A
imyos sooqy™ (22 ®), %) /8282 +(a—36¢)? a! VB8 +(a-356)°

with time-dependent displacement

AX(t) = %m [25 |t] \//8252 + (o — 355)2] : (6.47)
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Figure 6.1: Real part of the degenerate two-soliton solution (j6.14) for the Hirota equation
atsmall values of timesfora = 1, 8 = 2, = 3/2, { = 1 with generic A(z, t) in the left panel
and fixed A = 7/3 in the right panel. For large values of time, the soliton constituents will

reach the same heights.

Using the limits from above we obtain the same asymptotic value in all four cases
for the displaced modulus of the two-soliton solution

lim |g" (2%t + AX(t),1)] = 0. (6.48)

t—+oo

In the limit to the NLSE, i.e. § — 0, our expression for AX(t) agrees precisely
with the result obtained in [[137].

We have here two options to interpret these calculations: As the compound
two-soliton structure is entirely identical in the two limits ¢ — +oo and its
individual one-soliton constituents are indistinguishable we may conclude that
there is no overall displacement for the individual one-soliton constituents.
Alternatively we may assume that the two one-soliton constituents have
exchanged their position and thus the overall time-dependent displacement is
+2A X (1).

For comparison we compute next the displacement for the nondegenerate two-
soliton solution with ¢ = ¢ = 1 and parametrisation pp = § + i, v = p + io

where 6,¢,p,0 € R. For definiteness we take z* > 27 and calculate the asymptotic

limits
1~
. WV 6, 3 "V 57
Jim gy (a3 + gAX,t)‘ = tkgloo‘qg (ﬂrf,t)‘ =9, (6.49)
1 ~—
- vV Po — - MV 6’5 _ —
tEToomz (27 1) = tll)l_noo g (2t + pAX,t)‘ p,  (6.50)
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with constant

E{:ln[(5+p)2+(5_‘7)2] (6.51)

(0 —=p)* +(~0)
Thus, while the faster one-soliton constituent with amplitude J is advanced by the

amount AX /0, the slower one-soliton constituent with amplitude p is regressed by
the amount AX /p. We compare the two-soliton solution with the two one-soliton

solutions in Figure

0.3

0.8r

|q2ul‘/| t 10000
56 t= 10000 =-

025 la: ; !

06 || - lg+]

02}

t=100

04 t=-100

LN

X < X
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0.1r
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Figure 6.2: Nondegenerate two-soliton solution compared to two one-soliton solutions for
large values of |t| for o = 1.1, 5 = 0.9,6 = 0.8, £ = 0.4, p = 0.5, 0 = 0.6 in the left panel.
Degenerate two-soliton solution compared to two one-soliton solutions for large values of

[t| fora = 1.5, f = 2.3, = 0.25, £ = 0.6 in the right panel.

We also observe that while the time-dependent displacement AX (¢) in (6.47)
for the degenerate solution depends explicitly on the parameters a and 3, the
constant AX in 1 is the same for all values of o and . In particular it is the
same in the Hirota equation, the NLSE and the mKdV equation. The values for a

and f only enter through z/” in the tracking process.

6.5 Scattering properties of degenerate multi-soliton solutions

Besides having a distinct asymptotic behaviour, the degenerate multi-solitons
also display very particular features during the actual scattering event near x =
t = 0 when compared to the nondegenerate solutions. For the nondegenerate two-
soliton solution three distinct types of scattering processes at the origin have been
identified. Using the terminology of [8] they are merge-split denoting the process
of two solitons merging into one soliton and subsequently separating while each
one-soliton maintains the direction and momentum of its trajectory, bounce-

exchange referring to two-solitons bouncing off each other while exchanging their
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Figure 6.3: Different types of nondegenerate two-soliton scattering processes for the
solution . Left panel: merge-split scattering with o = 1.1, 5 = 0.9, p = 2.5, { = 0.4,
§ = —0.8, 0 = 0.6. Middle panel: bounce-exchange scattering with o = 1.1, § = 0.9,
p=—06,¢&=0.1,0 =05 0 = 0.2. Right panel: absorb-emit scattering with o = 1.1,
B=09p=—15¢=04,6 =—08 0 = 0.6.

momenta and absorb-emit characterizing the process of one soliton absorbing the
other at its front tail and emitting it at its back tail, see Figure

For the degenerate multi-soliton solutions the merge-split and bounce-
exchange scattering is not possible and only the absorb-emit scattering process
occurs as seen in Figure 6.4}

This feature is easy to understand when considering the behaviour of the
solution at + = ¢ = 0. As was argued in [§] the different behaviour can be
classified as being either convex downward or concave upward atz = ¢t = 0
together with the occurrence of additional local maxima. For the degenerate two-

soliton solution we find 0 |g5*(x,t)| /0|,y g = 0and % g5 (x,t)| /0x°|,_,—o =
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Figure 6.4: Absorb-emit scattering processes for degenerate two-solitons (6.14)) with o =
1.1,8=109,8 = 0.8, & = 0.1 (left panel) and three-solitons (6.23) with a = 1.1, 8 = 0.9,
0 = 0.6, £ = 0.4 (right panel).

—10]6]%, which means this solution is always concave at z = ¢ = 0. In addition,
we find that Re? ¢5*(x, 1) | e—0.1—o and Im? ¢i*(x, 1) | 4—0.1— are always concave and
convex at x = t = 0, respectively. Hence, we always have the emergence of
additional local maxima, such that the behaviour must be of the absorb-emit type.
In Figure we display this scattering behaviour for the degenerate two and
three-soliton solutions in which the distinct features of the absorb-emit behaviour
are clearly identifiable.

We observe that the dependence on the parameters o and [ of the degenerate
and nondegenerate solution is now reversed when compared to the asymptotic
analysis. While the type of scattering in the nondegenerate case is highly sensitive
with regard to o and f, it is entirely independent of these parameters in the

degenerate case.

6.6 Conclusions

We constructed all charges resulting from the ZC representation and
by means of a Gardner transformation, which matches the charges from
the NLS equation. Furthermore, We computed a closed analytic expression for all
charges involving a particular one-soliton solution, verified for a high number of

charges. Two of the charges were used to define a Hamiltonian whose functional
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variation led to the Hirota equation. The behaviour of these charges under P7-
symmetry suggests to view the Hirota system as an integrable extended version
of NLSE. This point of view allows for confirmation of previous arguments from
Chapters 3 to 5 that guarantee the reality of the energy to all higher order charges.

Explicit multi-soliton solutions from HDM as well as the DCT were derived
and we showed how to construct degenerate solutions in both schemes. As
observed previously, the application of HDM relies on choosing the arbitrary
constants in the solutions in a very particular way. = When using DCT
the degenerate solutions are obtained by replacing standard solutions in the
underlying auxiliary eigenvalue problem by Jordan states.

From the asymptotic behaviour of the degenerate two-soliton solution we
computed the new expression for the time-dependent displacement. As
the degenerate one-soliton constituents in the multi-soliton solutions are
asymptotically indistinguishable one cannot decide whether the two one-
solitons have actually exchanged their position and therefore the time-dependent
displacement can be interpreted as an advance or delay or whether the two one-
solitons have only approached each other and then separated again. The analysis
of the actual scattering event allows for both views.

We showed that degenerate two-solitons may only scatter via an absorb-
emit process, that is by one soliton absorbing the other at its front tail and
subsequently emitting it at the back tail. Since the model is integrable all
multi-particle/soliton scattering processes may be understood as consecutive two
particle/soliton scattering events, so that the two-soliton scattering behaviour

(absorb-emit) extends to the multi-soliton scattering as we demonstrated.
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Chapter 7

New integrable nonlocal Hirota

equations

When we compare the Hirota equation (2.4)) with the NLS equation, (2.4]) with
B = 0, we notice that the additional term in the Hirota equation shares the same
PT-symmetry with the NLS equation, as it is invariant with respect to PT : z —
—x,t > —t,i —> —i,q — g, where P : x - —zand T :t - —t, i — —i.
Hence the Hirota equation may also be viewed as a P7T-symmetric extension of
the NLS equation. Similarly as for many other P7T-symmetric nonlinear integrable
systems [64], various other P7T-symmetric generalizations have been proposed
and investigated by adding terms to the original equation, e.g. [1, 7, [101]].

A further option, that will be important here, was explored by Ablowitz and
Musslimani [3} 4]] who identified a new class of nonlinear integrable systems by
exploiting various versions of PT-symmetry present in the ZC condition/AKNS
equations that relates fields in the theory to each other in a nonlocal fashion. One
particular type of these new systems that has attracted a lot of attention is the
nonlocal NLS equation [96] 112, 164162} 169, 27, 75].

Exploring this option below for the Hirota equation will lead us to new

integrable systems with nonlocal properties [31]].
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7.1 Zero-curvature and AKNS equations for the nonlocal Hirota

equations

As discussed in the introduction, the classical integrability of a model can be
established by the explicit construction of its Lax pair [110]], which is equivalent to
the closely related ZC condition or AKNS equations [2] and constitutes a starting
point for an explicit solution procedure. The reformulations of the equation of
motion of the model in terms of the ZC condition allows for the construction of
infinitely many conserved charges, which is roughly speaking synonymous with
the model being classically integrable. We explore various symmetries in this
reformulation that will lead us to new types of models exhibiting novel features.

In Section 2.5.3, we saw the ZC or AKNS equations for the Hirota equation.
Next, one needs to make sure that these two equations are in fact compatible.
Adapting now from [33} 4] the general idea that has been applied to the NLSE to
the current setting we explore various choices and alter the z, t-dependence in the
functions  and ¢. For convenience we suppress the explicit functional dependence

and absorb it instead into the function’s name by introducing the abbreviations

q:= Q(xvt)/ q:= Q(_x>t)/ q:= Q(ma _t)r q:= Q(_xa _t)' (7'1)

All six choices for r(x, t) being equal to ¢, g, ¢ or their complex conjugates ¢*, ¢*, ¢*
together with some specific adjustments for the constants a and /3 are consistent
for the two AKNS equations, thus giving rise to six new types of integrable models
that have not been explored so far. We will first list them and then study their

properties, in particular their solutions, in the next chapters.

The Hirota equation, a conjugate pair, r(x, t) = kq*(x, t):
The standard choice to achieve compatibility between the two AKNS equations
(2.140H2.141]) is to take r(z,t) = kq*(x,t) with kK = +1, such that the equations

acquire the forms

—igf = —a (g, —26q] ¢*)+ B(qk, — 6rla*q}) - (7.3)

Equation ([7.2)) is the known Hirota "local” equation. For «, 3 € R equation (7.3)
is its complex conjugate, respectively, i.e. (7.3)* =(7.2). When 3 — 0 equation
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(7.2)) reduces to the NLS equation with conjugate (7.3) and for o — 0 equation
(7.2)) reduces to the complex mKdV with conjugate (7.3). The aforementioned

PT-symmetry is preserved in these equations.

A parity transformed conjugate pair, r(x,t) = kq*(—x, t):
Taking now r(z,t) = kg* with K = +1 together with 5 = iJ, a, ¢ € R, the AKNS

equations become
We observe that equation ([7.4)) is the parity transformed conjugate of equation

(7.5), i.e. P(74)* =(7.5). We also notice that a consequence of the introduction

of the nonlocality is that the aforementioned P7T-symmetry has been broken.

A time-reversed pair, r(x,t) = kq*(x, —t):

Choosing 7(z,t) = k¢* with k = £1and a = 9, B =1id, 5, 0 € R we obtain from

AKNS equations the pair
ig; = i0[@, — 2rq(@)°]+ 0(@s, — 67" 4d3) - (7.7)

Recalling here that the time-reversal map includes a conjugation, such that 7 :
q — ¢*,1 — —i, we observe that (7.6)) is the time-reversed of equations ([7.7), i.e.
T (7.7)=(7.6). The PT-symmetry is also broken in this case.

A PT-symmetric pair, r(x,t) = kq*(—x, —t):
For the choice r(x,t) = k¢* with k = +1 and a = id, 5, § € R the AKNS equations

become

G = —0[que — 26G°¢*] — Blduar — 6K93" 0], (7.8)

[T — 26a(T) ]+ B(@re — 657" 4T;) - (7.9)

L

_Z]’t* =
We observe that the overall constant 7 has cancelled out and the two equations
are transformed into each other by means of a P7-symmetry transformation

PT ([7.9)=(7.8). Thus, while the PT-symmetry for the equations ([7.8)) is broken,

the two equations are transformed into each other by that symmetry.
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A real parity transformed conjugate pair, r(x,t) = kq(—x, t):
We may also choose ¢(z,t) to be real. For r(z,t) = kg with x = +1, § € R and
B =10, «a,d e R, the AKNS equations acquire the forms

iQt = —«Q [qmc - 2"{5(]2] + 6[qmcx - GHQCYQI] ) (710)

—@s = —o [ax:v - 2/<~'q672] - 5@5” - 6/€5qa:v) : (711)

The equations (7.11]) and (7.10) are related to each other by conjugation and a
parity transformation (7.5)), i.e. P(7.11)* =(7.10). However, the restriction to
real values for ¢(x,t) makes these equations less interesting as ¢ becomes static,
which simply follows from the fact that the left hand sides of and (7.11]) are

complex valued, whereas the right hand sides are real valued.

A real time-reversed pair, r(x,t) = kq(x, —t):
For r(z,t) = kgwithk = 1,7 € Rand a = i9, B =10, 3,5 € R we obtain from
the AKNS equations

gy = 0 [Gse = 264" ¢"] + O[Gars — 60" 0], (712)
iq;p = 0 |qr, — 26q(@")* |+ 0(3}s, — 657" qdy) - (7.13)
Again we observe the same behaviour as in the complex variant, namely that

the two equations (7.12)) and become their time-reversed counterparts, i.e.
T (7.13)=(7.12)) and vice versa.

A conjugate PT-symmetric pair, r(x,t) = kq(—x, —t):
For our final choice r(x,t) = kg with kK = +1, we have «a, § € C, i.e. no restriction

on the constants and the AKNS equations become

@ = i Qe — 2640° | = Bldsze — 6544, ] (7.14)

_E]/t = i [ijm - QHC](\JQ] + ﬁ(zjxmz - 6/'12]@&;«) : (715)

These two equations are transformed into each other by means of a P7T-symmetry
transformation and a conjugation P7 (7.15)* =(7.14). A comment is in order
here to avoid confusion. Since a conjugation is included into the 7 -operator,

the additional conjugation of ([7.14)) when transformed into (7.15)) means that we

simply carry out v - —z and t — —t.
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The paired up equations (7.6])-(7.15]) are all new integrable nonlocal systems

and we summarise the cases with the table below.

Parity transformed

conjugate pair

T ime-reversed pair

PT-symmetric pair

r=tq¢*(—z,t)
aeR feiR

r=+q*(z,—t)
ae iR, 5 eR

r=tq*(—z,—t)
aeiR, feR

Parity transformed

Time-reversed real

PT-symmetric

conjugate real pair pair conjugate pair
r=tq(—x,t) r = +q(x,—t) r = +q(—x,—t)
aeR, feiR ae iR, 5 eR aeC,peC

Let us now discuss solutions and properties of these equations. Since the two
equations in each pair are related to each other by a well identified symmetry
transformation involving combinations of conjugation, reflections in space and

reversal in time, it suffices to focus on just one of the equations.

7.2 The nonlocal complex parity transformed Hirota equation

In this case the compatibility between the AKNS equations is achieved by the
choice r(z,t) = kq*(—x,t). As x is now directly related to —z, we expect some

nonlocality in space to emerge in this model.

7.2.1 Soliton solutions from Hirota’s direct method

Let us now consider the new nonlocal integrable equation (7.4)) for k = —1.
We factorize again ¢(z, t) = g(z,t)/f(x,t), but unlike in the local case we no longer

assume f(z,t) to be real but allow g(x,t), f(x,t) € C. We then find the identity

PT [iget 0es + 2030 = 8(duss + 647" 4:)] = (7.16)
fJ*[iDg - [ +aD2g- f —8D3g - ]+ (f*Dif f - 2fg§*) (%ng f - ag).
When comparing with the corresponding identity in the local case (2.57)), we

notice that this equation is of higher degree in the functions involved, in this

case ¢g,79%, f,f*, having increased from three to four. The left hand side vanishes
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when the local Hirota equation ([7.4) holds and the right hand side vanishes when
demanding
iDyg- f+aDilg-f—06D}g- f =0, (7.17)
together with
J*Dif - f =2fq5". (718)
We notice that equation ([7.18)) is still trilinear. However, it may be bilinearised by
introducing the auxiliary function h(z,t) and requiring the two equations

Df-f=hg, and  2f§* =hf*, (7.19)

to be satisfied separately. In this way we have obtained a set of three bilinear
equations (7.17) and (7.19) instead of two. These equations may be solved

systematically by using an additional formal power series expansion

h(z,t) = Zk ¥ hy, (0, ). (7.20)

For vanishing deformation parameter § — 0 the equations (7.17) and (7.19)
constitute the bilinearisation for the nonlocal NLSE. As our equations differ from
the ones recently proposed for that model in [[157] we will comment below on
some solutions related to that specific case. The local equations are obtained for
f* — f, G — g, h — g* as in this case the two equations in ) combine into the

one equation (2.59)).

Two types of one-soliton solutions
Let us now solve the bilinear equations ([7.17]) and ([7.19)). First we construct the
one-soliton solutions. Unlike the local case we have here several options, obtaining

different types. Using the truncated expansions
f=1+¢&%f, g = €41, h = ¢ehy, (7.21)

we derive from the three bilinear forms in (7.17)) and ([7.19) the constraining

equations
0 = eli(g) + @(91) s — 0(91)aaal +° [2(f2), (91), — 91 [(f2)yy + i (f2),] (7.22)
+Zf2 [(gl)t +1 (gl);rx]] ?

0 = & [2(f2)ex — grha] + " [2f2(f2)ea — 2(f2)3] (7.23)
0 = e[25" — ]+ & [2;55;" . f;;*hl] . (7.24)
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At this point we pursue two different options. At first we follow the standard
Hirota procedure and assume that each coefficient for the powers in ¢ in (7.22))-
(7.24)) vanishes separately. We then easily solve the resulting six equations by

g1 = )\T‘uﬁ, f2 = —TN:’Y?* hl = 2)\*%* (725)

wy?

with constants v, A, u € C. Setting then ¢ = 1 we obtain the exact one-soliton

solution
A o ,%)\2
1 _ (b= 1) Ty (7.26)

st ~
’ (o — p*)? + |/\|2 TNWTZ,W

where

Ty = ehotitle—tultty, (7.27)

Next we only demand that the coefficients in ([7.22))-(7.23)) vanish separately, but
deviate from the standard approach by requiring only to hold for ¢ = 1.
This is of course a new option that was not at our disposal for the standard local
Hirota equation, since in that case the third equation did not exist. In this setting

we obtain the solution

*

g1 = (,LL + V)T,u,’i’w f2 = T,u,i’y%—u,fw? hl = 2(:“ + V)%izz,fi% (728)

so that this one-soliton solution becomes

(1 W+ )Ty (7.29)

Qnonst = ~%
I+ Ty 7o

v,—i0
The standard solution (7.26]) and the nonstandard solution (7.29)) exhibit
qualitatively different behaviour. Whereas qgﬁ ) depends on one complex spectral

and one complex shift parameter, gV

nonst depends on two real spectral parameters

and two real shift parameters. Hence the solutions cannot be converted into each
other. Taking in for simplicity A = p — p* the modulus squared of this
solution becomes
2 (u—p*)?e®tr™)

~ 2cosh[(u—p*)a] -2 cosh|[y+y¥ +ia|p2—(u*)? |t—is [ 3 — (u*)*|¢]

1
qgt :

(7.30)

This solution is therefore nonsingular for Rey # 0 and asymptotically
nondivergent for Re u = 0. We depict a regular solution in the left panel of Figure
and observe the expected nonlocal structure in form of periodically distributed

static breathers.
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In contrast, the nonstandard solution (7.29)) is unavoidably singular. We
compute
2 (1 + v)2emv=v)
~ 2cosh (1 + v)a] + 2cos [y + 0 + a(u — v2)t — 6 (1P + 13) ¢]
which for x = 0 becomes singular for any choice of the parameters involved at
vy+0+2n—1)7w
a(? —p?) +6 (2 + )
We depict a singular solution in the right panel of Figure [7.1| with a singularity

(1)

qnonst

(7.31)

ty = neZ. (7.32)

developing at ¢, ~ —0.689751. We only zoomed into one of the singularities, but
it is clear from equation ([7.32)) that this structure is periodically repeated so that

we can speak of a nonlocal rogue wave [99,37].

|QSI| |qnonst|
— t=-3/2 2T —_— t=—15
——— t=0 ———— t=—1.0
------ t=1/2 20F e =08
t=1 : t=—0.6
155

Figure 7.1: Nonlocal regular one-soliton solution ([7.30])) for the nonlocal Hirota equations
obtained from the standard HDM at different times for « = 0.4, = 0.8, v = 0.6 + i1.3

and p = 0.7, A\ = 1.7 (left panel). Nonlocal rogue wave one-soliton solution ([7.31] for
the nonlocal Hirota equations obtained from the nonstandard HDM at different times for

a=04,0=18~vy=0.5,0=0.1,p=0.2and v = 1.2 (right panel).

Notice that for « — —1 and § — 0 the system ([7.4]) reduces to the nonlocal
NLSE studied in [3]]. For this case the solution ([7.29) acquires exactly the form of
equation (22) in [3] when we set v — —2n,, t — —2n,, v — 02 and § — 6;. There
is no equivalent solution to the regular solution ) reported in [3]], so that q§§ )

for § — 0is a also new solution for the nonlocal NLSE.

The standard (two-parameter) two-soliton solution
As in the local case we expand our auxiliary functions two orders further in

order to construct the two-soliton solution. Using the truncated expansions

f =1+ €2f2 + €4f4, g =g + 6393, h = €h1 + €3h3, (733)
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to solve the bilinear equations ([7.17]) and ([7.19)), we find

g1 = T,u,'y+7—u,ga (734)
— (.LL*V)Z ~k (}L*l/)2 ~ %
93 = (Mfu*)z(y,lu*)?TMNTV,CT/L,A/+ (N,V*)2(,/,,,*)2TM»’YT%CTV,C? (7.35)
~% ~ ~% ~%
T T TucT T T TucT
fo = P Y vl !y Loy v v (7.36)

(w—p*)?  (v=p*)? (u—v*)? (v—v*)*
(b —v)? (p* —v*)°

- T T Tu e 7.37
fa (M—M*)2 (V—H*)2 (M—V*)Q(V—I/*)2 ry ! uy vl ( )
hi = 27':;7 + 2?:,0 (7.38)

2p*—v*)2 A~ Wu*—*V2 ox ~
hs = (u—p(tl’:)Q(V*)—u)zTZWT;@T“” + <u*$>2<u_>y*)2 TZ,WTZ,CT%C' (7.39)

So that for ¢ = 1 we obtain from ([7.34))-(7.39]) the two-soliton solution

1+ fQ(LL’, t) + f4(l’, t)
As for the one-soliton solution ([7.26]) we recover the solutions to the local equation

by taking 7 — 7 and p* — —p*, v* — —v* in the pre-factors. In Figure[7.2] we
depict the solution ([7.40]) at different times.

|an| |CI[|||

4 § i 180 9 4

] I A ] l l A [] ! \ !
RN RN
I 0
pannptapesanannd
T g alng
NEARAY AR ANV ANRVANAVANEY
YRVEVYRVEVRVEVIVRYRVEVRVAVRY

s -40 -20 0 20 40 .

Figure 7.2: Nonlocal regular two-soliton solution for the nonlocal Hirota equations
obtained from the standard HDM at different times for & = 0.4, § = 0.8, v; = 0.6 + 1.3,
py = 10.7, 79 = 0.94140.7, sy = i0.9 (left panel). Nonlocal regular two one-soliton solution
for the nonlocal Hirota equations v; = 0.6+41.3, 1; = 0.7 (red) and v, = 0.9+1:0.7,
o = 0.9 (black) versus the blue nonlocal regular two-soliton solution at the same

values at time ¢ = 2.5 (right panel).

In the left panel, we observe the evolution of the two-soliton solution
producing a complicated nonlocal pattern. In the right panel we can see that
the two-soliton solution appears to be a result from the interference between two

nonlocal one-solitons.
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As in the construction of the one-soliton solutions we can also pursue the
option to solve equation ([7.24]) only for ¢ = 1 leading to a second type of two-
soliton solutions. We will not report them here, but instead discuss how they

emerge when using DCT.

7.2.2 Soliton solutions from Darboux transformation

Taking the DT prescription from Section 2.5.3, we start again by choosing the
vanishing seed functions ¢ = r = 0 and solve the linear equations from the ZC

representation with A — ¢\, with the additional constraint 3 = 74 by

& o (x, t; \) AT H2iN (@200t 4y,
U (8 0) = - . (7.41)
O1(z, 15 N) o A= 2i0% (a—26\)t 47

In the construction of ¥, we implement now the constraint 7(z,t) = xq*(—z,t),
with k = =1, that gives rise to the nonlocal equations and ([7.5). As
suggested from the previous section we expect to obtain two different types of
solutions. Indeed, unlike in the local case we have now two options at our disposal
to enforce the constraint. The standard choice consists of taking ¢, = KJQNﬁI, by = @y
for complex parameters which is very similar to the approach in the local case.
Alternatively we can choose here ¢, = @], ¢, = k5. Evidently the first equation
in the latter constraint holds when 73 = v, in (7.41]). Itis also clear that the second
option is not available in the local case.

For the first choice we obtain therefore

5 T, ;A =2, A N TH2(ONF)? (=260 )+
Uy(x,t; A) = ZICER) _ i ( ) _ o !
¢2(;L"t/ )\) _K(p’l“(_lv’ t; )\) _Iie_)\ —2i(A* )2 (=20 A% )t+~7

(7.42)
with \,y,,7, € C and from (2.132)) we have
) 2(}\* _ /\)62)\x+4i/\2(a725)\)t+’ylf’yg
qét)(x7t) = vk N2 ANy * _ k% (743)
1+ k2= AT )2+ 4 (@ —20N)t—4i(A* )2 (=20 A% )t +71 =72 +7T =73

For the second choice we take ¥, (z,t; 1) with u € R and v, = 7§ in (7.41). In
this choice the second wavefunction decouples entirely from the first and we may

therefore also choose different parameters. For x = 1 we take

N Tty 6V.Z’+2’LV2((X—26V)t+’Yg
Uy(2, t;v) = o tiv) | (7.44)

Oz, ;1) _ - va—2ir (a—20v)t+
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where v € R and hence (2.132)) yields

2(1/ _ 'u)e’yl—’Yf+2ux+4iu2(a—25u)t

(1) (a:,t) _

Qnonst

(7.45)

1 4 e2(p—v)z+dio(p? —v2)t=2i(p3—v3)t+y, =¥ —v3+75

The N-soliton solutions are obtained considering the set

§§5\/ = {@1(% t A1), @2(% t; A1), @1(% t; \a), @2(% [ZDV) @1(% t ), ‘T’z(% t; )\n)}
(7.46)

for the standard case or

S5 = {1 (st 1), B, t00), U85 1), Vo v2), o Wil 1), B, t5v) |
(7.47)
for the non-standard case, with (7.41]) and (7.42)) and the formulae (2.133)).
Investigating the nonlocal complex P7-transformed Hirota equation, we
observe nonlocality in time rather than space, displaying a time crystal like

structure [[172,[153]]. The other cases have similar nonlocal properties respectively.

7.3 Conclusions

We exploited various possibilities involving different combinations of parity,
time-reversal and complex conjugation to achieve compatibility between the two
AKNS equations resulting from the ZC condition for the Hirota equation, which
is closely related to the lax representation. In this sense, along with the sense
that we have provided various methods on how to obtain soliton solutions, each
possibility corresponds to a new type of integrable system. Solving these new
nonlocal equations by means of HDM, we encountered various new features.
Instead of having to solve two bilinear equations, these new systems correspond
to three bilinear equations involving an auxiliary function. We solved these
equations in the standard fashion by using a formal expansion parameter that
in the end can be set to any value when the expansions are truncated at specific
orders. In addition, the new auxiliary equation allows for a new option for this
equation to be solved for a specific value of the expansion parameter, thus leading
to a new type of solution different from the one obtained in the standard fashion.
We also identified the mechanism leading to this second type of solution within
the approach of using DCT. In that context the nonlocal relations between ¢ and
r allow for different options in (2.132)).
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Chapter 8

Nonlocal gauge equivalence: Hirota

versus ECH and ELL equations

Having explored nonlocality for the Hirota equation in the previous chapter,
we explore here how nonlocality can be implemented into extended versions of
the continuous limit of the Heisenberg (ECH) equation [[134] [105] 162} 160, 52]]
and extended Landau-Lifschitz (ELL) equations [[108} 17]]. We exploit the gauge
equivalence of these systems and investigate how the nonlocality property of one
system is inherited by the other [32]. For the NLS equation, the gauge equivalence
to the ECH equation in the local case has been known for some time [[176]] and
nonlocal case recently explored in [72]. In there, gauge equivalence was explored
for a particular case of nonlocal NLS soliton solution. In this chapter we will
not only extend this investigation for the Hirota equation, but also show how the
nonlocality is implemented in the ECH equation through DT, finding new types
of solutions in the nonlocal setting, which have no counterpart in the local case.

The local version of the original Landau-Lifschitz equation famously describes
the precession of the magnetization in a solid when subjected to a torque resulting
from an effective external magnetic field. Various extended versions have been
proposed, such as for instance the Landau-Lifshitz-Gilbert equation [[76]] to take
damping into account. The nonlocal versions of this equation studied here

provide further extensions with complex components.
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8.1 Gauge equivalence

In Section 2.5.4, we introduced the gauge correspondence between two ZC
representations and showed how a special choice of the gauge operator leads to
DCT (an auto-gauge correspondence), the iteration to produce infinitely many
solutions of the ECH equation with an initial seed solution. In this chapter, we will
show another usage of gauge correspondence. This is to take our investigations of
the nonlocal Hirota equation from the previous chapter to the analogous nonlocal
ECH equation through utilising the gauge equivalence between the two gauge
equivalent ZC conditions.

Here, we first present the gauge equivalence of the nonlocal Hirota and ECH

equations.

8.1.1 The nonlocal Hirota system

Let us first rewrite the ZC representation for the Hirota equation from Section
2.5.3 expanded in terms of spectral parameter A\, which is convenient later in

finding the gauge equivalence
[Vl = Va¥n, [Vile = Un¥n, (8.1)

with Uy, Vi to be of the form

U = Ay + M4, Vig = By + ABy + \*By + N\* B, (8.2)
where
0 b —i 0
Ay = =) AL = Z = —103, (8.3)
r(z,t) 0 0 1
BO = i [0'3 (Ao)x - 0'3143] + 5 [2143 + (Ao)m AQ - AO (140)3j - (Ao)rx] y (84)
By = 20l + 2ifos [(Ad), — AF], (8.5)
B2 = 46140 - 2’iOéO'3, (86)
Bg = —4iﬁ03, (87)

witho;, i = 1,2, 3 denoting the Pauli spin matrices. One can check with the explicit

expressions (8.2))-(8.7)), that the ZC condition becomes equivalent to the following
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AKNS system for the fields ¢(z,t) and r(x, ):
G — 10y + 2i0G°r + B [ques — 6gra.] = 0, (8.8)

e + 0Ty, — 2iaqr® + B (Teee — 6qrry) = 0. (8.9)

As seen in the previous chapter, we can reduce the AKNS system to one equation
through various choices of r(z, t), in particular, exploiting P7T -symmetry, various
nonlocal cases come out such as r(z,t) = k¢*(—=x,t), r(z,t) = kg*(x, —t), r(x,t) =
kq*(—x,—t), r(x,t) = kq(—x,t), r(z,t) = kq(x,—t) or r(z,t) = kqg(—z,—t) with
k = *1 and a suitable condition on the parameters o and 3. For the rest of this
chapter, we focus our investigations for the nonlocal case r(x,t) = kq*(—=z,t) with
B = id as other cases will follow similarly.

8.1.2 The nonlocal ECH equation

Now, let us take another system Ug, Vp as the gauge equivalent ZC

representation to the Hirota system,

Taking the two systems with operators Uy, Vi and Ug, Vi and considering their
corresponding solutions ¥y to Uy are related by a gauge operator G as Vy =

GV g, then Uy, Vg and Ug, Vg are related as
Uy = GUgG™' + GG, and Vi =GVpG '+ GG (8.11)
or
Ug =G 'UyG — G 'G,, and Ve =G 'VyG - GG, (8.12)
Employing the expansion (§8.2]), we obtain from (8.12)) the expressions
Ug = —iAG 'osG, Ve = A\G 1B,G + NG 1B,G + NG 'BsG, (8.13)

together with
Gw = A()G, and Gt = BoG (814)

Given A and By, it is the solution for these two equations in ([8.14]) that determines

the precise form of G for a particular set of models.
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An interesting and universally applied equation emerges when we use the

gauge field G to define a new field operator
S =G 'osG. (8.15)
The following properties follow directly from above:

S? =1, S,=2G"to3A,G, (8.16)
S8, = —8.8=2G 4G, |5, Su] =2(85.+52). (8.17)

Next we notice that instead of expressing the operators Ug and Vj in terms of the

gauge field G, one can express them entirely in terms of the operator S as

Up = —iAS, (8.18)

Vi a (ASS, — A*2i8) + 3 [A (igssg + @S) +A\?258, — >\34z'5] . (8.19)

Using this variant we evaluate the ZC condition to obtain the equation of motion

for the S-operator

S = ia(S?+SS) — A [g (557) + s] (8.20)
- %oz S, S,] — § (35 + S5, Suaa]) - (8.21)
For 8 = 0 this equation reduces to the well-known continuous limit of the

Heisenberg spin chain [[134, 105,162} [160, 52]] and for 5 # 0 to the first member of
the corresponding hierarchy [[168]]. We refer to this equation as the ECH equation.
Taking r(z,t) = kg*(—x,t) with 5 = id, we obtain the nonlocal ECH equation

S, = %oz [S, See] — zg (352 + S[S, Suaal) » (8.22)

where nonlocality will appear in the entries of the S matrix, as we shall see in
the next section. The equation (8.20)) is rather universal as it also emerges for
other types of integrable higher order equations of NLS type, such as the mKdV
equation [103, 118] or the Sasa-Satsuma equation [[103| [119]. The distinction
between specific models of this general type is obtained by specifying G.

Given the above gauge correspondence one may now obtain solutions to the
nonlinear equations of a member of the NLS hierarchy from the equations of

motion of the corresponding member the continuous Heisenberg hierarchy, or
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vice versa. For instance, given a solution ¢(x,t) and r(z, t) to the Hirota equations
®.8), one may use equation (8.14]) to construct the gauge field operator G
and subsequently simply compute S, that solves (8.20]) by construction, by means
of the relation ([8.15). Conversely, from a solution S to ([8.20) we may construct G
by (8.15) and subsequently ¢(z, t) and r(z,¢) from (8.14)). We elaborate below on

the details of this correspondence.

8.2 Nonlocal multi-soliton solutions for the ECH equation from
Darboux-Crum transformation
In Section 2.5.4, we introduced the method of DCT for the ECH equation. In

this section, we explain particularly how nonlocality is naturally introduced into

these systems through seed solutions to the nonlocal ZC representation equations.

8.2.1 Nonlocal one-soliton solution

We start with a simple constant solution to the ECH equation (8.20) as in

Section 2.5.4 describing the free case

—w U
S = , with w=1u=v=0. (8.23)

vow

In order to define the matrix operator H as in (2.157)), we need to construct the
seed solution 1(\) to the spectral problem (2.145)) and evaluate it for two different
nonzero spectral parameters ¢(\1) = (p;, ¢;) and Y (A2) = (@, B5).

For nonlocality, we impose the symmetry condition
S(x,t) = kST(—x,t) with B =10 (8.24)
and choose v = ku*(—z,t), which leads to the constraints w = kw*(—z,t),
0o, t) = @i (—x,t), ¢y, t) = kol (—x,t), with Ay = AJ. (8.25)

We can now solve the spectral problem (2.145) with S for ¢/(A\; = ) in the form

BZ(‘Tvt) +71

(A) = : (8.26)

e—Z(xt)+72
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where we introduced the function
Z(z,t) = i\x + 2\ (ia — 26\)t (8.27)

and the additional constants 7, v, € C to account for boundary conditions. The

second solution is then simply obtained from the constraint (8.25)) to be

% fZ*(fm,t)Jr'y;‘
by(NF) = (=, 1) | € . (8.28)

—kp*(—x,1) —keZ T

Notice that v,(\*) is the solution to the parity transformed and conjugated
spectral problem (2.145). Given these solutions we can now compute the

functions in the iterated S(*) matrix for a nonlocal ECH one-soliton solution.

8.2.2 Nonlocal N-soliton solution

We proceed further in the same way for the nonlocal multi-soliton solutions.
In general, for a nonlocal N-soliton solution we take 2N non-zero spectral

parameters with constraints
Ao = /\;‘k_1 k=1,2,...,N, (8.29)

and the seed functions computed at these values as

902]{;—1 eZQkfl(xvt)'i”YQk—l

Aok_1) = = : 8.30
w%_l( 2k 1) Bop, 1 e~ Z2k—1(2,t) T2y, ( )
@ Gop—1 (=, 1) e mr D
UorOo) = | 7 f=| = L (8.31)
Dok K51 (—, ) e -1 (P05
where
Zj(x,t) = idja + 273 (i — 26)1. (8.32)

We may then use (2.159) to evaluate uy, vy, and wy for SN We find the

nonlocality property vy(z,t) = kuj (—z,t) for all solutions.

8.3 Nonlocal solutions of the Hirota equation from the ECH

equation

Let us now demonstrate how to obtain nonlocal solutions for the Hirota

equation from those of the ECH equation. For this purpose, with S being
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parametrised as in (2.164]), we solve equation ([8.15)) for G to find

oo ( a(x,t) a(x,t)“’jj—;l )7 (8.33)

c(z,t) cfw,t)n-2

UN
where the functions a(x,t) and ¢(z,t) remain unknown at this point. They can
be determined when substituting G into the equations . Solving the first

equation for gn(x,t) and rx(x,t) we find

an(o.t) = 1 ([vN]x n wN[vN]m—[wN]mvN) exp [S wN[vN]m—[wN]mdx} (8.34)

2 VN VN UN

ra(at) = 4 ([UN]E _ wN[vN]I—[wN]IvN> exp [_ { enloala—funlson dx]' (8.35)

VN VN UN

Notice that the integral representations (8.34]) and ([8.35)) are valid for any solution
to the ECHE (§8.20)). Next we demonstrate how to solve these integrals. Using the

expression in (2.165))-(2.167]), with suppressed subscripts NV and S chosen as in
(8.23), we can re-express the terms in (8.34]) and (8.35]) via the components of the

intertwining operator O™ as

wN[UN]xU_ [wylovy 2. In (g_N) 7 (8.36)
[ZN]w = 6z In (CNDN) N (837)

where we used the property (2.170). With these relations the integral
representations (§8.34)), (8.35) simplify to

Cy), W [det QM det O >]

gy(x,t) = = — , (8.38)
v ) Dy det Q) det O
(N\) A(N)
L D, W [dem ,det O ] -
TN(xa ) = O = ~(N) : ( : )
N det QW) det Qs

Thus, we have now obtained a simple relation between the spectral problem of the
ECH equation and the solutions to the Hirota equation. It appears that this is a
novel relation even for the local scenario. The nonlocality property of the solutions
to the ECHE is then naturally inherited by the solutions to the Hirota equation.
Using the nonlocal choices for the seed functions as specified in (8.30]) and ([8.31))
we may compute directly the right hand sides in (8.38)) and (8.39)). Crucially these

solutions satisfy the nonlocality property

ry(x,t) = kg (—z,t). (8.40)
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8.4 Nonlocal solutions of the ECH equation from the Hirota

equation

For the nonlocal choice r(z,t) = k¢*(—x, t) the first equation in (8.14) implies

that
a kb*
G = ) (8.41)
b a*

We adopt here the notation from [31]] and suppress the explicit dependence on
(z, 1), indicating the functional dependence on (—x,t) by a tilde, i.e. §:= ¢(—z,1).
The first equation in (8.14]) then reduces to the two equations

a; = bq, b, = kaq". (8.42)

If we take b = rcq*, then a = cd, In¢*. Having specified the gauge transformation

G, we can compute the corresponding nonlocal solution to the ECH equation

. —w U ] Oy In g* q
S =G 035G = with G =c¢ N : (8.43)
vow kq* 0Oylngq

where

o 2(90%)ga _ 2k(q@*)q* K@) —(gd%)e
e v P e ERa e B e e LR e M G

u =

We can check the solution satisfies v = rku*(—x,t), w = kw*(—z,t) and S(z,t) =

kST(—z,t), as expected from gauge equivalence.

8.5 Nonlocal soliton solutions to the ELL equation

8.5.1 Local ELL equation

Given the solutions to the ECH equation ([8.20)), it is now also straightforward
to construct solutions to the ELL equation (2.6]) from them simply by using the
representation Sy = Sy - & with Sy taken to be in the parametrisation ).
Suppressing the index N, a direct expansion then yields

7

1
S1 = §(U + U), So = §(U - U), S3 = —wW. (845)

For the local choice v(z,t) = u*(z,t) these function are evidently real
s1(x,t) = Reuw, sy = —Imu, 53 = +4/1— |ul>. (8.46)
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Figure 8.1: Local solutions to the ELLE ([2.6)) from a gauge equivalent one-soliton solution
(6.2) of the NLS equation for different initial values xy, complex shifts v; = 0.1 + 0.6¢,
79 = 0.3t and o = 5, f = 0. In the left panel the spectral parameter is pure imaginary,

A = 0.1¢, and in the right panel it is complex, A = 0.2 + 0.5:.

Thus, since s is a real unit vector function and s-s = 1.

We briefly discuss some of the key characteristic behaviours of s for various
choices of the parameters. When § = 0, the solutions correspond to the one-
soliton solutions of the NLS equation. For pure imaginary parameter A\, we obtain
the well known periodic solutions to the ELLE as seen in the left panel of Figure
However, when the parameter ) is taken to be complex we obtain decaying
solutions tending towards a fixed point as in the right panel.

When taking 5 # 0, that is the solutions to the Hirota equation, even for pure
imaginary values ), the behaviour of the trajectories is drastically, as they become
more knotty and convoluted as seen in the left panel of Figure[8.2l Complex values

of A are once more decaying solutions tending towards a fixed point.

8.5.2 Nonlocal ELL equation

For the nonlocal choice v(z,t) = ku*(—x,t) with 8 = id, which also results to
w*(—z,t) = wand ST(—z,t) = S, the vector function s is no longer real so that
we may decompose it into s = m + z'i, where now i and 1 are real valued vector
functions. From the relation 5 - § = 1 it follows directly that m*— 1% = 1 and that

-
these vector functions are orthogonal to each other m -1 = 0. The ELL equation
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— Xp=2

Figure 8.2: Local solutions to the ELLE ([2.6]) from a gauge equivalent one-soliton solution
(6.2)) of the Hirota equation for a fixed value of =, complex shifts v; = 0.140.64, v, = 0.37
and a = 5, 3 = 2. In the left panel the spectral parameter is pure imaginary, A = 0.17, and

in the right panel it is complex, A = 0.02 + 0.051.

(2.6]) then becomes a set of coupled equations for the real valued vector functions

i and 1
M, = a (i x 1, — i % ) + 30 [(@, ) @, + 2 (Lo, ) ;e - (L) L] (847)
+0 [ix (i X Lm> —mx (i X r_rilm> —mx (m X LM) —Ix (m x mlu):,
I = —a(ixm, +mx0.)+ 301 1) & +2(L &)L - @, m)m,| (848)
+4 [r_rix (M x Myyy) — ix <r_ri X imx> — ix (i X ﬁxm) —mx (i X imr>

Clearly despite the fact thats - § = 1, the real and imaginary components no longer
trace out a curve on the unit sphere.

Let us analyse how m and 1 behave in this case. As expected, the trajectories
will not stay on the unit sphere. However, for certain choices of the parameters
it is possible to obtain well localised closed three dimensional trajectories that
trace out curves with fixed points at ¢ = +o0 as seen for an example in Figure
Thus the nonlocal nature of the solutions to the Hirota equation has apparently
disappeared in the setting of the ELL equation. However, not all solutions are of

this type as some of them are now unbounded.
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Figure 8.3: Nonlocal solutions to the ELLE (8.47) and (§8.48)) from a gauge equivalent
nonlocal parity transformed conjugate one-soliton solution of the Hirota equation for a

fixed value of g withy; =2.1,7=0,A=0.2,a=1and § = 0.2.
8.6 Conclusions

In this chapter, we took our nonlocal Hirota integrable system, in particular
the parity transformed conjugate pair, to find the gauge equivalent ECH and
ELL systems and the corresponding nonlocal soliton solutions. Furthermore, we
developed a direct scheme using DCT to find nonlocal multi-soliton solutions of
the nonlocal ECH equation making use of nonlocality of the seed solutions, similar
in concept as for nonlocal Hirota case. Likewise, taking our new nonlocal ECH
soliton solutions, we carried out gauge transformations and found the solution
matches the corresponding solution for the Hirota case. Making use of the vector
variant of the ECH equation, namely the ELL equation, we are able to observe

diagrammatically differences between local and nonlocal solutions.
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Chapter 9

Time-dependent Darboux
transformations for non-Hermitian

quantum systems

In previous chapters, we have seen that DTs are very efficient tools to
construct soliton solutions of NPDEs, such as for instance the KdV equation,
the SG equation or the Hirota equation. The classic example we have seen is a
second order differential equation of Sturm-Liouville type or time-independent
Schrodinger equation. In this context the DT relates two operators that can be
identified as isospectral Hamiltonians. This scenario has been interpreted as the
quantum mechanical analogue of supersymmetry [[173} 40, 15]]. Many potentials
with direct physical applications may be generated with this technique, such as
for instance complex crystals with invisible defects [[115, 44]].

Initially DTs were developed for stationary equations, so that the treatment of
the full time-dependent (TD) Schrodinger equation was not possible. Evidently
the latter is a much more intricate problem to solve, especially for non-
autonomous Hamiltonians. Explicitly, DTs for TD Schrédinger equation with TD
potential was introduced briefly by Matveev and Salle [121]] and subsequently,
Bagrov and Samsonov explored the reality condition for the iteration of the
potentials [[14]. Generalization to other types of TD systems have also been
explored since, [60) 156|151} 158 161]].

The limitations of the generalization from the time-independent to the TD
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Schrodinger equation were that the solutions considered in [14]] force the
Hamiltonians involved to be Hermitian. One of the central purposes of this
chapter is to demonstrate how we can overcome this shortcoming and propose
fully TD DTs that deal directly with the TD Schrédinger equation involving non-
Hermitian Hamiltonians [36], with or without potentials. As an alternative
scheme we also discuss the intertwining relations for Lewis-Riesenfeld invariants
for Hermitian as well as non-Hermitian Hamiltonians. These quantities are
constructed as auxiliary objects to convert the fully TD Schrodinger equation into
an eigenvalue equation that is easier to solve and subsequently allows to tackle the
TD Schrodinger equation. The class of non-Hermitian Hamiltonians we consider
here is the one of P7-symmetric/quasi-Hermitian ones [150, 18| 132] i.e. they
remain invariant under the antilinear transformation P7 :xz — —x,p — p,i — —i,
that are related to a Hermitian counterpart by means of the TD Dyson equation
(58,131, 177,178, 71}, 165, 167, 166, 68|, 133, 69]].

Given the interrelations of the various quantities in the proposed scheme one
may freely choose different initial starting points. A quadruple of Hamiltonians,
two Hermitian and two non-Hermitian ones, is related by two TD Dyson
equations and two intertwining relations in form of a commutative diagram.
This allows to compute all four Hamiltonians by solving either two intertwining
relations and one TD Dyson equation or one intertwining relations and two TD
Dyson equations, with the remaining relation being satisfied by the closure of
the commutative diagram. We discuss the working of our proposal by taking
two concrete non-Hermitian systems as our starting points, the Gordon-Volkov

Hamiltonian with a complex electric field and a reduced version of the Swanson

model.
9.1 Time-dependent Darboux and Darboux-Crum
transformations

9.1.1 Time-dependent Darboux transformation for Hermitian systems

Before introducing the TD DTs for non-Hermitian systems we briefly recall the

construction for the Hermitian setting. This revision will not only establish our
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notation, but it also serves to highlight why previous suggestions are limited to
the treatment of Hermitian systems.
The TD Hermitian standard intertwining relation for potential Hamiltonians

introduced in [[14] reads
(W (0, — ho) = (16, — hy) €W, (9.1)

where the Hermitian Hamiltonians ~y and £, involve explicitly TD potentials
v; (z,t)
hj (x7t):p2+vj (I,t), ]:071 (92)

The intertwining operator /() is taken to be a first order differential operator
(W (1) = b (x,t) + 1 (2,1) 0, (9.3)

In general we denote by ¢;, the solutions to the two partner TD Schrédinger

equations
i01p; = hjo; j=0,1 (9.4)
Throughout this chapter we use the convention 2 = 1 and p = —i0,. Taking v as a

particular solution to [i0, — ho]u = 0, the constraints imposed by the intertwining
relation (9.1)) can be solved by

=z
u

gl (l’,t) = El (t)a EO (iE,t) = _El%a V1 = Vg + Z% +2 [(u )2 - u%] ) (95)

where, as indicated, /; must be an arbitrary function of ¢ only. At this point the

new potential v; might still be complex, however, when one imposes as in [[14]]

01(t) = exp [—2 f Im [(%)2 - %] ds] , (9.6)

this forces the new potentials v; to be real

u$ ul’$

U1=UO+2Rel(—)2——]. (9.7)

u u

Notice that one might not be able to satisfy (9.6]), as the right-hand side must be
independent of x. If the latter is not the case, the partner Hamiltonian /, does not

exist. In the case where Hamiltonian %, does exist, the resulting form is

u u

h1=h0+2Re[(%)g—@]. (9.8)
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However, besides mapping the coefficient functions, the main practical purpose
of the DT is that one also obtains exact solutions ¢, for the partner TD Schrédinger
equation i0;¢, = h1¢, by employing the intertwining operator. The new solution

is computed as

¢, = (Vg where e<1>:el(t)(ax—%). (9.9)

When u is linearly dependent on ¢, the solution to the second TD Schrédinger
equation i0,¢; = hi¢, becomes trivial, ¢; = 0. To obtain a non-trivial solution
we have seen various ways as presented in earlier chapters, for instance by taking
a different spectral parameter, taking other linearly independent solutions or by
using Jordan states in the case of the same parameter. The key is to find a solution
linearly independent to ¢, that satisfies (9.6]) for reality. In [14], some nontrivial
solutions satisfying the reality condition were proposed as

~ 1

e =$1f 6/2 d. (9.10)

9.1.2 Time-dependent Darboux-Crum transformation for Hermitian systems

The iteration procedure of the DTs i.e. DCT, will lead also in the TD case
to an entire hierarchy of exactly solvable TD Hamiltonians hg, hi, ho, ... for the
TD Schrodinger equations 6,6 = h¢*) related to each other by intertwining

operators ((*)
(%) (10, — hy_y) = (16, — ) £, k=1,2,... (9.11)

Taking ¢, = ¢y(79), a solution of the TD Schrodinger equation for hg
and the linearly independent solutions w, = wu(y,) by a choice of different
parameter values v, with & = 1,2,..., N, we employ here the Wronskian
Wi [u, ug, ..., uxy] = detw with matrix entries w;; = 05 'u; fori,j = 1,..., N,
which allows us to write the expressions of the intertwining operator and
Hamiltonians in the hierarchy in a very compact form. Iterating these equations

we obtain the compact closed form for the intertwining operators

RER MES) where  a*-D Wi luy, ug, ..., ug) (9.12)
= e — —— U = .
g u(k_l) Wk—l[ulu Ugy - . . 7uk—1]
for £ = 1,2,...,N. We can in addition, in a compact way, write also

the intertwining relation between Hamiltonians hy and hy and their solutions
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utilising L) = () ... (1) ag
LM, — ho) = (10, — hy) LD with o) = LM g, (9.13)

The TD Hamiltonians we derive are

hy = ho —2[In Wi (u1, us, ..., un)],, + 0, lln <ﬁ €k>] ) (9.14)
k=1
Solutions to the related TD Schrodinger z’&tgb(N )= h N¢(N ) are then obtained as
oM = LM (g,), (9.15)
— (g(N)... (1)) o, (9.16)
- ([) e 017)

The reality condition becomes
N
ka(t) _ 6QSIm [02 anN(ul.--uN)]dt. (918)

For N = 1, we can match the DT scheme presented in the previous Section 9.1.1
by identifying u; = u and ¢\") = ¢,, which we will use interchangeably in this
chapter.

Again, instead of using the same solution u;, of the TD Schrédinger equation
for hy at different parameter values in the closed expression, it is also possible to
replace some of the solutions u;, by other linear independent solutions at the same
parameter values, leading to degeneracy. Closed form expressions for DCT built
from the solutions (9.10]) can be found in [14]].

9.1.3 Darboux scheme with Dyson maps for time-dependent non-Hermitian

systems

Before we extend our Darboux scheme, let us first fix some notation through

looking at TD DCT for TD Schrodinger equations
i0)® = Hp® (9.19)
with TD non-Hermitian Hamiltonians H;, for k = 0,1,....

Time-dependent Darboux-Crum transformations for non-Hermitian systems
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The iteration procedure for the non-Hermitian system goes along the same
lines as for the Hermitian case, albeit with different intertwining operators L),

The iterated systems are

N)(i0, — Hy_1) = (id, — Hy) L™V, N =1,2,... (9.20)

The intertwining operators read in this case

(N-1)
L™ =Ly (@——U“"” > with v@-y — WwltiUs.... Ux] (9.21)

UWN-1) Win-1[Ur,Us, ..., Un—1]

denoting v, = 1,(7,) and the linearly independent solutions U, = U(v,,), of the
TD Schrodinger equation for H, by different parameters k = 1,2,..., N, the TD

Hamiltonians are

Hy =Hy—2 [thN (U17U2, .. '7UN)]wx + Z&t [hl <ﬁ Lk>] . (922)

k=1

Nontrivial solutions to the related TD Schrodinger equation are then obtained as

L AT (9.23)
(L(N) e (1)) Yo,

_ HL WN+1 Ula"'aUN7¢O]
g Wy[Ui,...,Un]

Note the key difference from the scheme with TD Hermitian systems is that no

restrictions are required, as our potentials of interest are no longer restricted to

the real case.

Now we extend our analysis and develop here a new Darboux scheme for TD
non-Hermitian Hamiltonians, and especially ones that are P77 -symmetric/quasi-
Hermitian [[150, 18, 132]], through making use of the TD Dyson equation [58, 131,
177,178,171, 165} 167, 66, 168} 133} 69]]. This scheme provides a powerful network for
the hierarchy of TD Hermitian and TD non-Hermitian systems.

To illustrate, we focus first on the pairs of TD Hermitian Hamiltonians h(t),

hq(t) and TD non-Hermitian Hamiltonians Hy(t), H (%)

hy = n;Hn; 't +i(n;), 0 j=0,1. (9.24)
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The TD Dyson maps 7,(t) relate the solutions of the TD Schrédinger equation

i0pp; = Hjy, to the previous ones for ¢; as
6, =, j=0,1. (9.25)
Using (9.24)) in the intertwining relation (9.1)) yields
(W (@0, — noHong — i o)y m5") = (16 — muHynyt — i (my) dmy ) €V (9.26)

Multiplying (9.26)) from the left by ;' and acting to the right with 7, on both

sides of the equation,

ny O (80, = moHong ' — (o), g | 110 = i [i0 = m Hyny" =i (ny)yni | €0,
(9.27)
and rearranging the time derivative terms and removing the test function, we

derive the new intertwining relation for non-Hermitian Hamiltonians
LW (id, — Hy) = (id, — Hy) LY, (9.28)
where we introduced the new intertwining operator
LW = bWy, (9.29)

We note that H; — p? is in general not only no longer real and might also include
a dependence on the momenta, i.e. H; does not have to be a natural potential
Hamiltonian. In summary, our quadruple of Hamiltonians is related as depicted

in the commutative diagram

Ho| mg o

LY = nflf(l)no | (LS (9.30)

H, 771_1 hy
I

from a TD non-Hermitian system H, to another, H;. An interesting result of this
new scheme is that without an explicit solution to H,, we can still carry out DT
to find another TD non-Hermitian H;. For instance, taking H,, we can find a
Dyson map 7, to a Hermitian system h,, then carry out DT as in Section 9.1.1 to a
new Hermitian system h; and take the second Dyson map 7, to a non-Hermitian
system, H;.

One may of course also try to solve the intertwining relation (9.28)) directly

as shown with DCT for non-Hermitian Hamiltonians above and build the
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intertwining operator L(!) from a known solution for the TD Schrédinger equation
for Hy to find H,. To make sense of these Hamiltonians one still needs to construct
the Dyson maps 7, and 7, to find the corresponding Hermitian counterparts h,
and h;. In the case in which the TD Dyson equation has been solved for 7, H,
ho and H;, hy have been constructed with intertwining operators build from the
solutions of the respective TD Schrodinger equation, we address the question of
whether it is possible to close our diagram for our quadruple of Hamiltonians,
that is making it commutative. For this to be possible we require n; = 7n,. The

diagram becomes

Ho| my o

ngl) — I, (593 _ m) | | D=y (595 — m) (9.31)

U, ul
m=mn h

It is easy to verify that L)) = n7'¢@Wn, holds if and only if ,=17,.

9.2 Intertwining relations for Lewis-Riesenfeld invariants

As previously argued [[140, 120, 68,169]], the most efficient way to solve the TD
Dyson equation (9.24)), as well as the TD Schrédinger equation, is to employ the
Lewis-Riesenfeld invariants [[111]]. They are operators [ (¢) satisfying

dI(t) _oI(t) 1 B
=t LA =0 (9.32)

The steps in this approach consists of first solving the evolution equation
for the invariants of the Hermitian and non-Hermitian system separately and
subsequently constructing a similarity transformation between the two invariants.
By construction the map facilitating this transformation is the Dyson map
satisfying the TD Dyson equation.

Here we need to find four TD Lewis-Riesenfeld invariants I7'(t) and I/ (t), j =

0, 1, that solve the equations
(I, =il 1], and (I}), =i[I] hy]. (9.33)

The solutions ¢,, ¢; to the respective TD Schrodinger equations are related by a

phase factor ¢; = et ¢§ , Y= el @/}? to the eigenstates of the invariants

I ¢h = Ao, Il =A; vl with Aj=0. (9.34)
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Subsequently, the phase factors can be computed from
iy = (io=holofy = il o= W1l (939)

As has been shown [120) 68} 169]], the two invariants for the Hermitian and non-
Hermitian system obeying the TD Dyson equation are related to each other by a
similarity transformation

];L = n-[flnj_l. (9.36)

J

Here we show that the invariants I, I and Il", I} are related by the intertwining

operators LV in (9.29)) and (™ in (9.3)), respectively. We have
LOH =A™ and W1k = 10D, (9.37)
This is seen from computing
io, (LWIT — 17 LW = 1y (LW — 1 L)y — (LW — 17 L) Hy, (9.38)

where we used () and () to replace time-derivatives of L(Y) and IZ,
respectively. Comparing (9.38)) with (9.28)) in the form i, L") = H,L®" — LM H,,
we conclude that L) = LM [ — [H O or LW [ = [HLM), The second relation
in (9.37)) follows from the first when using (9.29) and (9.36]). Thus schematically
the invariants are related in the same manner as depicted for the Hamiltonians
in (9.30) with the difference that the TD Dyson equation is replaced by the
simpler adjoint action of the Dyson map. Given the above relations we have no
obvious consecutive orderings of how to compute the quantities involved. For
convenience we provide a summary of the above in the following diagram to

illustrate schematically how different quantities are related to each other

9.3 Solvable time-dependent trigonometric potentials from the

complex Gordon-Volkov Hamiltonian

We will now discuss how the various elements in Figure9.1|can be computed.
Evidently the scheme allows to start from different quantities and compute the
remaining ones by following different indicated paths, that is we may solve
intertwining relations and TD Dyson equation in different orders for different

quantities. As we are addressing here mainly the question of how to make sense
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Figure 9.1: Schematic representation of Dyson maps 7,,m; and intertwining operators

¢M,L() relating quadruples of Hamiltonians hg,hy,Ho,H; and invariants 1,10, 147, 1}
together with their respective eigenstates ¢,,¢,1q,4; and gb([],gb{ ,¢é,¢){ that are related by

phases «ag,0.

of non-Hermitian systems, we always take a non-Hermitian Hamiltonian H, as
our initial starting point and given quantity. Subsequently we solve the TD
Dyson equation (9.24)) for hg,n, and thereafter close the commutative diagrams
in different ways.

We consider a complex version of the Gordon-Volkov Hamiltonian [[79] 165]

Hy = Hgy = p° +iE (), (9.39)

in which iF (t) € (R may be viewed as a complex electric field. In the real
setting H¢y is a Stark Hamiltonian with vanishing potential term around which a
perturbation theory can be build in the strong field regime, see e.g. [59]. Such
type of potentials are also of physical interest in the study of plasmonic Airy
beams in linear optical potentials [[114]. Even though the Hamiltonian Hey is
non-Hermitian, it belongs to the interesting class of P7T-symmetric Hamiltonians,
i.e. it remains invariant under the antilinear transformation P7 : x — —z,p — p,
1 — —i.

In order to solve the TD Dyson equation involving H, we make the
ansatz
oDz (t)p

Ny =€ (9.40)
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with « (t), 5 (t) being some TD real functions. The adjoint action of 7, on z, p and

the TD term of Dyson equation form are easily computed to be

norny' = x—if, (9.41)
nop’myt = p’+ 2iap — o, (9.42)
et = i +1i3 (p + i) . (9.43)

We use now frequently overdots as an abbreviation for partial derivatives with
respect to time. Therefore the right-hand side of the TD Dyson equation ([9.24))
yields

hozhgvzp2+z‘p(2a+6) o tiz(E+ &)+ EB — a. (9.44)
Thus, for hy to be Hermitian we have to impose the reality constraints
a=—E, f=—2au, (9.45)

so that hy becomes a free particle Hamiltonian with an added real TD field

ho =hav =p* +a* + EB =p* + Ut E (s) dsr +2F (t) f t J E(7)drds. (9.46)

There are numerous solutions to the TD Schrodinger equation id;¢, = hav ¢, with
each of them producing different types of partner potentials v; and hierarchies.
We will discuss below an example using a trigonometric type solution.

We start by considering the scenario as depicted in the commutative diagram
(0.31). Thus we start with a solution to the TD Dyson equation in form of hg, H,
7o as given above and carry out the intertwining relations separately using the
intertwining operators /¢ M and LS) for the construction of h; and H;, respectively.
As indicated in the diagram ), in this scenario, the expression for the second
Dyson map is dictated by the closure of the diagram to be 1, = 7,.

We construct our intertwining operator from the simplest solutions to the TD

Schrodinger equation for hy = hay
o (m) = cos(ma)e J'(a® +Bp)ds (9.47)

with continuous parameter m. A second linearly independent solution ¢, (m)

could be obtained by replacing the cos in (9.47)) by sin. However, for our iteration,
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we take a second linearly independent solution by replacing the continuous

parameter m with a different one, m, to obtain u; = ¢, (m;), then we compute

0 = o, =Ly 10, 4y tan(mia)], (0.48
1
hi = p*+2m2sec’(mix) + o + EB + i%, (9.49)
1
¢ = g(l)ﬁbm (9.50)

= {1(t) [mq cos(mz) tan(mix) — msin(mz)] emi[m S (o2 +EB)ds]

Evidently ¢, () must be constant for i, to be Hermitian, so for convenience we set
¢1(t) = 1. We can also directly solve the intertwining relation (9.28|) for H, and

H, using an intertwining operator built from a solution for the TD Schrédinger

_ (Ul)x

U, ’ where U; = 7, u; to obtain

equation of H,, i.e. LS) =0,

Hy, = p*+iE )z +2misec? [mi(z +if)], (9.51)

Yy = 77619251 = eia(mﬂﬂ)ébl (z +1B,1). (9.52)

We verify that the TD Dyson equation for ~; and H; is solved by 1, = n,, which
is enforced by the closure of the diagram (9.31]).

We can extend our analysis to the DCT and compute the two hierarchies
of solvable TD trigonometric Hamiltonians Hy,H;,Ho,. .. and hg,hy,hs,. .. directly
from the expressions (9.12)-(9.23)). For instance, we calculate
(m3 —m3) [(m} — m3) + mj cos(2mag) — m3 cos(2m;§)]

[my cos(msef) sin(my &) — ma cos(my ) sin(mgf)]2

Hy = p*+iE (t)z+ (9.53)

with { = z + 7. The solutions to the corresponding TD Schrédinger equation are

directly computable from the general formula (9.23)).

9.4 Reduced Swanson model hierarchy

Next we consider a model that is built from a slightly more involved TD Dyson
map. We proceed as outlined in the commutative diagram (9.30)). This is a
good example to show the power of our new Darboux iteration scheme for a TD
non-Hermitian system, where an explicit solution to the system is not needed to
perform the iteration. Our simple starting point is a non-Hermitian, but P7-

symmetric, Hamiltonian that may be viewed as reduced version of the well-

147



studied Swanson model [[159]
Hy = Hgs =ig (t) xp. (9.54)

We follow the same procedure as before and solve at first the TD Dyson equation
for n, and hy with given H,. In this case the arguments in the exponentials of the

TD Dyson map can no longer be linear and we make the ansatz
Ny = Mape <597, (9.55)

The right-hand side of the TD Dyson equation (9.24)) is then computed to be

ho = hgrs = [(g{ + Z%) cos(2\) + (ng — g) sin(ZA)] P’ +i(g+ Nap.  (9.56)
Thus for hj to be Hermitian we have to impose
A= —g, (=—2g(tan2)\. (9.57)

These reality constraints (9.57)) can be solved by

t t
A(t) = —J g(s)ds, and ((t) = sec <2J g (s) ds> : (9.58)
so that we obtain a free particle Hamiltonian with a TD mass m(t)
B 1, . cos?(2))
ho = hRS = mp s with m(t) = 29 . (959)

TD masses have been proposed as a possible mechanism to explain anomalous
nuclear reactions which cannot be explained by existing conventional theories in
nuclear physics, see e.g. [48].

An exact solution to the TD Schrédinger equation for hrs can be found for

instance in [140] when setting in there the TD frequency to zero

o (n) = eiio/(gt) exp [m (z% — m%z) %2] H, E] : (9.60)
ao(n, 1) = —f (”m;%)dt, (9.61)

where H,, [z], denotes the Hermite polynomials of x. For (9.60)) to be a solution,
the auxiliary function ¢ = p(t) needs to obey the dissipative Ermakov-Pinney
equation with vanishing linear term, that is

. m. 1
Q‘f‘EQ: 5

(9.62)

m2o3
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We derive an explicit solution for this equation in Appendix C. Evaluating the
formulae in (9.5)), with hy and h; divided by 2m(t), we obtain the intertwining

operators and the partner Hamiltonians

25Hs 1 | £ .
(W(s) =6, | 0, + % — —1[g] —imZz |, (9.63)
oM, [ﬁ] 0
HZ_ |2 —(s—D)Hs—2| 2 |Hs| 2 .
2] e o[2] [Q]] b obvio ],

respectively. As in the previous section, the imaginary part of the Hamiltonian

hi(s) = ho + 7522 [

only depends on time and can be made to vanish with the choice ¢; = p. For

concrete values of n we obtain for instance the TD Hermitian Hamiltonians
P’ 1 1 4(0%+22?)
hi(0) = om o hi(1) = hi(0) + oy hi(2) = hi(0) + o5z, (9.64)
3(30* + 4a*)
m(2x3 — 3z0%)?’

Notice that all these Hamiltonians are singular at certain values of x and ¢ as p is

906 —1224 92+18$2g4+81’6)
m(301—1222 02 +4a1)?

h1(3) = hl(O) + h1(4) _ hl(O) n 8(

. (9.65)

real. Solutions to the TD Schrodinger equation for the Hamiltonian £, (s) can be

computed for s # n, taking

uy = ¢o(s) and (W(s) =4, <ax — %) : (9.66)
then according to (9.9))
01 (s,m) = £0(s) [do(n)] (9:67)

L [ 5] s 5]
= - $o(n).
R

e e

Both ¢(n) and ¢, (s, n) are square integrable functions with L?(R)-norm equal to
1. In Figure 9.2l we present the computation for some typical probability densities
obtained from these functions. Notice that demanding m(t) > 0 we need to
impose some restrictions for certain choices of g(t).

Next we compute the non-Hermitian counterpart A, with a concrete choice for

the second Dyson map. Taking
7)1 — e'Y(t)xea(t)P (968)
the non-Hermitian Hamiltonian becomes in our case

2 2

I S SN S
Hi(1) = Sy + (@ +i0)? iyT + m?  2m + 99, (9.69)
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Figure 9.2: Probability densities |4y (0)[?, [¢o(1)[%, |¢1(5,1)|* from left to right for g(t) =
(L+t2)/4, m(t) = [1+cos(t +t3/3)] /(1 +12), o(t) = 4/1 + [C + Btan(t/2 + t3/6)]> with
B=1/2and C = 1.

where we have also imposed the constraint § = —v/m to eliminate a linear term
in p, hence making the Hamiltonian a natural potential one. The corresponding

solution for the TD Schrédinger equation is
¢1(57”) = 77f1¢1(57”)- (970)

9.4.1 Lewis-Riesenfeld invariants

Having solved the TD Dyson equation for 7, and 7, we can now also verify the

various intertwining relations for the Lewis-Riesenfeld invariants as derived in
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Section 9.2. We proceed here as depicted in the following commutative diagram

L' et I
LW = prle®y, | [ (9.71)
0ot i

See also the more general schematic representation in Figure We start with
the Hermitian invariant I} from which we compute the non-Hermitian invariant
i using the Dyson map 1, as specified in (9.55). Subsequently we use the
intertwining operator /(") in ) to compute the Hermitian invariants I} for
the Hamiltonians h;. The invariant I is then computed from the adjoint action
of n7! as specified in (9.68). Finally, the intertwining relation between the non-
Hermitian invariants I} and I is just given by the closure of the diagram (9.71]),
L.
The invariant for the Hermitian Hamiltonian /, has been computed previously
in [[140]7 as
I} = Ap(t)p? + Bu(t)2® + C,(t){z, p}, (9.72)

where the TD coefficients are
1 /1 1
A=2 B, = 3 (— + m2'92> . Oy = —=mop. (9.73)
It then follows from

[l = 2 (O + SBufep)) . Ay = —2C By =0, Ch=—1B,
(9.74)

that the defining relation (9.33)) for the invariant is satisfied by I}. According
to the relation (9.36)), the non-Hermitian invariant I}’ for the non-Hermitian

Hamiltonian H, is simply computed by the adjoint action of 7,' on I*. Using

the expression (9.55)) we obtain
Ig" =5 Igno = An(t)p* + Bu()2® + Cu(t){z, p}, (9.75)

with

£2iA (1+m2p2p2)

Ay = le*%}‘p2 — CQBH —iCmpp, By = 2p? ’

5 Cu = i{By — smpp.

(9.76)

'We corrected a small typo in there and changed the power 1/2 on the x/p-term into 2.
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We verify that I is indeed an invariant for H, according to the defining relation

(9.33)), by computing

(13, Ho] = 29 (Aup® — Bua®),  Aw = 2igAw, By = ~2igBu, Cu =0,
(9.77)
using the constraints and ((9.62).
Given the intertwining operators /(") in ) and the invariant I}, we can use

the intertwining relation (9.37)) to compute the invariants I} for the Hamiltonians

hy in (9.64)). Solving (9.37) we find

1{1(3)=15+1+4s - [ . —43(3—1 E] (9.78)

H [ii [j

We verify that this expression solves (9.33)). The last invariant in our quadruple is

[N ]

I{'(s) = ny ' IE (s, 2w, p)in = 1) (s, + 06, p — ). (9.79)

Finally we may also verify the eigenvalue equations for the four invariants.
Usually this is of course the first consideration as the whole purpose of employing
Lewis-Riesenfeld invariants is to reduce the TD Schrédinger equation to the
much easier to solve eigenvalue equations. Here this computation is simply a

consistency check. With

¢ (n) = e W (n), ¢1(s,n) =e g, (s,n), (9.80)
Yo (n) = e Wy (n), P (s,n) = ey (s,n), (9.81)

and ay (n) as specified in equation (9.61)) we compute
g ) = (n+3) o0, Lol = (s+5) o, 82
oo = (n4 ) w0, HEeem = (s+3)ntn. O

All eigenvalues are time-independent as shown in [[140]].

9.5 Conclusions

We have generalized the scheme of TD DTs to allow for the treatment

of non-Hermitian Hamiltonians that are P7-symmetric/quasi-Hermitian. It

152



was essential to employ intertwining operators different from those used in
the Hermitian scheme previously proposed. We have demonstrated that the
quadruple of Hamiltonians, two Hermitian and two non-Hermitian ones, can
be constructed in alternative ways, either by solving two TD Dyson equations
and one intertwining relation or by solving one TD Dyson equation and two
intertwining relations. We extended the scheme to the construction of the entire
TD Darboux-Crum hierarchies. We also showed that the scheme is consistently
adaptable to construct Lewis-Riesenfeld invariants by means of intertwining
relations. Here we verified this for a concrete system by having already solved the
TD Schrodinger equation, however, evidently it should also be possible to solve
the eigenvalue equations for the invariants first and subsequently construct the

solutions to the TD Schrodinger equation.
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Chapter 10

Conclusions and outlook

Given that we have summarised in each chapter the key findings, here we will
give a more general overview of the results and contributions from this thesis both
in nonlinear classical and non-Hermitian quantum systems, whilst discussing
some of many interesting open problems.

In mathematics, it has been known for a long time that extending real numbers
to complex numbers gives us a deeper insight of the real domain. In quantum
mechanics, difficult problems in the Hermitian regime sometimes become easier
to solve in the non-Hermitian regime. In addition, with the success of extensions
from Hermitian to non-Hermitian with P7-symmetries in quantum mechanics,
we are motivated to explore the analogy with classical nonlinear integrable
systems.

In particular, we extended real integrable systems to the complex and
multicomplex regimes through extending the solution field. As a result, we
also obtain equivalent systems of multi-coupled real equations. Up to now,
we have three ways to solve these systems, by taking a complex shift, using
combined imaginary unit or idempotent bases. This has solved the origin of P7T -
symmetric complex solutions from [97], however it remains an open problem
to investigate the origin of new P7-symmetric complex solutions from [98]].
Besides the many interesting properties, a valuable application is that the newly
constructed complex solitons helped regularise singularities that form when
taking degeneracy in the real regime. Moreover, in the multicomplex regime, a
new type of degeneracy appears as we discover some 2N-parameter N-soliton

solutions.
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In addition to generalising some well-established methods to construct
complex and multicomplex soliton solutions, another fascinating discovery is
that the newly found complex solitons solutions, although complex, they admit
real conserved charges. Through detailed scattering and asymptotic analysis
for lateral displacements or time-delays, we find the reasoning for guaranteed
reality is due to P7T-symmetry with integrability. Hence for all multi-solitons,
PT-symmetric or not, as long as they are composed of PT-symmetric one-
soliton solutions in the asymptotes, then reality is guaranteed. For multi-
complex extensions, we have increased variety of PT-symmetries to play with,
but arguments are similar.

A more challenging extension would be to complexify and multi-complexify
also the variables z and ¢, which then also impacts on the definition of the
derivatives with respect to these variables.

Extending scattering and asymptotic analysis for degenerate multi-soliton
solutions, we find further interesting physically different properties from non-
degenerate cases, such as time-delays not being constant but TD expressions
and a universal general form is found for the KdV and SG cases. For the
Hirota case, we compare non-degenerate and degenerate scatterings behaviours
to find the degenerate case only admits one of three types of scattering behaviour
from the non-degenerate case. In the investigations of ways to implement
degeneracy in various methods, we derived for the SG case the simplest and most
convenient method to construct degenerate multi-soliton solutions by means of
a 'recursive’ formula. Besides degenerate solitons possessing similar properties
to the famous tidal bore phenomenon, another physical application which is
left open to investigate is the statistical behaviour of a degenerate soliton gas
along the lines of, for instance [I81), 122, [148) [154], which should certainly exhibit
different characteristics as the underlying statistical distributions would be based
on indistinguishable rather than distinguishable particles.

With the growing recent interest to investigate classical integrable nonlocal
systems, with nonlocality of space and or time in the fields of the system, we
followed [3] to investigate another type of PT-symmetric deformations. These are
PT-symmetric reductions of the AKNS equations. Furthermore, we developed

new methods to construct ‘nonlocal” solutions. In the process, discovering a new
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type of solution, which is a 2N parameter nonlocal N-soliton solution. From
the different space and or time nonlocalities we see various nonlocal periodic
distributed breathers or rogue waves, of particular interest are time crystal
like structures from being nonlocal in time. To see this type of nonlocality
implemented in the quantum regime would be interesting.

In our construction of various types of complex, multicomplex, degenerate and
nonlocal systems, we define many of them to be integrable in the sense that we
have various methods to construct soliton solutions for them. In some cases, we
have also found the system possessing infinitely many conserved quantities or
ZC representations. More thorough investigation on integrability can be carried
out in many cases, for example to find infinite many conserved quantities or local
commuting symmetries for all our systems.

Another natural direction to investigate are combinations of various types
of extensions for systems, such as implementing nonlocality in multicomplex
systems, degeneracy in nonlocal systems etc. Furthermore, as our approaches
are entirely model independent to extend investigations for other models. With
the many newly discovered systems and solutions, the most interesting challenge
is to investigate whether these solutions can be realised experimentally.

In a step closer to the quantum regime, we look at gauge equivalence of
the nonlocal Hirota system to an ECH spin model, then to an ELL model.
When independently developing nonlocal solution method for ECH equation, an
unanticipated finding is that the spin matrix has an internal pair of nonlocal P-
symmetry and itself nonlocal P-symmetric. Utilising gauge equivalence between
the models allowed us to find the connection between the corresponding solutions
of the systems.

Knowing how DTs are useful tools in constructing new solvable systems from
previous chapters on soliton constructions, we extended the application of DTs
with Dyson maps to develop a powerful new scheme in which we have a fully
connected network of infinitely many solvable TD non-Hermitian Hamiltonians
with corresponding infinitely many solvable Hermitian Hamiltonians and Lewis-
Riesenfeld invariants. This network is powerful especially for TD non-Hermitian
Hamiltonians, in which exact solutions are usually difficult to find.

As in [[14] for the Hermitian case, our scheme allows to treat TD systems
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directly instead of having to solve the time-independent system first and then
introducing time by other means. The latter is not possible in the context of
the Schrodinger equation, unlike as in the context of NPDEs that admit soliton
solutions, where a time-dependence can be introduced by separate arguments,
such as for instance using Galilean invariance. Naturally it will be very interesting

to apply our scheme to the construction of multi-soliton solutions.
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Appendix A

Here, we present a derivation of the identity (5.19)). We start by considering

the limit for N = 2, which is true as

B+« ¢ﬁ—¢a
%g{l}éﬂ_atan( 1 ) (A1)
— éli% [tan (%;%) + aiﬁsecz (%;%) dﬂ%] (A.2)
ad
- 5%%. (A.3)

Using this expression the non-degenerate and degenerate two-soliton

solutions may be written as

B+ a bg — Oq ad
Pop=—4arctan [6 — tan ( 1 and ¢,,=—4arctan §d—¢>
(A4)
respectively.
Before carrying the next step of our derivation for higher order N, we first

introduce an intermediate identity

d 1 d

Jim 6. Do (A.5)

This identity can be proved by induction. To begin, let us first show the identity

is true for m = 1 by carrying out the derivative /5 then taking the limit

lim d —¢os = lim 4 [ 4 arctan <6 e tan %5 ; ¢a)] : (A.6)

B—a dﬁ B—a dﬁ ﬂ—Oz
_2 d ¢ - 2CYd 2¢
_ oo A7
9 + ( a¢ )2 ( )
1d
= 5%@50@‘ (AS)
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Now assuming m = k — 1is true, m = k will be

d 2 b1 — 205 Do
élm %qbakﬁ = élm dp 5 db Qk 1/3 s (A9)
—x —Q Oé2
2+ 5 <%¢ak—15)
b 2 | 9,
_ —24 [Q(k—kl)] - QO;dd@? [2(2k—kl)]’ (A10)
a? “
2+ 2 (% [Q(k—kl)])
1 d
— ﬁ@%’““’ (A.11)

where we used the identity for m = k — 1 from the first to second equality. Hence

identity (A.5) proved.
Now we can continue our derivation of (5.19)) for N > 3, starting with the left

hand side of (5.19))

lim 27 tan l¢“N_25 — ¢“N_1] : (A.12)
B—a — 4
_ % m Ly (A.13)
— 2 ﬂl_)né dﬁ aN 267 .
o 1 d
o d
el (A.15)

using the identity (A.5) from the first to second equality, which consequently
simplifies to the right hand side of (5.19)).
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Appendix B

Identity (5.23)) is a simple variable transformation based on the assumption

that ¢~ (x,t) can always be expressed as ¢~ (£,£_). So we compute

Oban  Obux  Odun
6—1’ = a£+ Oéaé__, (B].)
0oy 100w 10¢,n

o T o Taee (B.2)
agbaN . t 6¢QN t 6@5&1\7

- - T e (B.3)

Comparing (B.1)), (B.2)) and (B.3]) we can eliminate the derivatives with respect to
¢, ¢_ and obtain (5.23)).
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Appendix C

We briefly explain how to solve the Ermakov-Pinney equation with dissipative

term (9.62

b+ 0= m;gg. (C.1)
The solutions to the standard version of the equation [57,142]
b+ Mt)o = — (C2)
o
are well known to be of the form [[142]]
o(t) = (Au® + Bv® + 2Cuv) 2 , (C.3)

with u(¢) and v(t) denoting the two fundamental solutions to the equation & +
AMt)o = 0 and A, B, C are constants constrained as C?* = AB — W2 with
Wronskian W = w0 — vi. The solutions to the equation (C.2)) with an added
dissipative term proportional to ¢ are not known in general. However, the
equation of interest here, ), which has no linear term in g, may be solved

exactly. For this purpose we assume p(t) to be of the form

t = .
o(t) = fla(®)], with g(t e (C.4)
Using this form, equation (C.1]) transforms into

2f 1

a7 (C5)

which corresponds to (C.2)) with A(¢) = 0. Taking the linear independent

solutions to that equation to be u(t) = 1 and v(t) = ¢, we obtain

— —Vl + (Bg + )2 (C.6)

and hence with (C.4)) a solution to (C.1]).
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