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CBDX: A Workhorse Mortality Model from the Cairns-Blake-Dowd 
Family 
 
Kevin Dowd,* Andrew J.G. Cairns♣ and David Blake♦ 
 
This draft: 5 January 2020 
 
 
Abstract 
 
The purpose of this paper is to identify a workhorse mortality model for the adult age 
range (i.e., excluding the accident hump and younger ages). It applies the “general 
procedure” (GP) of Hunt and Blake (2014) to identify an age-period model that fits the 
data well before adding in a cohort effect that captures the residual year-of-birth effects 
arising in the original age-period model. The resulting model is intended to be suitable 
for a variety of populations, but economises on the number of period effects in 
comparison with a full implementation of the GP. We estimate the model using two 
different iterative Maximum Likelihood (ML) approaches – one Partial ML and the other 
Full ML – that avoid the need to specify identifiability constraints.   
 
Key Words: mortality rates, Cairns-Blake-Dowd mortality model, CBDX mortality model 
 
JEL codes: G220, G230, J110 
 
 
1. Introduction 
 
 
Broadly speaking, there are two main families of stochastic mortality models. The first 
are descendants of the Lee-Carter model (Lee and Carter, 1992). The original Lee-Carter 
model had two age effects and one period effect, with variants adding a second period 
component and cohort effects (e.g., Renshaw and Haberman, 2003, 2006). The second is 
the Cairns-Blake-Dowd family (Cairns et al., 2006, 2009). The original CBD model (later 
reparameterised as M5 using the classification of Cairns et al., 2009) had two period 
effects and no age or cohort effects, but a later extension, M6, added a cohort effect and a 
further extension, M7, added a third period effect. An important (near) generalization of 
model M6 is the Plat model (Plat, 2009), which has two or three period effects, a cohort 
effect and an age effect. See Cairns (2014) for a review of these models. 
 
This article sets out a new mortality model, denoted CBDX,1 which is, loosely speaking, 
an extension of CBD/M5 with age and cohort effects and up to three period effects.  The 
aim is to create a workhorse model for use by practising actuaries who wish to model the 
                                                      
* Durham University Business School, Mill Hill Lane, Durham DHL 3LB, United Kingdom. Corresponding 
author: kevin.dowd@durham.ac.uk.  
♣ Maxwell Institute for Mathematical Sciences and Department of Actuarial Mathematics and Statistics, 
Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom. 
♦ Pensions Institute, Cass Business School, City University of London, 106 Bunhill Row, London, EC1Y 8TZ, 
United Kingdom. 
1 The term CBDX was first used in Hunt and Blake (2020a,b). 
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mortality of groups of adults over a wider range of ages than is normally advisable for the 
standard CBD models (e.g., M5 and M7 in Cairns et al., 2009). The motivation comes from 
the “general procedure” (GP) for constructing mortality models outlined in Hunt and 
Blake (2014). The GP “identifies every significant demographic feature in the data in a 
sequence, beginning with the most important. For each demographic feature, we need to 
apply expert judgment to choose a particular parametric form to represent it. By 
following the GP, it is possible to construct mortality models with sufficient terms to 
capture accurately all the significant information present in the age, period, and cohort 
dimensions of the data. In particular, the GP prevents structure in the data that is 
genuinely associated with a period effect being wrongly allocated to a cohort effect (p. 
116)”.  
 
Using mortality data for the UK over the full age range, Hunt and Blake (2014, Figure 10) 
identify seven age-period terms and one cohort term. However, the majority of the 
improvement in goodness of fit comes from the first three period terms. An analysis of 
US mortality data shows that five period terms can be identified, but again most of the 
improvement in goodness of fit comes from the first three period terms. Using England & 
Wales male mortality data, our results lead us to conclude that the best workhorse model 
for wider age ranges, that start as low as 40 and go up to 89, is CBDX3, the CBDX model 
with three period effects.  
 
The paper is organised as follows. Section 2 sets out the CBDX model. Section 3 compares 
this model to related models. Section 4 discusses the estimation procedure for the CBDX 
model. Section 5 describes the data and results from estimating the model. Section 6 
reports the results of a BIC model comparison, in which the CBDX model is compared 
with well-known related models. Section 7 provides an illustrative financial application. 
Section 8 proposes a novel method for forecasting that blends statistical analysis of the 
historical period effects with expert judgement about central forecasts. Section 9 
discusses some features and potential extensions of the CBDX model. Section 10 
concludes. 
 
 
2. The CBDX Model 
 
 
Consider the following mortality model: 
 
(1)                                     log𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝛼𝛼(𝑥𝑥) + ∑ 𝛽𝛽𝑖𝑖𝐾𝐾

𝑖𝑖=1 (𝑥𝑥)𝜅𝜅𝑖𝑖(𝑡𝑡) + 𝛾𝛾(𝑐𝑐) 
 
where 𝑚𝑚(𝑡𝑡, 𝑥𝑥) is a death rate, t refers to the time period, x refers to age and 𝑐𝑐 = 𝑡𝑡 − 𝑥𝑥 
refers to the year of birth. The 𝛼𝛼(𝑥𝑥), 𝜅𝜅(𝑡𝑡) and 𝛾𝛾(𝑐𝑐) are the age-related, period-related and 
cohort-related effects, and the parameters 𝛽𝛽1 = 1, 𝛽𝛽2 = (𝑥𝑥 − �̅�𝑥), 𝛽𝛽3 = (𝑥𝑥 − �̅�𝑥)2 − 𝜎𝜎𝑥𝑥2 are 
fixed throughout, and where �̅�𝑥 and 𝜎𝜎𝑥𝑥2 are the mean and variance of the ages in our sample 
age range. As discussed below, this model is similar in spirit to Plat (2009) in adding an 
age effect, 𝛼𝛼(𝑥𝑥), to the original CBD models.  
 
This model comes in three versions:  
 

• 𝐾𝐾 = 1, i.e., the case with only one 𝜅𝜅(𝑡𝑡) variable ‒ denoted model CBDX1 
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• 𝐾𝐾 = 2, i.e., the case with two 𝜅𝜅(𝑡𝑡) variables ‒ denoted model CBDX2 
• 𝐾𝐾 = 3, i.e., the case with three 𝜅𝜅(𝑡𝑡) variables ‒ denoted model CBDX3. 

 
This CBDX family of models is similar to the CBD family except for the following:  
 

• It uses the log of the death rate, log𝑚𝑚(𝑡𝑡, 𝑥𝑥), instead of the logit of the mortality 
rate, logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥), as the dependent variable 

• It includes (as in Plat, 2009) an additional age-related variable, 𝛼𝛼(𝑥𝑥). 
• Whereas CBD treat 𝛾𝛾(𝑐𝑐) process as a trendless mean-reverting AR(1) process, we 

treat 𝛾𝛾(𝑐𝑐) as a residual that should be trendless and mean-reverting if the model 
is well-specified.     

• Model fitting differs from previous CBD family models by using a sequential 
maximum likelihood algorithm which is not dependent on any explicit 
identifiability constraints.2 

 
The Lee-Carter model showed the advantages of including a non-parametric “base 
mortality table,” 𝛼𝛼(𝑥𝑥), in Equation (1). The advantages of our treatment of the 𝛾𝛾(𝑐𝑐) 
process, of using a sequential algorithm, and of not relying on explicit identifiability 
constraints are discussed below.  
 
 
3. The CBDX Model and Related Models 
 
 
The CBDX model is related to a number of well-known mortality models, in particular 
Lee-Carter, M3, M5, M6, M7 and the Plat model.  
 
The Lee-Carter model, referred to by Cairns et al., (2009) as M1, is: 
 
(2)                                              log𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝛼𝛼(𝑥𝑥) + 𝛽𝛽2(𝑥𝑥)𝜅𝜅2(𝑡𝑡) 
 
where 𝛼𝛼(𝑥𝑥) is a non-parametric “base mortality table,” 𝛽𝛽2(𝑥𝑥) is an age-dependent 
parameter, and 𝑛𝑛𝑎𝑎 is the number of ages in the sample data age range. This model satisfies 
two identifiability conditions set out, e.g., in Cairns et alia (2009, p. 7). 
 
Model M3 (Cairns et al., 2009) is the standard Age-Period-Cohort model, and is identical 
to what we label here as CBDX1, and so is not considered further.  
 
Model M5 (Cairns et al., 2009) is a reparameterised version of the CBD two-factor 
mortality model (et al. 2006) and postulates that the mortality rate 𝑞𝑞(𝑡𝑡, 𝑥𝑥) satisfies:  
 
(3)                                         logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥) = 𝜅𝜅1(𝑡𝑡) + (𝑥𝑥 − �̅�𝑥)𝜅𝜅2(𝑡𝑡) 
 

                                                      
2 However, identifiability constraints are implicit in the model fitting process as a result of the sequential 
approach to parameter estimation. This means that once the sequential model fitting process has produced 
a final set of parameter estimates, the imposition of explicit identifiability constraints at this stage might 
change the parameter estimates themselves, but would not change the estimated mortality rates or the 
value of the log-likelihood. 
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where we assume that 𝑞𝑞(𝑡𝑡, 𝑥𝑥) = 1 − 𝑒𝑒−𝑚𝑚(𝑡𝑡,𝑥𝑥), �̅�𝑥 is the average of the ages used in the 
sample age range and 𝜿𝜿𝑡𝑡 = [𝜅𝜅1(𝑡𝑡), 𝜅𝜅2(𝑡𝑡)] follows a two-dimensional random walk with 
drift: 
 
(4)                                                    𝜿𝜿𝑡𝑡 = 𝜿𝜿𝑡𝑡−1 + 𝝁𝝁 + 𝑪𝑪𝑍𝑍𝑡𝑡 
 
Model M5 does not have any identifiability issues. 
 
Model M6 is a generalised version of M5 with a cohort effect:  
 
(5)                                    logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥) = 𝜅𝜅1(𝑡𝑡) + (𝑥𝑥 − �̅�𝑥)𝜅𝜅2(𝑡𝑡) + 𝛾𝛾(𝑐𝑐) 
 
where the 𝜿𝜿𝑡𝑡 process follows (4) and 𝛾𝛾(𝑐𝑐) is the cohort effect. This model satisfies the 
identifiability constraints:  
 
(6)                                      ∑ 𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐

𝑐𝑐=1 = 0   and  ∑ 𝑐𝑐𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐
𝑐𝑐=1 = 0   

 
where 𝑛𝑛𝑐𝑐  is the number of years of birth in the sample data. 
 
Model M7 is a second generalised version of M5 with a cohort effect:  
 
(7)            logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥) = 𝜅𝜅1(𝑡𝑡) + (𝑥𝑥 − �̅�𝑥)𝜅𝜅2(𝑡𝑡) + [(𝑥𝑥 − �̅�𝑥)2 − 𝜎𝜎𝑥𝑥2]𝜅𝜅3(𝑡𝑡) + 𝛾𝛾(𝑐𝑐) 
 
where the period effects  𝜿𝜿𝑡𝑡 now follow a three-dimensional random walk with drift and 
𝛾𝛾(𝑐𝑐) is a cohort effect modelled as an AR(1) process. This model satisfies the 
identifiability constraints: 
 
(8)                           ∑ 𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐

𝑐𝑐=1 = 0, ∑ 𝑐𝑐𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐
𝑐𝑐=1 = 0  and  ∑ 𝑐𝑐2𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐

𝑐𝑐=1 = 0. 
 
More details on the models can be found in Cairns et al. (2009). 
 
CBDX2 and CBDX3 are similar to models M6 and M7, respectively, except in so far as they: 
(a) use log𝑚𝑚(𝑡𝑡, 𝑥𝑥) rather than logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥) as the dependent variable; (b) include an 
additional age effect, 𝛼𝛼(𝑥𝑥); (c) use a sequential estimation algorithm and (d) (as a result 
of (c)) do not require any explicit identifiability constraints. CBDX2 is the same as the two 
period effect version of the Plat (2009) model and CBDX3 adds a third period effect to 
CBDX2.3  
 
The age, period and cohort effects for the different models are summarised in Table 1. 
 
 
 
 

                                                      
3 CBDX3 requires seven identifiability constraints: ∑ 𝜅𝜅1(𝑡𝑡)𝑛𝑛𝑦𝑦

𝑡𝑡=1 = 0,∑ 𝜅𝜅2(𝑡𝑡)𝑛𝑛𝑦𝑦
𝑡𝑡=1 = 0,∑ 𝜅𝜅3(𝑡𝑡)𝑛𝑛𝑦𝑦

𝑡𝑡=1 =
0,∑ 𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐

𝑐𝑐=1 = 0, ∑ 𝑐𝑐𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐
𝑐𝑐=1 = 0,   ∑ 𝑐𝑐2𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐

𝑐𝑐=1 = 0  and  ∑ 𝑐𝑐3𝛾𝛾(𝑐𝑐)𝑛𝑛𝑐𝑐
𝑐𝑐=1 = 0. CBDX2 requires 5 constraints 

because it drops the last of the 𝜅𝜅 and 𝛾𝛾 constraints. CBDX1 requires 3 constraints because it drops the last 
two of the 𝜅𝜅 and 𝛾𝛾 constraints. 
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Table 1: Dependent Variables and Age-, Period- and Cohort-Effects for Different 
Mortality Models 

Model Dependent 
Variable 

Age-
Related 

Period-Related Cohort 
Related 

CBDX1 log𝑚𝑚(𝑡𝑡, 𝑥𝑥) 𝛼𝛼(𝑥𝑥) 𝜅𝜅1(𝑡𝑡)   𝛾𝛾(𝑐𝑐) 
CBDX2 log𝑚𝑚(𝑡𝑡, 𝑥𝑥) 𝛼𝛼(𝑥𝑥) 𝜅𝜅1(𝑡𝑡) 𝜅𝜅2(𝑡𝑡)  𝛾𝛾(𝑐𝑐) 
CBDX3 log𝑚𝑚(𝑡𝑡, 𝑥𝑥) 𝛼𝛼(𝑥𝑥) 𝜅𝜅1(𝑡𝑡) 𝜅𝜅2(𝑡𝑡) 𝜅𝜅3(𝑡𝑡) 𝛾𝛾(𝑐𝑐) 

M1 log𝑚𝑚(𝑡𝑡, 𝑥𝑥) 𝛼𝛼(𝑥𝑥),𝛽𝛽2(𝑥𝑥)  𝜅𝜅2(𝑡𝑡)   
M5 logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥)  𝜅𝜅1(𝑡𝑡) 𝜅𝜅2(𝑡𝑡)   
M6 logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥)  𝜅𝜅1(𝑡𝑡) 𝜅𝜅2(𝑡𝑡)  𝛾𝛾(𝑐𝑐) 
M7 logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥)  𝜅𝜅1(𝑡𝑡) 𝜅𝜅2(𝑡𝑡) 𝜅𝜅3(𝑡𝑡) 𝛾𝛾(𝑐𝑐) 

Note: 𝑥𝑥 = age, 𝑡𝑡 = period, 𝑐𝑐 = birth year.  
 
It is also helpful to set out which models incorporate others as special cases of others. The 
two core special cases are M3 and M5. Ignoring differences in algorithms and 
identifiability conditions for present purposes:   
 

• CBDX1 is a special case of CBDX2.  
• CBDX2 is a special case of CBDX3. 
• M5 is a special case of M6.  
• M6 is a special case of M7. 

 
 
4. Estimation of the CBDX Model 
 
4.1 The sequential estimation algorithm 
 
Let Θ = {𝛼𝛼, 𝜅𝜅, 𝛾𝛾} be the parameter set to be estimated, where 𝜅𝜅 corresponds to 𝜅𝜅1(𝑡𝑡) for 
CBDX1, (𝜅𝜅1(𝑡𝑡), 𝜅𝜅2(𝑡𝑡)) for CBDX2 and (𝜅𝜅1(𝑡𝑡), 𝜅𝜅2(𝑡𝑡), 𝜅𝜅3(𝑡𝑡)) for CBDX3, for 𝑡𝑡 = 1, … ,𝑛𝑛𝑦𝑦. The 
Poisson log-likelihood is then 
                   
(9)  𝑙𝑙(𝛼𝛼, 𝜅𝜅, 𝛾𝛾) = �[𝐷𝐷(𝑡𝑡, 𝑥𝑥) log𝑚𝑚(𝑡𝑡, 𝑥𝑥) − 𝐸𝐸(𝑡𝑡, 𝑥𝑥)𝑚𝑚(𝑡𝑡, 𝑥𝑥)] + 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡𝑐𝑐𝑛𝑛𝑡𝑡 

𝑡𝑡,𝑥𝑥

= �𝐷𝐷(𝑡𝑡, 𝑥𝑥)�𝛼𝛼(𝑥𝑥) + 𝜅𝜅1(𝑡𝑡) + 𝛽𝛽2(𝑥𝑥)𝜅𝜅2(𝑡𝑡) + 𝛽𝛽3(𝑥𝑥)𝜅𝜅3(𝑡𝑡) + 𝛾𝛾(𝑡𝑡 − 𝑥𝑥)�
𝑡𝑡,𝑥𝑥

−�𝐸𝐸�𝑡𝑡, 𝑥𝑥𝑗𝑗� exp�𝛼𝛼(𝑥𝑥) + 𝜅𝜅1(𝑡𝑡) + 𝛽𝛽2(𝑥𝑥)𝜅𝜅2(𝑡𝑡) + 𝛽𝛽3(𝑥𝑥)𝜅𝜅3(𝑡𝑡) + 𝛾𝛾(𝑡𝑡 − 𝑥𝑥)�
𝑡𝑡,𝑥𝑥

 

+ constant 
 
where 𝛽𝛽2(𝑥𝑥) = (𝑥𝑥 − �̅�𝑥) and 𝛽𝛽3(𝑥𝑥) = [(𝑥𝑥 − �̅�𝑥)2 − 𝜎𝜎𝑥𝑥2],  𝐷𝐷(𝑡𝑡, 𝑥𝑥) is the number of deaths in 
year t aged x last birthday,  and 𝐸𝐸(𝑡𝑡, 𝑥𝑥) is the average number of individuals in year t aged 
x last birthday.  
 
We propose the following sequential estimation algorithm.  
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Partial ML (PML) 
 
Stage P1 (Alpha, Kappa) involves the joint estimation of the 𝛼𝛼(𝑥𝑥) and 𝜅𝜅(𝑡𝑡) parameters. 
Stage P2 (Gamma) uses 𝛼𝛼�(𝑥𝑥) and �̂�𝜅(𝑡𝑡)  to estimate the 𝛾𝛾(𝑐𝑐) parameters, 𝛾𝛾�(𝑐𝑐). This two-
stage procedure is very much in the spirit of the general procedure of Hunt and Blake 
(2014), in which the model structure identifies sufficient age and period effects first 
before adding a cohort effect to capture small residual patterns in the data by year of 
birth. At this point PML is complete. Although PML does not require any explicit 
identifiability constraints, they are implicit in the fact that the age and period effects are 
kept fixed while we estimate the cohort effects.  
 
Full ML (ML) 
 
We start with the three stages of PML. The Stage F1 (Alpha, Kappa) revision uses the 
latest 𝛾𝛾�(𝑐𝑐) to re-estimate the 𝛼𝛼(𝑥𝑥) and 𝜅𝜅(𝑡𝑡). The Stage F2 (Gamma) revision then uses the 
latest 𝛼𝛼�(𝑥𝑥) and �̂�𝜅(𝑡𝑡) to re-estimate the 𝛾𝛾(𝑐𝑐) state variables. We then repeat stages F1 and 
F2 until all parameter estimates and the likelihood converge. These estimates are those 
that maximise the likelihood function.  
 
4.2 Illustrating the sequential estimation algorithm using CBDX3 
 
Consider CBDX3. In this case, 𝐾𝐾 = 3, 𝛽𝛽1 = 1, 𝛽𝛽2(𝑥𝑥) = (𝑥𝑥 − �̅�𝑥) and 𝛽𝛽3(𝑥𝑥) = (𝑥𝑥 − �̅�𝑥)2 − 𝜎𝜎𝑥𝑥2, 
and (1) becomes: 
 
(10)      log 𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝛼𝛼(𝑥𝑥) + 𝜅𝜅1(𝑡𝑡) + (𝑥𝑥 − �̅�𝑥)𝜅𝜅2(𝑡𝑡)+[(𝑥𝑥 − �̅�𝑥)2 − 𝜎𝜎𝑥𝑥2]𝜅𝜅3(𝑡𝑡) + 𝛾𝛾(𝑐𝑐) 
 
 
Stage P1A (Alpha) 
 
We now take (10) and set the 𝜅𝜅(𝑡𝑡) and 𝛾𝛾(𝑐𝑐) to zero to obtain: 
 
(11)                                                    𝑙𝑙𝑐𝑐𝑙𝑙 𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝛼𝛼(𝑥𝑥) 
 
(12)                                                      𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝑒𝑒𝛼𝛼(𝑥𝑥) 
 
Implicitly, we are assuming that that the starting values of the 𝜅𝜅(𝑡𝑡) and 𝛾𝛾(𝑐𝑐) are zero for 
the purposes of estimating 𝛼𝛼(𝑥𝑥).  
 
We then substitute (11) and (12) into (9) to obtain the log-likelihood function expressed 
in terms of 𝛼𝛼(𝑥𝑥): 
 
(13)              𝑙𝑙(𝛼𝛼) = ∑ ∑ 𝐷𝐷�𝑡𝑡, 𝑥𝑥𝑗𝑗�𝛼𝛼�𝑥𝑥𝑗𝑗� −

𝑛𝑛𝑦𝑦
𝑡𝑡=1

𝑛𝑛𝑎𝑎
𝑗𝑗=1 ∑ ∑ 𝐸𝐸�𝑡𝑡, 𝑥𝑥𝑗𝑗�𝑒𝑒𝛼𝛼�𝑥𝑥𝑗𝑗�

𝑛𝑛𝑦𝑦
𝑡𝑡=1

𝑛𝑛𝑎𝑎
𝑗𝑗=1  + constant 

 
where 𝑛𝑛𝑦𝑦 is the number of sample years.  
 
The ML estimator for 𝛼𝛼(𝑥𝑥𝑖𝑖) is obtained by differentiating (13) with respect to 𝛼𝛼�𝑥𝑥𝑗𝑗� and 
rearranging the first-order condition to give: 
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 (14)                                                    𝛼𝛼�𝑥𝑥𝑗𝑗� = 𝑙𝑙𝑐𝑐𝑙𝑙 �
∑ 𝐷𝐷�𝑡𝑡,𝑥𝑥𝑗𝑗�
𝑛𝑛𝑦𝑦
𝑡𝑡=1

∑ 𝐸𝐸�𝑡𝑡,𝑥𝑥𝑗𝑗�
𝑛𝑛𝑦𝑦
𝑡𝑡=1

� 

 
for 𝑗𝑗 = 1, … ,𝑛𝑛𝑎𝑎 .  
 
 
Stage P1K (Kappa) 
 
In this stage, we input the estimate 𝛼𝛼�(𝑥𝑥) obtained from Stage P1A into (10):  
 
(15)         log 𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝛼𝛼�(𝑥𝑥) + 𝜅𝜅1(𝑡𝑡) + (𝑥𝑥 − �̅�𝑥)𝜅𝜅2(𝑡𝑡)+[(𝑥𝑥 − �̅�𝑥)2 − 𝜎𝜎𝑥𝑥2]𝜅𝜅3(𝑡𝑡) 
 
We then obtain the log-likelihood function 
 
(16)                 𝑙𝑙(𝜅𝜅1, 𝜅𝜅2, 𝜅𝜅3) = 

��𝐷𝐷�𝑡𝑡, 𝑥𝑥𝑗𝑗� �𝛼𝛼��𝑥𝑥𝑗𝑗� + 𝜅𝜅1(𝑡𝑡) + �𝑥𝑥𝑗𝑗 − �̅�𝑥�𝜅𝜅2(𝑡𝑡)+ ��𝑥𝑥𝑗𝑗 − �̅�𝑥�
2
− 𝜎𝜎𝑥𝑥2� 𝜅𝜅3(𝑡𝑡)� −

𝑛𝑛𝑎𝑎

𝑗𝑗=1

𝑛𝑛𝑦𝑦

𝑡𝑡=1

 

��𝐸𝐸�𝑡𝑡, 𝑥𝑥𝑗𝑗�𝑒𝑒𝛼𝛼��𝑥𝑥𝑗𝑗�𝑒𝑒𝜅𝜅1(𝑡𝑡)𝑒𝑒(𝑥𝑥𝑗𝑗−�̅�𝑥)𝜅𝜅2(𝑡𝑡)

𝑛𝑛𝑎𝑎

𝑗𝑗=1

𝑒𝑒[(𝑥𝑥𝑗𝑗−�̅�𝑥)2−𝜎𝜎𝑥𝑥2]𝜅𝜅3(𝑡𝑡)

𝑛𝑛𝑦𝑦

𝑡𝑡=1

 

+ constant 
 
We obtain estimates of 𝜅𝜅1(𝑡𝑡), 𝜅𝜅2(𝑡𝑡) and 𝜅𝜅3(𝑡𝑡) that maximise (16) using a Newton-
Raphson iterative algorithm.  
 
Stage P1C 
 
Repeat stages P1A and P1K until the estimates and the log-likelihood have converged. 
 
Stage P2G (Gamma) 
 
In this stage, we input the estimates 𝛼𝛼�(𝑥𝑥), �̂�𝜅1(𝑡𝑡), �̂�𝜅2(𝑡𝑡) and �̂�𝜅3(𝑡𝑡) into (10) to obtain: 
 
(17)   log 𝑚𝑚(𝑡𝑡, 𝑥𝑥) = 𝛼𝛼�(𝑥𝑥) + �̂�𝜅1(𝑡𝑡) + (𝑥𝑥 − �̅�𝑥)�̂�𝜅2(𝑡𝑡) + [(𝑥𝑥 − �̅�𝑥)2 − 𝜎𝜎𝑥𝑥2]�̂�𝜅3(𝑡𝑡) + 𝛾𝛾(𝑐𝑐) 
 
We then derive the log-likelihood function in terms of 𝛾𝛾: 
 
(18)      𝑙𝑙(𝛾𝛾) = 

� �𝐷𝐷�𝑡𝑡, 𝑥𝑥𝑗𝑗�(𝛼𝛼��𝑥𝑥𝑗𝑗� + �̂�𝜅1(𝑡𝑡) + (𝑥𝑥𝑗𝑗 − �̅�𝑥)�̂�𝜅2(𝑡𝑡) + [�𝑥𝑥𝑗𝑗 − �̅�𝑥�
2
− 𝜎𝜎𝑥𝑥2]�̂�𝜅3(𝑡𝑡) + 𝛾𝛾�𝑡𝑡 − 𝑥𝑥𝑗𝑗�)

𝑛𝑛𝑎𝑎

𝑗𝑗=1

𝑛𝑛𝑦𝑦

𝑡𝑡=1

−� �𝐸𝐸�𝑡𝑡, 𝑥𝑥𝑗𝑗�𝑒𝑒𝛼𝛼��𝑥𝑥𝑗𝑗�𝑒𝑒𝜅𝜅�1(𝑡𝑡)𝑒𝑒(𝑥𝑥𝑗𝑗−�̅�𝑥)𝜅𝜅�2(𝑡𝑡)𝑒𝑒[�𝑥𝑥𝑗𝑗−�̅�𝑥�
2−𝜎𝜎𝑥𝑥2]𝜅𝜅�3(𝑡𝑡)𝑒𝑒𝛾𝛾(𝑡𝑡−𝑥𝑥𝑗𝑗)

𝑛𝑛𝑎𝑎

𝑗𝑗=1

𝑛𝑛𝑦𝑦

𝑡𝑡=1
 

+ constant 
 
We then differentiate the log-likelihood function (18) with respect to 𝛾𝛾(𝑐𝑐) and rearrange 
the first-order conditions to obtain the MLE for 𝛾𝛾(𝑐𝑐): 
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(19)        𝛾𝛾(𝑐𝑐) = 𝑙𝑙𝑐𝑐𝑙𝑙 �
∑ ∑ 𝑤𝑤𝑐𝑐�𝑡𝑡,𝑥𝑥𝑗𝑗�𝐷𝐷�𝑡𝑡,𝑥𝑥𝑗𝑗�

𝑛𝑛𝑎𝑎
𝑗𝑗=1

𝑛𝑛𝑦𝑦
𝑡𝑡=1

∑ ∑ 𝑤𝑤𝑐𝑐�𝑡𝑡,𝑥𝑥𝑗𝑗�𝐸𝐸�𝑡𝑡,𝑥𝑥𝑗𝑗�𝑒𝑒
𝛼𝛼��𝑥𝑥𝑗𝑗�𝑒𝑒𝜅𝜅�1(𝑡𝑡)𝑒𝑒(𝑥𝑥𝑗𝑗−𝑥𝑥�)𝜅𝜅�2(𝑡𝑡)𝑒𝑒[�𝑥𝑥𝑗𝑗−𝑥𝑥��

2
−𝜎𝜎𝑥𝑥

2]𝜅𝜅�3(𝑡𝑡)𝑛𝑛𝑎𝑎
𝑗𝑗=1

𝑛𝑛𝑦𝑦
𝑡𝑡=1

� 

 
for 𝑐𝑐 = 1, … ,𝑛𝑛𝑐𝑐 , and where the weighting function 𝑤𝑤𝑐𝑐(𝑡𝑡, 𝑥𝑥) satisfies 
 
(20)                                          𝑤𝑤𝑐𝑐(𝑡𝑡, 𝑥𝑥) = �10� if �

𝑡𝑡 − 𝑥𝑥 = 𝑐𝑐
𝑡𝑡 − 𝑥𝑥 ≠ 𝑐𝑐. 

 
  
Full maximum likelihood 
 
As explained above under Full ML (ML). 
 
 
4.3. Estimation of CBDX1 and CBDX2 
 
The estimation of CBDX1 is similar to that of CBDX3 except we keep 𝜅𝜅2(𝑡𝑡) and 𝜅𝜅3(𝑡𝑡) set 
to zero, and the estimation of CBDX2 is similar to that of CBDX3 except we keep 𝜅𝜅3(𝑡𝑡) set 
to zero. 
 
 
5. Data and Results from Estimating the Model 
 
5.1. Data 
 
The model is estimated using England & Wales (E&W) male death rate data spanning the 
years 1971–2015 and ages 40–89. The data came from the Life & Longevity Markets 
Association. The data have had anomalies removed using the methodology of Cairns et al. 
(2016). The number of cohorts is 𝑛𝑛𝑐𝑐 = 𝑛𝑛𝑦𝑦 + 𝑛𝑛𝑎𝑎 − 1 and let 𝑥𝑥 be the ages vector.  
 
Using the above data set, the key parameters of the model are 𝑛𝑛𝑦𝑦 = 45, 𝑛𝑛𝑎𝑎 = 50, 𝑛𝑛𝑐𝑐 = 94, 
and birth years 1882 – 1975. 
 
5.2. Results 
 
We compare results for the following models: Lee-Carter (M1, full MLE), the original CBD 
model (M5, MLE), second-generation CBD models M6 and M7 (MLE), and CBDX1, CBDX2 
and CBDX3 (both PML and MLE in each case). Figure 1 compares fitting results for a 
selection of these models for the fitted period and cohort effects.  
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Figure 1: Estimated Period and Cohort Effects for Selected Models 

 
 
For these selected models, we see that estimates for  𝜅𝜅1(𝑡𝑡) are quite consistent (top left 
panel)4 reinforcing the notion that 𝜅𝜅1(𝑡𝑡) captures the headline mortality improvements 
at all levels. There is a close correspondence between M7 and CBDX3 (PML and MLE) in 
all four plots indicating that there is robustness in the addition of 𝛼𝛼(𝑥𝑥) and in the switch 
from logit 𝑞𝑞(𝑡𝑡, 𝑥𝑥) to log𝑚𝑚(𝑡𝑡, 𝑥𝑥) as dependent variable. On the other hand, differences in 
the fitted cohort effects between the six models plotted are quite striking. Specifically, 
cohort effects for CBDX1 and CBDX2 (MLE) are much larger and have much more 
structure than for M7 and CBDX3, while for CBDX2, the PML and MLE cohort effects are 
quite different, indicating a lack of robustness.  
 
This is a clear indication that CBDX1 and CBDX2 lack sufficient structure in the main age 
and period effects and that the cohort effect is being used as a proxy for capturing 
unmodelled age or period effects. This point can be seen by comparing the results for 
CBDX2 for the PML and MLE cases. The PML fits the age and period effects first, and the 
cohort effect second. As a rule of thumb, residuals by year of birth for the age-period case 
should approximately match the fitted cohort in the MLE. However, this is not the case 
for CBDX2, and is a further indication that, for this dataset, the age and period effects in 
CBDX2 lack sufficient structure.  

                                                      
4 To aid comparison, the period effect for the Lee-Carter model has been divided by 𝑛𝑛𝑎𝑎 and period effects 
for M7 have been shifted to be centred around zero. 
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In Figure 2, as a snapshot of how well the models fit the data, we show actual death rates 
(dots) versus fitted death rates for various models. We can see that all of the models 
shown give a reasonable fit, but some models clearly fit much more closely than others. 
Models that fit less well are M1, CBDX1-MLE and CBDX2-PML, while the others are much 
closer and difficult to distinguish. Again, we see a significant difference between CBDX2-
PML and CBDX2-MLE, indicating that the two age-period effects are not sufficient to 
capture the dynamics over the 45-year period. In contrast, the difference between 
CBDX3-PML and CBDX3-MLE is negligible.  
 

Figure 2: Crude and Fitted Death Rates in 2015 for Selected Models 

 
6. Bayesian Information Criteria Model Comparisons 
 
To assess how well the models compare, Table 2 shows the Bayesian Information 
Criterion (BIC) results for M1, M5, M6, M7, and CBDX1, CBDX2, CBDX3 under their PML 
and MLE variants.5 
 
  

                                                      
5 Here the Bayesian Information Criterion is defined as 𝐵𝐵𝐵𝐵𝐵𝐵 = −2𝑙𝑙 + 𝑘𝑘 log𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 where 𝑙𝑙 is the maximum log-
likelihood, 𝑘𝑘 is the number of degrees of freedom in the model and 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜 is the number of observations (i.e. 
years times ages). Models with a smaller BIC are considered to be better. 
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Table 2: Log-likelihoods and Bayesian Information Criteria Results 
Model Log-likelihood Parameters Constraints Degrees of 

Freedom 
BIC 

M1 -16090.70 145 2 143 33285.18 
M5 -28628.74 90 0 90 57952.16 
M6 -13162.64 184 2 182 27730.07 
M7 -12014.76 229 3 226 25773.95 
CBDX1-PML -17162.86 189 3 (*) 186 35761.40 
CBDX1-MLE -14903.29 289 3 186 31242.26 
CBDX2-PML -17443.27 234 5 (*) 229 36654.11 
CBDX2-MLE -12338.60 234 5 229 26444.78 
CBDX3-PML -12085.20 279 7 (*) 272 26269.88 
CBDX3-MLE -11919.35 279 7 272 25938.18 

 
Note: Constraints marked with a (*) are implicit rather than explicitly applied in the model fitting process. 
 
Based on the BIC results, M7 should be marginally preferred to CBDX3. We also note that 
M1 and M5 both perform relatively poorly, presumably because of their simple structure 
and their lack of a cohort effect. In addition, we see that there is a substantial difference 
between the CBDX2 PML and MLE variants.  
 
Figure 3 presents Pearson standardised residuals for M7 and CBDX3. These are quite 
similar across the models. However, M7 residuals by age (top left panel) exhibit a modest 
wave pattern that CBDX3 eliminates through its use of its additional age effect, 𝛼𝛼(𝑥𝑥). 
Otherwise, the plots in Figure 3 indicate that both models fit the data very well. But the 
top left panel does suggest that CBDX3 might be preferred over M7, notwithstanding the 
BIC scores.  
 
The results reported above are based on sample age range of 40-89 and years 1971-2015. 
As a robustness check, Table 3 reports the BIC rankings for a variety of age ranges and 
years. 
 
We see that models M7, CBDX2-MLE and CBDX3-MLE consistently perform well across 
different sample age and year ranges and generate the same average ranks.  
 
We also see that the best performing models on the wider age ranges (see first two 
columns) are M7 and CBDX3-MLE: they both rank 1 or 2. From these results, there is 
nothing to choose between them. But then introduce the scatterplots in Figure 3 and the 
balance swings in favour of CBDX3-MLE. We would therefore argue that the best 
performing model on the wider age range is CBDX3-MLE.  
 
 
On the other hand, if one wants to use a narrower (i.e., older) age range (see third and 
fourth columns), then the two equal best performers are M6 and CBDX2-MLE and there 
is nothing to choose between them either.  
 
Finally, we also observe that the PML versions of the CBDX models always rank worse 
than their MLE counterparts, and the difference in ranking is especially marked for 
CBDX1 and CBDX2.  
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Figure 3: Scatterplots of Pearson Standardised Residuals for M7 and CBDX3 
against Age (top), Calendar year (middle) and Year of Birth (bottom) 
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Table 3: BIC-based Model Rankings for Alternative Age Ranges and Ranges of 
Years 

Model Ranking Average 
Ages: 40-89 40-89 60-94 60-94 Rank 
Years: 1971-2015 1961-2015 1971-2015 1961-2015  
M1 7 7 6 7 6.75 
M5 10 10 9 9 9.5 
M6 5 5 1 2 3.25 
M7 1 2 3 4 2.5 
CBDX1-PML 8 9 10 10 9.25 
CBDX1-MLE 6 6 8 8 7 
CBDX2-PML 9 8 7 6 7.5 
CBDX2-MLE 4 3 2 1 2.5 
CBDX3-PML 3 4 5 5 4.25 
CBDX3-MLE 2 1 4 3 2.5 

 
 
 
7. A Financial Application 
 
We now consider a financial application of the models which focus on annuity prices for 
two cohorts of males: one aged exactly 70, and one aged 50 at the start of 2016.  
 
Figure 4 shows fan charts (covering the 5% to the 95% quantiles) of the underlying death 
rates for the two cohorts up to age 89. In both plots, the two variants of CBDX3 give quite 
consistent results due to the similarity of the historical period and cohort effects. CBDX2 
initially tracks CBDX3-MLE fairly closely in the upper plot, but then deviates quite 
significantly. In the lower plot, CBDX2-MLE follows quite a different path. There are three 
reasons for these differences. First, the single values of the cohort effects for these cohorts 
(born in 1946 and 1966 respectively) are quite different (Figure 1, bottom right panel). 
Second, the upwards drift in 𝜅𝜅3(𝑡𝑡) (Figure 1, bottom left panel; an effect not present in 
CBDX2) causes mortality rates at high ages to improve at a slower rate in CBDX3. Third, 
in Figure 4, we can see that fitted death rates in 2015 are higher for CBDX2-MLE than 
either CBDX3 over the ages 50-70. 
 
Tables 4 and 5 show the prices, per £1 per annum, of term annuities payable to males 
aged exactly 70 and 50, respectively. For the 70-year-old, payments commence 
immediately and are payable until age 90, and for the 50-year-old, the annuity is deferred 
to age 65 and ceases at age 90. For the 70-year-old, we can see some variation in prices, 
with M6, CBDX1 and CBDX2 well above the other models. This can be attributed to the 
significant differences in the fitted cohort effect at age 70 (year of birth 1946 in Figure 1, 
bottom right panel). For the 50-year-old, price differences between models are reversed 
and again mainly reflect differences in the fitted cohort effects for year of birth 1966. 
These differences emphasize the importance of (a) getting a good estimate of the cohort 
effect, and (b) ensuring that the model has adequate age and period effects to avoid 
overfitting with the cohort effect. Figure 4 also helps to illustrate how these price 
differences emerge in relation to differences in the underlying mortality rates. For 
example, for the cohort aged 50, the higher mortality rates up to age 80 in the CBDX2 fan 
lead to lower survival probabilities and lower deferred annuity values. 
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Figure 4: Fan Charts for CBDX3-PML and -MLE and CBDX2-MLE Cohort 𝑞𝑞 Rates  

 
Notes: Based on E&W data for years 1971:2015 and ages 40:89.  

 
 
Tables 4 and 5 also include in parentheses the additional capital required to cover runoff 
of the liability at a 95% level of confidence (additional 95% VaR).6 Models M1 and CBDX1 
have less uncertainty in simulated mortality rates at high ages than other models and this 
results in lower VaRs for these models. Other models have similar VaR levels. At age 70, 
VaRs are larger than the variation in prices between models. At age 50, VaRs are much 
higher as payments are more distant and more risky. We also see that variations in prices 
are larger than the VaRs.  
 

                                                      
6 Simulations here do not include parameter uncertainty. 
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Table 4: Prices of a Term Annuity Function from Age 70 

 
Model 

Term Annuity Price 
(additional 95% VaR) 

M1 12.63 (0.24) 
M5 12.56 (0.29) 
M6 12.89 (0.30) 
M7 12.73 (0.32) 

CBDX1-MLE 12.92 (0.24) 
CBDX2-MLE 12.94 (0.29) 
CBDX3-PML 12.68 (0.31) 
CBDX3-MLE 12.70 (0.31) 

Notes: Based on E&W data for years 1971:2015 and ages 40:89. The term annuity 
presumes a continuously compounding risk-free interest rate of 1.5% p.a.   

 
 
Table 5: Prices of a Deferred Term Annuity Function from Age 50 with Payments 
Commencing at Age 65 

Model Deferred Term Annuity Price 
(additional 95% VaR) 

M1 12.59 (0.40) 
M5 12.44 (0.44) 
M6 12.03 (0.44) 
M7 12.52 (0.45) 

CBDX1-MLE 11.74 (0.44) 
CBDX2-MLE 11.83 (0.44) 
CBDX3-PML 12.63 (0.44) 
CBDX3-MLE 12.50 (0.44) 

Notes: Based on E&W data for years 1971:2015 and ages 40:89. The deferred term 
annuity presumes a continuously compounding risk-free interest rate of 1.5% p.a.  

 
 
8. Recalibrating Forecasts 
 
 
In this section, we propose a novel method for forecasting that blends statistical analysis 
of the historical period effects with expert judgement about central forecasts.  
 
Current practice in the UK life insurance industry following guidance from the UK’s 
Prudential Regulatory Authority (PRA, 2016) can be summarised as follows. Establish a 
best estimate (BE) for future mortality using, e.g., expert judgement (EJ) or statistical 
modelling. As a separate exercise, identify distinct stochastic mortality models from four 
common families of model (e.g. CBD, Lee-Carter) calibrated using standard statistical 
methods for their volatilities. For each model, calculate best estimate annuity liabilities 
and the associated Solvency Capital Requirement (SCR) as a percentage of the same 
model’s best estimate. Use expert judgement to establish a single percentage SCR based 
on results for the four models. Finally, apply this percentage SCR to the BE-EJ best 
estimate based on expert judgement. While this approach on the face of it seems 
reasonable, there is an uncomfortable disconnect between the model used to establish 
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the best estimate, and the models used to establish how much uncertainty there is around 
that best estimate. The approach we propose here resolves this issue. 
 
Our new model for forecasting the period effects is generalised to a multivariate random 
walk with time dependent drifts: 
 
(21𝑐𝑐)                                               𝐾𝐾1(𝑡𝑡)=𝐾𝐾1(𝑡𝑡 − 1)+𝜇𝜇1(𝑡𝑡)+𝑍𝑍1(𝑡𝑡) 
(21𝑏𝑏)                                               𝐾𝐾2(𝑡𝑡)=𝐾𝐾2(𝑡𝑡 − 1)+𝜇𝜇2(𝑡𝑡)+𝑍𝑍2(𝑡𝑡) 
(21𝑐𝑐)                                               𝐾𝐾3(𝑡𝑡)=𝐾𝐾3(𝑡𝑡 − 1)+𝜇𝜇3(𝑡𝑡)+𝑍𝑍3(𝑡𝑡) 
 
where  (𝑍𝑍1(𝑡𝑡),𝑍𝑍2(𝑡𝑡),𝑍𝑍3(𝑡𝑡)) are i.i.d. multivariate normal vectors with mean 0 and   
𝐵𝐵𝑐𝑐𝐶𝐶(𝑍𝑍𝑖𝑖(𝑡𝑡),𝑍𝑍𝑗𝑗(𝑡𝑡)) = 𝜎𝜎𝑖𝑖𝑗𝑗 are estimates from the historical observations of 
(𝐾𝐾1(𝑡𝑡),𝐾𝐾2(𝑡𝑡),𝐾𝐾3(𝑡𝑡)). 
 
The standard model has  𝜇𝜇𝑗𝑗(𝑡𝑡) = 𝜇𝜇𝑗𝑗 , i.e., constant drift, estimated from the historical data:  
 
(22)                                               �̂�𝜇𝑗𝑗=(𝐾𝐾𝑗𝑗(𝑡𝑡1) − 𝐾𝐾𝑗𝑗(𝑡𝑡0)/(𝑡𝑡1 − 𝑡𝑡0).  
 
The proposed model assumes 
 
(23)                                          𝜇𝜇𝑗𝑗(𝑡𝑡) = �𝜇𝜇𝑗𝑗0 − 𝜇𝜇𝑗𝑗1�𝑒𝑒−𝛽𝛽(𝑡𝑡−𝑡𝑡1) + 𝜇𝜇𝑗𝑗1. 
 
So for each 𝐾𝐾𝑗𝑗(𝑡𝑡), we require: 
 
(a) 𝐾𝐾𝑗𝑗(𝑡𝑡1)= last observation (already known), 
(b) 𝜇𝜇𝑗𝑗0= short term drift, 
(c) 𝜇𝜇𝑗𝑗1= long term drift, and 
(d) 𝛽𝛽= rate at which we move from 𝜇𝜇𝑗𝑗0 to 𝜇𝜇𝑗𝑗1 
 
with (b), (c), and (d) to be specified by the user. Other models for  𝜇𝜇𝑗𝑗(𝑡𝑡) are, of course, 
possible (e.g., as in CMI, 2018). 
 
One procedure for calibration is: (1) choose 𝜇𝜇𝑗𝑗0 = an estimate of the recent trend in 𝐾𝐾𝑗𝑗(𝑡𝑡) 
up to 𝑡𝑡1; (2) calibrate (𝜇𝜇11, 𝜇𝜇21, 𝜇𝜇31), so that the prices of 3 annuities for ages 60, 65, 70 
match stated prices (best-estimate liabilities) 𝑃𝑃60, 𝑃𝑃65, 𝑃𝑃70 that might have been 
established using a given best estimate projection of mortality, e.g., using the CMI 
mortality projections model (CMI, 2018).7 
 
By calibrating the 𝜇𝜇𝑗𝑗𝑗𝑗’s in this way, we have a single stochastic model that matches best 
estimate liabilities (e.g., as output from a different model such as CMI, 2018, calibrated 
using expert judgement) and gives us a consistent estimate of the uncertainty around that 
liability. Having a single model that delivers both characteristics within a coherent setting 
gives us more confidence that the value-at-risk associated with the best estimate is 
reliable.  

                                                      
7 Note that CMI (2018) proposes that previously established cohort effects also decay gradually to zero in 
projections. We do not propose that here, but it could be incorporated into our model if desired or if 
necessary to get a satisfactory calibration. 
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By way of example, we considered two variants alongside the baseline documented in the 
previous section: 
 

• Variant 1: 𝜇𝜇0= mean drift (vector) over the period 2011-2015; 𝜇𝜇1= long-term 
historical drift (1971-2015). 

• Variant 2: 𝜇𝜇0= mean drift (vector) over the period 2011-2015; 𝜇𝜇1= (-0.015,0,0) 
(i.e.,  in the long run, the improvement rate will be 1.5% per annum at all ages from 
50 to 89, consistent with recent actuarial practice). 

 
Table 6 gives prices and VaRs for the deferred annuity from age 50, and the immediate 
annuity from age 70, while Figure 5 shows fan charts for the cohort mortality rates from 
age 50 for the three variants.  
 
Table 6:  Deferred and Immediate Annuity Prices for Three Calibrations of 
the Time-Dependent Drift of the Multivariate Random Walk 

 Age 50 
Price (additional 95% VaR) 

Age 70 
Price (additional 95% VaR) 

Baseline 12.50 (0.44) 12.70 (0.31) 
Variant 1 12.13 (0.47) 12.42 (0.33) 
Variant 2 11.95 (0.49) 12.41 (0.33) 

 
Figure 5 helps to illustrate how differences in prices emerge under the three variants. 
Variant 1 deviates initially from the baseline because of the lower initial improvement 
rate, but, thereafter, tracks the trend of the baseline fan. The overall higher mortality then 
results in a lower price in Table 6. Variant 2 tracks Variant 1 initially, having the same 
initial rate of improvement, but then deviates from Variant 2 because of the different 
long-term improvement rates. 

 
Figure 5: Cohort Mortality Fan Charts for Three Variants with Different 

Parameters for the Random Walk Drifts: Males Aged 50 in 2016
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9. Features and Extensions of the CBDX Model 
 
9.1 Features 
 
The CBDX model has a number of useful features. 
 
The first point to note, touched on a little earlier, is that CBDX3 provides a satisfactory 𝛾𝛾 
process. Ideally, the 𝛾𝛾 plot should be zero-trended, devoid of any particular features (e.g., 
spikes) and ‘small’ in value (i.e., so we are not relying on the 𝛾𝛾 process, which is only a 
residual in the model, to do any heavy lifting). We see that the CBDX3 𝛾𝛾 plot in Figure 1 
fits these criteria well, in contrast to the 𝛾𝛾 plots provided by other models (apart from 
M7) or by other versions of CBDX. The fact that the 𝛾𝛾 process is a model residual also 
means that the 𝛾𝛾 plot gives us another goodness-of-fit indicator, since any 
misspecifications or other problems in the model would be carried through to the 
residual. Our approach to the treatment of 𝛾𝛾 thus allows for more helpful diagnostics of 
the model’s goodness of fit.  
 
The difference between the CBDX2 and CBDX3 𝛾𝛾 plots provides a further confirmation of 
the importance of the third period effect. Hunt and Blake (2014) stress that, if a significant 
improvement in fit can be achieved through the addition of a further period effect, then 
this should be preferred over the immediate introduction of a cohort effect. A cohort 
effect should only be introduced when (a) residuals by year of birth in the age-period-
only version of the model do not exhibit significant structure other than random waves, 
and (b) the addition of a cohort effect does not result in a material change in the estimated 
period effects compared to the age-period-only model (other than those due to 
identifiability constraints). 
 
A second point is that our sequential iterative algorithm (PML) can provide another 
useful model-building diagnostic. Our fitting approach is to start by fitting the age-period 
version of the model (the 𝛼𝛼(𝑥𝑥) and the 𝜅𝜅𝑖𝑖(𝑡𝑡)) and then the cohort effect 𝛾𝛾(𝑐𝑐). For the full 
MLE, we then revise the fits iteratively, refitting each in turn, until we have an ML fit for 
the CBDX1/2/3 model. If the overall fit is not a good one (e.g., CBDX2 in Figure 1), then 
we will get a 𝛾𝛾 plot that is visibly not small, featureless or zero-trended, and that 𝛾𝛾 plot 
would be a signal that the model is inadequate in some way (e.g., in the sense of Hunt and 
Blake, 2014) 
 
Third, our iterative fitting process allows us to fit age, period and cohort effects without 
explicitly imposing identifiability constraints. Not having to specify those constraints is 
helpful because there has been a growth in the number and importance of such 
conditions in recent mortality modelling literature, and this growth has led to both 
robustness problems and to difficulties in making projections of future mortality rates 
(see, e.g., Hunt and Blake, 2020a,b).  
 
9.2 Extensions 
 
We can consider a number of possible extensions: 
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• Apply the model to other countries or sub-populations to confirm that CBDX3 is 
a suitable workhorse model.  

 
• Multi-population (e.g., gravity) modelling: the CBDX3 model can be used as the 

base model for a multi-population (or gravity-type) mortality model, which could 
then be used for hedging analysis (see, e.g., Dowd et al., 2011, 2018; Cairns et al., 
2011a). 

 
• Parameter uncertainty: A useful feature of the model is that, like its CBD 

predecessors,  the simulation model can be easily adapted to allow for parameter 
uncertainty along the lines shown in Cairns et al. (2006, 695-698, 2011b) or Dowd 
et al. (2010 pp. 296-297).  

 
 
10. Conclusions 
 
 
The purpose of this paper is to identify a workhorse model suitable for modelling the 
mortality of the mature adult population without the need for the large number of age 
effects that are usually required to model the full human age range (i.e., infant mortality 
and the accident hump). We first used Hunt and Blake (2014)’s general procedure to 
identify an age-period model that fits the data well before adding in a cohort effect that 
then captures the residual year-of-birth effects. Based on a variety of diagnostics, our 
preferred model for wider age ranges is the CBDX model with three period effects, CBDX3.  
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