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Abstract  

A novel visual psychophysical technique has been developed and validated. The 
technique allowed the development of the ‘EMAIL’ (Eye Movement and Integrated 
Latency) test which has been optimised and used extensively in this thesis. This 
technique allows the measurement of eye movement response latencies and visual 
processing times, without the use of eye-tracking. The computed value produced by 
the test - labelled as ISL (Integrated Saccade Latency) - captures the overall time the 
subject requires to compute and generate an appropriate eye movement response 
and to process a specific stimulus attribute at the end of each saccade. In addition, 
the EMAIL test also measures the subject’s decision response time (DRT). The latter 
is largely a measure of the motor response and indicates the time the subject needs 
to press the appropriate response button. To account for all the parameters that make 
up the ISL and to validate the EMAIL test as an effective visual psychophysical 
technique, three studies have been designed and carried out to answer the following 
questions:  
 

1. Can a psychophysical test designed to measure the overall time subjects need 
to execute the eye movement and to perform a visual task at the end of each 
saccade be used as a viable testing procedure to assess saccadic response 
latencies and visual processing times? 

2. Can the EMAIL test capture the known asymmetries that exist between the 
horizontal and vertical saccadic eye movements through ISLs?  

3. Can the EMAIL test capture reliably the effects of aging associated with 
saccadic eye movements? 

 
In the first study, the eye tracking equipment in conjugation with the EMAIL test, was 
used  to determine the value of each component that makes up the ISL time. The latter 
also includes the post saccadic visual processing time (VPT). This set up makes it 
possible to test the hypothesis that VPT, when saccades are involved, are longer than 
those measured with identical stimuli in the absence of eye movements. The 
experiments carried out confirm this to be the case.  I therefore proposed a second 
hypothesis to account for the extended VPTs. I hypothesise that the extended VPTs 
measured in this study can be attributed to instabilities of the eyeball or / and fixation 
errors. The experimental results confirm my hypothesis by demonstrating clearly that 
instabilities of the eyeball cause increased VPTs for small saccades as well as fixation 
errors which also contribute to the increased VPTs, particularly for large saccade 
amplitudes.   
 
The second study aimed to test the hypothesis that the known vertical versus 
horizontal directional asymmetries in eye movement responses affect the measured 
ISL responses. By presenting the visual target along different meridians at specific 
locations in the visual field, the directional asymmetries in eye movement responses 
were investigated to test this hypothesis.   
The results demonstrate clearly that ISL responses reveal the expected directional 
asymmetries with saccades along the horizontal meridian being faster than those 
measured along the vertical meridian.  
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The last study investigates the effects of age on oculomotor and decision response 
times. Since brain structures change significantly during both developmental and 
degenerative stages and such changes have been shown to translate into behavioural 
responses, it is reasonable to test the hypothesis that both ISL and in particular DRT, 
are also affected by age.  The experimental findings show that the EMAIL test captures 
reliably the expected changes in both oculomotor and decision response times. 
The  results of the last study show that both ISL and DRT times increase non-linearly 
with age, a finding consistent with earlier reports from eye-movement and reaction 
time studies. 
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 Introduction and Literature Review 
 

This chapter outlines the background literature related to studies presented in this 

thesis. First, the general background into the ways in which the  brain processes visual 

information is given, followed by  emphasis on saccadic eye movements including 

paradigms that are widely used to generate them under controlled conditions.  The 

influence of physical properties of stimulus in saccade parameters and their effect 

particularly on its latency are also described. Finally, the brain mechanisms involved 

in saccade generation are outlined.   

 Processing of Visual Information  
 

Since 1962 when David Hubel and Torsten Wiesel described in detail the response 

properties of neurons in the primary visual cortex, we have gained great understanding 

into the ways in which the brain processes incoming visual signals and transforms this 

information to inform our perception and behaviour. From studying how the retina 

organises visual information and how its neurons respond to spatial, temporal and 

spectral modulations in the retinal image, we gained significant insights into the 

processing of visual information in human vision. The first step of seeing begins in the 

retina where the photoreceptors, rods and cones convert the spatial modulations of 

intensity and spectral content in the retinal image into electrical signals that can then 

be used to code the information contained in the retinal image as needed for efficient 

transfer to the primary visual cortex. The visual information processing also begins in 

the retina, where neurons at each stage of the processing within the retina act as filters 

to compress the information by extracting key features such as colour, contrast and 

movement (Nassi and Callaway 2009). Compression of visual information is required 
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due to limited number of axons in the optic nerve. While within the photoreceptor layer 

of the human retina there are approximately 5 million cones and 100 million rods that 

translate light into neuronal signal, there are only just over ~1 million axons of retinal 

ganglion cells that form the optic nerve in each eye, which connects the eye to the 

brain (Reichenbach and Bringmann 2013; Nassi and Callaway 2009). There is great 

regularity in the way axons distribute themselves.  

As the axons leave the eye through optic nerve, the two optic nerves meet at the optic 

chiasma. There, the axons from ganglion cells of the nasal half of the retina cross at 

the optic chiasma where they join with axons from ganglion cells of the temporal half 

of the retina in the contralateral eye, before terminating in different visual areas (Figure 

1). Each early-stage visual centre has a different role in visual processing and receives 

inputs from different types of ganglion cells (Wässle 2004). These include: Lateral 

Geniculate Nucleus - LGN (image forming pathways), Superior Colliculus - SC (plays 

a critical role in the neural control of saccadic eye movements - rapid shifts in eye 

position that redirect the fovea toward objects of interest so that they can be seen 

clearly), suprachiasmatic nucleus in hypothalamus (regulates circadian rhythm), and 

pretectum (adjusts the pupil size) (Reichenbach and Bringmann 2013).   
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The axons do not project directly to the striate cortex (V1), instead they are relayed to 

the cortex by neurons in the LGN through the optic radiation (Figure 1), known as the 

retina–geniculate–striate pathway. This pathway is retinotopically organised (Hubel 

1995) to preserve the spatial arrangement of the visual image. Within this pathway, 

there are relatively independent streams. 

In the primate retina, although there are at least 17 different types of ganglion cells, 

from those only three types are well characterised (Nassi and Callaway 2009) and 

form the three distinct pathways that are known as P (Parvocellular), M 

(Magnocellular) and K (Koniocellular). Each pathway is representative of a distinct 

population of ganglion cells. Midget ganglion cells are considered to be the origin of 

the P-pathway, and account for approximately 80% of the total population of cells that 

project to the LGN (Perry, Oehler, and Cowey 1984). These cells have small (ON-

OFF) receptive fields, low contrast sensitivity and respond to changes in colour 

(Reichenbach and Bringmann 2013), whereas parasol ganglion cells are considered 

Figure 1. The visual pathway. The axons from the right half of the right retina terminate in 
LGN on the same side (right) and the axons from the right half of the left retina cross at the 
optic chiasm and terminate at the right LGN. It has been estimated that approximately 10% 
(V. H. Perry, A. Cowey, 1984) of the axons leave the optic tract and make connections with 
SC. (https://nba.uth.tmc.edu/neuroscience/m/s2/images/html5/s2_15_2.jpg) 
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to be the origin of the M-pathway and account for 10% of the total population of cells 

that project to the LGN (Perry, Oehler, and Cowey 1984). These cells have large 

receptive fields, high contrast sensitivity and are responsible for orientation and 

movement detection (Perry, Oehler, and Cowey 1984; Nassi and Callaway 2009; 

Reichenbach and Bringmann 2013). Small and large bistratified ganglion cells are 

considered to be the origin of K-pathway and they account for approximately of 8% of 

the total population of cells that project to the LGN (Nassi and Callaway 2009; 

Reichenbach and Bringmann 2013). Bistratified ganglion cells have very large 

receptive fields, high contrast sensitivity and receive S-cone inputs also known as blue 

cones. The S-cones are responsive  to short wavelengths between 380 and 500nm 

(Reichenbach and Bringmann, 2013; Nassi and Callaway, 2009).  

Another interesting feature of the retina–geniculate–striate pathway is that visual 

space is not represented equally within the V1 (Hubel 1995).   

The visual systems’ spatial resolution varies systematically across the visual field 

because it is constrained by both spacing and the dendritic field size of the cells. Only 

the cells with high density and small dendritic fields (midget cells) can mediate high 

visual acuity (Reichenbach and Bringmann 2013). 

It is well known that the very central region of the retina, called foveola, has only cone 

photoreceptors and no rods (Osterburg 1935). The spatial density of cones is very 

high in the fovea and decreases rapidly with eccentricity while the rod density peaks 

between 10° and 20° peripheral to the fovea (Osterburg 1935). Also, in central fovea 

the convergence from cones to ganglion cells is small (only 1 to 3, for which three 

midget ganglion cells are connected through three midget bipolar cells to one cone) 

while the convergence from rods to ganglion cells is much higher (Reichenbach and 

Bringmann 2013). This small convergence from cone to ganglion cells crates the basis 
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for high spatial resolution that fovea provides. As the convergence of the 

photoreceptor cells to ganglion cells increases outside the fovea and the cone density 

decreases, so does the visual acuity.  

Because the projection of visual signals to V1 maintains the topographic information, 

there is a much higher number of V1 cells that process visual signals from the fovea 

(Kiley, C. W., & Usrey 2016; Hubel 1995). As a result, the area in V1 dedicated to the 

fovea is very large when compared to the remaining visual field. Therefore, visual 

acuity decreases with increasing eccentricity.  

The visual pathways (P, M and K) that began on the retina to LGN converge 

significantly within layers of V1. From there, two new segregated, but interacting, 

parallel pathways of information flow emerge: known as dorsal and ventral pathways 

(Mishkin, Ungerleider, and Macko 1983). The Ventral pathway (also known as the 

“what” stream) projecting from V1 to ventro-temporal regions is responsible for object 

recognition, whereas the dorsal pathway (also known as the “where” stream) 

projecting to the posterior parietal cortex is responsible for spatial information (Mishkin, 

Ungerleider, and Macko 1983; Milner and Goodale 2008; Goodale and Milner 1992). 

The over-representation of foveal vision is also seen in ventral stream. Ventral stream 

is associated with P-pathway and this comes as no surprise, since the role of the 

ventral stream is to construct detailed representation of our world, while the dorsal 

stream is associated with M-pathway. The representation of visual field is broader  

in this stream and the peripheral vision is well represented (Milner and Goodale 2008; 

Goodale and Milner 1992). In addition, Goodale and Milner defined these two streams 

not just by the kind of information they each process, but how this information is used. 

According to their interpretation, within the ventral stream the information is 

transformed to construct percept of the world through object recognition (vision-for-
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perception), whereas the dorsal stream processes visual information to guide our 

actions (vision-for-action). 

Most of our perceptual experience is confined to central vision, therefore we 

continuously shift our gaze by generating saccadic eye movements, so that the very 

central foveal region fovea forms the point of regard.  

The eye movements are a fundamental feature of vision. Our eyes move continuously 

even during the fixational pauses when the visual information is being taken in and 

integrated, to overcome the loss of vision due to constant stimulation of the retinal 

receptors (i.e. adaptation). It is well established that the cells’ receptive fields respond 

vigorously only during changes to visual input, but rapidly lose their responses when 

the input is constant (Troncoso, Macknik, and Martinez-Conde 2008; Martinez-Conde, 

Macknik, and Hubel 2004; Martinez-Conde et al. 2009). As stated by Troncoso, X. G, 

2008: “Our visual system has a built-in paradox: we must fixate our gaze in order to 

inspect the minute details of the world, yet if our eyes were perfectly still, all stationary 

objects would fade from view.” Thus, our natural vision is governed by a repertoire of 

gaze-shifting eye movements that guide our actions and behaviour. The next section 

examines different types of eye movements and their pivotal role in our everyday 

behaviour.  

 Eye Movements  
 
 
The eye lies cushioned in fat in the bony orbit that is held in place by the six muscles 

that move it in any direction. Four of these muscles are the rectus muscles (the medial, 

lateral, superior and inferior), while the other two are labelled as the superior and the 

inferior oblique muscles.  

These muscles are arranged in three opponent pairs, where the medial and lateral 
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rectus move the eyes along the horizontal direction, the superior and inferior rectus 

control the up and down directions, and the superior and inferior oblique participate in 

torsion (Schiller and Tehovnik 2005). While these muscles can rotate the eye in any 

direction, the motor neurons that innervate the extraocular muscles are found in III 

(oculomotor), IV (trochlear) and VI (abducens) cranial nerve nuclei (Sparks 2002). 

These motor neurons are responsible not just for generating saccades, but for all types 

of eye movements (Ramat et al. 2007) 

Before the eye starts to move, it must overcome the constrains imposed by orbital 

supporting tissues, such as viscous drag (due to connective tissues) and elastic 

restoring forces (due to muscle). For example, to produce rapid eye movements such 

as saccades, motoneurons must produce a burst of neural activity in ocular motor 

nuclei to overcome the viscous drag. In addition, as the eye reaches its new position 

at the end of the saccade, the eye must be held there against elastic restoring forces. 

This is achieved by sustained motoneuron firing that produces a steady contraction of 

extraocular muscles. These two components are known as pulse and step of 

innervation, where the pulse of innervation is produced to overcome the viscous drag 

of orbital tissues, whereas the step component is produced to overcome the elasticity 

of the orbital tissues (Ramat et al. 2007) 

The tissues supporting the eyeball impose mechanical constraints on all types of eye 

movement, since all require pulse and step components (Robinson 1964; Optican 

2010). Stabilising and aligning the retina with moving or stationary targets is essential 

for clear vision. As a result, humans have developed two main types of eye 

movements, one for gaze stabilisation and one for gaze shifting (Zee 1999).  

 Gaze Stabilisation System 
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As we move around our environment, we generate eye movements that counteract 

the effects that the head movements have on our vision. Without these eye 

movements, our ability to recognise and localise the objects of interest will be 

impaired, because each head movement will cause the retinal image to slip, resulting 

in blurred vision. Thus, the role of our gaze stabilisation system is to overcome the 

image blur by producing eye movements that compensate for self-motion caused by 

head movements (Hikosaka, Takikawa, and Kawagoe 2000). The gaze stabilisation 

mechanism is divided in to two categories: vestibular and optokinetic systems.  

The vestibular system depends on the semicircular canal to calculate the rate at which 

the head is rotating (Kemp and Kirk 2014), whereas the optokinetic system gets its 

information from the photoreceptors, to calculate the speed and the direction at which 

the visual world moves across the retina (Zee 1999). 

 Gaze Shifting System 
 

 
With the evolution of the primate fovea, it was necessary for the gaze shifting 

mechanism to evolve, so that when the new object of interest appears in the periphery, 

the fovea could be directed towards it.  

The gaze shifting system can be divided into two main categories: the saccadic system 

that shifts the line of gaze from one point to another, and the smooth pursuit system 

that allows the fovea to follow a target as it moves across a stationary background.  

While the smooth pursuit system is believed to have evolved from the optokinetic 

system, the saccadic system is thought to have evolved from behavioural mechanisms 
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shared by both the optokinetic and vestibulo ocular systems (Hikosaka, Takikawa, and 

Kawagoe 2000). 

With the development of frontal vision and binocularity, it became necessary to be able 

to point the fovea of both eyes simultaneously to one object of interest. When the eyes 

focus on an infinitely distant object, the lines of gaze projecting from the two foveas 

are parallel. However, as the object moves closer the lines of gaze converge. 

Consequently, each eye rotates in the opposite direction (disconjugates). Thus, 

vergence (disconjugate) movements move the eyes in opposite directions as we point 

the fovea of both eyes on a near object. While each of these systems have distinct 

neural entity they all share a common set of motor neurons and therefore share a 

common set of muscles. 

In the next section, I will discuss the development stages of pursuit, fixation and 

saccadic systems.  

 The Pursuit System 
 
 
The pursuit system is different from the saccadic system. Pursuit involves slow eye 

movements as well as compensatory saccadic movements, to achieve the speed of a 

moving target in order to keep the moving target  on the fovea. While saccadic 

mechanisms are present since infancy, the smooth pursuit system it is not fully 

developed and continuously improves throughout childhood and may not reach 

maturity until adulthood (Luna, Velanova and Geier 2008). Cognitive processes such 

as attention, selection, learning and prediction exert a strong influence on the way the 

information is used to control the smooth pursuit eye movements (Barnes 2008). The 

pursuit accuracy is accomplished as the brain learns to monitor and generate 
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predictive smooth pursuit movements to match the speed of the moving target. There 

is a wide brain circuitry involved in the pursuit system. These include a number of 

components, e.g. cerebellar dorsal vermis (DV), caudal fastigial nucleus, medial 

superior temporal area (MST), frontal eye field (FEF), supplementary eye field (SEF), 

dorsolateral pontine nucleus (DLPN), nucleus reticularis tegmenti pontis (NRTP) and 

middle temporal area (MT), which is also known as visual area V5 (Newsome, Wurtz, 

and Komatsu 1988). The formation of the mature pursuit system is believed to reflect 

the functional integration of this wide circuitry which continues to improve through 

adolescence (Ego et al. 2013). 

 The Fixational System  
 
 
There are three different types of eye movements that occur during the fixation: tremor, 

drifts and microsaccades. Together, these eye movements help us keep the object of 

interest in the fovea, but also induce firing of neural responses to prevent visual fading, 

so that we are able to retain our vision during the fixation. 

To be able to see the stationary object, the image must be held steadily on the fovea. 

The fixational eye movements not only keep the stationary object on the fovea, but 

also prevent visual fading and enhance visual perception (Troncoso, Macknik, and 

Martinez-Conde 2008; Susana Martinez-Conde et al. 2009; S Martinez-Conde, 

Macknik, and Hubel 2004). 

Fading of vision occurs because the visual system habituates its responses to 

unchanging stimuli, therefore the fixational movements are necessary to prevent the 

loss of vision due to uniform stimulation of the photoreceptors (Martinez-Conde, 

Macknik, and Hubel 2004). The fixational eye movements enhance our visual 
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perception by improving the discrimination of high spatial frequency stimuli. In addition, 

they also aid our vision when viewing natural scenes by sampling visual information 

by means of these movements (Rucci et al. 2007). Additionally, fixational eye 

movements play an important role in both maintaining focused attention and inhibiting 

inappropriate eye movements ( Luna, Velanova and Geier 2008). 

Although the ability to fixate is present in early life, our ability to hold the gaze steady 

is not well developed, and is acquired in the first few months of life (Luna, Velanova 

and Geier 2008). Fixation behaviour changes with time, in particular fixation stability 

continues to improve, with our ability to maintain the fixation (fixation duration) 

increases between the ages of 4–15 years-old (Aring et al. 2007), whereas our ability 

to inhibit inappropriate eye movements improves with age. Developmental limitations 

of visual fixations are due to higher order cognitive control processes and parallel the 

maturation of the brain system that continue to mature even during adolescence (Luna 

et al. 2004; Luna, Velanova and Geier 2008).  

 

 Saccadic System  
 
 
Saccades are gaze shifting eye movements that are made to place the peripheral 

objects of interest in the foveal region. Saccades are key to our visual interaction with 

the world, because they move the high-resolution fovea from one part of the visual 

scene to the next, in order to direct fovea in succession towards the regions of interest 

within the visual field.  

The saccadic system uses visual, somatosensory and auditory information to generate 

the eye movements that are necessary to direct the point of regard towards the 
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peripheral target. Under natural viewing, we humans make several saccades per 

second. Our natural environment consists mainly of stationary targets and we 

generate a series of successive saccades to pursue them.   

Each saccade is followed by fixation. It is during these fixational pauses that we 

acquire detailed spatial information. However, also during these fixational pauses we 

prepare and select the spatial location for the next fixation point using information 

gathered from our peripheral vision.  

The sequence of the eye movements is not random, instead it depends largely on the 

nature of the observer’s task (Yarbus 1967). It is the ‘top-down’ control that allows the 

eyes to be directed to locations that are task relevant despite of their visual saliency 

(Hutton 2008). However, when a sudden visual target appears in the visual field, the 

eyes will move to that location regardless of the task being carried out.  

In such cases, the afferent signal is sufficiently strong to overcome top-down 

modulations and goal-directed saccades become involuntary and the norm. Thus, the 

generation of saccades can involve different mechanisms to serve different functions. 

Saccades can be used to search for objects in the visual field, they can be triggered 

by the sudden appearance of new targets in the visual periphery, and they can also 

be influenced by other information such as the anticipated or remembered location of 

a visual target.  

Trajectories of normal saccadic eye movements are remarkably stereotyped (Bahill, 

Clark, and Stark 1975). For a wide range of eccentricities saccade duration increases 

linearly with saccade amplitude, while peak velocity vs amplitude produces a nonlinear 

relationship (Bahill, Clark, and Stark 1975). In literature, the relationship between the 
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saccadic peak velocity or duration as a function of amplitude is referred to as the main 

sequence.  

Under controlled conditions, one can measure easily the mechanisms of saccade 

generation by precisely controlling the timing and location of the target that initiates 

the saccade. Figure 2 shows a typical saccadic eye movement trace recorded under 

laboratory conditions.  

In addition, by manipulating the way the target is presented, one can create conditions 

that evoke different types of saccades, similar to those that occur under natural 

viewing. 

 

 

Figure 2. Saccadic eye movement trace of a single rightward saccade of approximately 9degree 
amplitude as recorded with EyeLink1000. Both, the start and end of saccade are indicated by red 
cross. T1 represents saccadic latency while T2 represents its duration. 

 
It is well established that the saccade latency is strongly influenced by the physical 

properties of the stimulus; its size, direction of movement, luminance contrast, 

eccentricity, the presence of distractors, etc. (Walker et al. 1997; Bell, Everling, and 
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Munoz 2000; Bell et al. 2006; Kowler et al. 1995). These parameters can have a 

significant effect on the time course of saccades. Besides, saccade latencies show 

variations even under the conditions where task requirements are kept constant due 

to both within and inter-subject variability.  

The nature of the task, arousal state and the age of the subject also effect saccade 

latencies (Corbetta and Shulman 2002; Munoz et al. 1998a; Walker et al. 1997; 

Fischer and Weber 1998).  

The measurements of saccade latencies have attracted lots of attention in various 

fields, beyond the control of eye movement, because saccade latencies can reflect 

cognitive processes that take place during the decision to generate the saccade. 

Usually, saccades that occur automatically in response to the sudden appearance of 

a new visual stimulus require minimal cognitive control (Luna, Velanova and Geier 

2008; Hutton 2008), and are called reflexive saccades (also known as reactive, 

prosaccades or targeting saccades). Whereas the saccades that are initiated on the 

basis of internal goals – such as during visual search, from memory, or as part of 

learned motor behaviour – are called voluntary saccades.  Voluntary saccades are 

more complex and require higher level processes such as the ability to voluntarily 

suppress reflexive/automatic responses, in order to make a planned response 

(response inhibition), working memory (the ability to retain and manipulate information 

on-line in order to make a plan to direct a response), and attention switching (the ability 

to change attentional focus in a controlled fashion) (Miyake et al. 2000; Gaymard et 

al. 1998; Krauzlis 2005). 

There are a number of different paradigms that have been designed to measure 

saccadic responses and each paradigm reflects different underlying mechanisms of 
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saccade generation. In particular, the latencies (saccadic reaction times), are of 

interest because they reflect the time the brain takes to prepare a response, which 

must involve decision mechanisms. It is therefore not surprising that latency values 

are sensitive to different experimental paradigms. Moreover, the latency values also 

show variation from trial to trial, even if exactly the same experimental conditions are 

maintained.  

When we explore our environment, we rely on two types of saccadic control: reflexive 

and voluntary. Different paradigms that are widely used to test different aspects of 

saccadic control are described below. 

  Reflexive Saccades 
 
 

Sudden appearance of a visual target will trigger a saccade. Under laboratory 

conditions, one can measure reflexive saccades by instructing a subject to look at 

central fixation and generate a saccade towards a sudden onset of a peripheral target 

as quickly as possible. This condition generates reflexive saccades because of an 

unexpected change in the peripheral sensory environment. Reflexive saccades 

provide the means to assess sensorimotor aspects of eye movement systems since 

they are thought to exert minimal cognitive control (Luna, Velanova and Geier 2008; 

Hutton 2008). Normal subjects usually generate saccades within 180ms - 200ms. 

Distribution of saccadic latencies are not normal, instead they are skewed with more 

saccades having longer latencies (R. Carpenter 1981). There are three different 

experimental paradigms that are used widely to measure reflexive saccades (visually-

guided saccades, pro-saccades) and are known as step, gap and overlap.  

These three paradigms are distinguishable by the way they vary with the onset of the 

peripheral target. It is well established that the temporal relationship between the offset 
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of central fixation and the onset of peripheral target also influences the saccade 

latency (Saslow 1967). 

When the central fixation point is turned off at the same time as the onset of the 

peripheral target, a step response is generated. This paradigm creates the perception 

that the single stimulus is stepping from one point to another. While, during gap 

paradigm the fixation point is turned off just before the onset of peripheral target, 

whereas for overlap paradigm the fixation point remains on after the target onset. The 

overlap paradigm resembles the usual occurrence of new visual stimuli appearing in 

the visual periphery under natural viewing.   

It is well established that saccadic latencies are shorter during gap when compared to 

overlap trials as reported in several studies (Saslow 1967; Gómez et al. 1996; Rohrer 

and Sparks 1993; Forbes and Klein 1996; Fischer, Gezeck, and Hartnegg 1997).  

Different interpretations have been proposed to explain this reduction of saccade 

latencies in gap paradigm, however, the general agreement is that when the fixation 

point is present, the fixation system is activated and will suppress the saccades (Dorris 

and Munoz 1995). Whereas, when the fixation point is removed, the activity of fixation 

(omnipause) neurons  will be decreased and the saccade-related neurons will show 

phasic target related responses. This phasic response of saccadic (burst) neurons  

provides evidence that there is an advance in motor preparation (Fischer and Weber 

1998; Fischer, Biscaldi and Gezeck 1997; Forbes and Klein 1996). In addition, the 

removal of the fixation point is thought to act as a warning/readiness signal that is 

produced by advanced motor preparation.  

Gap paradigm can produce saccades with very short latencies and their distribution is 

bimodal (distribution which produces two peaks i.e. two modes). These saccades are 

called express saccades and have very short latencies ~ 80ms –100ms. Besides, the 
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express saccades are not exclusive to gap paradigm, they are also found to be 

triggered in overlap conditions (Fischer and Weber 1998). In our laboratory, we do 

measure consistently very short latencies with range 90ms–120ms during overlap 

paradigm. However, their distributions do not show bimodality (two peaks). This being 

the case, the express saccades deserve greater interest because a proper 

understanding of the distributed nature of pre-saccadic activities would provide us with 

an insight of how the cerebral cortex is able to register a transient cue, prepare sensory 

processing centres, and prepare the sub-cortical nuclei to enable the rapid response 

in such a short time.   

  Express Saccades  
 
 
Express saccades are considered to be reflex-like orienting movements (Fischer and 

Weber 1998), mediated through the retino-cortical-tectal pathway. In monkeys, 

express saccades can be generated with lesions of frontal lobes, but not after lesions 

of the superior colliculus (Schiller, Sandell, and Maunsell 1987). In addition, a more 

recent finding from Hamm (2010), where an investigation of the gap effect on 15 

human subjects using dense-array of electroencephalography (EEG), revealed that 

express saccade-related preparatory activities are only parietal, not frontal cortices. 

They found that at 80ms–110ms into gap period superior parietal cortex activity 

increased on trials preceding express saccades but not regular saccades (Hamm et 

al. 2010). This finding also confirms why in primates express saccades are eliminated 

with lesions of SC, but not with lesions of frontal lobe. It is still not clear that express 

saccades are a frequent occurrence during primate behaviour in the natural world, 

however children are found to make more express saccades than adults (Klein and 

Foerster 2001). It has been suggested that the express saccades are a laboratory 



 
 

30 
 

phenomenon and may reflect preparatory processes that occur only under specific 

and artificial conditions. Carpenter (2001) suggested that this might be the result of 

the oculomotor system predicting target direction. As such, the saccades made 

towards the expected direction have shorter latency and the bimodality found in their 

distribution is not simply the result of a randomising process within the oculomotor 

system. Instead, it is a consequence of the way in which saccadic experiments are 

normally conducted (Carpenter 2001). 

Furthermore, the express saccades are not evident during all gap trials, and unlike the 

gap effect (produces shorter latencies), their appearance seems to be highly 

dependent upon previous training (Fischer, Boch, and Ramsperger 1984; Rohrer and 

Sparks 1993; Dorris and Munoz 1995; Raquel and Edelman 2009). However, the 

proposition that the express saccades are produced due to prior knowledge about 

target location or upon predictability of the time of the target appearance due to 

learning effect was brought into question and instead hypothesis that the express 

saccades occur because of an early decision to generate saccades gained support 

(Rohrer and Sparks 1993). In addition, removal of a fixation point creates a temporal 

window, during which the active visual fixation system is disengaged and any visual 

target presented during the gap period will be acquired at faster rate and will influence 

the generation of express saccades (Dorris and Munoz 1995). 

Neurophysiological studies of visual areas have shown that the physical properties of 

the stimulus (contrast, eccentricity, luminance etc.), have a strong influence on the 

response strength e.g. higher contrast stimuli will evoke neural activity with shorter 

onset times (Barbur, Wolf, and Lennie 1998). 

Under laboratory conditions, visually-guided saccades are usually evoked in response 

to the appearance of an isolated target in the visual scene. Thus, the detectability of 
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the target strongly depends on the physical properties of the stimulus. The studies on 

neural mechanisms underlying saccade generation in SC have provided a direct link 

between modulation in initial visual activity and saccadic reaction times (Bell et al. 

2006). To address this issue, neural activities in the intermediate layers of the SC were 

measured, while monkeys generated saccades towards high and low-intensity visual 

stimuli during gap and delay paradigm (Bell et al. 2006). Findings in their study 

confirmed that earlier generation of saccades is attributable to reduced onset latency 

of visual responses in intermediate layers of SC caused by high-intensity visual 

stimulus. Moreover, because their study investigated the changes in neural activity to 

stimulus intensity and relation to saccadic reaction time, they found that stimulus 

intensity does not directly influence the motor processing stages.  Instead, the shorter 

latency times observed for high-intensity visual stimulus correspond to reduced 

processing times along the visual pathway (higher intensity stimuli will evoke neural 

activity with shorter onset times). This observation leads to the interesting question of 

whether low-intensity stimuli are also capable of eliciting express saccades. Whereas, 

the distribution from high-intensity stimulus from both tasks (gap and delay) in their 

study produced bimodal distribution (distribution which has two peaks), this was not 

the case for low-intensity stimulus distribution. This absence of bimodality for low-

intensity stimulus lead to neurophysiological approach that unveiled the evidence of 

some express saccades being produced during the low-intensity stimuli trials as well. 

Thus, the method which relies only on latency distribution is limited approach because 

does not reveal the occurrence of express saccades during the trails where the 

variability is higher due to the low intensity of visual stimulus and the distribution does 

not produce two distinct modes. This finding motivated the idea of questioning if 

express saccades can be considered as an independent saccade type at all.  
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As the ideas further developed, it became clear that the integration of both preparatory 

and visual signals within superior colliculus (SC) alter the pattern of subsequent 

saccades (Dorris, Olivier, and Munoz 2007). When visually-guided saccades are 

triggered, high-frequency bursts of action potentials related to visual target 

appearance and saccade onset can be observed as temporally separate events.  

Whereas, during express saccades these visual and motor responses merge together 

to produce a single higher frequency burst. Marino and colleagues (2015) confirmed 

the findings of  Bell et al. (2006) that the likelihood of producing saccades are 

dependent on the physical properties of stimulus. In their study, they employed the 

gap paradigm to examine how target luminance levels affected timing and magnitude 

of visual responses within the SC. They found direct correlation between visual 

responses and build-up activity in intermediate layers of SC where both modulations 

in visual responses and build-up activity combined to influence express saccades and 

demonstrated clearly that express saccades occur toward both low-level and high-

level luminance targets. In agreement with the previous study from Bell et al (2006), 

they too suggested that express saccades do not require presence of a bimodal 

distribution, since for low luminance/intensity stimulus bimodality that is normally 

observed in express saccades merges into a single mode. In addition, their study 

emphasised that express saccades can only be accurately dissociated from regular 

saccades when the exact timing of the visual response in the intermediate layers of 

SC is known. Thus, express saccades can be distinguishable from regular saccades 

only by investigating the neural mechanisms underlying the saccade generation.  

Both studies discussed above have highlighted the effects that physical properties of 

stimulus have on the neural mechanisms underlying express saccade generation. 
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Also, have clearly demonstrated that bimodality is only evident during trials using high 

intensity/luminance visual stimulus while during low intensity stimulus, there will be an 

overlap of both sensory and motor-related discharges due to signal delay along the 

visual pathway that will hinder express saccades from regular ones. If express 

saccades can only be accurately dissociated from regular saccades when the exact 

timing of the visual responses in the intermediate layers of SC is known (because 

behaviourally they cannot be distinguished from regular saccades), then this leads to 

the question of whether express saccades are any different from reflexive saccades 

at all, or are they a consequence of the way in which saccadic experiments are 

normally conducted under laboratory conditions? Both express and reflexive saccades 

are controlled by parietal areas. Electroencephalography (EEG) recordings in human 

subjects have revealed that express saccade-related preparatory activities are only 

parietal, not frontal cortices. For reflexive saccades too, the cortical areas involved are 

only parietal. The parietal lobe integrates visuospatial information to generate a motor 

signal that is sent to the superior colliculus by a direct parieto-tectal pathway (Gaymard 

et al. 1998). Moreover, studies of patients with discrete cortical lesions have revealed 

that after lesions of FEF, reflexive saccades are only slightly affected, whereas after 

lesions of PEF, all contralateral reflexive saccades (i.e. saccades directed away from 

the lesion side) become inaccurate. If we consider regular reflexive saccades and their 

latency distribution, we find that individual latency values for a number of trails are not 

normally distributed, but are skewed with more saccades having higher latencies. 

Perhaps, the bimodality observed during some trials reflects the normal variability of 

latency distribution itself during reflexive saccades, by which a sudden appearance of 

the target will be directly transformed into saccadic motor command to move the eye 

towards it. 
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Express saccades are almost never observed during natural viewing, however they 

are seen in children. The fact that the express saccades are seen in children and 

cognitive processes that support visually-guided saccades continue to improve 

through developmental stages, give indication that express saccades are the primitive 

form of visually-guided saccades. They are the fastest and most direct sensory-to-

motor transformation in the visual system. That being said, the extent to which they 

can be considered an independent saccade type remains debatable. 

The studies discussed within this section have provided a good insight into the 

reflexive behaviour of the saccadic system. In the next section the range of behaviours 

that characterise voluntary saccades will be outlined.   

 

  Voluntary Saccades  
 
 
Voluntary saccades are more complex and require higher-level processes, such as 

the ability to voluntarily suppress reflexive/automatic responses in order to make a 

planned response. They provide means to study the cognitive control of behaviour. 

There are several paradigms that are used to investigate voluntary saccades. These 

include memory guided, delay and antisaccade paradigms.   

In memory tasks, a visual target is presented in the periphery, and instead of looking 

toward the target, subjects hold central fixation and look toward the cued location only 

after the fixation is turned off.  After the saccade is executed, the target is re-

illuminated. Responses in this task are volitional, and provide means to investigate the 

ability to maintain a spatial location in mind over extended periods of time (Gaymard 

et al. 1998). Delay task is very similar to memory task. The difference between the two 

is that during delay task, the target remains visible but the subjects are instructed to 
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maintain the fixation until the go signal is given. This task creates a condition to inhibit 

reflexive saccades. The antisaccade task also provides a measure of behavioural 

inhibition. In this task, subjects are instructed to look immediately away from, rather 

than toward, suddenly appearing visual targets.  

Latencies of voluntary saccades are longer when compared to reflexive saccades. 

This is because voluntary saccades are more complex and require higher-level 

processes such as the ability to voluntarily suppress reflexive/automatic responses, in 

order to make a planned response (response inhibition), as well as working memory, 

the ability to retain and manipulate information on-line in order to make a plan to direct 

a response. In addition, the reflexive and voluntary saccades involve the activity of 

neurons in different cortical areas, of which parietal areas are considered to be more 

important for reflexive, and frontal areas for voluntary saccades (Müri and Nyffeler 

2008; Gaymard et al. 1998; McDowell et al. 2008).  

In summary, voluntary saccades are more intricate than reflexive saccades,  their initiation 

requires involvement of wider cortical areas including  the ability to be able to inhibit reflexive 

responses. In the next section, cortical areas involved in saccade generation are 

described.  

 
 

 Cortical Control of Saccades  
 
 
The saccadic system has been extensively studied and a number of cortical areas – 

known as cortical eye fields – have been identified that are involved in the control of 

saccades. These include: parietal eye field (PEF), frontal eye field (FEF), 

supplementary eye field (SEF), putative cingulate eye field (CEF) and dorsolateral 

prefrontal cortex (dlPFC), (Pierrot-Deseilligny, Milea, and Müri 2004; Gaymard et al. 
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1998; Müri and Nyffeler 2008). Depending on the behavioural context in which the 

saccade is triggered, the brain recruits different cortical areas within this network 

(Gaymard et al. 1998). 

PEF located in the posterior part of the intraparietal sulcus is crucial for reflexive 

saccade triggering and plays a role on visuospatial integration (Pierrot-Deseilligny, 

Milea, and Müri 2004; Gaymard et al. 1998). The PEF projects to both the FEF and 

the superior colliculus. For reflexive saccades, the parietal lobe integrates visuospatial 

information to generate a motor signal that is sent to the superior colliculus by a direct 

parieto-tectal pathway (Gaymard et al. 1998).  

The FEF located in the precentral gyrus is involved in the preparation and the 

triggering of voluntary saccades (Gaymard et al. 1998; Pierrot-Deseilligny, Milea, and 

Müri 2004; Bruce et al. 1985). Within FEF, there are two types of neurons that are 

directly related to gaze: movement neurons that are active before and during 

saccades; and fixation neurons that are found to be active while gaze is held steady 

(Kirk G. Thompson, 2005). The FEF can influence saccade production through four 

descending pathways: (1) a projection to the ipsilateral superior colliculus; (2) a 

pathway through the basal ganglia via the ipsilateral striatum; (3) a projection to the 

cerebellum via the pontine nuclei; and (4) a projection to mesencephalic and pontine 

nuclei that make up the saccade generator circuit (Bruce et al. 1985). 

The SEF located in the posterior-medial part of the superior frontal gyrus plays a less 

direct role in the control of saccades, but is important for movements that are guided 

by cognitive factors (Krauzlis 2005; Stuphorn, Taylor, and Schall 2000; Nachev, 

Kennard, and Husain 2008).  
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The CEF located in the anterior cingulate cortex appears to be involved in motivational 

modulation of voluntary saccades, whereas the dorsolateral prefrontal cortex (dlPFC) 

in the midfrontal gyrus plays an important role in reflexive saccade inhibition, visual 

short-term memory and decision processes (Pierrot-Deseilligny, Milea, and Müri 2004; 

Gaymard et al. 1998; Müri and Nyffeler 2008). 

  Superior Colliculus (SC) 
 
 
The SC is a brain stem region and it is the key station for integrating and relaying 

commands from the cerebral cortex onto the saccade generating circuit in the brain 

stem (Leigh and Zee 1999; Sparks 2002; Hikosaka, Takikawa, and Kawagoe 2000). 

Besides, the neurons in SC respond to inputs from visual, auditory and tactile stimuli 

(Sparks 2002; Hikosaka, Takikawa, and Kawagoe 2000).  

The SC consists of seven layers, of which the dorsal layers (layers I-III) are visual. 

These layers receive inputs directly from the retina and V1. The projections received 

from the retina are orderly, the visual field is mapped on its surface in topographical 

manner (Hikosaka, Takikawa, and Kawagoe 2000).  

Dorsal layers project to pretectal nuclei, lateral geniculate nuclei, pulvinar and also 

connect with deeper layers IV-VII, known as ventral layers (Leigh and Zee 1999). 

The ventral layers of SC have a sensorimotor role and receive information from 

auditory, tactile and motor systems. The FEF, SEF, PEF, dlPFC and CEF all project 

directly to ventral layers (Leigh and Zee 1999), or through basal ganglia via pars 

reticulata (SNr), part of substantia nigra (Hikosaka, Takikawa, and Kawagoe 2000). 

Although the neurons from ventral layers project to the cortex via the thalamus, their 

primary output signals are to the structures in the brain stem that generate premotor 

commands for saccades (Leigh and Zee 1999). These projections are carried out 
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through descending pathways known as the ipsilateral tectopontine and the 

contralateral tectoreticular pathways. It is through these descending pathways that the 

SC controls the sensory organs such as eye, ears, head and limbs that are moved 

during orientation responses.   

Studies in awake monkeys (Robinson 1972), provided fundamental insights on how 

gaze shifts are controlled. These early studies demonstrated that the topographic map 

of the SC – referred to as a motor map – encodes the eye movements in the same 

manner as the visual area V1 encodes the visual stimuli with regard to their site of 

activation on the retina. The SC motor map produces the vectors for movements that 

direct gaze to a sensory stimulus of interest. These gaze shifts depend on the size of 

the movement needed and can be accomplished by saccadic eye movements alone, 

or by combined movements of eyes and head.  

However, although the studies done in normal subjects have emphasised the pivotal 

role the SC plays in generating saccades, they have also shown that after the complete 

lesion of SC, monkeys learn again to generate saccades but with increased latency 

times and decreased velocity.  Only when lesions of the SC and FEF are combined, 

the saccades can no longer be initiated (P H Schiller, True, and Conway 1980).  

In addition, since cerebral lesions cause saccadic dysmetria (i.e. undershoot or 

overshoot with respect to the intended target), suggests that the SC alone cannot 

control saccade amplitude or direction and there must be a signal that emerges from 

different pathways that reaches the brainstem and cerebellum (Leigh and Zee 1999).  

 

  Brain Stem Saccadic Pulse and Step Generator  
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The commands for saccadic eye movements are generated in the brain stem. Two 

types of neurons play key roles for generating premotor commands. These are known 

as ‘burst’ (saccadic) and ‘omnipause’ (fixation) neurons (OPN).  The commands for 

vertical and horizontal saccades arise from different regions in the brain stem. The 

saccades towards horizontal direction are produced by burst neurons within 

paramedian pontine reticular formation (PPRF), while the burst neurons in medial 

longitudinal fasciculus (riMLF) control the saccades towards the vertical direction as 

well as torsional rotations (Leigh and Zee 1999; Sparks 2002). The amplitude, duration 

and velocity of the saccades are closely correlated with the number of the spikes, burst 

duration and peak-firing rate of burst neurons in PPRF for horizontal saccades and 

riMLF for vertical saccades.  

The OPNs lie in the midbrain very close to the midline near the rostral pole of the 

abducens nucleus, in the raphe interpositus nucleus (Büttner-Ennever et al. 1988). 

These neurons fire constantly during fixation and pause during saccades in all 

directions (Optican 2010). Thus, although the commands for horizontal and 

vertical/torsional movements originate from different regions of the brainstem, they do 

not work independently because the OPNs control the onsets of all components 

(Sparks 2002).  

The aim of this chapter was to describe the background literature that would be 

relevant in understanding the concepts that will be useful when describing the EMAIL 

test techniques. However, while all the above mentioned studies have determined 

saccadic performance from eye movement recordings, the EMAIL technique allows 

the measurement of eye movement response latencies and visual processing times 

to be quantified without the use of any eye-tracking equipment. Therefore, to account 

for all the parameters that make up the ISL and to validate the EMAIL test as a valid 
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visual psychophysical technique, three studies have been designed and carried out to 

answer the following questions:  

1. Can a psychophysical test designed to measure the overall time subjects need 

to execute the eye movement and to perform a visual task at the end of each 

saccade be used as a viable testing procedure to assess saccadic response 

latencies and visual processing times? 

2. Can the test capture the directional asymmetries that exist between the 

horizontal and vertical saccadic eye movements through ISLs?  

3. Can the test capture reliably the effects of aging associated with saccadic eye 

movements? 

In the next chapter (chapter 2), detailed information is provided to describe the EMAIL 

test procedure and experimental setup including the preparatory experiments needed 

to select appropriate stimulus parameters for the test. Chapter 3 describes series of 

studies aimed at testing the hypothesis that VPT, when saccades are involved, are 

longer than those measured with identical stimuli in the absence of eye movements. 

As part of these experiments,  the eye movement recordings are used to describe the 

instabilities of the eyeball and account for the extended VPTs. While, chapter 4 tests 

the assumption that the vertical versus horizontal directional asymmetries in eye 

movement responses also affect the measured ISL responses. Chapter 5 addresses 

the  hypothesis that both ISL and DRT measures are influenced by age, while chapter 

6 summarises the findings presented in this thesis and relates them to other work, 

including limitations that have affected the outcome of the studies.  Finally, the 

concluding remarks are also reported in this chapter. 
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 EMAIL Test and Experimental Method 

 

 Introduction 
 

This chapter explains the EMAIL test, experimental setup, equipment and data 

analysis employed in this thesis. The preparatory experiments needed to select 

appropriate stimulus parameters for the EMAIL test are also described in this chapter. 

Particular attention was paid to the selection of appropriate values for stimulus contrast 

and eccentricity.     

 The EMAIL (Eye Movements and Integrated Saccade Latency) Test 
 

The EMAIL test is a novel psychophysical technique designed to measure saccadic 

eye movement responses without the need for any eye tracking equipment. 

Traditionally, under controlled conditions, the saccadic responses are measured by 

precisely controlling the timing and location of the target that initiates the saccade; the 

subject’s performance is determined from eye movement recordings. Based on a 

similar principle, the EMAIL test also initiates the saccades, but its performance is 

determined from the variable δT, automatically computed by the test after the trial 

ends. The measured variable (δT), represents the time the subject needs to detect the 

peripheral target, generate an appropriate eye movement and process a specific 

stimulus attribute at the end of each saccade. The test also simultaneously measures 

the mean time the subject takes to generate a response. This measured variable has 

been labelled as decision response time (DRT). In addition, the EMAIL test can also 
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be used to measure simple reaction times (RT). This variable describes the time the 

subject requires to detect the presence of the visual target and to generate a motor 

response.  

The test runs in the Microsoft Windows operating system, while the stimuli for all 

experiments were displayed on a fully calibrated NEC Multisync P241W LCD monitor 

(NEC Display Solutions).  

 Subjects  
 
All the data presented in this thesis were obtained at City, University of London. The 

method and testing procedures were approved by the university Research and Ethics 

Committee. In total, forty five healthy subjects were recruited to participate on the 

studies described on this thesis. Although neither phoria nor visual acuity was 

assessed, none of the subjects reported problems with either visual acuity or binocular 

vision. All experiments were carried out binocularly and each participant used their 

normal distance spectacle prescription during the tests, except for the few older 

subjects  (see chapter 5 ) who wore their normal reading glasses. Small refractive 

errors or increased light scatter in the eye, particularly in the older subjects, are not 

likely to affect the results since the task required the detection of a 4 min arc gap in a 

Landolt ring (which is four times larger than the typical normal VA of 1 min arc). Prior 

to testing, all subjects gave written informed consent, were briefed on how to perform 

the test and after a period of practice, the testing procedure began. 

 Monitor calibration 
 
 
Monitor calibration is essential to ensure that the stimuli presented on the visual 

display have the specified luminance, chromaticity and contrast. The luminance 
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calibration program developed for the AVOT (Advanced Vision and Optometric Tests) 

system was used every six months to check the calibration of the display. The program 

measures the luminance of each primary colour over the whole dynamic range (i.e., 0 

to 1023) and this takes ~ 15 minutes to complete.   

A Gamma Scientific Telespectralradiometer (Model 2030-31) was used to measure 

the spectral power distribution of each of the three primary colours. The algorithms 

employed in the AVOT software use the calibration data to generate any luminance 

and chromaticity specification within the limits of the display.   The results of the 

luminance calibration program are shown in Figure 3 for each of the primary display 

colours.   

 

Figure 3. The measured luminance versus gun voltage value  for the R, G and B primary colours 
of the NEC display. 
 

 The Procedure  
 
 
The tests were carried out in a darkened room. The subject viewed the visual display 

from a distance of 80 cm, and a chin rest was employed to stabilise the subject’s head 

position.   
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During testing, an overlap paradigm was employed, as fixation stimulus remained 

visible after target onset. Each trial began with the appearance of the central fixation 

target. The sudden appearance of the fixation target inevitably attracts the subject’s 

point of regard.   This was followed by the onset of a peripheral target somewhere in 

the visual field. The subject’s task was to saccade to the target and to register the gap 

orientation in a central Landolt ring, using a four-button response box (Figure 4). The 

test target was surrounded with four similar rings in order to generate sufficient visual 

crowding and ensure that the subject was unable to carry out the visual task using just 

the peripheral retina without saccading to the target. This is simply because visual 

crowding is very strong in the periphery, but less so or even absent at the point of 

regard.   

A four-alternative, forced-choice (4AFC) staircase procedure is used to determine δT. 

The staircase employed varies the stimulus presentation time using a ‘2-down, 1-up’ 

procedure. This requires two consecutive correct responses in order to decrease the 

stimulus presentation time and cause a staircase ‘reversal’, but only one incorrect 

response to trigger a corresponding increase in δT. The probability of getting a down 

response (i.e. two consecutive correct responses) on any given trial is equal to: 

[P(x)]8 = 0.5, i.e. P	(X) = 		√	0.5		 = 	0.707  Equation 1. Response probability 

 
Therefore, use of ‘2-down, 1-up’ procedure yields a measure of a threshold response 

corresponding to 0.707% level on psychometric function (Levitt 1971) Thus, the δT 

measurement produced by the test corresponds to the threshold measurement of the 

subject’s stimulus duration time needed for 71% of their responses to be correct.  
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Figure 4. The stimulus sequence. First the subject fixates on the central mark, after some time the 
central cue appears in the middle of the cross, indicating to maintain the fixation. Once the target 
appears in the periphery, the subject is required to saccade towards the target, and to register the 
orientation of the gap in the central ring. The subject is then required to press one of four response 
buttons to indicate the perceived orientation of the gap, or to simply guess when unable to decide.   
Since the measured variable (δT) reflects the time the subject needs to detect the 

peripheral target, generate an appropriate eye movement and register the orientation 

of the gap, δT also includes the post-saccadic visual integration time. In order to 

separate the latter from the remaining parameters that contribute to δT (i.e. saccade 

latency and duration), an eye tracker was integrated with the EMAIL test. Since the 

measurement of δT is subject-specific (i.e. it represents the stimulus duration the 

subject needs to achieve 71% correct response), δT = latency (T1) + saccade duration 

(T2) + post-saccadic visual integration time (T3). These parameters are indicated on 

the eye trace in Figure 5 below (where the measured time, δT is indicated as T(0)). 

For simplicity, δT was labelled as ISL (Integrated Saccade Latency) time throughout 

this study. 
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Figure 5. Representative record of a single rightward saccade as recorded with EyeLink1000. The 
signal depicts all saccade parameters where the latency is denoted as T1 = 122ms and 
corresponds to the time required to detect the stimulus and prepare the saccadic the saccadic eye 
movement. This is the time taken from the appearance of a stimulus at t = 0 to the beginning of a 
saccade when t = 122ms. Saccade duration is denoted by T2 and corresponds to the time interval 
t = 122ms (start of saccade) to t = 163ms (end of saccade). Whereas the T(3) represents post-
saccadic visual integration time. The time interval denoted as T0 = ISL (i.e., the Integrated Saccade 
Latency time measured with the EMAIL test). 

 

 Eye Movement Measurements and the Testing Procedure 
 

To determine the most suited target eccentricity to be employed in the EMAIL test, as 

well as separate post saccadic visual integration time, an SR EyeLink 1000 system 

with a sampling rate of 1000Hz was used.  The EyeLink 1000 is a desktop mount that 

tracks the eye via an infrared mirror with accuracy of 0.25° - 0.5°. During recordings 

the eye tracker computes gaze position by monitoring the movement of the specular 

image of the light source with respect to the centre of the pupil (Collewet and Marchand 

2011). 

All eye movement recordings were conducted in a darkened room and the head 

position was stabilised with a chin rest at a viewing distance of 80 cm.   
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In order to calibrate the EyeLink system, a manual calibration was performed before 

each session, followed by a validation test to determine the gaze accuracy.  

During the calibration process, a nine-point grid was presented on a stimulus display 

in sequence; the subject was instructed to fixate at the centre of black calibration target 

seen as a white dot. Since calibration target appears on both the host PC and the 

display monitor, fixations are accepted manually when the gaze is on the target. Once 

the first fixation was accepted, more targets appeared in sequence until the last target 

was presented. Each calibration was followed immediately by validation to confirm the 

accuracy of gaze position. If the errors exceeded 0.5 deg, adjustments were made to 

the head position and / or the illumination angle and the calibration process repeated. 

Only after the validation was accepted, the eye movements were recorded.  

The experiments were performed binocularly, but the eye movement traces were 

measured only from the right eye.  

The EMAIL test runs on a Windows 7 computer and employs a fully calibrated NEC 

Multisync P241W LCD monitor, as described in section 2.2. The eye tracker 

experiments also employed a custom-made photodiode attached to a corner of the 

display to capture the exact stimulus duration time. This arrangement made it possible 

to accurately measure the actual stimulus time on the display. The results show that 

on some occasions the stimulus presentation time varied by one display frame 

duration (i.e. 16.66ms). The hardware-based approach developed for these 

experiments to measure stimulus presentation time made it possible to measure this 

variable with ~ 1ms accuracy.  The eye movement recordings were synchronised with 

the onset and offset of the visual stimulus, which allowed accurate estimates of eye 

movement parameters, as illustrated in Figure 5.   
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The eye tracker experiments employed a number of discrete stimulus presentation 

times selected to fall both above and below the subject’s ISL time. Each selected 

stimulus duration was presented at least 80 times in order to estimate accurately the 

time course of the saccade and the probability of a correct response. Three successive 

test runs were needed to complete one experiment. For the first run, the stimulus 

duration corresponded to the measured ISL time using the full EMAIL test, whereas 

during the second and third runs, stimulus durations were both above and below the 

measured ISL time (i.e. ISL ± 20ms as specified in the program).  

The Weibull function was then fitted to the measured data in order to estimate the 

subject’s performance level with respect to stimulus duration times (ISL ± 20ms).   

The general form of psychometric functions is given as:  

𝐏(𝐱) = 	𝛄 + (𝟏 − 𝛌 − 𝛄)𝐅(𝐱; 𝛂, 𝛃)		Equation 1 
 
where P(x) is the probability of a correct response at stimulus level x, the function 

F(x; α, β) in our case represents Weibull function, the γ and λ define the lower and 

upper asymptotes, whereas the shape of the curve is determined by α (position) and 

β (slope).  

𝐅(𝐱; 𝛂, 𝛃) = 𝟏 − 𝐞𝐱𝐩	 M−M𝐱
𝛂
N 𝛃N	Equation 2 

 
Prior to fitting the psychometric function, all the measurements for responses were 

transformed using the equation: 

𝐩(𝐱) = 𝐏(𝐱)O𝐏(𝟎)
𝟏O𝐏(𝟎)

 Equation 3 

 
Where P(x) = number of correct responses prior transformation and P(0) is the chance 

probability of correct response. The measurements for T0 times corresponding to 71% 

correct responses for each subject were obtained from psychometric curves. 
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 Eye Tracking – EyeLink 1000 
 
 
All the data from the eye tracker (i.e. EDF output files), as well as the EMAIL test (i.e. 

XML output files), were analysed using custom written script in the Matlab program. 

The EDF files contain two sets of data: eye-position samples and events. The eye 

position samples produced by the EyeLink contained 1000 samples per second. Data 

set for events contained saccades, fixations, blinks, and synchronising events from 

the experimental setup (i.e. custom-made photodiode), which were marked clearly 

with a time stamp.   

Three thresholds are usually used for saccade detection. These are:  

1. Saccade velocity threshold  
2. Saccade acceleration threshold  
3. Saccade motion threshold  

For our study, these thresholds were set according to the manufacturer’s 

recommended settings for psychophysical research. This uses a threshold velocity of 

22 °/sec, acceleration threshold = 4000°/sec2, and 0 for saccade motion respectively.  

When these settings are selected for analysis, one can detect saccades with an 

amplitude as small as 1°. 

For data analysis, a custom-made algorithm was used to extract the points of interest 

from the raw traces produced by the eye tracker. Figure 6 below shows a typical 

saccadic eye trace and its corresponding velocity profile, as produced by EyeLink 

1000 during eye movement recordings. 
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Figure 6. Saccade velocity profile and its corresponding eye trace. The change in x, y coordinate 
determines the eye position. The traces show a delay from the onset of the stimulus and the 
change in x, y coordinates in both velocity and eye trace profile. This time delay corresponds to 
saccade latency. 
 
 
To achieve the experimental objectives, it was necessary to determine all saccade 

parameters, such as saccadic latency, amplitude, duration and peak velocity.  

Before the parameters were determined, all trials that included blinks were removed. 

Also, saccades that occurred within 60ms from the stimulus onset were removed prior 

to the analysis. Figure 7 shows the eye traces obtained from a typical trial session. 

Plot (a) represents unfiltered eye traces, while plot (b) shows the remaining eye traces 

after filtering.  In this example, 10 trials were excluded as  a result of the filtering 

criteria.   
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Figure 7. Unfiltered and filtered eye traces from a block consisting of 98 trials. The figure (a) 
represents 98 unfiltered eye traces of 10 ° horizontal saccades as recorded with EyeLink1000, 
whereas the figure (b) on the right is representative of corrected eye traces. In this block of trials 
only 10 traces were removed prior to analysis. 
 
 
Data analysis also involved the use of upper and lower threshold ±2σ limits. In the 

example presented above, the mean saccade amplitude was 10°± 0.72° All traces 

outside the ±2σ limits were removed prior to the analysis. In this example, an upper 

threshold of 11.44° and a lower threshold of 8.56° was applied. Following initial 

analysis, it was decided that more relaxed limits of  ±2.5σ were sufficient to eliminate 

outliers.  The latency histogram is shown in Figure 8, together with the normal fit before 

and after the exclusion of the ±2.5σ threshold.  Estimated parameters from the normal 

distribution are presented in Table 1. Applying threshold limits ensures that ‘outliers’ 

that are unlikely to be part of the normal distribution eliminated; on this occasion, while 

variance was reduced significantly, the sample mean did not change. 
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Table 1. Estimated parameters for mu and sigma from normal distribution fit. 
 
Normal Distribution without exclusion rule     Parameter μ Parameter σ 

mean 128.43 128.4 14.8 

variance 218.83   

Normal Distribution with exclusion rule of ± 2σ Parameter μ Parameter σ 

mean 128.1 128.1 11.8 

variance 139.1   
 
 
 

 

Figure 8. Latency frequency histogram and its corresponding normal fit. Solid line corresponds to 
latency data without filtering and dotted red line corresponds to best Gaussian fit after the exclusion 
of outliers outside ±2.5σ limits. 
 

   Visual Stimulus and its parameters 
 
 
The visual stimulus, consisting of a Landolt C - flanked by four ring distractors of equal 

size (Figure 4), with a central ring consisting a gap size of 4 minutes of arc - was used 

for all experiments.   

When the eye is presented with a cluttered scene, we can easily distinguish between 

objects and resolve fine spatial detail when these objects are viewed directly. 
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However, ‘visual crowding’ is much stronger in the periphery of the visual field. This 

makes it impossible to resolve the gap in the Landolt ring unless the target is fixated 

directly by the eye (Korte 1923).  

‘Visual crowding’ occurs when objects are too close together, causing features from 

neighbouring objects to interfere with those of the target object during some stage of 

visual processing. This makes it more difficult to resolve fine detail, leading to a 

jumbled perception (Denis G. Pelli 2008; Denis G. Pelli and Tillman 2008; Levi 2008). 

Additionally, visual crowding depends on target flanker similarity, with crowding being 

most pronounced when the target and the flankers are similar in shape, size and 

contrast (Levi 2008). Critical spacing – which defines how separated the flankers 

should be from the target to allow unimpaired recognition of the target – is proportional 

to target eccentricity and does not depend on the object size (i.e. it is size invariant) 

(Denis G. Pelli and Tillman 2008; Maus, Fischer and Whitney 2011; Levi 2008). The 

critical spacing is large and can approach half the object eccentricity (Bouma 1970; 

1973; D. G. Pelli, Palomares, and Majaj 2004).  

Although crowding restricts our ability to recognise objects in peripheral vision, it does 

not affect our ability to detect the presence of the object. Once the target is detected, 

an appropriate saccade will be generated to place the object of interest on the centre 

area of the retina that corresponds to the point of regard.  

The choice for the gap size of 4’ of arc in our test is four times larger than the average 

limit of resolution in a normal eye (usually measured with visual acuity tests). Given 

this choice of gap size, the subjects had no difficulty with the gap-orientation 

discrimination task at the end of each saccade. The experimental design ensures that 

although the subjects always detected the onset of the peripheral target, they were 
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unable to carry out the task in the absence of a goal-directed saccade. Therefore, to 

be able to discriminate the gap orientation in the central ring, an appropriate saccade 

must be made to bring the point of regard onto the target.   

 Target eccentricity  
 
 
This study has been designed to examine the effects of eccentricity on the three 

components that make up the ISL thresholds such as T1, T2, and T3. Because each 

component can be processed independently when the eye tracker is incorporated into 

the EMAIL test, the aim was to establish how stimulus eccentricity affects each 

component that makes up the ISL. This information can then be used to guide the 

choice of best target eccentricity to be employed on the EMAIL test.    

Although visual search involves both saccades and head rotations, under controlled 

conditions, saccades as large as 80° degrees in magnitude ((Collewijn, Erkelens, and 

Steinman 1988b; 1988a), can be generated. Naturally occurring saccades are much 

smaller. It has been shown that under free viewing conditions, saccades larger than 

15° are very rare. When they do occur, they are usually accompanied by head 

movements(A. T. Bahill, Adler, and Stark 1975). Trajectories of normal saccadic eye 

movements are remarkably stereotyped. Both duration and peak velocity obey 

stereotypical relation with respect to saccade amplitude, known as ‘main sequence’ 

(Bahill, Clark, and Stark 1975). For a wide range of eccentricities, saccade duration 

increases linearly with saccade amplitude, while peak velocity vs amplitude produces 

a nonlinear relationship. This is the result of a soft saturation beyond amplitudes of 

~15°(A. T. Bahill, Adler, and Stark 1975). However, with increasing target eccentricity, 

saccade amplitudes have been shown to exhibit greater end point variability (Opstal 

and Gisbergen 1989; Beers 2007; Beers 2008; Abrams, Meyer, and Kornblum 1989; 
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Harris and Wolpert 2006). In recent years various theoretical models have been 

developed to explain the end point variability in saccade trajectories, and there is a 

general agreement that variability increase is a result of motor command noise 

occurring at the level of motor map (i.e. deeper layers) of superior colliculus (Opstal 

and Gisbergen 1989; Beers 2007; Beers 2008; Harris and Wolpert 2006) This noise 

has been shown to increase with higher activity levels that larger saccades demand, 

causing end point variability to increase as target eccentricity increases (Opstal and 

Gisbergen 1989; Beers 2007; Beers 2008; Harris and Wolpert 2006).  

There is another important aspect of saccadic eye movement control that has received 

little attention in the past. It is well established that saccades do not exhibit perfect 

conjugacy (Zee, Fitzgibbon, and Optican 1992; Robinson 1964; Collewijn, Erkelens, 

and Steinman 1988a). Due to the eyes’ horizontal separation, the temporal saccade 

of one eye is larger than the nasal saccade of the other eye. Because of these 

differences, these studies have demonstrated that saccades inherit transitory 

divergent binocular fixational error (i.e. image disparity between two eyes) which 

increases with increasing eccentricity. Although, this divergent fixational error is 

transitory and lasts only during the first part of saccade (i.e. until the saccade has 

ended), it has been shown  that misalignment between the two eyes can still persist 

after the end of the saccade (Zee, Fitzgibbon, and Optican 1992; Robinson 1964; 

Collewijn, Erkelens, and Steinman 1988a).  Despite this evidence, no study has so far 

been designed to measure if this causes any effect on post-saccadic processing of 

visual information. To my knowledge, this investigation is the first study to also include 

the measurement of post saccadic visual integration time when describing the effects 

of target eccentricity on the parameters of saccadic eye movements.  
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Another parameter of interest in this study is the latency of saccades. While the main 

sequence relationship describes how duration and peak velocity varies with the size 

of a saccade, in contrast, the effects of eccentricity on the latency of saccades vary 

depending on the nature of the task. Whereas during more complex tasks, such as 

visual search and discriminability tasks, latency is found to increase as target 

eccentricity increases (Hodgson 2002; Carrasco et al. 1995; Nazir, Heller, and 

Sussmann 1992) this is not the case for saccades that are triggered towards the 

sudden appearance of an isolated target (Kalesnykas and Hallett 1994; Hallett and 

Kalesnykas 1995; Hutton 2008; Wolfe, O’Neill, and Bennett 1998; Hodgson 2002; 

Dafoe, Armstrong, and Munoz 2007a). The effect of eccentricity is small on latencies 

of reflexive saccades, i.e. visually guided saccades. Its effects are absent when 

saccades are triggered towards an isolated target that appears within ~ 12° 

eccentricity.  In fact, latency of reflexive saccades in relation to eccentricity can be 

described using a bowl-shaped function which has a central latency peak for a region 

smaller than 0.75°, no change from 0.75° to 12°, and from there a gradual increase 

towards the periphery (Kalesnykas and Hallett 1994; Hallett and Kalesnykas 1995). 

This is atypical behaviour for saccadic reaction times, given that the latency times are 

heavily dependent on other physical properties of the target as described in section 

1.5.  However, these studies made use of simple luminous points to trigger saccades. 

Although one would expect similar results, it is of interest to establish if use of a 

‘crowded’ target, such as the one employed in our test, triggers an enhanced effect of 

eccentricity. This is because the central ring and its four ring distractors of our visual 

target are similar in size, shape and contrast. This arrangement, as described in 

section 2.3.2, generates a strong crowding effect. Therefore, when the target is 

presented in the periphery, its sudden simultaneous appearance is that of the cluster 
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and not the centre, isolated target. So far, the reasons why eccentricity does not affect 

latency of reflexive saccades within this range are undefined, but it is possible that the 

amplitude and timing of triggering these saccades is determined only by target onset 

and that the saccade amplitude is computed on the basis of the ‘centre of gravity’ of 

the target (Gaymard et al. 1998). These saccades require minimal cognitive control, 

so the saccade is initiated once the target is presented.  

Based on these findings in the literature, the decision was taken to employ three 

eccentricities: 4°, 8° and 12°. The use of three discrete values allows us to examine 

whether saccade amplitudes (of naturally occurring saccades < 15°) have any effect 

of latencies.   

 Methods and procedure 
 
 
Subjects  

 

Three male subjects took part in this experiment. They were between 26 and 40 years 

of age and had normal vision. As mentioned in section 2.2, all experimental 

procedures were approved by City, University of London, Research and Ethics 

Committee.  

Stimuli and Display 

 

The visual stimulus consisted of a Landolt C flanked by four ring distractors with a gap 

size of 4 arc min, with contrast level set at 75%. The measurements were taken for 

eccentricities of 4°, 8° and 12°. Each subject completed 3 blocks of measurements in 

succession for a given eccentricity. Each block ended after 32 reversals. For each 
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eccentricity, the target was presented randomly on either side of the fixation point, 

along the horizontal meridian only.  

Procedure  

 

There are two parts to this experimental procedure: (1) measure the integrated 

saccade latency values (ISL) using EMAIL test program and (2) make use of these 

values in a modified version of the EMAIL test, while the eye movement recordings 

were taken. As explained earlier, in chapter 2, the measures of ISL are subject-specific 

and represent the shortest stimulus duration time – i.e. the minimum time required for 

the stimulus to remain on the display to yield 71% correct response. The difference 

between the two tests is that the first is used to measure the ISL values (i.e. subject 

specific) using a staircase procedure, whilst the latter makes use of these threshold 

values to present the visual stimulus at a number of discrete stimulus presentation 

times, selected to fall above and below the subject’s ISL time.  

Eye movements were recorded from the right eye using SR EyeLink 1000 Hz system. 

The participant’s head was stabilised with chin and forehead rests at a distance of 80 

cm in front of the stimulus display.  Each trial began with an EyeLink, 9-point calibration 

and was followed by a validation check to evaluate the gaze accuracy as explained in 

section 2.3. Following satisfactory calibration, the testing session began, whereby 

each subject performed three successive blocks with stimulus presentation times 

corresponding to the subject’s known ISL time, followed by two more fixed times set 

±20ms with respect to the measured ISL time for each target eccentricity.  

As explained earlier in this section, the photodiode attached to a corner of the screen 

makes it possible to measure accurately the stimulus presentation time. During each 
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session two different stimulus presentation times were recorded, due to occasional 

one frame drop as shown on Figure 9. We labelled these timings as LONG and 

SHORT stimulus durations.  

 

Figure 9. Actual stimulus durations as recorded with the photodiode system on the 60Hz visual 
display (with a screen refresh interval of 16.6ms). As the stimulus is presented on the screen, the 
photodiode and the associated electronics generate a signal that terminates on stimulus offset. 
This arrangement enables the measurement of the actual stimulus duration time. 

 

 Data Analysis 
 
 
Saccades were detected automatically by the eye tracker. A customized MATLAB 

script was used to read eye tracker and EMAIL files (i.e. EDF and XML output files) as 

described earlier in section 2.3.1. Since ISL values are subject specific, the data were 

analysed on an individual basis. To measure the subjects’ performance levels with 

respect to stimulus duration times (ISL ± 20ms), a Weibull function, as described in 

section 2.3, was used to fit the data, whereas the measurements from T1 and T2 were 

obtained from eye movement recordings. Only eye traces corresponding to correct 

responses were used for analysis. T1 and other main sequence parameters, i.e., 

amplitude, saccade duration and its peak velocity were extracted from eye traces.  

Parameter T3 was computed from the corresponding psychometric curve.  
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Results for latency (T1) 

 

As explained earlier, the measurements were taken for 4°, 8° and 12° eccentricity 

where each subject completed 3 blocks of measurements in succession for a given 

eccentricity. Figure 10 below shows subject’s latency histograms for each eccentricity 

tested. To determine the eccentricity effect on saccade latencies, repeated ANOVA 

measures were performed, with mean latency as the dependent variable. As with 

previous reports, T1 was found to be independent of eccentricity across the range 

tested. No significant effect was found between subject’s latency means, F (2, 4) = 

1.88, p>0.26, or within grouped means, F (2, 8) = 5.69, p>0.12. These results are in 

direct agreement with previous reports by other investigators, confirming that the 

eccentricity effect on latencies of reflexive saccades is absent when a visual target is 

presented within ±12° eccentricity (Kalesnykas and Hallett 1994; Hallett and 

Kalesnykas 1995; Hutton 2008; Wolfe, O’Neill, and Bennett 1998; Hodgson 2002; 

Dafoe, Armstrong, and Munoz 2007a). 
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Figure 10. Latency histograms. Each row represents a subject’s latency histograms for 4°, 8° and 
12° eccentricity. The values for mean latency, number of trials and eccentricity are indicated on 
each plot. 
 
 
 

Main Sequence Results 

 

As mentioned earlier in the data analysis section, the parameters concerning main 

sequence involve saccade amplitude, duration and peak velocity. The approach taken 

to examine the main sequence parameters compliments the approach taken by 

previous investigators. First, the relationship between saccade duration with amplitude 

and saccade peak velocity with amplitude was determined from subjects overall mean. 

These data are shown in Table 2 below.  
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Table 2. Measurements of mean sequence parameters. 

Mean amplitude 
(deg) 

σ (deg) Mean duration 
(ms) 

σ (ms) Mean peak velocity 
(°/sec) 

σ(°/sec) 

4.3 0.5 29.8 0.9 319.1 23.2 
4.6 0.6 31.2 0.5 380.9 36.7 
4.7 0.4 32.8 1.4 287.6 28.6 
9.3 0.4 41.4 1.2 392.5 29.0 
9.8 0.8 42.2 1.2 454.8 47.8 
9.8 0.7 44.7 2.4 390.4 33.7 
13.3 1.7 50.9 2.6 459.1 29.7 
14.3 1.4 51.1 0.3 490.2 37.4 
13.6 1.5 58.3 0.5 418.9 33.6 

 

In agreement with previous research, all parameters measured were found to increase 

systematically with increasing eccentricity. The main sequence relationship for 

saccade duration and amplitude and saccade peak velocity versus amplitude is shown 

in Figure 11.  

 

 

 
 
 
Figure 11. Main sequence 
relationship for saccade duration 
and peak velocity. Each filled circle 
plots a subject's overall mean for a 
given eccentricity. Vertical error bars 
represent ± 1 standard deviation 
from the mean. Line of best fit 
produced linear fit for duration vs 
amplitude whereas for peak velocity 
vs amplitude was nonlinear (shown 
as a solid read line). The slope, y-
intercept and the R2 obtained from 
each fit are as indicated on the plot. 
 
 
 

 

(b) 
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As plot (a) shows, saccade duration increased linearly with saccade amplitude. The 

best line of fit for saccade duration produced a slope = 2.4ms and intercept = 20ms 

with R2 = 0.95. This result, although obtained from a small range of eccentricities, 

agrees well with previous reports. Typically, the ranges for slope duration are within 

2.1ms– 3ms,  whereas the range for the interception is between 20ms - 25ms 

(Collewijn, Erkelens, and Steinman 1988a; Abrams, Meyer, and Kornblum 1989) 

Similarly, the nonlinear relationship found between peak velocity and amplitude, as 

shown in plot (b), is consistent with previous reports by other investigators (Bahill, 

Clark, and Stark 1975; A. T. Bahill, Adler, and Stark 1975; Collewijn, Erkelens, and 

Steinman 1988a). The best line of fit suggests that the relationship between peak 

velocity and amplitude is nonlinear. Peak velocity also increases with increasing 

amplitude, but the rate of increase decreases as saccade amplitude increases.  

Not unexpectedly, saccade amplitudes also increased systematically with increasing 

eccentricity. The relationship between saccade amplitude and target eccentricity is 

plotted in Figure 12, where each filled grey circle represents the subject’s mean 

amplitude, and error bars indicate ± 1σ (these  data are shown in the first two columns 

of Table 2). The best line of fit (linear fit) for saccade amplitude vs eccentricity 

produced a slope = 1.1 and intercept = 0.1 with R2 = 0.99 indicating overshoot. Usually, 

saccades are known to undershoot the target (Robinson 1964; Collewijn, Erkelens, 

and Steinman 1988a; Abrams, Meyer, and Kornblum 1989; Bahill, Clark, and Stark 

1975). A possible reason for this is that, unlike most other studies, the target employed in our 

tests was not a conventional luminous spot. Instead, as described earlier, our target 

consisted of a crowded Landolt ring, while the subjects’ task was to register and report 

the position of the gap in the centre ring.  In this case, the subject may need to 

overshoot the target slightly to compensate for post saccadic oscillatory movement 
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(see Figure 13) that occurs with each saccade before it comes to rest, as this is a high 

visual acuity task.  

The observed saccade amplitudes also revealed that with increasing eccentricity there 

was a threefold increase in variability. An increase in amplitude variability with 

increasing eccentricity was consistent across three subjects tested and agrees well 

with previous investigators (Opstal and Gisbergen, 1989; Beers, 2007; Beers, 2007, 

2008; H. G. Lemij and H. Collewijn, 1989) 

 
 

Figure 12. Mean amplitude versus target eccentricity. Each grey filled circle is representative of 
the subjects’ mean amplitude for given eccentricity. Vertical error bars represent ± 1 standard 
deviation from the mean whereas the yellow line is a best fit line - linear fit. The Slope, y-intercept 
and the R2 obtained from the fit are indicated on the plot. 

 
 

Figure 13. Post saccadic oscillatory movement. The red line represents the overall mean from post 
saccadic oscillatory trajectories that occur after the saccade has ended. Fine grey traces are actual 
traces from the eye movements whereas black lines above and below of the mean represent ± 1 
standard deviation. 
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Results for post saccadic visual processing time - T3 

 

As discussed earlier in the procedure section, to measure the subjects’ performance 

levels with respect to stimulus duration times, a Weibull function was used to fit the 

data. In Figure 14, the subjects’ psychometric curves are presented for each 

eccentricity tested. Psychometric fits demonstrate clearly that subjects’ performance 

is dependent on the amount of time the target remains visible on the screen display 

(i.e. stimulus duration time).  Also, each plot in Figure 14 shows that the stimulus 

duration threshold - the point along the abscissa where the subject achieves 71% 

correct response - increases with increasing target eccentricity.  The rightward shift 

observed in psychometric curves with each target eccentricity tested was expected, 

given that T2 parameter (saccade durations) increases linearly with target eccentricity. 

Since stimulus duration thresholds obtained from each curve correspond to the 

subjects’ ISL value for a given eccentricity (as explained in procedure section the ISL 

is equal to T1+T2+T3), it was possible to also determine T3 (i.e. T3 = ISL - (T1+T2). 

These values are shown in Table 3 below.  

 

Table 2. Measurements of subjects’ T1+T2 (latency + saccade duration i.e. end of 
saccade),stimulus duration thresholds (ISL) and post saccadic visual processing time T3 (ISL-
T1+T2) 

 Subject 1 Subject 2 Subject 3 
Eccentricity 4° 8° 12° 4° 8° 12° 4° 8° 12° 
T1+T2 (ms) 152 163 180 159 166 179 162 168 207 

ISL (ms) 193 209 237 203 220 238 207 212 270 
T3 (ms) 40 46 57 44 54 59 45 44 63 

 

Surprisingly, the T3 values were also found to increase with target eccentricity. The 

results revealed significant effect for T3 with target eccentricity, F(2, 8) = 14.85, p < 

0.005. To inspect the small p-value found within grouped means, a post hoc test was 
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performed using Tukey’s procedure. Post hoc analysis revealed that the grouped 

mean of T3 for 12° eccentricity is significantly different from both grouped means of 4° 

(p<0.004) and 8° (p>0.02), with no significant effect between the grouped means of 4° 

and 8° (p>0.31).   

Significant increase in T3 with target eccentricity is an unexpected result since it 

seems reasonable  to assume that once the target is foveated, the time required to 

process the parameters of the visual stimulus would not depend on target eccentricity. 

One possible explanation for this unexpected increase is that, with increasing 

eccentricity, there was an increase in variability of saccade landing positions (i.e. 

saccade amplitude).  

Therefore, as a next step, it was important to determine if there was any correlation 

between T3 and variability found in saccade amplitude with increasing target 

eccentricity.  

The result shows that there is a significant positive relationship between T3 and the 

variability in saccade amplitudes, r (7) = 0.88, p < .003. The relationship between T3 

and variability in landing positions is shown in Figure 15. Also, from regression 

analysis, it can be seen that the linear trend produced R2 = 0.78, indicating that 78% 

of the variation observed in T3 could be explained by the variability observed in 

saccade amplitudes with increasing eccentricity.  
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 (a)        (b) 

 
    

 
(c) 

 
Figure 14. Subjects’ performance with respect to stimulus duration time. Each plot shows subjects’ 
superimposed psychometric curves for  4°, 8° and 12 ° eccentricity. Rightward shift on curves is 
consistent with increasing eccentricity. Subjects’ values for ISL and T1+T2 are indicated in the plot.  

 

 
Figure 15. Relationship between T3 and observed variability in saccade amplitude. Each black dot 
represents the measured variability in saccade amplitude with the least-squares regression line 
shown in red. 
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Discussion  

 

By aiming to gain a more complete view of the effects of eccentricity on each 

component that makes up the ISL, several important aspects of saccadic eye 

movement control have been revealed. These findings may be useful to help us 

understand perceptual processes. In this study, by making use of novel EMAIL test 

program, in conjunction with the photodiode device and the eye tracker, it was possible 

to account for all saccade parameters, including the minimum target fixation time 

needed to process the required visual information after each saccade has ended, i.e., 

the post saccadic visual processing time, T3. To my knowledge, this is the first study 

that has demonstrated how each parameter of saccadic eye movement varies with 

target eccentricity. 

 

Effect of eccentricity on saccadic latency 

 

Previous studies have demonstrated that eccentricity has very little effect on latencies 

when isolated targets are presented within ±12° eccentricity (Kalesnykas and Hallett 

1994; Hallett and Kalesnykas 1995; Hutton 2008; Dafoe, Armstrong, and Munoz 

2007a). In this study, similar results were also obtained during the discriminability task, 

when the target of interest cannot be resolved when in the periphery because of strong 

visual crowding. This is because when crowding occurs neighbouring objects interfere 

with each other and the peripheral object is perceived as a single cluster, rather than 

discrete elements.  As a result, when the target appears in the periphery, the subject 

perceived an isolated target. This raises the question as to why the latencies of the 
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reflexive saccades within this range are unaffected by target eccentricity. Although 

there is no clear explanation as to why eccentricity effect is absent within this range, 

one possible explanation is that these saccades require minimal cognitive control, 

since systematic latency increase found during more complex tasks has been 

attributed to a greater demand of attentional resources involved in target selection 

process (Wolfe, O’Neill, and Bennett 1998). In addition, it is well established that 

triggering reflexive saccades is performed via a separate neural pathway. These 

saccades are triggered only via the direct parieto-collicular pathway, where the 

neurons along this pathway have been shown to generate a signal that is used by the 

oculomotor system to initiate only reflexive saccades (Pierrot-Deseilligny et al. 1991; 

Gaymard et al. 1998; Pierrot-Deseilligny, Milea, and Müri 2004). Also, it has been 

shown that the latency responses and amplitudes of reflexive saccades are  

determined only by the onset of a visual target (Pierrot-Deseilligny et al. 1991; 

Gaymard et al. 1998; Pierrot-Deseilligny, Milea, and Müri 2004). This being the case, 

it might be that isolated targets that appear within this range of eccentricity generate 

visual onsets that are easily localised, resulting in target eccentricity playing little or no 

significant part in determining response latency. However, it is unclear whether altering 

stimulus parameters, such as its contrast or background adaptation level, will enhance 

the effect of eccentricity on the latency of reflexive saccades within this range. The 

stimulus contrast of 75% selected for use in this study was well above the detection 

threshold.  Therefore, it would be of interest to establish in future studies if increasing 

the task difficulty by reducing the contrast level or the state of background adaptation 

can alter significantly the effects of eccentricity within this range.  
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Main sequence results 

 

Although the measurements in this study employed only a small range of 

eccentricities, the results were found to be in direct agreement with previous reports 

by other investigators. Both duration and peak velocity increased systematically with 

increasing eccentricity, and were described by their stereotypical relation with respect 

to saccade amplitude known as main sequence (Bahill, Clark, and Stark 1975) 

Also, large increases in variability of saccade amplitudes with increasing target 

eccentricity are in direct agreement with previous reports by other investigators (Opstal 

and Gisbergen 1989; Beers 2007; Beers 2008; Abrams, Meyer, and Kornblum 1989; 

Lemij and Collewijn 1989). Noisy variations occurring at the level of the motor map of 

superior colliculus have been suggested to cause an increase in endpoint variability 

(Opstal and Gisbergen 1989). However, binocular disparity can also contribute 

significantly to endpoint variability observed in saccade amplitudes.  Usually, when 

saccades are made, the temporal saccade of one eye is larger than nasal saccade of 

the other eye (Collewijn, Erkelens, and Steinman 1988a; Robinson 1964). These 

studies also showed that divergent, binocular, fixation error increases with increasing 

eccentricity and can be as large as 3° in amplitude with saccades of 15° in magnitude.   

To confirm that this is the case, rightward and leftward saccades made with the right 

eye were examined separately. Results from the re-examined saccade amplitudes 

revealed that rightward and leftward saccades were indeed significantly different, 

F(1,12) = 33.8, p < 0.005.  Figure 16 shows  the means of subjects’ leftward and 

rightward saccade amplitudes separately (worth noting again that the eye movement 

recordings were taken only from the right eye).  
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Figure 16. Amplitude of leftward and rightward saccades vs target eccentricity. Each filled red circle 
represents subject's overall leftward amplitude mean (black solid line is best fitting regression line). 
Similarly, grey filled circles represent subject's rightward amplitude mean for each target 
eccentricity (dotted black line is best fitting regression line). Whereas vertical error bars are 
representative of ±1 
 

The results of a two way ANOVA test indicate an interaction between the target 

eccentricity and saccade amplitude (p < 0.005). Although both leftward and rightward 

amplitudes increase with increasing eccentricity, the effect of eccentricity is greater for 

leftward than rightward amplitudes. In addition, the magnitude of this difference varies 

with each target eccentricity, as shown in Figure 16. No significant effect was found 

between leftward and rightward durations F(1, 12) = 0.15; p > 0.68 or peak velocities 

F(1, 12) = 1.65; p > 0.22 clear indication that movements on both eyes are well 

synchronised despite leftward saccades made by the right eye having larger 

amplitudes ~3°. These results complement the assertions of (Yang and Kapoula 

2003), “that binocular coordination of saccades is not built-in but is a process 

developing through visual experience and learning”. Under natural viewing, we have 

learned to avoid these large deviations that occur due to our eyes’ horizontal 

separation. Therefore, large saccades are rare, and are frequently accompanied by 

head movements.  
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Post saccadic visual processing time (T3) 

 

The results for post saccadic visual processing time showed clearly that T3 also 

increases with target eccentricity. These increases were found to correlate significantly 

with increased variability in saccade amplitudes. While the increases in T3 for 4° and 

8° eccentricity did not reach significance, T3 increased significantly with targets 

presented at 12° eccentricity. This trend mirrors the deviations between the amplitudes 

of leftward and rightward saccades as shown in Figure 16.  It appears that the 

mechanisms of vergence that our visual system uses to minimise these divergent 

fixation errors become less accurate when saccade magnitude rises. Collewijn, 

Erkelens, and Steinman (1988a) have demonstrated clearly that misalignment 

between the two eyes can persist after the saccade has ended. They argued that 

binocular vision is not compromised, as this will be further corrected by a pre-

programed post saccadic vergence drift that will occur 20ms after the saccade has 

ended. The reason as to why post saccadic vergence begins only after a short period 

saccade has ended remains unclear. It has been demonstrated that in these instances 

post saccadic vergence drift will cause the fovea from each eye to shift towards the 

target i.e. the eyes will converge, and the amount of this shift will be different for each 

eye (Collewijn, Erkelens, and Steinman 1988a) 

The fact that during the instances when eyes are not properly aligned at the end of 

saccade, there is an ongoing movement as we attempt to bring (i.e. align) the point of 

interest to the fovea of each eye, could explain why T3 durations become longer with 

increases in fixation errors. In our case, the vergence signal was not available as the 

recordings were taken only from one eye (i.e., the right eye). Thus, one can only 
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assume that post saccadic vergence drift followed to ensure alignment of the foveas  

of each eye at the end of each saccade.  

In addition, there are other instabilities associated with each saccade that our visual 

system needs to overcome. Previous studies have provided confirmation that the 

eyeball is not a rigid body and does not rotate as a whole during saccades. Intraocular 

structures, such as the iris and the lens are not rigidly attached and can move 

independently of the eyeball. These effects can produce oscillatory movements that 

outlast the saccades by as long as 30 to 40 ms  (Nyström, Hooge, and Holmqvist 2013; 

Hooge et al. 2015; Tabernero and Artal 2014; Kimmel, Mammo, and Newsome 2012; 

Deubel and Bridgeman 1995b; Nyström, Hooge, and Andersson 2016). Yet, it appears 

that pre-programmed post saccadic vergence drift relies on these instabilities, since 

to correct for any misalignment, the two eyes must first come to a rest. Our results for 

T3 were found to be subject specific and ranged between 40-45ms for 4°, 44-54ms for 

8° and 57-63ms, for 12° eccentricity. Given that T3 durations for 12° eccentricity are 

considerably longer than the reported oscillatory durations, it is not unreasonable to 

assume that these increases are due to fixation disparities. If so, this is a significant 

finding, as it has been already shown that saccade conjugacy also depends on viewing 

distance (Yang and Kapoula 2003). Since, binocular coordination depends on viewing 

distance, it is implied that the speed at which processing of the visual information is 

acquired will also be affected as fixation errors increase. Yung & Kapoula (2003) have 

already demonstrated that young children (4.5 – 6 years) have very poor binocular 

coordination at near viewing distance (20cm), with average post saccadic errors of 2° 

in magnitude. Adjustment for viewing distance is essential for optimization of binocular 

coordination, although this may have implications for reading performance in very 

young children. Present results have demonstrated that target eccentricity, does 
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indeed affect post saccadic visual processing time. Therefore, it would be of 

importance to establish in future studies how post saccadic visual processing time 

varies with viewing distance, since this effect may be important in visual ergonomics. 

 

Conclusion  

 

In this study, I have examined how each component that contributes to the measured 

ISL thresholds depends on target eccentricity. The results demonstrate that the 

variability in saccade end points is associated with lack of binocular coordination. As 

target eccentricity increases, variability in saccade amplitude (i.e., accuracy) also 

increases, resulting in fixation errors. These fixation errors can influence the time 

needed to process the visual stimulus and in the case of this study, to register the 

position of the gap. In order to minimise the errors expected for larger saccades, the 

effects of target eccentricity should be considered when designing future studies, 

particularly when head movements are restrained by using a chin rest. To minimize 

the errors associated with larger saccades, the decision was taken to use an 

eccentricity of 8 throughout the studies described in this thesis.  

Additionally, post saccadic oscillatory movements can also influence the post saccadic 

visual processing time; this is the focus of the next chapter which describes the 

observed oscillatory movements in detail.   
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 Stimulus contrast 
 

When a visual target is presented on a uniform background field, its contrast is 

determined by the relative change in luminance against the background. Target 

contrast is an important variable in psychophysical studies as it strongly affects visual 

performance.  Its effects are well established and understood. Neurophysiological 

recordings have provided clear evidence that signals generated in early visual areas, 

such as retina, LGN and V1, are strongly dependent  on stimulus contrast and polarity 

(Oram 2010; Debecker and Zanen 1975). These studies have shown that their 

response latency increases as stimulus contrast decreases. Similar findings have also 

been reported for visual neurons in superior colliculus. As contrast can affect retinal 

transduction times (Barbur, Wolf, and Lennie 1998), this in turn can influence visual 

responses generated in the superior colliculus. Bell (2006) demonstrated clearly the 

relationship between changes in neural activity in the intermediate layers of superior 

colliculus and stimulus intensity. It was shown that with high-intensity stimulus, onset 

latency responses are reduced and the activity for saccade responses begins sooner, 

resulting in faster reaction times.  

There is ample evidence from psychophysical experiments to show that higher 

intensity stimuli  produce faster response times. In addition, studies have provided 

evidence that the accuracy of perceptual judgment relates closely to the intensity of 

visual stimuli (Reddi, Asrress, and Carpenter 2003; Palmer, Huk, and Shadlen 2005). 

In instances such as discriminability (Lupp, Hauske, and Wolf 1976; Hamerly, Quick, 

and Reichert 1977; Barbur, Wolf, and Lennie 1998), detection (Pins and Bonnet 2000) 

and visual search tasks (Näsänen, Ojanpää, and Kojo 2001; Verghese and Nakayama 

1994), performance has been shown to improve significantly with stimulus contrast. In 
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fact, the study by (Näsänen, Ojanpää, and Kojo 2001) demonstrated that during visual 

search tasks when subjects were asked to find a letter buried within an array of 

numerals, not only did performance related to response latency and number of 

fixations improved significantly, but fixation duration time also decreased with 

increasing contrast. In addition, these studies have also shown that at higher stimulus 

intensities performance becomes asymptotic, whereas at low intensity levels, as 

uncertainty in detection of the presence of stimulus increases, variability in response 

times also increases. Therefore, as stimulus contrast is an important variable in 

influencing subjects’ performance, preliminary tests were conducted to inform on the 

effect of stimulus contrast on ISL and decision response times.   

 Experimental setup  
 
 
Two experimental conditions were employed to aid selection of stimulus contrast. The 

first experiment was designed  to measure the subjects’ thresholds for simple reaction 

time (RT), while the second experiment investigated how stimulus contrast affects 

ISLs. The measurements were taken for a number of stimulus contrasts (i.e., 15, 25, 

50, 75 and 100%). The decision to also measure RTs in conjunction with ISL 

measurements was made because both measures reveal how fast a response is 

initiated following the onset of a visual target. Both measurements were obtained using 

EMAIL test. To allow for a more direct comparison of the results, target arrangements 

(target size, background luminance, eccentricity and viewing distance) were kept 

unchanged for both experiments.  
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Subjects  

 

Two female subjects completed five repeat measurements for Reaction Time (RT) and 

ISL for a number of stimulus contrasts. The stimuli had negative contrast polarity and 

contrasts were expressed as a Weber fraction (i.e., C = Lt/Lb -1).  The subjects were 

free from known medical conditions and had normal or corrected-to-normal visual 

acuity.    

 Method and procedure 
 

Both measurements were obtained using EMAIL tests. The visual target employed on 

this round of the experiment consisted of crowded Landolt ring, as the one described 

in section 2.3.2. The subject viewed the display from a distance of 80 cm. Head 

movements were minimized using a chin rest. A uniform background with a luminance 

of 32 cd/m² and target eccentricity of ± 8° along a horizontal meridian were used 

throughout. Thresholds were measured with stimuli of 15, 25, 50, 75 and 100% 

contrast.  The stimulus duration was controlled by 2-down-one up procedure, with an 

initial starting value of  300 ms. Each block ended after 64 reversals. 

Each subject completed five repeat measurements for a given contrast for both RT 

and ISL. Whereas for ISL task the subject is required to generate eye movement 

towards the peripheral target (as described in section xx), in the RT task the subject 

is only required to give a response by pressing the central button of the bespoke 

numeric keypad  (Figure 4) as soon as peripheral target in detected.  
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 Results  
 
 
Subjects’ mean threshold from five repeat measurements for each contrast level are 

shown in Table 4 

Figure 17(a) shows subjects’ mean thresholds for RT and 17 (b) mean threshold for 

ISL. The best line of fit produced a nonlinear relationship for both measurements. The 

plots show clearly that both RT and ISL show an asymptotic behaviour with higher 

contrast levels, with little or no improvement above 50% contrast.  The opposite is the 

case at low contrast levels when the both RTs and ISLs increase rapidly as the 

stimulus contrast is reduced below ~ 25% (see Figure 17).   

 

Table 3. Threshold measurements for RT and ISL. 
 Subject 1 Subject 2 
Contrast RT 2*SE ISL 2*SE RT 2*SE ISL 2*SE 
15.0 403.1 9.8 297.8 8.3 380.0 8.3 348.0 7.7 
25.0 313.9 4.4 241.0 4.4 327.9 4.9 249.8 5.9 
50.0 304.4 5.2 198.1 4.7 294.9 4.8 218.6 3.6 
75.0 299.4 3.9 186.2 2.9 288.4 4.5 213.9 4.9 
100.0 287.4 4.4 172.0 4.3 293.3 4.7 192.1 5.4 

 

 

 
Figure 17. RT and ISL thresholds. Plot (a) shows subjects’ RTs with ±2SE. Similarly plot (b) shows 
subjects means for ISL thresholds. Best line fit (power regression) shows clearly that both RT and 
ISL thresholds start to increase rapidly when stimulus contrast decreases below 25%. Whereas 
above 50% reaches asymptotic level.   
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 Discussion 
 
 
These experimental findings demonstrate nonlinear relationships between stimulus 

contrast and the responses measured.  Rapid increases found in response times for 

both RT and ISL at lower contrast levels, and the asymptotic behaviour with higher 

contrast levels (<50%), are in direct agreement with previous reports by other 

investigators. Present experiments also demonstrate that these two different 

behavioural responses are equally influenced by stimulus contrast, as shown in Figure 

17. As both responses are triggered by the same visual input, i.e. onset of the 

peripheral target, this finding is consistent with suggestions that the relationship 

between the response and contrast level could reflect the receptor activities of visual 

system in relation to stimulation (Pins and Bonnet 2000).  

ISL responses capture the fact that saccadic eye movements are the fastest 

oculomotor responses. Humans make 2-3 saccades every second, depending on 

these movements to guide our behaviour, as new visual information is acquired with 

each saccade.  

Based on present results, the decision was taken to employ a stimulus contrast above 

the range at which asymptotic level emerged, which is at around 50% for both RT and 

ISL, as shown in Figure 17. A contrast value above which little or no improvement in 

RT and ISL times will ensure that within/or inter subject variability is minimised, To 

fulfil this requirement, a stimulus contrast of 75% was selected for use throughout this 

study.  
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 The Effects of Post Saccadic Eyeball / Lens /Oscillations 
on Visual Processing Times 

 
 
 
Abstract 

 

The integration and processing of visual information takes a finite time, yet the 

acquiring of visual information appears to be so simple, seamless and effortless, 

something most of us take for granted. Our eyes are very mobile, moving continuously. 

Humans generate saccades up to three-times every second, searching our 

surrounding environment and acquiring new information. Each saccadic eye 

movement causes the light pattern to shift across the retina and owing to mechanisms 

of saccadic suppression the retinal signals generated do not immediately reach and 

trigger our awareness. During saccades our vision is largely suppressed and we can 

only see with high resolution when the object of interest in the visual scene is imaged 

and stationary on the very centre part of the foveal region. This is what is required in 

order to enable effective processing of the visual information to take place. In addition, 

it has been shown that with each saccadic eye movement - as the eye undergoes 

rapid acceleration - the eyeball does not move as a whole. Instead, different internal 

ocular structures such as the iris and the lens move relatively independently with 

respect to the optical axis. Also, as the eye stops abruptly at the end of each saccade, 

the mechanics of the system ensure that these internal structures sustain oscillatory 

movements that last well beyond the end of the saccade. It has been shown that 

sustained lens oscillatory movements produce retinal image shifts which can cause 

poor post-saccadic visual acuity. This being the case, post-saccadic visual integration 

times might well be affected by these oscillatory movements in addition to binocular 
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fixation errors that may occur due to the eyes horizontal separation. In this study, I 

present a novel method to quantify the post-saccadic visual integration times and 

investigate whether post-saccadic oscillatory movements detected, at least in part, 

with the video-based eye-tracking system employed in this study, can also account for 

the measured integrated saccade latency times.  

 

 Introduction  
 
 
Given that only a very small region of the visual field that is imaged at the very centre 

of the retina and corresponds to the point of regard, can mediate high visual acuity, it 

follows that saccades are needed to bring the point of interest onto the central foveal 

region. Following each saccade, the retinal image is kept in focus by the crystalline 

lens which changes its shape appropriately through forces that are applied to it through 

the ciliary muscles. Nearly a quarter century has passed since Deubel and Bridgeman 

(Deubel and Bridgeman 1995a) used a fifth generation Dual Purkinje Image (DPI) eye-

tracker, simultaneously with a scleral search coil technique. The results presented 

evidence to show that the eyeball is not a rigid body and does not rotate as a whole 

during saccades. Instead, each saccade produces large lens deviations which in turn, 

cause small changes in the optical axis of the eye. At the beginning of the saccade 

when the eye starts to accelerate, the lens lags behind, whereas when it reaches its 

final position (i.e. at the end of the saccade) it overshoots, at which point it is pulled 

back by passive elastic forces produced by zonule muscles (Deubel and Bridgeman 

1995a). As a result, during each saccade a lens oscillatory movement is produced with 

magnitudes that are dependent on the elasticity of the zonule muscles and the lens. 

Deubel and Bridgeman also described the perceptual consequences of lens overshoot 
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and proposed that for each degree of saccade, there will be a retinal shift of 0.03° 

(Deubel and Bridgeman 1995b). Moreover, they also proposed that one of the 

functions of saccadic suppression is to prevent the perception of image shifts caused 

by movements of the lens.  

Soon after, similar post-saccadic oscillatory movements were also detected using the 

pupil reflection method by Inhoff and Radach (1998), which proposed that similar 

elastic forces may also apply to pupil centre changes, whereby the fluid in the anterior 

chamber of the eye and pupil may lag behind at the onset of saccade, whereas at the 

end of the saccade when the eye stops, it will cause the pupil to move briefly towards 

the saccade direction, overshooting and oscillating around its final position before 

coming to rest.  

These post-saccadic instabilities have captured the attention of the vision research 

community only recently, and are referred to as post-saccadic oscillations (PSOs).   

The PSOs being a consequence of ocular instability due to the interocular structures 

i.e. iris and lens moving independently to the eyeball, have now been fully 

acknowledged (Nyström, Hooge, and Holmqvist 2013; Hooge et al. 2015; Nyström et 

al. 2015; Tabernero and Artal 2014; He et al. 2010; Hooge, Holmqvist, and Nyström 

2016; Kimmel, Mammo, and Newsome 2012; Nyström, Hooge, and Andersson 2016; 

Deubel and Bridgeman 1995a). The recent experimental study done by Tabernero 

and Artal (2014), using a newly-designed device called the Dynamic Purkinje-meter 

have demonstrated clearly how the lens can indeed sustain inertial oscillatory 

movement with 9° saccades, that can last beyond 50ms. In their study they also 

estimated the retinal image displacement using a ray-tracing technique and reaffirmed 

the perceptual consequences of lens wobble already described by Deubel and 

Bridgeman (Deubel and Bridgeman 1995b). Their findings show that the lens 
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decentration amplitude of only 0.3mm can generate retinal shift as large as 88 

microns, which equates to 20 min arc in visual angle. During this short duration, the 

corresponding movements of the retinal image can produce very poor post-saccadic 

visual acuity of 0.05 decimal which is equivalent to 20/400. 

The PSOs are also clearly captured with video-based eye-trackers such as the 

EyeLink 1000Hz (Nyström, Hooge, and Holmqvist 2013; Hooge et al. 2015; Kimmel, 

Mammo, and Newsome 2012; Nyström et al. 2015; Nyström, Hooge, and Andersson 

2016), however as previously mentioned, these PSOs do not capture the lens wobble 

since video-based eye-trackers use the pupil centre and corneal reflections (i.e. pupil 

minus cornea) to estimate the gaze direction. Thus, these PSOs are the result of the 

displacement of pupil centre relative to the eyeball as well as the eyeball oscillations 

which affect the specular image generated by reflection from the cornea. As the eye 

undergoes rapid acceleration during the saccade, the iris trembles due to inertial 

oscillation of fluids in the anterior chamber allowing the pupil to move relative to the 

eyeball (Nyström, Hooge, and Andersson 2016; Kimmel, Mammo, and Newsome 

2012; Inhoff and Radach 1998) in a similar manner to the lens.  

While these studies attribute the PSOs to interocular structures of the eyeball, the 

studies that made use of search coil technique have also provided evidence that the 

eye does not come to a rest abruptly at the end of saccade. Robinson (1964) has 

recognised that saccades are indeed always associated with overshoots and ringing 

because the pulse force to initiate the movement is always larger than needed to 

overcome the viscosities of the eyes orbital tissues and the muscles. Accordingly, the 

study done by (Bahill, Clark, and Stark 1975) confirmed that overshoots have neural 

origin but more importantly, they also provided evidence that there is a close 

relationship between the eye velocity and the overshoot and have demonstrated that 
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the post movement can be characterised based on velocity profiles. Usually 

overshoots produce return velocities by an order of 10 to 100deg/sec while post 

saccadic vergence drifts that are recognised to be small to compromise visual acuity 

(Optican and Miles 1985; Collewijn, Erkelens, and Steinman 1988a) have much 

smaller velocities by an order of 2 to 20deg/sec. It is surprising that these studies have 

made no remarks if the observed overshoots will cause any perceptual consequence 

given that it is well established that when the eye undergoes such high velocities small 

visual targets will be rendered invisible (Burr and Ross 1982).  

As one can see, there is ample of evidence that there is an ongoing movement after 

the end of saccade and depending on a tracking technique being employed, they each 

describe the post saccade instabilities  through  different ocular structures i.e. scleral 

search coil - eyeball, EyeLink - pupil and DPI - lens. It is important to note that there 

are striking similarities between the coil and video based eye trackers when describing 

the movements observed at the end of saccades. Usually, when lens oscillatory 

movements are described, no directional asymmetries are mentioned whereas both 

the overshoots and PSOs are associated with directional asymmetries. The oscillatory 

movement of an abducting eye is consistently found to be smaller than that of the 

adducting in both coil and video techniques of tracking (Hooge et al. 2015; Bahill, 

Clark, and Stark 1975; Optican and Miles 1985). Importantly, there is an indication that 

PSOs are also closely related to the deceleration phase of saccades (Kimmel, 

Mammo, and Newsome 2012) which makes it possible that both PSOs and overshoots 

are the same, they only each represent different ocular structures pupil vs eyeball. 

Since video-based eye-trackers such as EyeLink 1000 are now widely used in 

laboratories, it is of great importance to have a method by which post-saccadic visual 

integration time can be quantified given that visual search heavily depends on eye 



 
 

85 
 

movements. This could also provide us with the opportunity to examine the extent to 

which PSOs produced by video-based eye-trackers such as EyeLink 1000 can 

describe the perceptual consequences of retinal image movements caused by eyeball, 

pupil and lens oscillations and predict how visual search performance is affected.   

 Method and Procedure  
 
 
All procedures were approved by Research Ethical Committee of City, University of 

London and all s gave their written informed consent and had normal or corrected to 

normal vision. Seven subjects ranging from 21 to 45 years took part in this experiment. 

All experiments were conducted in a darkened room and the head position stabilised 

with a chin rest at a viewing distance of 80cm.   

As explained in chapter 2, (section 2.2.3) there are two parts to this experimental 

procedure: (1) measure the integrated saccade latency values (ISL) using EMAIL test 

program, and (2) make use of these values on a modified version of the EMAIL test, 

while the eye movement recordings are taken. Whereby the stimulus presentation 

times were selected to fall above and below (± 20ms) of the subject premeasured ISL 

time. The testing was completed in one-session, during which time, each Subject 

completed three-trials in succession. For this round of experiments, the visual stimulus 

was presented peripherally at 8° eccentricity randomly on either side of a fixation point 

with contrast level set at 75%.  

 Data Analysis and Estimation of Post-saccadic oscillations  
 
 
A custom made Matlab program (described in more detail in Chapter 2) was used for 

off-line analysis of data taken from the eye-tracker (i.e. EDF output files), as well as 

EMAIL test (i.e. XML output files).  Because the ISL values are subject specific, the 
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data were analysed on an individual basis. To measure the subjects’ performance 

levels with respect to stimulus duration times (ISL ± 20ms), a Weibull function (as 

described in section 2.3) was used to fit the data,  whereas the measurements from 

T1 and T2 were obtained from eye movement recordings. Only the saccades that 

corresponded to correct responses were used for analysis. 

The approach taken in this study determines the PSO durations from incorporating 

subject’s velocity data. There are two reasons for including velocity data on the PSO 

analysis. Firstly, the eye velocity will help determine the point at which the eyeball 

comes to a rest (i.e. end of PSO). Secondly, as noted in the introduction, it is the eye 

velocity that characterises the post movement (i.e. it can distinguish the post saccadic 

vergence drift movement from the overshoot). Before explaining the results, it is helpful 

to note the terminology used when considering the observed post movement in both 

saccade trajectories and velocity profiles. There are two distinguishable movements 

that occur with each post saccadic movement: the first is the fast oscillatory movement 

that has velocities of higher than 20deg/sec and the second is a slow moving post 

oscillatory drift with velocities bellow 20deg/sec. The velocity following the end of 

saccade will be referred to as the return velocity.  

To estimate the durations when the eye comes to a rest after post saccadic 

oscillations, first the saccade and velocity mean profiles were extracted for each 

Subject. Normally, there is within-Subject variability for saccadic latency (i.e. the time 

between the onset of the stimulus and the start of the saccade) and as a result, 

saccade onset changes from trial to trial. To overcome this, the data from each trace 

were first aligned, so that the starting point of a saccade began 10ms earlier than 

saccade onset. By applying this alignment method, the mean for both saccadic and 

velocity trajectories were obtained for each Subject. Figure 18 shows individually 
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aligned post-saccadic trajectories from rightward and leftward eye traces from one 

trial. As Figure 18 shows, the post movement is clearly reproducible with each trial 

and resembles the aspects of a damped oscillator. Also, as can be noted the oscillatory 

movement produced by leftward saccades is larger when compared to rightward 

saccades, and so too are their corresponding return velocities. This observation is 

found to be consistent across all Subjects tested and it confirmed previous reports 

made by other investigators that the PSO of the abducting eye is smaller than that of 

the adducting eye. The figure clearly shows that both PSOs and their corresponding 

return velocities (i.e. eye velocity after the end of saccade) are very reproducible and 

the shape of the mean trajectory in all plots is similar to the shapes of the thin grey 

lines. Rather than showing both leftward and rightward traces to explain the tight 

relation between the return velocity and PSO as well as in what way the end of PSO 

was defined, the example taken bellow presents the mean trajectories only from 

rightward saccades. 

As Figure 19 shows, when the first zero crossing in the velocity profile occurs (plot b), 

this determines both the maximum displacement of the eyeball (i.e. saccade end 

point), as well as its duration. As it can be seen, when the first zero crossing occurs 

there is an ongoing movement, but in the opposite direction (i.e. start of the return 

velocity). Since the slope of the tangent at any point in the saccade trajectory will equal 

the velocity of the eyeball at that point, any change on the direction of the movement 

is clearly reflected on both plots. When max (black dots) or min (blue dots) peaks occur 

in saccade trajectory the tangent is a horizontal line, meaning f '(x) = 0, therefore the 

velocity at these points crosses zero.  Also, both plots illustrate clearly that there is 90° 

phase difference between the eye position and velocity. When the eye position is at 

maximum, velocity is passing through zero and vice versa. Note that, when the 
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maximum peak occurs in the saccade trajectory after the saccade has ended (plot a), 

this corresponds to a period of one-cycle that return velocities produce. Once the cycle 

is complete the eye approaches its mean position. During this phase the eye velocity 

retains vergence velocities (smaller than 20deg/sec) before terminating around zero 

crossing which also defines the end of post saccadic movement. This pattern of post 

movement is consistent across all Subjects tested. In addition, since the aim of the 

study is to determine if the observed PSOs with video based eye trackers can also 

provide account for perceptual consequences associated with lens oscillatory 

movements, in the results section only the post movement starting 10ms before the 

end of saccade will be presented.  

 

 

 
Figure 18. Aligned saccade and velocity trajectories. Data were aligned 10ms before saccade 
onset. Grey lines are individual eye and velocity traces. The red line in saccadic traces represents 
the mean of 39 rightward and 19 leftward saccade trajectories. Similarly, the black line in velocity 
plots represents the mean of 39 rightward velocity traces and 19 leftward velocity traces 
respectively. 
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(a)      (b) 

 
Figure 19. Mean saccade trajectory and velocity profile. The occurrences of  max (black) and min 
(blue) peaks precisely coincide with zero crossings indicated by red dots.  As one would expect 
there is a phase difference of  𝛑

𝟐
		between the saccade trajectory and velocity and zero when the 

eye comes to a rest. 
 
 

 Results  
 
 
The measured parameters including T3 (post saccadic visual processing time = T3) 

values are shown on Table 4. Second column presents Subjects T0 measurements 

estimated from Subjects’ psychometric curves. These values were found to be rather 

consistent and ranged between 209-220ms. The last two-columns in the table present 

Subjects estimated T3 values and PSO durations respectively. As indicated on the 

table, T3 values are Subject-specific with duration times ranging from 35-53ms (Table 

14). Similarly, the PSO durations were also found to be Subject-specific with some 

Subjects having higher damping than others. Figure 20 shows Subjects leftward and 

rightward PSOs and their corresponding psychometric curves arranged depending on 

the length of the Subject’s T3 durations - shortest to longest. As figure shows, T3 

across all Subjects occurs following the end of PSO (indicated by red circle) and 
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reveals that visual processing is accomplished only after the eye has reached its mean 

position (i.e. eye velocity is at 0). A significant positive correlation between these two 

variables  r(6)=0.91, p<0.005, which provides clear indication that T3 is dependent on 

PSO duration. As it can be noted, the larger the PSO is, the longer it takes for the eye 

to reach its mean position. 

Also, across all subjects, leftward saccades produced larger oscillatory movement 

confirming previous accounts by other investigators that PSOs are not symmetrical in 

both directions.  Importantly, as can be noted they also have longer phase durations 

when compared to rightward saccades which indicates that during PSOs there will 

also be asynchrony of action between the two eyes. This observation has been 

described before and the post saccadic movement is recognized to be monocular 

phenomenon (Robinson 1964; Optican and Miles 1985; Collewijn, Erkelens, and 

Steinman 1988a; Bahill, Clark, and Stark 1975). In addition, as was noted above (fig 

18) during the oscillatory movement, the Subjects return velocities are also very high 

and from previous studies we have clear evidence that although visual sensitivity 

would be maintained at high velocities, the ability to resolve fine spatial details would 

be greatly affected (D C Burr, Morrone, and Ross 1994; David C. Burr and Ross 1982). 

These observations provide clear indication that PSOs could indeed bear perceptual 

consequences in particular since T3 succeeds only after the eye reaches its mean 

position i.e. eye velocity is within zero. To confirm that this is the case, a new set of 

experiments were employed to directly estimate the rate at which visual processing 

can be performed in the absence of the eye movements. Providing  that  PSOs do not 

delay processing of visual information, then one would expect T3 to be equal to the 

time needed to process visual information in the absence of the eye movements.   
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Table 4. Measurements of saccade parameters including ISL values and PSO durations. ISL 
values were derived from psychometric curve for 71% correct responses. The saccadic 
parameters; amplitude, T1 and T2 represent the mean values from eye movement recordings 
during three tests. 
 

 ISL (T0) Amplitude Latency 
(T1) 

Duration 
(T2) 

T3 
T0 - (T1+T2) 

PSO 

Subject 1 220 ms 9.8°±0.6° 140 ±9.6 44.9±0.6 35 ms 31 ms 

 Subject 2 209 ms 8.8°±0.7° 130±4.6 41.6±1.6 38 ms 31 ms 

 Subject 3 214 ms 8.9°±0.4° 130±4.8 44.8±0.5 40 ms 35 ms 

 Subject 4 211 ms 9.6°±0.60 126±3.2 41.0±1.2 44 ms 34 ms 

 Subject 5 214 ms 8.1°±0.5° 116 ±6.5 43.7±0.5 53 ms 45 ms 

 Subject 6 209 ms 9.3°±0.3° 120±3.5 41.0 ±0.7 48 ms 47 ms 

 Subject 7 214 ms 9.3°±0.6° 121±1.6 41.8±1.1 51 ms 45 ms 
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Figure 20. Psychometric curves and PSO profiles. Each plot on the left represents Subjects’ 
psychometric curve and their corresponding left/rightward PSO profiles obtained from averaged 
saccades starting 10ms before the end of saccade are shown on the right. The dashed black line 
in psychometric curves indicates saccade offset duration whereas dashed coloured lines indicate 
durations for T0. Note, that stimulus durations across the Subjects are within the range of  208 to 
220ms. 
The y-axis on PSO plots is limited to 2 degrees so the post saccadic oscillations can be easily 
seen. The zero time on each plot corresponds to the end of saccade. The end of PSO in each plot 
is indicated by red ellipse. As can be noted T3 always occurs after end of PSO, i.e. the eye has 
approached its mean position. T3 values estimated from psychometric curves T0 - (T1+T2) are 
indicated in x-axis.  
 

In the previous chapter it was acknowledged that visual response is a variable quantity 

and depends on physical properties of visual stimulus - i.e. higher contrast stimuli will 

evoke faster responses. With this in mind, a number of stimulus contrast levels: 15, 

25, 50, 75, and 100% was employed under two-conditions. For the first-condition, the 

visual stimulus was presented centrally at 0° eccentricity to obtain the T0 values for 

each contrast level. For the second condition, the same measurements were repeated, 

but the visual stimulus was presented peripherally at ±8° eccentricity with respect to 

the central fixation point. 

Although the experiment is attractive, the hardware employed in the EMAIL test limits 

the shortest stimulus time that can be presented to two frames (~25ms). This is simply 

because each frame lasts 16.66ms, but the display luminance decays in each frame 

within ~8ms. While this may seem like a short stimulus time, it has been shown that 

the visual system can process and extract the correct gist from a complex scene, with 
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presentation times as short as 20ms (Thorpe, Fize, and Marlot 1996). However, as the 

time needed to gain enough information to process the visual stimulus increased 

above 25ms with lower contrast stimuli, it was possible to measure T0 values 

accurately in central vision for stimulus contrast level only at 15%. It was actually this 

observation that provided a direct measure of the effect of PSOs on visual processing 

time. This relatively simple measurement acts as a reference to identify the difference  

between the visual processing time when the eye movements are involved. 

 Results for 8° and 0° eccentricity 
 
 
The measurements for each contrast level are shown in Table 5 and superimposed 

psychometric curves obtained from various stimulus contrast levels (i.e. 100, 75, 50, 

25 and 15 %) are shown in Figure 21. As expected, higher contrast stimuli will evoke 

faster responses, thus produce shorter visual processing times, i.e. rightward shift with 

higher contrast stimuli. For each stimulus contrast employed, the Subject’s 

performance level with respect to stimulus duration times was obtained from 

psychometric curves as indicated in Figure 22. As noted earlier, due to hardware limits 

T0 at 0° eccentricity was only measured for stimulus contrast at 15% and its 

corresponding psychometric curve is shown in Figure 23.  

 
 
Table 5. Contrast measurements for latency, duration, post saccadic processing time and PSO 
duration 
 

Contrast ISL (T0) Latency (T1) Duration (T2) T3 
T0 -(T1+T2) 

PSO 

100% 209 ms 132 ±9.6 39 ±1.6 38 ms 31 ms 

75% 209 ms 132±4.6 42 ± 0.6 38 ms 31 ms 

50% 217 ms 135±4.8 41.5 ± 0.5 40 ms 31 ms 

25% 241 ms 146±3.2 41.0±1.2 53.5 ms 31 ms 

15% 273 ms 167 ±6.5 41.5±0.5 75 ms 31 ms 
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Figure 21. Superimposed psychometric curves for various stimulus contrast levels presented 
peripherally at ±8° eccentricity. The coloured curves show clearly how Subject’s performance 
varies with stimulus contrast level. As the contrast level decreases, the time needed to achieve 
same performance level increases, which can be clearly seen as a rightward shift. Also, the figure 
clearly depicts that higher contrasts do not contribute to further improvement in the measured 
response times – i.e. the performance level for 100 and 75% – is identical. 
 
 

 
 

 
 

Figure 22. Subjects performance level for different contrasts. Each plot shows how measured 
parameters vary with stimulus contrast. Dashed line in each plot represents the end of saccade 
T1+T2 (latency + saccade duration). The time needed to achieve 71% correct responses T0 is 
represented by solid coloured line. Estimated values for T3 are indicated on top of the arrow. 
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Figure 23. Psychometric curve for 15% stimulus contrast presented centrally at 0°. Red dots 
represent the actual stimulus durations. The time subject needed to achieve 71% correct 
responses is represented by dotted line. This time duration corresponds to 46ms. 
 
 
Comparing T3 at 15 ° and T0 at 0° degrees, we see that time duration to preform visual 

analysis is 29ms longer when the eye movements are involved. This is what one would 

expect if the PSOs delay visual processing time. To understand how this time 

difference relates to the subject’s post saccadic movement, it is useful to first examine 

the PSO profiles and their corresponding peak times. For demonstration purposes only 

three superimposed left/rightward PSO profiles and their corresponding velocity 

profiles for 75, 25 and 15 percent contrast are shown in Figure 24 (while the remaining 

are displayed in Appendix A).  
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Figure 24 demonstrates that the shape of waveforms for both PSO and velocity 

profiles does not change with contrast, except that due to within-subject variability 

there is slight variation in both PSO and velocity profiles. While there is a maximum 

difference of 0.6° between trials, the size of overshoot from its mean position remains 

unchanged. This is simply because the size of overshoot is proportional to return 

velocities. This behaviour should not be considered surprising and it is in fact what 

one would predict from main sequence relationship. Saccades of the same magnitude 

have stereotyped behaviour, therefore both saccade trajectories and velocity profiles 

will be consistent. Also, since the return velocities depend on saccade deceleration 

phase, they too will be consistent for  a given eccentricity (Kimmel, Mammo, and 

Newsome 2012). 

Importantly, as Figure 25 shows the time difference between T0 and T3, is equal to 

exact period of a cycle in velocity profile which also corresponds to the duration of 

PSO. In this occasion, as figure shows, subject return velocities reach peak velocities 

in excess of 100deg/sec which confirms previous measurements that only when the 

eye velocity falls within vergence velocity range (which is below 20 deg/sec) that visual 

Figure 24. The PSO and velocity profiles for 75, 50 and 15 percent contrast. The traces 
show clearly that all three stimulus contrasts generate identical PSO profiles. Similarly, the 
velocity profiles are also identical and resemble the variability of PSOs. The figure on the 
left also depicts clearly that VIT for 0° is very close to T3 – PSO with only 2ms difference. 
This confirms that due to PSOs visual processing time is delayed. 
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analysis can be performed. This result provides a clear confirmation that PSOs 

observed with video based eye trackers can also account for perceptual 

consequences. In addition, since subjects PSO durations do not change with stimulus 

contrast, by subtracting 29ms from T3 for each stimulus contrast the values for T0 at 

0° were estimated for 100, 75, 50 and 25% contrast. The relationship between VPT 

and stimulus contrast is shown in Figure 25 where the black line represents T3 at 8° 

and red line represents T0 at 0° obtained from estimated values. While the red dotted 

line represents the actual values for T0 at 0° that were generated by the test. Figure 

25 shows that the relationship between VPT and stimulus contrast is nonlinear.  

The most significant feature on this figure is that VPT time increases rapidly with lower 

contrast stimuli and shows asymptotic behaviour with higher contrast levels (<50%). 

This result reveals precisely what one would expect from visual responses in relation 

to contrast to reflect, because at very high contrast levels the sensitivity of the eye 

saturates. Also, from neurophysiological studies we know that superior colliculus 

receives projections directly from retina, and stimulus contrast influences visual 

responses generated in the superior colliculus in similar way that that neurons in early 

visual areas, such as retina, LGN and V1 are affected. Since latency values too can 

provide a direct measure as to how quickly the response is initiated in relation to the 

contrast, then one would expect there to be a close agreement between the responses 

for latency vs contrast  and VPT vs contrast. Comparing the responses for latency and 

T3 for each stimulus contrast, we see that the difference in increase between each 

contrast level is equal in both measurements. The latency, T3 and T0 is plotted as a 

function of contrast in Figure 26. As figure shows, contrast affects all three parameters 

equally and verifies not only the estimated T0 values, but also confirms that PSO 

durations are constant. In addition, T3 – 29ms yields a value shorter than what could 
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be presented by the test at 0° for higher contrast stimuli (Table 5) which reaffirms the 

fact that our visual system is indeed capable of processing visual information at a 

faster rate: ~10ms  (DeValois, Spatial Vision January 2008) when no eye movements 

are involved.  

 

Figure 25. Visual processing time (VPT) is plotted as a function of contrast for stimulus presented 
at 0° (central fixation point) and ± 8° eccentricity across the horizontal meridian. The upper black 
solid line corresponds to T3 measurements at ±8° eccentricity and the dot-dash red line 
corresponds to actual VPT measurements at 0° eccentricity. Whereas the solid red line represents 
the predicted VPT where the values for 100, 75 and 50 and 25% contrast where estimated by 
subtracting T3-24ms. The data are fitted with two term power function curve f(x) = axb+c. The 
power function captures clearly how VPT’s vary with stimulus contrast f(x) →∞ as x → 0. 
 

 
 
Figure 26. Latency, T3 and T0 versus stimulus contrast level.  All three parameters response to 
changes in contrast equally. At higher contrast levels all parameters show asymptotic behaviour. 
Accordingly, all three parameters increase rapidly at low contrast levels. The line that best 
represented the relationship between the three parameters and contrast produced nonlinear 
relationship. Two term power function (f(x) = axb+c ) was used to fit the data.     
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From the previous page described data, it appears clear that visual processing time is 

longer when the eye movements are involved due to PSOs. Also, a significant positive 

correlation exists between subjects observed PSOs and their T3 durations r(6)=0.91, 

p<0.005, which also provides indication that T3 is indeed dependent on PSO 

durations. As demonstrated for all subjects, T3 is only accomplished after the eye 

approaches its mean position (i.e. during fixation) which further verifies this result. 

However, the main issue confronting these results is that the PSO amplitudes 

decrease with increasing eccentricity (Bahill, Clark and Stark) while in the previous 

chapter it was shown that T3 durations get longer with increasing eccentricity. If the 

PSOs described in this study appear to be highly corelated with T3 duration, one might 

wonder then why the T3 durations increase with larger saccades when PSOs 

decrease. The reason why PSOs decrease with increasing eccentricity simply lies in 

deceleration phase of saccades. As was shown above, the subjects PSOs for a given 

eccentricity are consistent because saccades have stereotyped behaviour, therefore 

saccades of the same magnitude will produce similar return velocities resulting in 

equal size PSOs. However, while the acceleration phase of saccades remains 

consistent for approximately all saccade magnitudes, its deceleration phase changes 

with increasing saccade sizes. Saccades of small magnitudes have more symmetrical 

velocity profiles (i.e. their acceleration and deceleration phase is equal), whereas 

larger saccades have been shown to have shorter acceleration phases and longer 

deceleration phases (Baloh et al. 1975; Opstal and Gisbergen 1987). As a result of 

this, their corresponding velocities produce more skewed profiles, which in turn have 

smaller return velocities thus smaller PSOs.  

As noted in the previous chapter, T3 is also subjected to fixation errors associated with 

larger eccentricities and it was acknowledged that the role of the post saccadic drift is 
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functional and occurs to reduce the persisting fixation errors at the end of saccades. 

This being the case, one would expect longer drift durations to be observed although 

the PSOs have smaller amplitudes. To consider this further, the decision was made to 

inspect the PSOs from the data described in previous chapter for 4, 8 and 12 degrees 

eccentricity, since the testing procedure as well as the method employed was identical 

to this study. 

 PSO results for 4, 8 and 12 degrees eccentricity 
 
 
Figure 27 presents subjects superimposed leftward and rightward velocity profiles for 

4°, 8° and 12° degrees eccentricity where each column corresponds to a subject,  

whereas their corresponding PSOs are displayed in figure 28. As figure 27 shows, 

deceleration phase across all subjects changes depending on saccade magnitude. 

Accordingly, the subjects’ PSO waveforms also conform to these changes and 

produce different PSO magnitudes for each eccentricity level. This observation 

confirms that PSO amplitudes indeed depend on saccade deceleration phases. 

Across all subjects, the return velocities of leftward saccades are larger, thus their 

corresponding PSOs too are larger when compared to rightward saccades. Saccades 

of 8° in magnitude produced highest PSO amplitudes in all three subjects. Not 

surprising as these saccades have the steepest deceleration phase (note that the 

slope determines deceleration). In addition, the velocity profiles also capture clearly 

that the peak velocity does not increase linearly, but instead the rate at which 

increases, decreases with larger saccades. The difference in peak velocities (i.e. the 

highest peak in velocity profile) is smaller between 8° and 12° when compared to 4° 

and 8° saccades. Hence, 12° saccades have shorter acceleration phase and longer 

deceleration phase and are more skewed, therefore resulting in smaller PSO 
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amplitudes. Whereas, velocity profiles for 4° saccades are more symmetrical, 

accordingly their acceleration and deceleration phase will be also symmetrical. The 

slope of these saccades is less steep when compared to 8° saccades, therefore 

slightly slower deceleration phase. These observations clearly demonstrate how 

PSOs are directly proportional to saccade deceleration phase, i.e. the steeper the 

slope of deceleration, the larger its overshoot will be and vice versa. However, despite 

the fact that the amplitude of the PSO changes depending on the deceleration phase, 

the observed PSOs show that the size of the overshoot has very little effect on 

influencing T3 as their durations remains fairly consistent. As figure shows, the PSO 

sizes for 12° saccades (bottom row) produce smallest overshoots, yet their 

corresponding T3 values have the longest durations as indicated in each plot. Notably, 

the observed drift size does not become larger with increasing eccentricity while the 

deviation between the rightward and leftward saccades clearly increases. While for 4° 

saccades the deviation between left/rightward PSO ranges are between 0.1°-0.3°, for 

8° saccades it increases by almost a degree (between 0.4°-1.2°), whereas for 12° 

eccentricity the deviation is approximately 3° for each subject. This observation 

indicates that longer T3 durations are due to fixational disparities. Also, throughout this 

study it was demonstrated that the PSOs produce a predictable pattern; consisting of 

fast oscillatory movement followed by a slow moving drift. Although the PSO 

waveforms do not allow for complete unambiguous measure to conclude if drift follows 

to reduce the fixation error, the fact that its occurrence is consistent, makes it appear 

that its function is to offset the eyes position from the oscillatory movement rather than 

helping to reduce the fixation error. This assumption rests on these observations 

because if the function of drift occurrence was to reduce the fixation error, then the 

fixational disparities would have been reduced in size.  Clearly, this is not what is being 
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observed as with increasing eccentricity, fixational disparities increase so does T3, 

while the drift becomes smaller. 

  

  
 
Figure 27. Superimposed velocity profiles as a function of time. Subjects' return velocities change 
depending on a slope of deceleration phase. Note that leftward velocity produce not only slightly 
higher peak velocities but also have less skewed profiles accordingly generate larger PSOs.   
 

   

   

   
 
Figure 28. PSO profiles as a function of time. Size of PSO varies with saccade magnitude. Although 
the PSO waveforms are subject specific the pattern of movement is consistent across all subjects. 
After the oscillatory movement the eye drifts always towards it mean position. Note that with 
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increasing eccentricity the deviation between the leftward and rightward progresses thus, T3 also 
gets larger while PSO duration remains rather consistent. 
 
 

 Summary of results and discussion  
 

 
This study was conducted in an attempt to verify a method by which post-saccadic 

visual processing time could be quantified and also to investigate if the PSOs 

measured with the EyeLink eye-tracker can describe the perceptual consequences of 

the non-rigid eye, particularly since the retinal image motion can be caused by both 

the lens and eyeball oscillations. The study was primarily focused on whether the PSO 

durations could also be accounted for in our integrated saccade latency 

measurements.  

The observations made in this study suggest that the post-saccadic visual processing 

time is longer due to the eyes post oscillatory movement in addition to fixational 

disparities associated with larger saccades. This finding was further validated by 

comparing the rate at which the visual analysis can be performed when eye 

movements are not involved. This observation was taken as evidence to demonstrate 

that visual processing is indeed longer due to post saccadic oscillatory movements 

that corresponded to each subject’s PSO duration time. In addition, the findings have 

also demonstrated that the PSO durations are related to the deceleration phase of the 

saccade and do not change with stimulus contrast, thus yielding identical PSO 

durations (fig 24). This attribute of PSOs provided the means to estimate the visual 

processing times for higher contrast levels (25, 50, 75, and 100 percent). In addition, 

the results measured for different eccentricities revealed how PSO durations and 

amplitudes change with saccade size. Importantly, it was also observed that despite 

there being an increase in divergence, the drift did not increase. Instead, the drift 
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movement became smaller as PSO amplitude decreased. It was this observation in 

addition to the subject’s predictable, post movement pattern that inspired us to 

consider whether the drift proceeded to offset the eyes position from the oscillatory 

movement or to reduce the remaining fixation error. As demonstrated, the drift 

movement ended as soon as the eye approached its mean position defined when the 

eye velocity was at 0. Also, from previous studies we have evidence that changes in 

vergence are carried out by saccades and post-saccadic vergence drift is pre-

programmed movement that is independent of a visual disparity (Collewijn, Erkelens, 

and Steinman 1988a; Optican and Miles 1985;  Bahill, Clark, and Stark 1975). Since 

PSOs are so prevalent across all subjects, it seems that such motor output would have 

been necessary to evolve to overcome the eyes oscillatory movement. It has been 

previously hypothesised that the drift is an involuntary movement an animal learns to 

generate after every saccade (Optican and Miles 1985). This being the case then one 

can simply learn to generate the motor output that is a function of its PSO, which 

seems to be indeed what takes place based on these observations. One might wonder 

then why this has not been previously proposed. One of the main reasons for this 

could lie in the traditional recording technique – scleral search coil technique. We know 

that there are discrepancies between the coil and video based eye tracker 

measurements such as the one used in this study (EyeLink, SR research 1000). 

Although both techniques have very high spatial (<1°) and temporal accuracy (1ms), 

the discrepancies between the two techniques lie on the measurements of peak 

velocities and PSOs (Kimmel, Mammo, and Newsome 2012). Coil technique yields 

slightly smaller values for saccadic peak velocities and also the PSOs are considerably 

less pronounced in coil traces. If observed, the PSO will be limited to a single phase, 

while the PSOs observed with EyeLink are subject dependent with some subjects 
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having more damping than others. However, this does not mean that video based 

PSOs are an artefact, as the return velocities are observed with both techniques. For 

example, when Collewijn, Erkelens, and Steinman (1988a), describe their approach 

for measuring post saccadic drift using coil technique they state that “This period 

started 20ms after the end of each saccade in order to avoid contamination by the 

dynamic overshoot frequently associated with a saccade.” Similarly, as was noted 

throughout this study, the oscillatory phase, depending on a subject, lasts between 

19-29ms which was then followed by a drift. Also, once the drift occurred, the return 

velocities were within the range of vergence velocities known to be less than 

20deg/sec. This pattern of occurring events based on the subjects return velocities 

rather than PSOs shows that there are striking similarities between these two 

techniques in addition to the above presented  leftward rightward asymmetries.  

Perhaps, more practical question then would be why overshoots observed with coil 

were not associated with perceptual consequences. It is unclear why the overshoots 

were not associated with perceptual consequences since there was a recognition for 

the existence of the post saccadic drift suppression (Optican and Miles 1985; 

Robinson and Optican 1981). This alone indicates clearly that the vision would have 

been suppressed during the drift resulting in longer post saccadic processing times.  

After all, it is well established fact that every saccade generates retinal motion and 

introspection shows that these signals never reach our awareness owing to the 

mechanisms of saccadic suppression (Robert H. Wurtz 2008). So too, it is a well-

known fact that suppression outlasts the saccade. The fact that there is an ongoing 

movement well beyond the end of the saccade, perhaps it is not surprising that 

suppression will outlast the saccade since it is generated as a protective response to 

block out unwanted retinal image motion. Also, as PSOs were found to be subject 



 
 

107 
 

specific and suppression is known to be selective only for M-pathway (D C Burr, 

Morrone, and Ross 1994; Ross et al. 2001) this would suggest that the suppression 

too is subject specific.  

Consistent with studies that have described lens oscillatory movements, this study 

also confirms that other structures of the eye, in our case mainly the eyeball 

oscillations as reflected by the EyeLink 1000 can be used to quantify the perceptual 

consequences of the non-rigid eye since, the retinal image motion can be produced 

by both the lens and the eyeball oscillations.  

To my knowledge, this is the first study to quantify the post-saccadic visual processing 

times and provide a detailed account that post-saccadic visual processing times are 

dependent on both the subject’s PSO durations as well as fixational disparities 

occurring with larger saccades. Given that binocular coordination is dependent also 

on viewing distance, as the fixation errors increase significantly at near viewing 

distance, therefore, it would be of a great interest to establish if PSO waveforms too 

would differ as this will help examine further the exact function of post saccadic drift.  
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 Directional Asymmetries Measured with the EMAIL Test  
 
 
 
 
Abstract 

 
It is well established that  for a fixed eccentricity, eye movements along or close to the 

horizontal meridian produce significantly shorter times than equivalent close to or 

along the vertical meridian. In this study, the aim is to examine these directional 

asymmetries simply through measurements of ISL. As described already, the EMAIL 

test elicits saccades towards peripheral targets and measures the time the subject 

needs to detect the peripheral target, program and carry out the saccade and register 

correctly a specific stimulus attributes at the end of each saccade. The test also 

captures the subject’s decision response time – DRT (i.e. the overall time from the 

onset of the stimulus until the response is given), this measurement could provide 

some indication as to whether the DRTs are also associated with the expected  

asymmetries between horizontal and vertical meridian.  

 

 Introduction  
 
 
The role of the saccadic system is to prepare and generate an appropriate rotation of 

the eyeball to bring the subject’s direction of gaze onto the peripheral stimulus. 

Saccades are key to our visual interaction with the world and are the most reoccurring 

behavioural response. We normally make two to three saccades every second. Our 

eyes are very mobile, they are moved around the orbit by contraction or relaxation of 

the six extraocular muscles. These muscles are arranged in three opponent pairs, 

where the medial and lateral rectus move the eyes along the horizontal direction, the 
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superior and inferior rectus control the up and down directions, whereas the superior 

and inferior oblique contribute to torsion (Peter H. Schiller and Tehovnik 2005).  

There are two types of neurons in the brainstem: burst and omnipause (OPNs) that 

are essential for generating premotor commands for saccades (Leigh and Zee 1999). 

The commands for vertical and horizontal saccades originate from different regions 

within the brainstem. The saccades towards the horizontal direction are produced by 

burst neurons within paramedian pontine reticular formation (PPRF), while the burst 

neurons in medial longitudinal fasciculus (riMLF) control the saccades towards the 

vertical direction (Sparks 2002; Ramat et al. 2007; Leigh and Zee 1999).These 

commands, although generated from different regions of the brainstem, do not work 

independently. The OPNs discharge constantly during the fixation, but stop firing 

during saccades, therefore they regulate the onsets of both horizontal and vertical 

directions (Sparks 2002). 

It is well established that asymmetries exist between horizontal and vertical saccades. 

The performance of horizontal and vertical saccades was analysed systematically over 

the full oculomotor range (up to 80o towards horizontal and up to 70o along the vertical 

meridians) by (Collewijn, Erkelens, and Steinman 1988b; 1988a) using the scleral 

search coil technique and their results have demonstrated clear differences  between 

horizontal and vertical saccade parameters. Their results have shown that the 

saccades made in the vertical direction are less accurate when compared to horizontal 

saccades, and are also slower (i.e. their durations are longer) and their maximum 

speed does not reach the asymptotic level for amplitudes larger than 40°. Instead, for 

vertical saccades the speed continues to increase with amplitude. In addition, while 

the horizontal saccades are found to be symmetrical across the meridian plane, the 
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upward and downward saccades maintain symmetry only up to 30° (Collewijn, 

Erkelens, and Steinman 1988b; 1988a). 

In addition, asymmetries have also been reported for saccade latencies in many other 

studies (Goldring and Fischer 1997; Vernet et al. 2009; H. Honda and Findlay 1992; 

Bonnet et al. 2013). Overall, there seems to be a general rule; saccade latencies 

towards targets located on or close to the horizontal meridian are shorter than 

equivalent saccades along the vertical meridian. There is also an additional 

asymmetry between upward and downward vertical saccades with shorter upwards 

saccades (Vernet et al. 2009; H. Honda and Findlay 1992; Goldring and Fischer 1997). 

The observed vertical and horizontal asymmetry for saccade latencies is consistent 

across all studies, but there are discrepancies between studies reporting left/right and 

/ or up/down asymmetries.  

It is well established that the saccadic reaction times depend very strongly on the 

paradigm being used to trigger the saccades and it appears that the reported 

directional asymmetries for left/right or up/down are also very dependent on the 

paradigm being used to trigger the saccades. While some studies found no latency 

asymmetries between leftward and rightward saccades (Dafoe, Armstrong, and 

Munoz 2007b; Goldring and Fischer 1997; Vernet et al. 2009) for gap, overlap and 

antisaccades, the study done by Weber and Fischer (1995) found that the trials during 

overlap, short (0ms) and long (400ms) gap durations produced very little or no 

directional asymmetry, whereas trials with short gap durations (100ms and 200ms) 

produced directional asymmetry (more express saccades towards the right). On the 

other hand, the study done by Honda (2002) on twelve subjects found that the left/right 

asymmetry was evident only in eight out of twelve subjects tested during both gap and 

overlap trials. Equally important, this study also found that the direction of asymmetry 
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was not the same among all subjects. For six subjects, saccade latencies were found 

to be shorter when a target appeared in the right, while the other two subjects showed 

the reverse result and four other subjects did not reveal any effect at all.  

Since the visuospatial attention system is known to affect the saccadic latency, the 

visuospatial attentional bias specific to individual subjects was claimed by Honda to 

be involved in generating this idiosyncratic left/right asymmetry of saccade latencies.   

In addition, lack of consistency across studies is found between nasal and temporal 

saccades. However, a more recent study by Johannesson et al (2012) confirmed in 

various tasks that there are no nasal/temporal asymmetries for saccadic latency, 

consistent with an earlier study by Honda (2002).  

Similar conflicting reports were also found for saccades made towards vertical 

direction, and reported findings for up/down asymmetry for latency have not proved to 

be consistent. The up/down asymmetry is most pronounced during gap trials, with 

upwards latencies being shorter (Vernet et al. 2009; Tzelepi, Yang, and Kapoula 2005; 

H. Honda and Findlay 1992; Goldring and Fischer 1997; Zhou and King 2002). 

However, this asymmetry appears to disappear during voluntary saccades, like 

saccades during delay (Tzelepi, Yang and Kapoula 2005; Zhou and King 2002), 

antisaccade (Goldring and Fischer 1997; Bonnet et al. 2013) and memory task ( Abegg 

et al, 2015). Only two studies reported no asymmetries between up/down during 

overlap paradigm (Bonnet et al. 2013; Yang and Kapoula 2006). 

The lack of consistency in these findings makes it difficult to draw plausible 

conclusions as to the mechanisms involved. However, from the experimental results, 

disengagement from the fixation point seems to be the only consistent factor producing 

the asymmetries. 
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The aim of the present study is to investigate these asymmetries through measures of 

ISL (integrated saccade latencies times) produced by the EMAIL test. The test also 

captures the subject’s decision response time – DRT (i.e. the overall time from the 

onset of the stimulus until the response is given). This measurement may provide 

some indication as to whether the expected asymmetries also affect the subject’s 

overall behaviour.  

 Method and procedure 
 
 
Six healthy subjects with a normal or corrected-to-normal vision between 24 and 37 

years participated in this study.   

The tests were performed in a dark, quiet room with subjects having their head position 

stabilised with a chin rest facing the monitor at eye level and 80cm away from the 

subject’s eye. 

The tests were performed binocularly with measurements taken separately for 

horizontal (180°–0°) and vertical (90°–270°) directions. In addition, monocular testing 

was also performed on three subjects along the horizontal meridian (180°– 0°).  

Each trial began with the appearance of the central fixation point. The subjects were 

required to view the fixation mark and to generate a saccade towards the 8o peripheral 

target which could appear on either side of fixation along any meridian within ± 15° 

elevation (see Figure 29). Once on target, the subject’s task was to register the 

orientation of the gap in the central Landolt ring and to report its position using a four-

button response box with the keypad buttons placed to match the four possible gap 

locations. As described previously, the EMAIL test employs a Four Alternative Forced 

Choice – 4AFC Procedure to measure the time the subject needs to carry out this task.   
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Figure 29.  Schematic diagrams representing the visual stimulus  employed in the EMAIL test. The 
section on the left shows the possible target locations for vertical saccades. The stimulus appeared 
randomly at 8° eccentricity either upward or downward from the fixation point within ± 15° range 
from the midline. Similarly, the section on the right shows the possible target locations for horizontal 
saccades. The stimulus appeared randomly at 8° eccentricity on either side of the fixation within ± 
15° from the midline. 
 
In each block of the experiment, there were two staircases interleaved that 

corresponded to left /right along the horizontal meridian or up/down along the vertical 

meridian. Initial stimulus duration time for all trials was set at 300ms, and the trials 

ended on completion of 16 reversals. Six repeat measurements were taken for each 

subject along the horizontal and vertical meridians. For monocular testing either the 

left or right eye was patched in alternating order during each trial. Similarly, six repeat 

measurements were taken for both left and right eye. Note that, as EMAIL test does 

not require any calibration, after each trial subjects were allowed to take a break if they 

wished to, and carry on with testing procedure when ready. 

 Data analysis and statistical test 
 
After each trial, the EMAIL test program calculated two variables; decision response 

time (DRT) and integrated saccade latency time (ISL). The data collected from trials 

were analysed off-line using MatLab. The DRT captured the overall time the subject 

takes to detect the peripheral target, generate the eye movement and generate a 

response to indicate the correct orientation of the gap. The ISL, on the other hand, 

represents the minimum time the subject needs to detect the peripheral target, 



 
 

114 
 

generate the eye movement and register the orientation of the gap at the end of each 

saccade. The mean values for both ISL and DRT for each subject were obtained from 

six repeat measurements. The mean values from repeated measures were classified 

with respect to each location 180°/left, 0°/right, 90°/up and 270°/down. The obtained 

mean values for ISL and DRT are shown in Table 6 and 7 respectively.  

With the exception of  monocular results, these dependent measures were analysed 

with one-way repeated measures of ANOVA.  Mauchly’s test for ISL (p = .07) and DRT 

(p = .15) as well as  linearity, normality and homogeneity of the data, indicated that 

assumptions were met to perform one-way repeated measures of ANOVA. Post hoc 

analysis were performed using pairwise comparisons with Bonferroni corrections. 

Whereas, for monocular results, paired sample t-test were used. To meet the 

assumption that the differences between pairs are normally distributed, the Jarque-

Bera (JB) test was performed. For all monocular data sets, the H value returned 0 

indicating that the data have the skewness and kurtosis matching a normal distribution.   

 Left Right Up Down 
Subject 1 198.1 ± 12.4 204.1 ± 7.1 238 ± 18.5 269 ± 22.4 
Subject 2 168.4 ± 9.4 186.6 ± 8.1 209.2 ± 4.1 200 ± 5.7 
Subject 3 164.8 ± 4.25 172.3 ± 4.3 198.5 ± 5.2 188.4 ± 4.4 
Subject 4 192.3 ± 1.41 206.2 ± 2.6 230.0 ± 2.6 235.3 ± 2.3 
Subject 5 172.02 ± 6.3 173.4 ± 7.6 182.8 ± 9.7 186.0 ± 5.8 
Subject 6 180.4 ± 8.45 192.5 ± 11 206.7 ± 14.5 199.2 ± 10.1 
Sample mean 179.34 190.52 210.87 209.65 
SEM 13.46 16.47 20.31 32.6 

Table 6. The subjects’ mean ISL measurements for each direction. The ± sing indicates the 
standard error of the sample mean (SEM).    
 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 
Left 1001 ± 49 687 ±6.66 764± 11.4 734 ± 19 866± 31.8 852 ± 45 
Right 933± 26.5 719±19.6 728± 28.5 741 ± 22 866.3± 31 821 ± 57 
Up 1032± 80.4 718 ± 16 781± 26.5 782± 33.8 940 ± 53 823 ± 53 
Down 1007 ± 47 734 ± 7.3 774± 33 800 ±20.1 953± 43.7 800 ± 62 
Horizontal 967± 28.32 700 ± 11 745± 22.3 737 ±14 876± 21.4 836 ± 35 
Vertical 1050 ±45 939± 8.85 778 ± 20 791± 19.4 947± 33 811 ± 39  

Table 7. The DRT results for each direction; left, right, up and down. The data in the table show 
mean DRT values and the corresponding standard errors calculated from 6 repeat measurements. 
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 Integrated saccade latency time – ISL results  
 
 
The results from a repeated  measures of ANOVA revealed that ISL values are 

dependent on target location, F(3, 15)  = 15.76, p<0.008, η2= 0.755 with post hoc 

comparisons results showing that ISL performance although it is symmetrical along 

both horizontal (p > .45) and vertical meridian (p > .98), significant differences exist 

between left vs up (p<.001), left vs down (p<.001), right vs up (p<.02) and right vs 

down (p<.007). Figure 30 displays average ISL values along with confidence intervals.  

As figure shows, the ISL responses are shorter (i.e. faster) along the horizontal when 

compared to vertical meridian with no significant differences between left vs right or 

up vs down.  

 
 

Figure 30. Pairwise comparison test using Bonferroni corrections. The difference between the 
sample means of horizontal and vertical direction is significant as indicated by dotted line. 
Confidence intervals, red line segments of upward and downward ISL sample means  do not 
overlap with black CI segments of leftward and rightward sample means.  
 

 
 

For demonstration purposes, the mean values of ISL for horizontal and vertical direction 

for each subject are also presented on the bar chart (Figure 31) where grey and blue 

bars represent horizontal and vertical ISL values respectively. Equally, this figure too 

shows that ISL values are shorter along horizontal direction across all subjects.  This finding 
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is consistent with previous reports done by other investigators and confirms that 

saccadic performance across a horizontal meridian is indeed faster than across a 

vertical meridian (Vernet et al. 2009; H. Honda and Findlay 1992; Goldring and Fischer 

1997; Dafoe, Armstrong, and Munoz 2007b; Yang and Kapoula 2006).  

 

 

Figure 31. Mean ISL values for horizontal and vertical directions for all six subjects (the subjects 
were ranked in alphabetical order). Each bar represents collapsed data along horizontal and 
vertical direction with error bars representing the standard error of the sample mean. The mean 
ISL values for saccades along the vertical meridian are on average 15ms longer.  
 
 

  The decision response time – DRT results 
 
 
The DRT measurements were also analysed using repeated measures ANOVA. 

However, in contrast to ISL findings, the DRT analysis did not reveal any directional 

asymmetry F(3, 15) = 4.39, p<0.089, η2= 0.47. The mean DRT values are presented 

on the bar chart (Figure 32) with error bars representing 95% confidence intervals. As 

figure shows, the CIs overlap which further verifies that DRT responses are 

independent from target location. These results indicate that the asymmetries found 

on ISL measurements have minimal effect on overall response time, as these 

differences are no longer present in DRT measurements.  

Horizontal & Vertical Mean Values For All Subjects

S1 S2 S3 S4 S5 S6
Participants

0

50

100

150

200

250

300

Ti
m

e 
(m

s)

Horizontal Vertical



 
 

117 
 

 
Figure 32. Mean DRT values for each direction with error bars representing  95% CIs (confidence 
intervals). As shown, CIs overlap, confirming that no significant differences exist in DRT responses.    
 
 

 The monocular results 
 
 
The paired sample t-test for monocular results too, revealed that no significant 

differences exist between nasal(left)/temporal(right) for the right eye or  

nasal(right)/temporal(left) for the left eye, for the three subjects tested. The paired 

sample t-test results are displayed on Table 8.  Since no significant differences were 

found between nasal vs temporal direction on each eye, additional paired sample t-

tests were also performed to compare the mean differences between the left and right 

eye. Similarly, no significant differences were found between the left and right eye  

(p=0.12; p=0.45; p=0.73). Figure 33  displays  the compared sample means. As figure 

shows,  the differences between the left and right eye are small across all three 

subjects. These results agree well with previous reports by other investigators as    

saccades along horizontal meridian  are usually  symmetrical (Dafoe, Armstrong, and 

Munoz 2007b; Vernet et al. 2009;  a H. Bell, Everling, and Munoz 2000; Vergilino-

Perez et al. 2012) with no significant differences also being present between nasal 

and temporal saccades (Hitoshi Honda 2002; Jóhannesson, Ásgeirsson, and 

Kristjánsson 2012). 
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Figure 33. Monocular ISL measurements for the right and the left eye.  Each paired bar is 
representative of the subject’s mean ISL obtained from 12 trials (i.e. 6 repeat measurements for 
each of the two directions) for the right and the left eye. The purple bars represent the right eye, 
while the blue bars represent the left eye with error bars at ± 1SEM respectively. 
 
  

PDM STD SEM 95% CI of the Difference t df P(T<=t) two-tail 
    

Lower Upper 
   

S1  L-N/T -8.07 15.35 6.27 -24.18 8.04 -1.29 5 0.254 
S1  R-N/T -0.15 19.52 7.97 -20.63 20.33 -0.02 5 0.986 
S2  L-N/T 5.27 11.82 4.83 -7.14 17.67 1.09 5 0.325 
S2  R-N/T -3.28 18.54 7.57 -22.74 16.17 -0.43 5 0.683 
S3  R-N/T -1.37 27.56 11.25 -30.29 27.56 -0.12 5 0.908 
S3  R-N/T 1.10 41.75 17.04 -42.71 44.91 0.07 5 0.951 

Table 8. The analysis of monocular testing. No significant differences exist between the sample 
means of nasal vs temporal for the left or right eye. As indicated on the table two-tailed p-value is 
larger than .05  
 

  Summary of the Results 
 
The main findings were as follows: 

(a) Significant asymmetries were found between horizontal and vertical directions,  

(b) No asymmetries were found along horizontal direction for both left/right or 

nasal/temporal,  

(c) The absence of asymmetries was also found for vertical direction (up/down), and  
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(d) The measurements of decision response time (DRT) did not reveal any directional 

asymmetry. 

 Discussion 
 
 
This study is the first to explore these asymmetries through measurements of ISL. 

While the previous studies have used eye-tracking equipment to measure the 

dependence of saccade parameters (i.e. latency, accuracy, duration and its peak 

velocity) on target location, in this study, the minimum stimulus duration time (ISL) 

needed to achieve 71% correct response was used. As the ISL value is made up of 

three components i.e. latency + duration + visual processing time, the directional 

asymmetries found on the ISL measurements reflect the directional asymmetries 

found in saccade parameters under similar conditions.  

The studies that compared the performance of saccadic eye movements along 

horizontal and vertical direction have provided evidence that both saccadic latency 

(Vernet et al. 2009; H. Honda and Findlay 1992; Goldring and Fischer 1997; Dafoe, 

Armstrong, and Munoz 2007b; Yang and Kapoula 2006) as well as saccade duration 

time (Collewijn, Erkelens, and Steinman 1988a; 1988b) are shorter for saccades made 

towards the horizontal rather than the vertical meridian. In this study too, the ISL 

responses along horizontal meridian were found to be faster across all 6 subjects. The 

results from repeated measures of ANOVA have indicated clearly that significant 

differences exist between the horizontal and vertical ISL responses confirming well 

recognised asymmetries between horizontal and vertical eye movements.  

However, while horizontal saccades are typically found to be symmetrical (Dafoe, 

Armstrong, and Munoz 2007b; Vernet et al. 2009;  a H. Bell, Everling, and Munoz 
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2000; Vergilino-Perez et al. 2012), this is not always the case for vertical direction, 

owing largely to changes in saccadic latency.   

There is a latency bias found for visually-guided vertical saccades, with upward 

saccades having shorter latencies when compared to downward saccades (Goldring 

and Fischer 1997; Dafoe, Armstrong, and Munoz 2007b; Vernet et al. 2009;  a H. Bell, 

Everling, and Munoz 2000; Tzelepi, Yang, and Kapoula 2005; Zhou and King 2002; 

Abegg et al, 2015). This asymmetry was not captured through measurements of ISL 

where both upward and downward ISL times were found to be statistically insignificant. 

It is known that the up/down latency asymmetries are always found to be absent during 

paradigms that elicit voluntary saccades (Goldring and Fischer 1997; Tzelepi, Yang, 

and Kapoula 2005; Zhou and King 2002; Dafoe, Armstrong, and Munoz 2007; Yang 

and Kapoula 2006). This being the case, it suggests that these asymmetries may 

depend on the testing procedure undertaken.  

Although the EMAIL test employs overlap paradigm to trigger visually-guided 

saccades, the procedure is very different from conventional testing. While the bottom-

up component of saccadic latency is influenced by stimulus duration time which is 

controlled by 2-down, 1-up procedure, the top-down component is manipulated by the 

target location ± 15° from the midline as well as the gap orientation from the crowded 

central ring (i.e. 4AFC procedure). Also, it is well established that both the top–down 

and bottom-up factors have an effect on saccadic reaction times (Hutton 2008) 

Besides, it has been demonstrated that the response of frontal eye field neurons can 

be modulated by the behavioural significance of a visual stimulus (R H Wurtz and 

Mohler 1976). This being the case, it could explain the lack of any directional bias for 

upward saccades in this study.  
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The monocular results were also found to be symmetrical for all three subjects. 

Perhaps, this is not a surprising result, as these tests were restricted only along 

horizontal meridian. As was noted above, the saccades along horizontal meridian are 

usually symmetrical (Dafoe, Armstrong, and Munoz 2007b; Vernet et al. 2009;  a H. 

Bell, Everling, and Munoz 2000; Vergilino-Perez et al. 2012), and so too,  are 

nasal/temporal saccades (Hitoshi Honda 2002; Jóhannesson, Ásgeirsson, and 

Kristjánsson 2012), therefore these differences are independent of the paradigm being 

used and have significantly changed the measured ISL values, which indicates clearly 

that the visual stimulus presented along the horizontal meridian is processed faster 

(i.e. shorter stimulus duration time). After all  the visual system has evolved to meet 

the needs of environmental demands and shorter ISL values along the horizontal 

direction may reflect the importance of horizontal tasks such as reading. Our visual 

environment is intrinsically more concentrated along the horizontal line and this may 

account for the improvement in response parameters for horizontal saccades.  

Decision Response Time performance: The measured DRT values did not reveal any 

directional asymmetry. This finding indicates that the asymmetries found in saccadic 

eye movements are subtle and may not cause significant changes in overall 

behaviour. After all the measurements of DRTs were found to range between 700ms 

up to 1,000ms and the differences found between horizontal and vertical ISL rarely 

exceed 20ms.    

 
 

 Conclusion  
 
 
This study presented a new method to measure the identified asymmetries in saccadic 

responses latencies and durations, and the corresponding visual processing time at 
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the end of each saccade. The EMAIL test does not require any eye-tracking equipment 

and this can be of great advantage. Asymmetries that are often found in saccadic eye 

movements were also captured reliably without a need for eye tracking equipment 

instead these differences were simply measured through ISL measurements 

generated by EMAIL test. Given that asymmetries exist is saccadic performance, all 

studies involving assessment of the saccadic eye movements must consider these 

directional asymmetries.    
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 Age Effects on Measures of Integrated Saccade Latencies 
and Decision Response Times 

 
 
 
Abstract 

 
One of the most pervasive effects of age is that it slows one down with deleterious 

effects over all behaviour. The brain volume shrinks with increasing age and these 

changes (due to atrophy) are also known to reduce the efficiency of cognitive function, 

in particular processing speed, working memory and ability to inhibit attentional and 

behavioural responses, as well as slowing of movement. Even the simplest 

behavioural measures, such as reaction times, reveal that older adults need more time 

to respond (Salthouse 1996; Verhaeghen and Salthouse 1997). While there is an 

ample of evidence that oculomotor responses are too effected by normal aging, the 

conventional techniques used to investigate the eye movement responses rely on eye 

tracking equipment. In this study, the aim is to demonstrate that visual psychophysical 

techniques can also be relevant when investigating age effects on oculomotor 

responses. The results produced by EMAIL test show that both ISL and DRT 

measures  progress nonlinearly with normal ageing, presenting a broad agreement 

with previous research.  

 Introduction  
 
 
One of the most prominent effects of ageing is that the speed of processing information 

decreases gradually with direct consequences on many aspects of performance. Even 

the simplest behavioural measures, such as reaction times, reveal that older adults 

need more time to respond (Salthouse 1996; Verhaeghen and Salthouse 1997). The 

measures of reaction time (RT) although simple and easy to perform, nonetheless 
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provide a measure of three processing stages: detection, the decision-making process 

and the time needed for execution of a motor response (Botwinick and Thompson 

1966).  

Longer RTs in older subjects were found in several studies (Fozard et al. 1994; 

Salthouse 1996) with reaction times increasing linearly with age. It is also well 

established that ageing causes changes to the brain size, vasculature and cognition 

(Peters 2006). 

The saccadic system has been shown to provide a useful approach in examining the 

relationship between brain and behaviour. The cortical areas involved in saccade 

generation are well characterised and these include frontal eye field (FEF), 

supplementary eye field (SEF), dorsolateral prefrontal cortex (DLPFC), posterior 

parietal cortex (PPC), anterior cingulate cortex (ACC), basal ganglia, thalamus, and 

superior colliculus (Pierrot-Deseilligny, Milea, and Müri 2004; Hikosaka, Takikawa, 

and Kawagoe 2000; Luna, Velanova, and Geier 2008; Leigh R.J and Zee D.S 1999). 

In addition, their characteristics are well understood. Every SEM produces a similar 

pattern and for normal saccades the relationship between duration/magnitude and 

magnitude/peak velocity follows a main sequence ( Bahill, Clark, and Stark 1975). 

Besides, abnormalities of saccadic responses can be characterised accurately and 

often point to disorders of specific mechanisms ( Leigh R.J and Zee D.S1999).  

SEMs can be manipulated behaviourally in the laboratory using a number of different 

experimental paradigms (i.e. gap, overlap, antisaccade and memory guided saccadic 

tasks), where each paradigm has been designed to evoke different types of saccades 

and to probe into different behavioural and cognitive processes. Many studies that 

have investigated the effects of age on saccadic performance using different 

paradigms (Peltsch et al. 2011; Munoz et al. 1998b; Yang and Kapoula 2006; Noiret 
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et al. 2017; Luna et al. 2001; 2001) have shown that these changes can be interpreted 

within neurological framework. 

Saccadic performance is assessed through its parameters and these include; latency, 

amplitude, peak velocity, variability and overall accuracy.  Saccadic latency, which 

represents the time interval between the onset of the stimulus and the eye rotation is 

known to reflect many core cognitive functions (Leigh R.J and Zee D.S 1999). There 

is a general agreement across studies that investigated SEMs, which found that 

latency parallels the changes on the brain during both developmental and normal 

degenerative stages (Peltsch et al. 2011; Munoz et al. 1998b; Noiret et al. 2017;  

Fischer, Biscaldi, and Gezeck 1997; Luna, Velanova, and Geier 2008; Luna et al. 

2001). It has been shown that while latency decreases exponentially during 

developmental stages, from birth up to approximately 15 years of age (Fischer, 

Biscaldi, and Gezeck 1997; Luna, Velanova, and Geier 2008; Luna B and Sweeney  

J.A  2004; Munoz et al. 1998b). Above this age, the response latency starts to increase 

again. The relationship between latency and age has been shown to be curvilinear 

(Munoz et al. 1998b; Fischer, Biscaldi, and Gezeck 1997) and mirrors the structural 

brain changes that take place during both developmental and degenerative stages 

(Giorgio et al. 2010; Whitford et al. 2007; Giedd et al. 1999).  

On the other hand, age does not seem to have significant effect on other saccade 

parameters, such as peak velocity and accuracy. It has been shown that both 

parameters stabilise during childhood (Luna et al. 2004; Munoz et al. 1998b) with no 

effects as we age (Luna et al. 2001; Yang and Kapoula 2006; Bonnet et al. 2013; 

Munoz et al. 1998b). 
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The purpose of this study is twofold: 1) to introduce a new method to test oculomotor 

parameters; and 2) to investigate age-related changes on decision response times 

(DRT) and integrated saccade latency times (ISL).  

 Experimental Procedure 
 
 
This study was approved by the Research Ethics Board of City, University of London. 

Thirty-two healthy subjects ranging between 10–79 years-old were recruited for this 

study. Subjects were divided into five age groups as shown below (Table 9). All but 

one subject had normal trichromatic colour vision. The one subject with severe deutan 

deficiency, as measured on the CAD test, was also included in the study. As described on 

section 2.2.1 although neither phoria nor visual acuity was assessed, none of the subjects 

reported problems with their visual acuity or binocular vision. All experiments were carried out 

binocularly and each participant used their normal distance spectacle prescription during the 

tests, except for the few older subjects who wore their normal reading glasses. 

 
Table 9 Composition of age-related groups 
 
Age Group Age Range  Mean age group ± σ Number of subjects Female Male 

Children 10-12 11 ± 1.4 2 2 0 

Young Adults 20-34 25 ± 4.4 13 7 6 

Middle-aged 35-49 40 ± 4 7 3 4 

Old Adults 50-64 56.7 ± 6.4 3 0 3 

Seniors 65-80 73 ± 4 7 4 3 

Total   32 16 16 

 
 
Prior to testing session, all subjects were briefed on how to perform the test and after 

a period of practice, the testing procedure began. This step was taken to ensure that 

a subject is capable of using the response pad and understands the testing procedure. 

Experiments were conducted in a darkened room where subjects were seated 80cms 



 
 

127 
 

away from the visual display. A forehead / chin-rest was used for comfort and to 

minimise head movements. Each subject completed three trials in a single session, 

which involved approximately 70 to 90 stimulus presentations per trial. After each trial 

subjects were allowed to take a break if they wished to, and carry on with testing 

procedure when ready.  Each trial began with the appearance of central fixation point, 

which remained illuminated (overlap paradigm), while a peripheral visual stimulus 

appeared randomly 8° to the left or right along the horizontal meridian within ± 5° 

elevation. Visual stimulus was generated and presented on the monitor by the EMAIL 

test program (EMAIL test and procedure is explained in detail in Chapter 2).  

Following each trial, the EMAIL test program computed and generated the threshold 

values for decision response times (DRT), and the integrated saccade latency times 

(ISL). The DRT captures the overall time interval between when the stimulus is 

presented and response is generated. In contrast, the ISL time captures the time 

interval the subject needs to detect the peripheral target, generate the eye movement 

and register the stimulus attribute of interest at the end of each saccade. Thus, the 

DRT captures ISL time as well as the time required to generate the motor response.  

This arrangement allowed us to investigate the age effects on both oculomotor 

responses (stimulus driven responses) and decision responses (internally driven 

responses).  

 

 Results  
 
 
The data were analysed offline using Matlab. The mean values for both ISL and DRT 

for each subject were obtained from their three measured threshold values produced 

by the EMAIL test. To analyse age effects, the subjects were separated into five age 
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groups: children (10-12yrs), young adults (20-34yrs), middle age (35-49yrs), older 

adults (50-64yrs) and seniors (65-80yrs) (see Table 10).  

 
 
 
 
 
Table 10. The mean values of age-related groups for all measured parameters. 

Age range Mean age group ± σ Number of subjects DRT ± σ ISL ± σ 

10-12 11 ± 0.7 2 884.8 ±20.5 209.3±5 

20-34 25 ± 4.4 13 721.2±68 178.4±14 

35-49 40 ± 4 7 816.4±120.7 190±14 

50-64 56.7 ± 6.4 3 925.3±110 207±8 

64-80 73 ± 4 7 1059.1±137.2 278±29 

Total  32   
 
 
One way ANOVA was applied to assess the differences between the age groups for 

both ISL and DRT. The ANOVA results show significant effect on ISL [F = 35.1, p < 

0.001] with post hoc (Tukey’s HSD) analysis indicating clearly that the seniors group 

(65-80yrs) is significantly different from all other age groups (Figure 34).  Although no 

statistically significant difference (p > 0.05) was found between the other groups (10-

12yrs, 20-34yrs, 35-49yrs and 50-64yrs), the best performing age group were found 

to be young adults (20-34yrs) closely followed by the middle age group (35-49yrs). 

The ANOVA findings are displayed graphically as multiple comparison plots in Figure 

34, where the group mean is represented by the circle, whereas the extended line 

from the circle is representative of confidence intervals. Due to small sample sizes for 

children and older adults, the confidence intervals are very large for those two groups 

when compared to the remaining groups.  
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Same analysis was performed on DRT measurements. The ANOVA results showed 

significant effects on DRT results [F = 13.36, p < 0.0002], however the post hoc 

analysis (Figure 34) revealed that only the senior age group (65-80yrs) were 

significantly different from two other age groups: younger adults (20-34yrs) and 

middle-aged (35-49yrs). The full ANOVA analysis are shown in Table 11.   

The scatter plots for both ISL and DRT values are shown on Figure 35 and 36 

respectively. The plots reveal that the relationship with age for both ISL and DRT is 

nonlinear. The two-term exponential fits clearly demonstrate that both ISL and DRT 

performance changes during two different stages (for comparison of linear and 

nonlinear fit see Figure 37). While during childhood our performance improves – i.e. 

decreases exponentially – as we age, we start to slow down. The fitted curve on the 

scatter plot explains convincingly the relationship between age and ISL with r-squared 

equal to 0.82. As expected, the fitted line predicts that changes occur at a much faster 

rate during developmental stages, the time where rapid improvements on overall 

Figure 34. Multiple comparison of ISL and DRT means. The figure on the left represents ANOVA analysis 
for ISL measurements. A multiple comparison test shows clearly that the ISL mean of seniors (65-80) 
represented by red bar is significantly different from all other age groups shown by black bars where the 
group mean is the circle and the extended horizontal line represents confidence interval. Similarly, the 
figure on the right represents ANOVA analysis for DRT measurements.  The mean DRT of senior age 
group (65-80) represented by the red bar is significantly different from both younger adults (20-34yrs) 
and middle-aged groups (35-49yrs), represented by black bars. The children (10-12yrs) and older adults 
(50-64yrs) are shown by dashed grey lines. These two age groups were not found to be statistically 
different from any age group. As can be seen, the extended lines (i.e. confidence intervals) are very 
large due to very small sample sizes for those two groups. 
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behaviour take place. With developmental changes in the prefrontal cortex still 

continuing into adulthood (A. Diamond, 2002), it is not surprising that the best 

performance predicted from the fitted line is ~ 25years of age. Similarly, as other 

structures on the brain change with age, so does the performance of ISL. Also, the 

DRT fit with r-squared found to be 0.66 also depicts that decision responses during 

developmental stages decrease rapidly until ~17 years of age, at which point the trend 

reverses. The curve shows that the increase from 20yrs onwards is gradual and 

increases at constant rate of 7.4ms every year. In line with previous studies, these 

results confirm that the reaction times increase linearly with age.  

 

Figure 35. Performance of ISL with age. Each grey point represents the threshold values of ISL 
obtained from EMAIL test. The orange circles correspond to the mean values of ISL for each 
specific age group (10-12, 20-34, 35-49, 50-64 and 65-70). Two term exponential fit 266𝑒OR.ST +
118𝑒OR.RSTdepicts clearly behavioural changes that occur during developmental and degenerative 
stages with changes taking place at much faster rate during developmental stages.  



 
 

131 
 

 

 
Figure 36. Performance of DRT with age. Each grey point represents the threshold values of DRT 
obtained from EMAIL test. The yellow circles correspond to the mean values of DRT for each 
specific age group (10-12, 20-34, 35-49, 50-64 and 65-70). Similarly, two term exponential fit 
6785𝑒OR.U8T + 600𝑒OR.RRVTshows clear behavioural changes during developmental and 
degenerative stages with rapid changes occurring up to 17 yrs of age (at which point trend reverts 
and starts to increase. 
 
 
 
Additional information regarding the best line of fit 
 
 
To ensure that the nonlinear fit describes best the relationship between ISL and age, 

linear regression was also performed. Figure 37, which also includes residual plots 

shows clearly that, while 82% of variation in ISL with respect to age is described with 

nonliar relationship, only 62% of variation can be described by linear relationship; as 

indicated on each plot  r-squared was found to be R2 =.82 for nonlinear fit while for 

linear fit  R2=.62 which confirms nonlinearity for ISL vs age. 
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(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure 37. Linear and nonlinear regression analysis for ISL versus Age . In Plot (A) a linear fit is used to 
describe the relationship between ISL and age, whereas in plot (B) a nonlinear fit is used. Their 
corresponding residual plots are presented underneath. As shown, variation of ISL with age is better 
described with a nonlinear relationship as R2 = .82 as a result the nonlinear residuals are smaller too when 
compared to linear residuals. 
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Table 11. The ANOVA and post hoc analysis results for DRT and ISL.  
 

One way ANOVA - DRT Source' SS' df' MS' F' Prob>F' 

 Groups' 555179 4.0 13879 13.36 0.000 
 Error' 28044 27 10386   
 Total' 83561 31    
DRT- Post-hoc analysis Age groups Age groups     
 11-12 20-34 -60 165.7 392 0.23 
 11-12 35-49 -170 68.4 307 0.91 
 11-12 50-65 -312 -40.5 231 0.99 
 11-12 65-80 -413 -174.3 64.4 0.23 
 20-34 35-49 -237 -97.4 42.2 0.27 
 20-34 50-65 -397 -206 -15.6 0.02 
 20-34 65-80 -480 -340 -200.5 0.000 
 35-49 50-65 -314 -109 96.6 0.54 
 35-49 65-80 402 -243 -83.5 0.0012 
 
 

50-65 65-80 -339 -134 71.6 0.34 

One way ANOVA - ISL Source' SS' df' MS' F' Prob>F' 

 Groups' 47805 4.0 11951 35.1 0.000 
 Error' 9202 27 340.8   
 Total' 57008 31    
ISL Post-hoc analysis Age groups Age groups     
 11-12 20-34 -10 30.92 72 0.2 
 11-12 35-49 -24 19.4 63 0.68 
 11-12 50-65 -46 2.5 52 0.99 
 11-12 65-80 -112 -68 -25 0.0007 
 20-34 35-49 36.8 -11.5 -13.7 0.67 
 20-34 50-65 -63 -28 6.1 0.14 
 20-34 65-80 -124.7 -99 -74 0.0000 
 35-49 50-65 -54.1 -17 20 0.67 
 35-49 65-80 -116.7 -88 -59 0.000 
 
 

50-65 65-80 -108.2 -71 -34 0.0001 
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 Discussion  
 
 
The aim of this experiment was to investigate age-related changes and to validate the 

EMAIL test as a novel way for measuring both oculomotor and decision response 

times. 

The results demonstrate clearly that the ISL measured using the EMAIL test is affected 

by age-related changes in response parameters. The test provides a new method to 

investigate both oculomotor ISLs and DRTs, independently and without a need for eye 

tracking equipment.  

Before discussing the experimental findings from this study, it is worth emphasising 

the fact that all previous studies that investigated saccade parameters have used eye 

movement recording techniques such as magnetic search coil, electrooculography 

(EOG) or video-based systems. None of these studies measured visual processing 

times. In this study, the combined oculomotor response latencies were captured 

without any eye movement recording techniques, using only the EMAIL test which 

relies entirely on visual psychophysics (as described in the methods and procedure 

section). 

 

 Integrated Saccade Latencies 
 

 
The results demonstrate clearly that ISL values parallel the changes in the brain that 

are expected during both developmental and normal degenerative stages, and are in 

agreement with many previous studies that have investigated the effects of age on 

SEM performance (Munoz et al. 1998b; Peltsch et al. 2011; Noiret et al. 2017; Yang 

and Kapoula 2006; Fischer, Biscaldi, and Gezeck 1997; J. Sweeney 2001). Since 

normal aging does not affect significantly either the amplitudes or the peak eye 
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movement velocities (Bonnet et al. 2013; Munoz et al. 1998b; Fischer, Biscaldi, and 

Gezeck 1997; Yang and Kapoula 2006), the differences found in ISL values are 

therefore likely to reflect changes in saccade latency.  

Because SEMs follow very closely the age-related changes in brain structure, the 

principal discussion will focus upon these two stages.  

It is well established that our ability to voluntarily initiate and suppress behaviour is 

influenced by the maturation of integrated functions between the cerebral cortex, 

striatum, thalamus and cerebellum due to myelination and synaptic pruning that take 

place during childhood and remain active even during adolescence (Sowell et al. 2003; 

1999; Luna et al. 2001; Luna, Velanova and Geier 2008). Additionally, brain structures 

also change as synaptic pruning takes place. There is a reduction in the grey matter 

(GM), whereas during myelination white matter (WM) increases (Sowell et al,. 1998, 

1999; A. Gorgio et al,. 2010; J.N. Girl et al,. 1999; T.J. Whitford et al,. 2007). This 

continuous synaptic pruning and myelination enable neuronal computations and the 

functional integration of widely-distributed cortical areas to became more efficient, 

which results in improved control over behaviour (Luna et al. 2001; 2004; Luna, 

Velanova and Geier 2008; Giedd et al. 1999; Sowell et al. 1999; 2003). These 

improvements in basic cognitive functions, such as our abilities to respond 

appropriately, maintain focus and process information faster (due to myelination) 

appear to translate also to the saccadic behaviour which is found to improve as these 

changes take place.  

The results from this study show that ISL performance continues to improve until the 

second decade reaching its peak at ~23 years of age. It remains unchanged during 

the second decade and well into the third decade, from where it starts to increase 

gradually up to the beginning of the sixth decade, at which point it starts to deteriorate 
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significantly. These results are in direct agreement with findings of Fischer et al (1997) 

and Munoz et al. (1998b), who investigated the saccadic performance on a large 

number of subjects (286 between 8-70yrs and 168 between 5-79yrs) and found a slight 

increase from just after 30 years of age, with the largest increase for those aged 60 

and above.  

While continued improvements happen during normal development stages, as we age 

our brain starts to deteriorate. It is known that during the normal ageing process, the 

brain structures show volumetric decrease and that the number of dopaminergic 

receptors declines (Park and Reuter-Lorenz 2009; R. Peters 2006). In fact, these 

changes in the brain become evident as early as the fourth decade, with actual rate of 

decline increasing even more around the seventh decade. The relationship between 

total WM and age is also found to be curvilinear, it increases in volume during 

developmental stages well into adulthood reaching its peak on the fourth decade at 

which point it starts to decrease (Sowell et al. 2003; Giorgio et al. 2010; Raz 2000; 

Raz et al. 2005). It is clear that the saccadic system follows very closely these 

changes. ISL changes measured in this study show similar behaviour, although there 

is a slight increase for 20-34yrs and 35-49yrs, these changes do not reach significance 

until after the sixth decade with the seniors age group (65-80yrs). The latter 

corresponds to the rate of rapid decline which occurs at the end of sixth decade (see 

ANOVA table). 

 
 

 Decision Response Time 
 

 
Measurements of decision response times capture both oculomotor responses as well 

as the motor response time. Similarly, to ISL measurements, DRT results too, capture 
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both developmental and degenerative stages, as illustrated by the two rapidly 

changing regions of the fitted curve. These results are in direct agreement with 

previous studies that have measured reaction times and have shown that the duration 

of the responses increases linearly (Verhaeghen and Salthouse 1997; Salthouse 

1996; Bleecker et al. 1988). Our findings also reveal that the age-related effects and 

the corresponding changes in DRT times appear earlier than changes in ISL take 

place. The older age group (50-65yrs) did not show any significant difference when 

compared to seniors (65-80yrs). It has been suggested that besides the reduction on 

the performance being due to age-related decrements in brain connectivity, the 

increase in decision response times may also be due to older adults being more 

cautious while they generate responses. The tendency to acquire more information 

would normally result in longer DRTs (Smith and Brewer 1995; Forstmann et al. 2011). 

This strategy – believed to be adopted by older adults due to having bias for accuracy 

over speed – is known as the speed-accuracy trade-off (Starns and Ratcliff 2010; 

Salthouse 1996; Forstmann et al. 2011; Smith and Brewer 1995) and recently, the link 

between the elderly being more risk averse and the neurobiological basis for this 

behaviour has been established. A recent study conducted on a large cohort (n = 

25,189), aged 18-69 years, to evaluate the extent to which ageing affects decision 

processes, found that attraction to potential reward also declines with age, suggesting 

that decline in dopamine levels may explain why older people are less likely to seek 

rewards (Rutledge et al. 2016).  Perhaps this decline in potential reward is reflected 

by a more conservative strategy that is used by the elderly and a more cautious 

attitude before making a decision, thus resulting in longer response times. While 

during adolescence when the dopamine levels are much higher, this age period is 

recognised as a period of rapid cognitive development as well as increased risk-taking 
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(Wahlstrom et al. 2010; Wahlstrom, White, and Luciana 2010; Li, Lindenberger, and 

Sikström 2001; Bäckman et al. 2010). As a result, the response times are much faster 

and this is clearly depicted on the DRT curve. In addition, DRT changes take place at 

a much faster rate when compared to ISL, the parameter b, is larger than the 

corresponding parameter that affects the ISL curve. Also, DRT when compared to ISL, 

reaches the peak performance much earlier.    

Besides, the decline in cognitive and motor performance due to ageing has already 

been associated with decline in the number of neurotransmitters such as dopamine 

and serotonin (Li, Lindenberger, and Sikström 2001). The dopamine levels start to 

decline by 10% per decade from adulthood and there is an indication that the number 

of neural projections that rely on dopamine levels between the frontal cortex and the 

striatum also declines with increasing age (Raz 2000; Raz et al. 2005; R, Peters 2006).  

It is well known that striatum is a major target of midbrain dopaminergic projections 

(Schultz 1998) and its role for facilitating voluntary movements, suppressing 

involuntary movements as well as evaluating the consequences of past choices, is 

well established (Kim et al. 2009; Hikosaka, Takikawa, and Kawagoe 2000). If 

dopaminergic receptors are integral to cognition because they play an important role 

in regulating attention and in modulating response to contextual stimuli (Park and 

Reuter-Lorenz 2009), then it is likely that the linearity observed in DRT with increasing 

age is due to the linear changes of dopamine levels across the adult life span.  

 Conclusion 
 
 
The findings from this study demonstrate that the EMAIL test provides a new method 

for measuring both oculomotor responses and decision response times without the 
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use of eye-tracking equipment. The measured parameters capture well the changes 

that take place during the brain’s developing and degenerative stages due to normal 

ageing.  

This being the case, the EMAIL test provides a novel and easy method to investigate 

a wide range of degenerative disorders. The test may be of value in studies  of 

Parkinson’s, Alzheimer’s and Huntington’s disease (Anderson and MacAskill 2013), 

as well as in cases of mental disorders such as schizophrenia, attention deficit 

hyperactivity disorder (ADHD) and autism that are believed to have 

neurodevelopmental basis (Luna B and Sweeney J.A 2001; Sweeney et al. 2004; 

Kliemann et al. 2010).  
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 Summary of findings and conclusion  
 
 
The work presented in preceding chapters introduced a novel visual psychophysical 

technique that can be used to measure the eye movement responses without eye 

tracking equipment. Since the ISL value measured by the test captures the sum of 

three events, i.e. (latency)T1+(duration)T2+(processing)T3, the addition of full eye-

tracking to the EMAIL test, makes it possible to determine accurately the time course 

of each event. To my knowledge, this is the first experimental study to show that the 

duration of post saccadic visual processing time is a variable quantity, dependent on 

subjects’ PSO characteristics and the target eccentricity. In this chapter, I summarise 

the main findings and describe future experiments that can enhance the current 

findings and explore other potential applications of the EMAIL test.  

 Summary of findings  

 

Previous research has provided evidence that saccades do not exhibit perfect 

conjugacy resulting in an increase in misalignment between the two eyes with 

increasing saccade magnitude. Also, as the eye stops abruptly at the end of each 

saccade, the mechanics of the system ensure that the eyeball as well as the internal 

structures sustain oscillatory movements that last well beyond the end of the saccade.  

From the preparatory experiments described in chapter 2, and the subsequent results 

obtained from chapter 3, it has been demonstrated that the post-saccadic visual 

processing time is longer due to the eyes post oscillatory movement in addition to 

fixational disparities associated with larger saccades. This finding was ratified by 

comparing the rate at which the visual analysis can be performed when eye 
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movements are not involved. While previous studies have provided indication that post 

saccadic drift removes the fixational errors caused by misalignment between the two 

eyes (Optican and Miles 1985; Lemij and Collewijn 1989; Robinson and Optican 

1981), in contrast the observations made in this study showed that the drift decreases 

as size of the PSO decreases while divergence between the two eyes increases. It 

was this observation in addition to subjects’ PSO waveform generating predictable 

pattern that lead to the proposition that the drift movement could be a learned response 

that follows to offset the eyes’ oscillatory movement rather than reduce the remaining 

fixation error. However, this assumption requires further investigation as currently 

there is not sufficient data to confirm this. Future studies should consider investigating 

the PSOs by varying viewing distance as binocular coordination is also subject to 

viewing distance. In particular there is an evidence that in near viewing, the fixation 

errors can be as large as 2° (Yang and Kapoula 2003). This could provide us with 

better understanding of the mechanisms that the visual system employs to avoid the 

perceptual consequences that can arise due to the misalignment between the two 

eyes. 

The findings from this study also suggest that saccadic suppression might be subject-

specific, in line with the measured PSOs, and so too, the T3 durations. This inference 

has been drawn from the suggestion made by previous investigators that suppression 

is selective only for M-pathway (D C Burr, Morrone, and Ross 1994).  

Consistent with studies that have described lens oscillatory movements, this study 

also confirms that other structures of the eye, in our case mainly the eyeball 

oscillations as revealed in the EyeLink 1000 recordings, can be used to quantify the 

perceptual consequences of the non-rigid eye, since the retinal image motion can be 

produced by both the lens and the eyeball oscillations. As presented, significant 
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positive correlation exists between the PSO and T3 durations indicating clearly that 

T3 is dependent on PSO. 

In the study detailed in chapter 4, it was demonstrated that the EMAIL test can  

measure the directional asymmetries between horizontal and vertical saccades. The 

findings from this study are in a strong agreement with the published literature and 

confirm that performance along the horizontal meridian is faster when compared to 

vertical direction. No directional asymmetries were found within horizontal (left/right) 

and vertical (up/down) directions. Similarly, in agreement with previous studies, no 

asymmetry was found between nasal and temporal saccades. Given the fact that 

asymmetries between horizontal and vertical saccades exist, future studies must 

consider these asymmetries while investigating the ISL performance.  

The last study investigated the effects of age on ISL performance. The preliminary 

results from this study show that the EMAIL test provides a valid method to investigate 

the age effects. The results obtained so far are in direct agreement with the literature 

and capture clearly the behavioural changes of the saccadic system during both 

developmental and degenerative stages, demonstrating the potential usefulness of the  

EMAIL test. Future studies can make use of the test as a reliable method to create 

normative data from a healthy population for age-related changes on saccadic 

performance, which could be used to distinguish and gain better understanding of 

various mental and degenerative disorders.  

There are three principal advantages to using this test: 

1) Testing procedure is short and completely non-invasive 

2) Testing can be performed easily by both young and elderly subjects. 

3) The ISL captures changes in a number of different parameters, including visual 

processing time as well as changes in DRT’s. 



 
 

143 
 

However, there are a number of technical limitations that have affected the outcome 

of the three studies reported here. The equipment running the EMAIL test was not 

fully integrated with the eye-tracking apparatus. Although the additional hardware 

constructed for this study ensured accurate synchronisation of the stimulus onset 

with the eye movement trace, the 60 Hz frame rate of the visual display employed in 

the EMAIL test limits the accuracy of the estimated ISL. This is particularly evident 

when the visual processing times are measured in the absence of eye movements. A 

display rate as high as 500 Hz would have improved the accuracy of these 

measurements.  Also, it would have been of great interest to measure and compare 

ISLs for other visual attributes such as colour, motion and rapid flicker. This was 

unfortunately not possible because of the extensive programming required and the 

limited time available for the study.   

Equally important, the potential application of the email test to study how ISLs are 

affected in mental disorders such as schizophrenia, autism and traumatic brain injury 

patients. Such studies were again not possible because of limited resources and 

time involved.  

The present studies do, however, demonstrate the potential usefulness of the EMAIL 

test in patients with mental health disorders, or the effectiveness of treatments in 

such patients. Future studies are needed to examine the potential clinical 

applications of the EMAIL test.  
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 Conclusion  
 
 
The findings from this study add useful new knowledge to the body of research. The 

novel visual psychophysical technique developed to measure integrated saccade 

latencies has been validated and shown to yield useful oculomotor responses without 

having to record eye movements. Equally important, the method employed to measure 

post saccadic visual processing times, has been validated and used to describe  the 

perceptual consequences of a non-rigid eye and the variability in binocular 

coordination. This can help our understanding of perceptual processes, such as how 

do we exactly re-establish binocular fusion in the instances when fixation errors are 

large? Could it be that on these instances we rely on monocular information to increase 

visual efficiency? Or, do the increases in T3 occur as a result of matching information 

between the optic arrays? This kind of analysis may provide better understanding of 

the mechanisms the visual system employs to prevent us from sensing the perceptual 

consequences that arise due to these impediments. These findings may also influence 

future research and the design of experiments needed to establish how the subject’s 

PSO relate to the drift movements of the eyes at the end of a saccade.   
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 Appendices  
 
Appendix A: Velocity and PSO profiles for subject S1, S3 and S7.  

 

 

  

Figure 38. Velocity and PSO profiles for rightward saccades. The occurrences of  max (black) and 
min (blue) peaks precisely coincide with zero crossings indicated by black dots in velocity profiles.   
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Appendix B: PSO profiles for various contrast levels. 
 

  
Figure 39. PSO profiles of 8° saccade magnitude for various contrast levels.    
 
Figure 39 demostrates clearly that the amplitude of PSOs is contrast invariant. This is simply 
becasue the size of PSO depends on decceleration phases of saccade (chapter 3, section 3.2.1).  
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