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Abstract: This study evaluates four machine learning (ML) techniques (Decision Trees (DT), 

Random Forests (RF), Neural Networks (NN) and Probabilistic Neural Networks (PNN)) on their 

ability to accurately predict export credit insurance claims. Additionally, we compare the perfor-

mance of the ML techniques against a simple benchmark (BM) heuristic. The analysis is based on 

the utilisation of a dataset provided by the Berne Union, which is the most comprehensive collection 

of export credit insurance data and has been used in only two scientific studies so far. All ML 

techniques performed relatively well in predicting whether or not claims would be incurred, and, 

with limitations, in predicting the order of magnitude of the claims. No satisfactory results were 

achieved predicting actual claim ratios. RF performed significantly better than DT, NN and PNN 

against all prediction tasks, and most reliably carried their validation performance forward to test 

performance. 

Keywords: machine learning; claims prediction; export credit insurance 

 

1. Introduction 

Predicting claims is a critical challenge for insurers and has significant implications for their 

managerial, financial and underwriting decisions. Changes in (expected) claims do not only affect 

the capital of an insurer, but also the capacity to underwrite further business. Insurance companies 

can increase premium rates and adjust their underwriting policy to balance the effect of unexpected 

claims (van der Veer 2019), but this will consequently impact their business opportunities negatively. 

We are, therefore, investigating machine learning (ML) techniques for claims prediction using an 

international dataset on export credit insurance claims. 

Export credit insurance is a tool for exporters in mitigating risks that arise from exporting to 

other countries. It covers companies against the risk of non-payment of their buyer due to commercial 

and political risks. The commercial risks include full or partial default on payments, as well as 

protracted default or insolvency of private buyers, while political risks, include non-payment of 

public buyers or due to political events, e.g., government-imposed moratoria on payments, inability 

to transfer currency, or force majeure (Berne Union 2019d). Export credit insurance is widely used by 

exporters to protect their cash flows and receivables. Consequently, it also protects the profits against 

unwanted volatility due to unsystematic risk. It can also cover lenders involved in the export 

transaction (usually by granting loans or letters of credit for the buyer) against the default of their 

credit due to the aforementioned reasons. Often lenders are only willing to grant financing if export 

credit insurance is provided. Therefore, export credit insurance is regularly a key requirement for the 

realisation of an export transaction (Krummaker 2020). 
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The Export Credit Insurance business is differentiated with respect to the tenure of the credit 

granted. Short-term (ST) credits are typically up to one year, while medium- and long-term (MLT) 

credit insurance offers insurance for credit terms up to 15 years. MLT is mainly offered by public 

Export Credit Agencies (ECAs), even though in recent years the private market has increased its MLT 

capacities (Berne Union 2019d). In our study, we focus on MLT insurance provided by ECAs, which 

is characterised by higher risk than in the ST business. Furthermore, for some, ECAs claims are a rare 

occurrence. However, as the claims frequency is very low, the severity of potential claims can be high 

and might also exhibit long-tail properties. In our article we address the challenge of insurers in 

making reliable and consistent predictions of future claims based on historical claims experiences by 

conducting a comparative analysis of ML approaches on a long-term dataset of export credit claims.  

The aim of this study is to assess the performance of ML techniques in identifying the occurrence 

of claims in export credit insurance and their potential performance loss when tested under near-

realistic forecasting conditions. We were able to access a unique dataset provided by the Berne Union 

to compare four ML techniques by exposing them to three increasingly challenging prediction tasks. 

Furthermore, we evaluate their performance against a simple benchmark (BM) technique, as ML 

approaches are complex and resource-intensive to set up but might not achieve significantly better 

results for claims prediction and reserving (England and Verrall 2002). 

First, this article contributes to the gap in the literature on export credit insurance and claims. 

Second, the paper also contribute to the advancement of the literature on claims prediction by 

providing an evaluation of ML approaches, including a comparison against a simple BM. This, 

thirdly, also has practical implications for actual claims prediction and reserving for export credit 

insurers and ECAs. 

In the following section, we provide more background to the study before introducing the 

dataset and a description of ML. After this, we describe the ML techniques used for this study, before 

discussing the results. The conclusion also includes an outlook for further research. 

2. Background  

Export credit insurance is offered by private sector insurance companies, public government 

backed ECAs and some multilateral organisations. Most developed countries, but also many 

emerging countries and more developing countries, have their own ECA or access to multilateral 

credit insurers. ECAs are official or quasi-official branches of their governments which offer export 

credit insurance, guarantees and financing. ECAs are highly regulated in many countries in terms of 

their product offerings and conditions as they are instruments of governments’ trade and foreign aid. 

To minimise opportunities for hidden subsidies and state aids, ECAs are regulated by international 

agreements on several levels. The World Trade Organization (WTO) has an explicit framework for 

trade policies, and the OECD arrangement imposes further detailed rules on its members. The aim of 

these regulations is to create a level playing field in the global export environment and coherence 

between national export credit policies (OECD 2018). International competition of exporters is 

supposed to be based on price and quality, and not on the most favourable terms of exporters’ ECAs 

(Drysdale 2015). Consequently, ECAs of OECD countries are restricted to offer credit insurance only 

for risks which are deemed non-marketable, i.e., for which the private insurance market is unwilling 

to provide cover. ECAs mainly cover transactions with credit payment periods of longer than two 

years and/or to high-risk countries, as private insurers usually do not cover credit risk with 

repayment terms of longer than two years and can retreat from covering countries with increasing 

commercial or political risk. These medium- and long-term business (MLT) are typically capital 

goods, such as industry or infrastructure projects.1 A further aspect of OECD ECA regulation is the 

 
1 Krummaker (2020) provides an overview of export credit markets, governance and key forms of export credit 

insurance. 
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application of minimum premium rates (MPR) for credit risk.2 Thus, ECAs have less discretion in 

setting premiums than private insurers, which limits opportunities for managing underwriting and 

rates, claims ratios and reserves. 

ECAs act as insurers of last resort and are usually reinsured or backed-up by their respective 

governments. While private insurers are required to maintain certain levels of long-term and short-

term solvency, ECAs often just need to break even and not hold technical provisions for the liabilities 

and potential claims they take on with underwriting export credit insurance (Moser et al. 2008; 

European Commission 2012). 

ECAs play an important role in facilitating international trade as they provide critical and 

significant cover to international trade transactions. In 2018, ca. 13% of global trade was covered by 

MLT export credit insurance provided by ECAs (Berne Union members, Berne Union 2019a). 

Although, ECAs are underwriting mid-and long-term business in non-marketable, riskier countries, 

claims still might be an exception. Some ECAs might experience claims only irregularly, but if claims 

occur, they might be significant. Therefore, it is questionable how well previous claims experiences 

might be suited to predict future claims. 

Prior research in the areas of export credit insurance and finance has only really intensified since 

the early 2000s. Various papers have established the importance of export credit insurance or ECAs 

for the support of economic growth, or the relationship between imports and insured trade credits 

(e.g., Abraham and Dewit 2000; Egger and Url 2006; Moser et al. 2008; van der Veer 2015; Felbermayr 

and Yalcin 2013). Another strand of literature focuses on the relationship between trading companies 

and the impact of trade credit, financial market conditions and international trade, as well as the 

implications of the financial crisis (e.g., Auboin 2009; Korinek et al. 2010; Morel 2011; Auboin and 

Engemann 2014).  

A key challenge for insurers is that, while claims are arising irregularly as a stochastic process 

of two components, the uncertain number and amount of claims, premiums are not stochastic and 

they are paid upfront. Although, claims reserving is a critical process in insurance companies, little 

research has been done on claims in the area of export credit insurance. Van der Veer (2019) has 

carried out the only research examining the impact of export credit insurance claims on price and 

quality of private export credit insurance. With our study, we address this gap in the literature and 

aim to provide insights into potential advancements of claims prediction methods. 

The export credit insurance industry is currently facing a period of higher uncertainty, driven 

by the global economic and geo-political environment. Claims in 2018 have risen to historically high 

levels, with total indemnifications of USD 6.4 bn, 17% higher than 2009 during the financial crisis and 

75% higher than the annual average for the past decade (Berne Union 2019b). 

This volatile environment makes it challenging for insurers and ECAs to derive reliable 

predictions of expected claims based on historical data. While, private insurers face increasing 

financial and regulatory requirements, ECAs have to justify that their use of taxpayers’ money is 

effective and efficient, and creates the desired economic and social impact. For both, private and 

public insurers, this means that it is increasingly important to deliver reliable estimates of claims, 

claims reserves and associated expenses. As ECAs are an instrument of their governments’ economic 

and international policies, the portfolio and structure of their business and consequently of their 

claims reflect national industry and (geographical) export structures, thus, are specific to each 

country. Moreover, some ECAs do not experience claims regularly; in the MLT business particularly, 

no claim is the norm and (larger) claims are an exception. Predicting claims and estimating claims 

reserves as accurately as possible thus is key to ECAs management and underwriting decisions, and 

will help to allocate capital that is provided by the taxpayer more efficiently. 

Insurers have been using a range of deterministic and stochastic methods, such as the Chain 

Ladder or Bornhuetter-Ferguson method, to predict claims and the related claims reserves (Baudry 

 
2 The MPR is based on several factors, including country risk classification, the time at risk, the buyer risk 

category and the percentage of risk retention (OECD 2018). 
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and Robert 2019). However, developments on regulatory level as well as increasing uncertainty in 

export credit risks increase the need for the application of more sophisticated methods (England and 

Verrall 2002; Verrall et al. 2012). Prior work by Wüthrich (2018a, 2018b), as well as Thesmar et al. 

(2019) show that ML approaches have benefits for claims prediction purposes.3 The algorithms are 

able to discover patterns in multidimensional datasets or can find new predictors and relationships 

in the data that have not been used in the traditional methods (Thesmar et al. 2019). Wüthrich (2018a) 

further argues that ML techniques in claims reserving are flexible and able to work structured, as 

well as unstructured data. 

3. The Berne Union Data 

The Berne Union (International Union of Credit and Investment Insurers) is the international 

trade association of the global export credit and political risk insurance industry. The 85 members are 

Export Credit Agencies, private insurers of credit and political risk as well as multilateral institutions 

from 73 countries (Berne Union 2019a). In 2018, Berne Union members covered 13% of all cross-

border merchandise trade, with USD 2.5 trillion covered by credit, and political risk insurers about 

USD 6bn claims paid (Berne Union 2019b). From the new MLT business written in 2018, 83% was 

accounted for by public ECAs (Berne Union 2019c). 

The Berne Union collects comprehensive data on their members’ ST and MLT business twice a 

year. Their database is unique in that it covers transactional information of 33 of the most relevant 

ECAs, making it the most extensive collection of structured data on export credit insurance and 

finance, and the best overall proxy for trade credit in general (Auboin and Engemann 2014). Its main 

purpose is to serve as a mechanism for Berne Union members to share their business information 

amongst themselves; to date, the Berne Union data have been used in only two scientific studies, 

which analysed the impact of trade credit and trade finance availability on trade (Auboin and 

Engemann 2014; Korinek et al. 2010). 

The Berne Union database on MLT ECA business is organised by ECA, destination country, 

activity (insurance or lending) and half-year, covering the years 2005 to 2018. Each record details the 

volume of new commitments by type (Sovereign, Other Public, Banks, Corporates and Projects), the 

volume of claims and recoveries (political, commercial, total), offers, reinsurance, exposure, staff, 

premium income, administrative costs and cash flow. In light of the aim of this study, it is important 

to note that the data reflect underwritten but not rejected contracts. Given that ECA transactions 

undergo a high level of scrutiny before signing, claims are an exception, not the norm. 

For the purposes of this study, we focus on combined insurance and lending MLT business, and 

we enriched the data with ECA and destination summary information to indicate their size, general 

development, business diversification, and claim history. A detailed list of added attributes, 

including their rationale, is provided at Appendix A. All monetary variables were deflated using the 

2010 based International Monetary Fund (IMF) Export-Import-Price-Index (XMPI) to obtain constant 

USD values (International Monetary Fund et al. 2009). Table 1 provides descriptive statistics of the 

25,396 records available of the ML exercise on exposure, new commitments and claims. 

  

 
3 While Wüthrich (2018b) generates synthetic individual claims data, Wüthrich (2018a) uses liability claims 

data and the analysis by Thesmar et al. (2019) is based on healthcare claims data. 



 5 

 

Table 1. Totals of exposure, new commitments and claims (mean and standard deviation (SD) of 

records by year, in constant USD million). 

Year 1 
Number 

of Records 

Exposure New Commitments Claims Paid 

Mean SD Mean SD Mean SD 

2007 1983 254.37 785.74 72.24 350.92 0.58 4.13 

2008 2028 248.34 804.19 73.51 334.62 0.49 4.48 

2009 2094 278.96 927.32 91.29 528.51 1.44 27.37 

2010 2063 284.32 873.14 82.59 343.57 0.82 6.37 

2011 2072 288.09 876.39 86.18 364.00 1.07 10.15 

2012 2078 303.35 897.73 79.91 324.73 1.02 11.36 

2013 2061 320.35 939.42 71.49 275.30 1.08 9.69 

2014 2150 296.78 883.90 70.46 356.33 0.93 10.03 

2015 2194 301.25 901.09 64.78 347.95 1.38 24.78 

2016 2189 308.82 971.67 58.51 330.23 1.34 13.06 

2017 2239 306.62 985.34 57.85 374.20 1.18 9.42 

2018 2245 301.31 1007.71 59.29 314.81 1.40 12.28 
1 Data was enriched to include simple trend estimates based on the current and two antecedent years 

(see Appendix A for details). Records from 2005 and 2006 could therefore not be used in support of 

the actual ML exercise. 

 

4. Supervised Machine Learning 

Supervised ML techniques aim to uncover potential relationships between independent and one 

or several dependent variables (Rokach and Maimon 2005), or more often, to simply find a function 

that allows a good prediction of a target attribute, based on available input attributes (Varian 2014). 

The scientific literature on the subject provides a wide range of ML applications, including Naïve 

Bayesian Classifiers, Bayesian Networks, Logistic Regression, Decision Trees (DT), Conditional 

Inference Trees, Random Forests (RF), Support Vector Machines, k-Nearest-Neighbour and Neuronal 

Networks (NN). The Least Absolute Shrinkage and Selection Operator (LASSO) algorithm is used 

occasionally in economic applications and is alleged to be most familiar to economists (Mullainathan 

and Spiess 2017). All these techniques are, in principle, suitable in supporting the prediction of claims 

as intended by this study. 

Amongst other factors, it is the field of application (Singh et al. 2016), including the dependencies 

of its inherent variables, data structure, data quality, parameter tuning or the performance measure, 

that determines whether one algorithm performs better than others. To this date, there is no 

commonly accepted approach to link a particular problem to the most suitable ML technique to solve 

it (Kuhn and Johnson 2013; Wanke and Barros 2016). It has, therefore, become popular to apply 

several techniques to the same task and compare their performances (for example, Fauzan and Murfi 

2018; Lorena et al. 2011; Mullainathan and Spiess 2017; Razi and Athappilli 2005; Singh et al. 2016; 

Weerasinghe and Wijegunasekara 2016).  

We follow this methodological framework by comparatively investigating DT, RF, NN and PNN 

to predict claims in export credit insurance. Although, these techniques are well-understood and 

documented, we will provide brief descriptions and our rationale for employing them in this section. 

More in-depth explanations can be found in the references of the relevant paragraphs. For 

descriptions of the techniques not covered here, we refer to the works of Athey (2018), Mullainathan 

and Spiess (2017), Varian (2014) or Wanke and Barros (2016). Singh et al. (2016) provide a concise 

comparison of the advantages and disadvantages of the different techniques, and Charte et al. (2019) 

give an overview on non-standard ML problems. 
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4.1. Decision Trees 

A DT is a recursive partition of a dataset into subsets which, ideally, amongst themselves are 

most heterogeneous with respect to a given target attribute. The DT model representation begins with 

a top node covering the entire dataset, characterized by the distribution of the target attribute. A DT 

algorithm seeks to select from all available input attributes the one attribute which, at an optimal split 

value, separates the data so that target attribute distributions of the subsets diverge as much as 

possible from the parent node, and are as pure as possible, meaning that each successor node contains 

mostly records of the same target attribute value. Options to measure the degree of purity include, 

but are not limited to, Gini impurity, Gini index, gain ratio and information gain (Rokach and 

Maimon 2005). 

Let 𝑝𝑖 denote the probability of a target attribute of domain 𝑖 to be chosen at random. If the 

record was also labelled randomly according to the target attribute distribution, then the probability 

of the record being labelled incorrectly is 1 − 𝑝𝑖. If |dom(𝑦)| denotes the cardinality of the target 

attribute domain, the Gini impurity of target attribute 𝑦 of a given dataset 𝑆 is defined as:  

Gini impurity (𝑦, 𝑆) = ∑ 𝑝𝑖(1 − 𝑝𝑖)
|dom(𝑦)|
𝑖=1 = ∑ 𝑝𝑖 − 𝑝𝑖

2|dom(𝑦)|
𝑖=1 = 1 − ∑ 𝑝𝑖

2|dom(𝑦)|
𝑖=1 .  

In a perfectly pure data (sub)set, the probability of a record of type 𝑖 to be chosen is 1, and its 

probability to be labelled incorrectly is 0, resulting in a Gini impurity of 0. The less pure the dataset, 

the larger the Gini impurity measure. 

Let 𝐴  denote the set of 𝑛  input attributes 𝐴 = {𝑎1, … , 𝑎𝑗 , … , 𝑎𝑛} , 𝑐𝑗  the domain of input 

attribute 𝑎𝑗 , |dom(𝑎𝑗)| the cardinality of 𝑎𝑗 ’s domain, and |𝑆𝑐𝑗
| the cardinality of subset 𝑆𝑐𝑗

 of 

records of 𝑐𝑗, then the Gini index at split 𝑎𝑗 is defined as: 

Gini index (𝑦, 𝑎𝑗) = ∑
|𝑆𝑐𝑗

|

|𝑆|
∙ Gini impurity (𝑦, 𝑆𝑐𝑗

)
|dom(𝑎𝑗)|

𝑐𝑗=1 .  

The optimal split attribute 𝑎𝑗 is the one which results in the maximum Gini gain (the difference 

between Gini impurity (𝑦, 𝑆) and Gini index (𝑦, 𝑎𝑗) (Rokach and Maimon 2005), or simply the 𝑎𝑗 

which generates the minimum Gini index (𝑦, 𝑎𝑗). 

In a DT representation, a split is signified by edges leading from the parent node to child nodes, 

typically displaying the target attribute distribution of the subsets which they represent. The 

algorithm continues to split child nodes in the aforementioned manner and stops when predefined 

criteria are met. Such criteria typically include a maximum number of splits, a minimum Gini gain 

threshold, or a minimum number of records per node. Nodes that are not further split are called 

leaves or terminal nodes. 

If the DT is to classify new data, the value of the split attribute at each node determines which 

edge to follow until a terminal node is reached; this node infers the prediction for a given instance 

(Varian 2014). Figure 1 is an indicative example of a DT model representation with a dichotomized 

target attribute “CLAIMS (NO/YES)”, with its most relevant predictor being “EXPOSURE” at a split 

point of 50 million USD, and below the 50 million USD branch a second predictor of 

“DESTINATION CLAIM HISTORY” at a split point of 400 million USD. 
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Figure 1. Indicative example of a decision trees (DT) representation. 

Finding an optimal DT by brute force is, under normal circumstances, computationally 

infeasible, because the search space increases exponentially with the number of attributes and their 

values. However, a range of efficient so-called inducers such as C4.5, CART or CHAID have been 

developed to find reasonably accurate approximations (Rokach and Maimon 2005); some are limited 

to either, discrete or continuous problems, some can process both. 

The key advantages of DT are a generally good performance with relatively little computational 

effort, and the output of intuitive, self-explanatory models (Singh et al. 2016), which can be 

communicated well to practitioners. The latter makes DT highly interesting for applied research 

problems, which is why we include them in this study. 

4.2. Random Forests 

DT can be sensitive to changes in the training sample, and are also likely to over-fit if training 

conditions are not carefully controlled (Singh et al. 2016; Varian 2014). The general idea behind RF is 

to train a multitude of DT, based on different bootstrap samples from the training data, and by 

sampling the input attributes that are available to the algorithm to choose from at each node (Breiman 

2001; Fang et al. 2016; Varian 2014). As a result, RF algorithms generate a pre-defined number of DT, 

which may or may not come to different predictions when presented with new data. The overall 

prediction returned by an RF is the category chosen by the majority of DT (Lorena et al. 2011; Varian 

2014), or the average result for continuous problems (Fang et al. 2016; Mullainathan and Spiess 2017).  

RF often perform ahead of many other classifiers (Fang et al. 2016; Lorena et al. 2011; Singh et al. 

2016) and are robust against overfitting (Fang et al. 2016; Liaw and Wiener 2002; Singh et al. 2016), 

which recommends them for inclusion in this study.  

NO YES

CLAIMS

EXPOSURE

NO YES NO YES

< 50106 USD  50106 USD

DESTINATION CLAIM HISTORY

NO YES NO YES

< 400106 USD  400106 USD
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4.3. Neural Networks 

NN consist of layers of so-called neurons (Claveria and Torra 2014). The number of neurons in 

the input layer equals the number 𝑛 of input attributes. For a given record, each of the input neurons 

picks up the value of its associated input attribute 𝑥Input,𝑗 and applies an activation function 𝜎 to 

calculate a signal value as output: 𝑦Input,𝑗 = 𝜎(𝑥Input,𝑗). Typically, sigmoid functions such as the 

hyperbolic tangent 𝜎(𝑥) = (𝑒𝑥 − 𝑒−1) (𝑒𝑥 + 𝑒−1)⁄  or a logistic function 𝜎(𝑥) = 1 (1 + 𝑒−𝑥)⁄  are used 

(LeCun et al. 2015). 𝑦Input,𝑗  is forwarded to the neurons in the subsequent layer. One or several 

layers, known as hidden layers, collect and aggregate signals from preceding layers, and turn, them 

into new signals. Figure 2 is an illustration of an NN with just one hidden layer. 

 

Figure 2. Illustration of a multilayer NN. 

Let 𝑦𝑢,𝑘  denote the signal that neuron 𝑙 of layer 𝑣 receives from neuron 𝑘 of its preceding 

layer 𝑢, 𝑤𝑙,𝑘 the weight that 𝑙 applies to 𝑦𝑢,𝑘, and 𝑏𝑣,𝑙 a bias term, to calculate a weighted sum 𝑧𝑣,𝑙,. 

𝑙’s signal 𝑦𝑣,𝑙  is generated by applying an activation function 𝜎 to 𝑧𝑣,𝑙:  

𝑧𝑣,𝑙 = (∑ 𝑤𝑙,𝑘𝑦𝑢,𝑘𝑘 ) + 𝑏𝑣,𝑙; 𝑦𝑣,𝑙 = 𝜎(𝑧𝑣,𝑙).  

In classification problems, the number of neurons in the output layer equals the cardinality of 

the domain of the target attribute. During training, an objective function 𝐸 measures for each record 

the (quadratic) error between the output signals 𝑦Output,𝑖 of the output layer, and the actual target 

value 𝑦𝑖 : 

𝐸 = ∑
1

2
(𝑦Output,𝑖 − 𝑦𝑖)

2
;  𝑦𝑖 = 1 for target domain 𝑖, otherwise 𝑦𝑖 = 0 𝑖 .  

Given that the signals of each layer are functions of the weights, biases and signals of the 

preceding layers, 𝐸  is ultimately a function of (averaged) weights and biases from all training 

records and all layers of the NN. The gradient of 𝐸 indicates the sensitivity of the objective function 

to changes in these parameters:  

∇𝐸 =

[
 
 
 
 

⋮
𝜕𝐸

𝜕𝑤𝑙,𝑘

𝜕𝐸

𝜕𝑏𝑣,𝑙

⋮ ]
 
 
 
 

.  

input layer









hidden layer





output layer
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The larger a partial derivative of 𝐸 , the more the objective function benefits from its 

manipulation during the descend towards a minimum. Therefore, weights and biases are adjusted 

simultaneously in proportion of their negative partial derivative in every step of the training. This 

process is repeated until improvements in the cost function fall below a predefined threshold. When 

a trained NN is used for prediction, the learned rules are applied to new data, and the resulting 

output values are used as prediction values (LeCun et al. 2015).  

We include NN in this study because they are thought to be better suited than DT to model 

complex, nonlinear relationships (Claveria and Torra 2014; Razi and Athappilli 2005; Singh et al. 

2016). Although, Varian (2014) provides a case to the contrary. Given that it is possible for claims to 

be the result of nonlinear economic relationships, it is interesting to see whether NN perform better 

than DT in predicting claims. 

4.4. Probabilistic Neural Networks 

Specht (1990) proposed to modify NN by replacing the traditionally implemented sigmoid 

activation functions with statistically derived exponential functions (Iounousse et al. 2015). Specht 

named the class of such algorithms PNN and demonstrated that the introduced modification, under 

certain, but easy, to meet conditions, makes it possible to asymptotically approach the Bayes optimal 

decision surface of a classification problem (Specht 1990). PNN can map any input pattern to any 

number of classifications, are capable of handling erroneous, sparse or missing data well, and provide 

probability estimates in conjunction with their classification (Specht 1990). The feature of explicit 

probabilities allows for extended analyses, e.g., of classification errors, and provides opportunities to 

further improve prediction. In addition, PNN are more flexible than NN in handling different types 

of input variables, and it seems generally valuable to test a variation of NN alongside their original 

implementation, which is why we include PNN in our set of ML techniques. 

5. Methodology 

5.1. General Modelling Considerations 

All ECAs exist to promote exports, but different national priorities have resulted in various 

designs and mandates under which they operate (Stephens and Smallridge 2002). Furthermore, an 

ECA’s business is significantly impacted by its nation’s economic size and export characteristics-

profile. Similarly, the political, judicial and commercial structure and stability of a destination 

country are important factors of its risk profile. Classic econometric modelling requires such 

heterogeneity to be accounted for, for example, by introducing ECA or destination dummy variables, 

to reflect effects that are stable and specific to individual countries, and could, therefore, bias the 

model if omitted. The DT, RF and PNN techniques, and the NN technique with some limitations, are 

perfectly capable of recognizing ECA or destination names as input variables. However, in this study 

we deliberately prevented the ML algorithms from knowing the specific agents of a given transaction. 

The rationale is that if a certain attribute, such as ECA or destination name, is used during model 

training (see Section 5.4 below), the resulting model requires that information to be present for 

prediction purposes. Otherwise, when attempting to make a prediction for an ECA or destination, 

not observed during training, the model fails. This can create problems at the training-validation 

gateway. More importantly, it precludes the model from making predictions for “new” ECAs or 

destinations. However, these might be the most relevant cases for ML to be employed in export credit 

insurance claim prediction. To enable our ML models to deal with any agent, whether or not it 

contributed training data, we exclusively fed generic information such as export volumes, portfolio 

diversity etc. as inputs (see Appendix A for used attributes) to reflect different phenotypes of ECAs’ 

and destinations’ phenotypes. However, this approach bears some risks in introducing unobserved 

heterogeneity, which should be borne in mind when analysing prediction outcomes. 
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A second consideration is associated with the nature of the intended prediction. Claims gain 

most attention when they are exceptional, for example, when an ECA with traditionally low claims 

gets hit by a large number or sum of claims within a short period of time. Therefore, the identification 

of patterns preceding singular events of claims was considered as a potential aim of this study. 

However, during the explorative phase it showed that, across ECAs and destinations, the occurrence 

of claims is quite diverse. Although, most records in the database report no claims, ECA, destination 

or annual aggregates often do. There are some ECAs or destinations for which claims are actually 

rare. However, for some ECAs and destinations claims are a fairly regular feature, and some ECAs 

and destinations are somewhere in between. Given that this is the first time the Berne Union dataset 

is extensively analysed with a view towards claims, a decision was made to first explore the overall 

situation across all agents before focusing on subsets. Consistent with that, the study attempts a more 

general assessment of the adequacy of different ML techniques to be used in claim prediction. 

5.2. Prediction Tasks 

Predicting claims can take a variety of shapes. To compare the performance of the different ML 

techniques, we train models to solve prediction tasks with different degrees of difficulty (see 

Appendix A, section “Target attributes”, for implementation details): 

• “Claims YES/NO”: At the simplest level, the technique is to predict whether or not a given export 

finance condition will incur claims as a dichotomous yes/no decision. 

• “Claim ratio class”: Claims can vary significantly in value, so that a yes/no prediction is a great 

simplification of the problem. Therefore, we also test ability of the techniques to predict the 

magnitude of claims, expressed as five classes of claims/exposure-ratios. 

• “Claim ratio”: Ultimately, we also want to evaluate how well ML techniques perform in 

predicting an actual claim ratio, measured in terms of claims/exposure. 

5.3. Technical Implementation of ML Algorithms and Analysis 

Today, a range of tools, such as Python, RapidMiner or R, are available to support comfortable 

implementations of ML workflows. For this study, we use the data analytics platform KNIME. 

KNIME is a free and open-source software for data retrieval, data blending, modelling, analysis and 

visualization. It includes a rich collection of ML and data mining components which can be assembled 

following a modular data pipelining concept (KNIME 2019). All data preparation, training and 

testing procedures were entirely designed and set up in KNIME; Table 2 shows a mapping of the 

KNIME ML nodes that were selected against the prediction problems. Details on the nodes are 

available via the KNIME node and workflow search engine (NodePit 2019). 
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Table 2. Mapping of ML techniques, prediction task and KNIME nodes. 

Task 
ML Technique 

DT RF NN PNN 

Claims 

YES/NO 

Decision Tree 

Learner 

Decision Tree 

Predictor 

Random Forest 

Learner 

Random Forest 

Predictor 

RProp MLP Learner 

MultiLayerPerceptron 

Predictor 

PNN Learner 

(DDA) 

PNN 

Predictor 

Claim 

ratio class 

Decision Tree 

Learner 

Decision Tree 

Predictor 

Random Forest 

Learner 

Random Forest 

Predictor 

Not investigated 1 

PNN Learner 

(DDA) 

PNN 

Predictor 

Claim 

ratio 

Simple 

Regression Tree 

Learner 

Simple 

Regression Tree 

Predictor 

Random Forest 

Learner 

(Regression) 

Random Forest 

Predictor 

(Regression) 

RProp MLP Learner 

MultiLayerPerceptron 

Predictor 

Not 

investigated 2 

1 The only way to use the KNIME MLP node to obtain claim ratio classes is to calculate values first 

and classify them afterwards. This is assessed to add no value to the ML analysis and is therefore 

omitted. 
2 During the exploratory study phase, KNIME PNN proved to be unduly computationally costly in 

solving problems with continuous target variables, and therefore were not further assessed against 

the “claim ratio” task. 

5.4. Training, Validation and Test Data 

It is well known that ML algorithms can over-fit, resulting in good in-sample but poor out-of-

sample performance. Therefore, it is common to randomly split the data into a training and a 

validation set (Kuhn and Johnson 2013; Mullainathan and Spiess 2017), specify models based on 

training data and test them against the validation data. The objective function is to minimise 

deviations between predicted and actual target attribute values in the latter (Athey 2018). More 

advanced approaches divide the data into three types of data, including; training data to estimate 

models; validation data to choose a model, and; test data to assess its performance (Varian 2014). 

Dividing the entire dataset into subsets for training, validation and testing by random sampling 

is a defence against overfitting. However, it might not be a valid strategy for obtaining reliable 

prediction models: 

• Random sampling from the same population might, analogous to the law of large numbers or 

the Glivenko-Cantelli theorem, result in generally converging conditions in the subsets. A model 

which reflects the training data well without overfitting may, therefore, also be a good represent-

ation of the validation and test sample by sheer principles of statistics. 

• In a practical setting, an insurer would have no choice but to use historic data to make forecasts 

about future data. Effectively, this implies a strictly chronological data separation, which is 

different from random sampling. 

To test and counter these concerns, we exclude 2018 data from model development and 

validation, and only use them as test data later in the process. The records covering the period 

between 2007 and 2017 are used for training and validation. Figure 3 depicts the data separation and 

their use as part of the entire training, validation and testing procedures employed by this study.  
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Figure 3. Model training, validation and testing process. 

5.5. Parameter Optimisation 

ML inducers optimise a specific objective function by tuning parameters that can be seen as 

internal to the algorithm. However, the performance of an algorithm is also affected by a range of 

parameters that require external intervention. Typical examples are the selection of the objective 

function itself or stopping criteria. Such parameters can neither be derived from the problem nor 

otherwise be independently calculated (Kuhn and Johnson 2013; Wanke and Barros 2016). External 

parameter optimisation is, therefore, integral to obtaining a powerful prediction model. Some of the 

externally determined parameters are specific to an algorithm, but also some more general conditions 

around data preparation and provision can play a role. Besides algorithm specific parameters, we 

investigate how the size of the training sample (relative to the validation sample) and the fraction of 

records with no claims affect model performance: 

• The relation between the volume of the training and validation data addresses the simple 

question of whether training with a smaller and validation against a larger sample (which might 

protect against overfitting), or training with a larger and validation against a smaller sample 

yields better results.  

• The rationale for reducing the number of records with no claims is their dominance in the Berne 

Union dataset (87.5% of the 2007–2017, and 86.2% of the 2018 records register a total of 0 claims 

paid). This imbalance will cause models to lean towards the prediction of no claims although it 

test model performance against 2018 data

parameter optimization:
apply all combinations

of predefined parameter
specifications;

repeat 10 times

MLT data

2018 data
2007 to 2017 

data

training data
validation 

data

separate data 
by year
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assess model 
performance

train model

accuracy

best 
parameters

best model

continuous
target variables
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best 
parameters

best model

R2

best 
parameters

best model
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might be desirable to identify potential claims with precedence. A prioritized identification of a 

recessive value can be achieved by partial suppression of the dominant value during training. 

An overview of the algorithm-specific and general external parameters, including applied 

variations, is provided at Appendix B. We explore all combinations of parameter variations by brute 

force. 

5.6. Model Benchmark 

ML techniques require extensive data preparation and can be computationally costly, raising the 

question of whether they actually perform better than simple heuristics (see also England and Verrall 

2002). 

The ML models of this study are generic and can be applied to any ECA and destination country, 

irrespective of whether or not the ECA has a history of providing cover for the destination. Although, 

no trivial method offer a fully equivalent capability, moving averages are a simple way for an ECA 

to predict claims for destinations that it engaged in business with previously. In such cases, an 

estimator for the claims ratio 𝑟𝑖,𝑗,𝑡 =
𝑐𝑖,𝑗,𝑡

𝑒𝑖,𝑗,𝑡
 of ECA 𝑖  and destination 𝑗  in a given year 𝑡  can be 

defined as (𝑒𝑖,𝑗  denotes the exposure of ECA 𝑖  to destination 𝑗, and 𝑐𝑖,𝑗  denotes the respective 

claims; 𝑙 is the number of preceding years to be considered, also referred to as “window length” of 

the moving average): 

�̂�𝑖,𝑗,𝑡 =
∑ 𝑐𝑖,𝑗,𝑡−ν

𝑙
𝜈=1

∑ 𝑒𝑖,𝑗,𝑡−ν
𝑙
𝜈=1

.  

The resulting estimator, or a transformation of it into a binary YES/NO variable or a claim ratio 

class, can be used as BM to help assess the benefit of instituting a more complex ML technique. 

To avoid an arbitrary definition of the moving average’s window length 𝑙, for each ECA 𝑖 and 

destination 𝑗 we determine the optimal window length 𝑙𝑖,𝑗,𝑜𝑝𝑡 which minimizes: 

1

𝑚𝑎𝑥{1;𝑡−2007}
∙ ∑ |

𝑐𝑖,𝑗,𝑡

𝑒𝑖,𝑗,𝑡
−

∑ 𝑐𝑖,𝑗,𝜈
𝑡−1
𝜈=𝑚𝑎𝑥{2007;𝑡−𝑙}

∑ 𝑒𝑖,𝑗,𝜈
𝑡−1
𝜈=𝑚𝑎𝑥{2007;𝑡−𝑙}

|2017
𝑡=2007 .  

The data separation employed during the development of the ML models (see Section 5.4) is also 

applied to the BM, i.e., data from 2007 to 2017 are used to identify 𝑙𝑖,𝑗,𝑜𝑝𝑡, and 2018 data serve to test 

the BM. 

The execution of the BM optimisation yields that the optimal window length is mostly 1, 

meaning that, on average, the previous year’s claims ratio often best predicts the current year’s claim 

ratio. Table 3 provides an overview of the number of times each window length was determined to 

be optimal. 

Table 3. Optimal window length for moving average BM. 

Optimal Window Length Number of ECA-Destination Combinations % 

1 2156 80.4 

2 112 4.2 

3 49 1.8 

4 37 1.4 

5 33 1.2 

6 22 0.8 

7 28 1.0 

8 25 0.9 

9 33 1.2 

10 188 7.0 
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5.7. Assessment of Model Performance 

The obvious measure to assess model performance is accuracy, the proportion of correctly 

classified records. However, it is useful to additionally consider Cohen’s , originally designed to 

evaluate inter-rater reliability. Cohen’s  adjusts accuracy 𝑝𝑜  by considering correct predictions that 

would occur at random, 

𝜅 =
𝑝𝑜 − 𝑝𝑐

1 − 𝑝𝑐
,  

where  𝑝𝑐 is the proportion of records expected to be correctly classified by chance (Cohen 1960). A 

𝜅 of 0 means that accuracy is equal to agreement at random, a 𝜅 of 1 indicates perfect agreement 

(Cohen 1960), equating to 100% correct model predictions. A further advantage of this prudent 

correction is that it penalises false predictions more evenly, irrespective of the predominance of 

individual values: As mentioned above, 86.2% of the 2018 records register 0 claims. Under these 

circumstances, a completely naïve model could achieve an accuracy of 0.862 by simply predicting “0 

claims” 100% of the time. However, this would equal agreement by chance and result in 𝜅 = 0, which 

seems a more suitable evaluation of the worth of the model. For the assessment of continuous target 

variables, we use R2.  

It is possible for a model to perform well by chance during validation, preceding a much-

reduced performance during testing. To account for that possibility, we repeat the parameter 

optimisation ten times. This approach is different from the more conventionally used cross-validation 

(Varian 2014), but should achieve a comparable level of model-validation; it greatly simplifies the 

implementation of the desired training/validation-sample-size ratio optimisation (see Section 5.5). 

The combination of parameters yielding the highest average performance are used to test the models 

against 2018 data. In addition, we collect the models with the highest performance overall for testing. 

All performance measures are also applied to the BM by comparing the BM’s prediction for year 

𝑡 with the actual value of year 𝑡. The BM’s window length optimisation (see Section 5.6) does not 

involve any type of validation, which is why we apply the performance measures directly to the 

claims ratio predictions, generated during the optimisation stage. The test performance measures of 

the BM and the ML techniques are more comparable because, analogous to the ML model 

optimisation, the BM’s window length optimisation is based on 2007 to 2017 data, with 2018 data 

reserved for testing.  

6. Results 

Table 4 shows the validation and test results for both, the “Claims YES/NO” and the “Claim ratio 

class” task in terms of accuracy. Cohen’s  results are shown in Table 5. Table 6 lists R2 results, which 

we used as performance measure for the “Claim ratio” task. The BM performance measure is shown 

in the rightmost column (identical values are given against the “Best parameters” and “Best model” 

section per task, as no such distinction exists for the BM). The study observations include: 

• Amongst the ML techniques, with only two exceptions RF generate the best performance. 

• The accuracy achieved against the “Claim ratio class” task is not much different from the 

accuracy of the less challenging “Claims YES/NO” task. However, Cohen’s  is more reflective 

of performance differences, indicating that both, validation and test performance, deteriorate as 

the task becomes more difficult. 

• None of the investigated ML techniques yield satisfactory results against the “Claim ratio” task; 

predictions of actual claim ratios turned out to be largely unreliable. 

• The test performance is lower than validation performance (with only two exceptions), often by 

just a small margin. Performance losses are more pronounced when measured by Cohen’s .  

• No definitive conclusion can be made on whether validation should serve to identify optimal 

model parameters, or to actually generate the specific model for prediction (sometimes utilizing 
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the best parameters, sometimes employing the best model yields better test performance; 

optimal parameters are provided at Appendix C). 

• The accuracy of the ML techniques is sometimes better, but generally at similar levels as the 

BM’s value. 

• In terms of Cohen’s , the BM performs better than any of the ML techniques. The reason is that 

some ECAs experience uninterrupted sequences of claims with certain destinations. Therefore, 

the simple rule “claims in 𝑡 − 1 indicate claims in 𝑡” employed by the BM (see Section 5.6) 

works well against the “Claims YES/NO” task, and also against the “Claim ratio class” task. 

• Against the “Claim ratio” task, the ML techniques outperform the BM, although at a very low 

level. 

Table 4. Best parameter and best model results: Accuracy (bold: best performing ML technique). 

Task Outcome Dataset DT RF NN PNN BM 

Claims 

YES/NO 

Best parameters Validation 0.886 0.900 0.887 0.881 0.901 

 Test 0.878 0.889 0.874 0.897 0.896 

 Best model Validation 0.900 0.909 0.900 0.898 0.901 

  Test 0.878 0.890 0.848 0.864 0.896 

Claim ratio 

class 

Best parameters Validation 0.881 0.888 − 0.877 0.867 

 Test 0.861 0.869 − 0.888 0.858 

 Best model Validation 0.896 0.903 − 0.897 0.867 

  Test 0.864 0.870 − 0.855 0.858 

Table 5. Best parameter and best model results: Cohen’s  (bold: best performing ML technique). 

Task Outcome Dataset DT RF NN PNN BM 

Claims 

YES/NO 

Best parameters Validation 0.352 0.439 0.357 0.292 0.566 

 Test 0.322 0.408 0.340 0.275 0.578 

 Best model Validation 0.421 0.489 0.433 0.358 0.566 

  Test 0.297 0.423 0.303 0.284 0.578 

Claim ratio 

class 

Best parameters Validation 0.252 0.336 − 0.211 0.446 

 Test 0.250 0.320 − 0.175 0.458 

 Best model Validation 0.276 0.392 − 0.272 0.446 

  Test 0.240 0.336 − 0.170 0.458 

Table 6. Best parameters and best model results: R2 (bold figures: best performing ML technique). 

Task Outcome Dataset DT RF NN PNN BM 

Claim ratio Best parameters Validation 0.038 0.071 0.066 − 0.000 

  Test 0.021 0.053 0.046 − 0.011 

 Best model Validation 0.081 0.128 0.126 − 0.000 

  Test 0.037 0.074 0.027 − 0.011 

Tables 4–6 provide a “best performance” comparison, imitating outcomes of an actual insurer’s 

claim prediction exercise. While, poorly performing models would normally be of little interest to 

practitioners, we collected all models from the parameter optimisation stage of this study, 

irrespective of their performance. This allows for more detailed analyses of the results which are 

provided in the following sections. 

6.1. Relationship Between Accuracy and Cohen’s  

A comparison of Tables 4 and 5 indicates that Cohen’s  accentuates performance differences 

better than accuracy (parameter optimisation confirmed that Cohen’s  benefits from reducing the 

number of records with 0 claims down to 20 to 40% during training; highest accuracies were achieved 
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with 80–100% of records with no claims; see Appendix C for parameter details). A high Cohen’s  

might be associated with more correctly predicted claims (true positives) at the cost of less true 

negatives, thereby sacrificing some accuracy. We applied all models from the parameter optimisation 

stage to the test data, in order to understand the relationship between the two performance measures 

empirically, logged each model’s accuracy and Cohen’s  and plotted them against each other. Figure 

4 shows scatterplots of accuracy and Cohen’s  for RF and PNN models: 

• For the RF models (“Claims YES/NO” task), shown on the left, accuracy and Cohen’s  increase 

together, peaking close to (0.89, 0.47). From the peak, there is a sharp drop of Cohen’s , 

accompanied by a moderate reduction of accuracy. 

• The PNN models (“Claim ratio class” task) on the right also show an initial joint increase of 

accuracy and Cohen’s . Cohen’s  peaks at a value of 0.22, from which a further increase of 

accuracy is associated with a marked deterioration of Cohen’s . 

  

Figure 4. Example scatterplots highlighting the relationship between accuracy and Cohen’s  

(scatterplots for all ML techniques are provided at Appendix D). 

Scatterplots for all investigated ML techniques are provided at Appendix D, showing that 

against the “Claims YES/NO” task, DT, RF and NN generated models with high Cohen’s  while 

retaining high accuracy at the same time. Against the “Claims ratio class” task, only RF yielded 

models with both measures being high. In conjunction with its general advantages (see section 5.7), 

Cohen’s  is assessed to be the more insightful measure for the purposes of this study. However, for 

other applications, accuracy might be more relevant. 

6.2. Comparison of ML Technique Performance 

With only two exceptions, RF consistently delivered the best performance (see Tables 4–6). We 

further compared the performance of all models by prediction task and ML technique via Kruskal-

Wallis tests; the results are shown in Table 7. Appendix E provides boxplots to illustrate the 

performance of all models developed during the parameter optimisation exercise of this study 

(Figure A2; the left half of the table shows performance variations measured during validation, 

mirrored on the right by the corresponding performance of the same models applied to the test data). 

The tests confirm statistically significant differences between the performances of the techniques. 

Pairwise Wilcoxon-Mann-Whitney post-hoc tests were all significant with 𝑝 ≃ 0.0, corroborating that 

RF are generally most successful in predicting claims under the conditions of this study (an 

interesting anomaly is that, against the “Claims YES/NO” task, NN are the worst performer in terms 

of accuracy, but the second-best performer in terms of Cohen’s ).   
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Table 7. Kruskal-Wallis tests on ML technique performance (test data; bold figures: highest median 

rank). 

 Median Rank 

Task Measure p-Value DT RF NN PNN 

Claims Y/N Accuracy 0.0 11,628.5 19,613.5 8972 10,504 
 Cohens  0.0 11,134.5 19,716.5 13,003 5144 

Claim ratio class Accuracy 0.0 8365 11,558.5 − 4934 
 Cohens  0.0 6526.5 11,467.5 − 4394 

Claim ratio R2 0.0 2425.5 11,310.5 6115.5 − 

6.3. Validation and Test Performance 

Following the methodology outline of the study (see Chapter 5), we used the parameters and 

models that performed best during validation to make predictions for 2018 data, assuming that this 

approach is most likely to be adopted by practitioners. However, a model that performs well during 

validation might not be optimal when confronted with new data. In fact, a comparison of 

corresponding validation and test performance in Tables 4–6 shows a performance reduction in all 

but two cases. 

Obviously, for an ML technique to be reliable it is important that its validation performance be 

a good indicator of its performance when used to make forecasts. To investigate this relationship, we 

calculated the correlation between validation and corresponding test performance, and estimated 

linear functions to describe their relationship; results are provided in Table 8 (standard errors of 

regression parameters are provided in brackets; all parameters are statistically significant with 𝑝 ≃

0): 

• Against both the “Claims Y/N” and the “Claim ratio class” task, validation and test performance 

are generally highly correlated. An exception are NN, and also PNN, against the “Claims 

YES/NO” task, when performance is measured in terms of Cohen’s . RF consistently exhibit the 

highest correlation for all tasks and measures, although sometimes by just a small margin. 

• Validation-test correlations are much lower against the “Claim ratio” task, but RF, again, achieve 

the highest value. 

• In conjunction with a validation-test-correlation close to 1, an intercept close to 0 and a slope 

close to 1 indicate greatest performance reliability. For Cohen’s , which are considered the most 

insightful performance measure, and R2 this is best achieved by RF. 

Table 8. Correlation and relationship between validation and test performance. 

Task Measure ML Technique Validation-Test Correlation Intercept (Std. Error) Slope (Std. Error) 

Claims Y/N Accuracy DT 0.981 −0.078 (0.003) 1.073 (0.004) 

  RF 0.990 −0.097 (0.002) 1.098 (0.003) 

  NN 0.952 −0.102 (0.003) 1.079 (0.004) 

  PNN 0.990 −0.319 (0.002) 1.346 (0.002) 

 Cohen’s  DT 0.851 0.045 (0.002) 0.882 (0.009) 

  RF 0.905 0.020 (0.003) 0.970 (0.008) 

  NN 0.492 0.141 (0.003) 0.504 (0.010) 

  PNN 0.688 0.090 (0.002) 0.625 (0.008) 

Claim ratio class Accuracy DT 0.976 −0.108 (0.004) 1.107 (0.004) 

  RF 0.979 −0.154 (0.004) 1.159 (0.004) 

  PNN 0.978 −0.320 (0.003) 1.346 (0.004) 

 Cohen’s  DT 0.902 0.025 (0.001) 0.882 (0.007) 

  RF 0.908 0.017 (0.002) 0.924 (0.007) 

  PNN 0.882 0.017 (0.001) 0.830 (0.006) 

Claim ratio R2 DT 0.214 0.011 (0.000) 0.168 (0.017) 

  RF 0.706 0.013 (0.001) 0.812 (0.018) 

  NN 0.611 0.007 (0.000) 0.487 (0.007) 
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6.4. Computational Complexity 

The four investigated ML techniques exhibited very different properties in terms of run-time 

and model size. The DT algorithm consistently produced results much quicker than any of the other 

algorithms, whereas PNN proved to be most time consuming. Depending on the task, the PNN took, 

on average, up to 675 times as long as the DT to produce and validate one model. RF turned out to 

be the second quickest technique (between nine to 15 times DT run-time), followed by NN (45 to 50 

times DT run-time). 

On the other hand, RF models occupied significantly more storage than those produced by of 

any of the other techniques. To some extent, this is to be expected, given that one RF model consists 

of many DT (the RF models trained for the purposes of this study consisted of between 50 and 200 

DT; see Appendix B for details of parameter settings). However, PNN models can also be relatively 

large. This is most certainly driven by their feature to provide probabilities against all possible 

classifications, rather than just a single classification. However, against the Claims Y/N task, this 

means three attributes (probability for class “NO”, probability for class “YES”, and prediction) 

instead of just one (prediction) and does not fully explain the size difference between NN and PNN 

models. DT and NN models were usually relatively small. 

Neither, the run-time of the slowest, nor the model size of the most storage-consuming ML 

technique are of concern when a single model is being built. However, external parameter 

optimization, as undertaken as part of this study (see Section 5.5), can easily result in several 

thousands of models. In such instances, both, the time consumption of the PNN technique and the 

model size of the RF technique can easily push a regular office desktop to its limits.  

Table 9 provides average run-times (in milliseconds (ms)) to train and validate one model based 

on 20,000 records for training and 3000 records for validation (64 Bit Windows machine, 2.11 GHz 

Intel® Core i7-8650U CPU, 16 GB RAM), and the average size of one model (in kilobyte (kB)) per task 

and ML technique. 

Table 9. Comparison of ML algorithm run- times and model sizes. 

Task ML Technique 
Average Time to Train and 

Validate One Model (ms) 

Average Model 

Size (kB) 

Claims Y/N DT 342 5.1 

 RF 4177 1686.5 

 NN 15,533 12.3 

 PNN 179,207 735.2 

Claim ratio class DT 272 5.2 

 RF 4025 2124.0 

 PNN 183,737 752.0 

Claim ratio DT 312 11.9 

 RF 2821 5544.1 

 NN 15,446 12.3 

7. Conclusions and Outlook 

The purpose of our study was to evaluate ML techniques as a means for the prediction of claims 

of export credit insurers. ML could be well-suited to provide more accurate claims predictions, as 

regulatory requirements require for more sophisticated approaches for predicting claims, as well as 

in calculating claims reserves, and the global environment of international trade might lead to more 

volatility in actual claims experience. While, insurers have been using deterministic or stochastic 

methods based on claims development triangles, more complex methods are based on stricter 

assumptions, which can lead to several issues in their application and interpretation. Insurers 

welcome automation and appreciate the increased speed of these methods, but it is still common to 

apply human judgement on the results. However, more advanced models are able provide additional 

information useful for the decision-making of the insurance company. 
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Therefore, we conducted a comparative study of four ML techniques and evaluated their ability 

to accurately predict claims based on a unique dataset of export credit insurance claims over the 

period of 2005 to 2018. Furthermore, we compared the ML techniques against the performance of a 

simple heuristic, based on moving averages of claims from destinations that the insurer has done 

business with previously. 

Consistent with previous works (Fang et al. 2016; Lorena et al. 2011; Singh et al. 2016), RF 

provided the best results by a range of measures. Therefore, it seems advisable to include RF in any 

further research on the subject. However, RF can predict a target attribute value when provided with 

new data, but they do not readily reveal the logic underlying that prediction. The strength of 

traditional econometric approaches is that they help to extract relationships from masses of data by 

distilling compact equations. These equations can also be applied to new data for purposes of 

prediction, but more importantly, they can be analysed, in order to understand the relevance and 

inter-dependencies of the system defining variables. This benefit exists neither for RF nor NN, PNN 

or many other ML techniques, which is why they have been labelled “black boxes” by some (Olden 

and Jackson 2002). It is an interesting question to understand what place a technique that produces 

good predictions, but does not contribute to a better understanding of a subject, can have in academic 

research. An exception is the DT technique, because it generates human-readable rules which provide 

some insight into the most important predictors of the dependent variable. Therefore, we recommend 

to employ DT alongside with RF as a preparatory or augmenting step. 

Several ML techniques have delivered satisfactory results against the “Claims Y/N” and “Claim 

ratio class” task, but the generally poor performance against the “Claim ratio” task is a serious 

shortcoming. While, it is unsurprising to find the lowest performance against the most challenging 

task, it is not obvious why predictions of claim ratios lag behind the two other tasks by such a large 

margin. A more detailed examination of the actual and predicted data indicates that model quality 

appears to be significantly hampered by singular events of high claims, suggesting that no model 

was capable of capturing the conditions preceding their occurrence. However, singular or 

exceptionally high claims, which were not a focal point of this paper, might be of particularly 

interesting to ECAs. Therefore, a follow-up study should investigate the prediction of claims of that 

type. This would require an exploration of the circumstances under which a claim is considered to be 

exceptional, and probably an addition of external economic data from sources such as OECD or 

similar. 

It can also not be overlooked that the ML models in many respects performed no better, and 

often worse, than the simple heuristic “claims in 𝑡 − 1 indicate claims in 𝑡” as reflected by the BM 

(see Section 5.6). Unlike the ML models, the BM is limited to ECAs and destinations with already 

existing business relations. If such a business relationship does exist, the computationally much less 

complex BM rule must be seen as superior to the investigated ML techniques. In all other cases, ML 

might provide an alternative. Looking positively at the performance comparison between the BM 

and the ML techniques (Tables 4–6), it can be stated that ML is capable of predicting the virtue of a 

non-existing business relationship almost as well as if it would already exist. To help contain the 

effort of building ML models for practical applications, we provide the optimal model parameters as 

identified during this study at Appendix C. 

Finally, there are two interesting topics for further research arising from the convergence of ML 

and traditional techniques employed in insurance economics. The first topic refers to a performance 

comparison between ML techniques and commonly used approaches such as Chain-Ladder or 

Bornhuetter-Ferguson methods (Wüthrich 2018a, 2018b). To allow for a direct and fair comparison, 

the requirement for ML models to be generic would have to be dropped, and individual claims data 

over a time period instead of aggregate claims would need to be analysed. In that context it should 

also be possible to better account for heterogeneity of ECAs and destinations, for example by 

following the approach proposed by Wüthrich (2018b). A second topic might evolve from the 

question whether classic problem-specific models, for example probability distributions for low-

default portfolios (for example, Kiefer 2009), can or should be merged with ML techniques, and to 

what extent this could further improve prediction performance.  
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Appendix A. Data Enrichment 

For the ML exercise, the year, the total of new commitments and the total exposure were used 

directly from the Berne Union database, and augmented with the following variables: 

Target attributes (only one used at a time, depending on the prediction task): 

• A dichotomous claims variable (“Claims YES/NO”: “NO” if the total amount of claims paid 

equals 0, “YES” otherwise), 

• Five classes of the claims/exposure ratio (“Claim ratio class”; classes are [0, 0], (0, 0.0033], (0.0033, 

0.01], (0.01, 0.05], (0.05, )), 

• The claims/exposure ratio (“Claim ratio”). 

ECA summaries (annual values): 

• Number of destination countries with exposure, 

• Number of destination countries with exposure previous year (only used for NN), 

• Number of destination countries with exposure two years ago (only used for NN), 

• Number-of-destinations trend (“UP” for three consecutive years of increase, “DOWN” for three 

consecutive years of decrease, otherwise “AMBIGUOUS”), to indicate whether the ECA appears 

to generally expand or reduce the number of destinations in their portfolio (not used for NN), 

• Destination exposure in % of the ECA’s total exposure, to indicate the relevance of the 

destination for the ECA, 

• Gini-coefficient of exposure, to indicate the ECA’s exposure diversification across their 

destinations, 

• Number of years with claims prior to the current year, 

• % of years with claims prior to the current year, 

• Total of new commitments in the current year, 

• Total of new commitments in the previous year (only used for NN), 

• Total of new commitments two years ago (only used for NN), 

• Total of new commitments trend (“UP” for three consecutive years of increase, “DOWN” for 

three consecutive years of decrease, all other “AMBIGUOUS”), to indicate whether the ECA 

appears to generally expand or reduce the volume of their commitments (not used for NN). 

Destination summaries (annual values): 

• Number of ECAs with exposure, 

• Number of ECAs with exposure previous year (only used for NN), 

• Number of ECAs with exposure two years ago (only used for NN), 

• Number-of-ECAs trend (“UP” for three consecutive years of increase, “DOWN” for three 

consecutive years of decrease, all other “AMBIGUOUS”), to indicate whether the destination 

appears to generally expand or reduce the number of ECAs it is doing business with (not used 

for NN), 

• ECA exposure in % of the destination’s total exposure, to indicate the relevance of the ECA for 

the destination, 

• Gini-coefficient of exposure, to indicate the destination’s exposure diversification across the 

ECAs it is doing business with, 

• Number of years with claims prior to the current year, 

• % of years with claims prior to the current year, 

• Running total of claims until prior to the current year, 

• Total of new commitments in the current year, 
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• Total of new commitments in the previous year (only used for NN), 

• Total of new commitments two years ago (only used for NN), 

• Total of new commitments trend (“UP” for three consecutive years of increase, “DOWN” for 

three consecutive years of decrease, all other “AMBIGUOUS”), to indicate whether the 

destination appears to generally attract an increasing or decreasing amount of commitments (not 

used for NN). 

Appendix B. Summary of Externally Optimised and Fixed Parameters 

Table A1 details algorithm-specific and general externally tested parameters, including their 

variation boundaries and increments. 

Table A1. Parameter summary. 

KNIME Node 

[ML Technique] 
Parameter Lower Limit Upper Limit Increment 

Decision Tree Learner/ 

Simple Regression Tree 

Learner 

[DT] 

Minimum number 

of records per node 
30 90 20 

 Quality measure Gini index (fix) - n/a 

 Pruning method MDL (fix) - n/a 

 Average split point Yes (fix) - n/a 

 
Binary nominal 

splits 
No (fix) - n/a 

Random Forest Learner/ 

Random Forest Learner 

(Regression) 

[RF] 

Number of models 50 200 50 

 Split criterion 
Information gain 

ratio (fix) 
- n/a 

RProp MLP Learner 

[NN] 

Number of hidden 

layers 
1 3 1 

 
Number of neurons 

per layer 
10 20 5 

 
Maximum number 

of iterations 
100 (fix) - n/a 

PNN Learner (DDA) 

[PNN] 
Theta minus 0.1 0.35 0.05 

 Theta plus 0.35 0.65 0.05 

General 
Training/ validation 

partitioning fraction 
0.1 0.9 0.1 

 
Fraction of records 

with 0 claims 
0.1 1 0.1 
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Appendix C. Optimal Parameters 

Appendix C lists the optimal parameters identified during the validation stage of this study by 

ML technique: Table A2 for DT, Table A3 for RF, Table A4 for NN and Table A5 for PNN. 

Table A2. Results: Optimal DT Parameters. 

Measure Task Outcome 
Partitioning 

Fraction 

0 Claim 

Fraction 

Minimum Number of 

Records per Node 

Accuracy 
Claims 

YES/NO 

Best 

parameters 
0.9 1.0 30 

  Best model 0.9 1.0 30 

 
Claim ratio 

class 

Best 

parameters 
0.9 0.8 30 

  Best model 0.9 0.9 70 

Cohen’s 

 

Claims 

YES/NO 

Best 

parameters 
0.9 0.4 50 

  Best model 0.9 0.5 30 

 
Claim ratio 

class 

Best 

parameters 
0.9 0.2 30 

  Best model 0.8 0.2 50 

R2 Claim ratio 
Best 

parameters 
0.9 0.8 90 

  Best model 0.9 0.8 70 

Table A3. Results: Optimal RF Parameters. 

Measure Task Outcome 
Partitioning 

Fraction 

0 Claim 

Fraction 

Number of 

Models 

Accuracy 
Claims 

YES/NO 

Best 

parameters 
0.9 0.9 200 

  Best model 0.9 0.9 200 

 
Claim ratio 

class 

Best 

parameters 
0.9 0.9 200 

  Best model 0.9 0.9 200 

Cohen’s 

 

Claims 

YES/NO 

Best 

parameters 
0.8 0.4 150 

  Best model 0.9 0.3 200 

 
Claim ratio 

class 

Best 

parameters 
0.9 0.2 200 

  Best model 0.9 0.2 200 

R2 Claim ratio 
Best 

parameters 
0.9 0.6 50 

  Best model 0.9 0.8 200 

  



 24 

 

Table A4. Results: Optimal NN Parameters. 

Measure Task Outcome 
Partitioning 

Fraction 

0 Claim 

Fraction 
Layers Neurons 

Accuracy 
Claims 

YES/NO 

Best 

parameters 
0.8 1.0 2 10 

  Best model 0.9 0.9 2 10 

Cohen’s 

 

Claims 

YES/NO 

Best 

parameters 
0.9 0.3 3 20 

  Best model 0.9 0.4 2 20 

R2 Claim ratio 
Best 

parameters 
0.9 1.0 2 20 

  Best model 0.9 1.0 2 20 

Table A5. Results: Optimal PNN Parameters. 

Measure Task Outcome 
Partitioning 

Fraction 

0 Claim 

Fraction 

Theta 

Minus 

Theta 

Plus 

Accuracy 
Claims 

YES/NO 

Best 

parameters 
0.9 1.0 0.30 0.65 

  Best model 0.9 1.0 0.15 0.65 

 
Claim ratio 

class 

Best 

parameters 
0.9 1.0 0.30 0.55 

  Best model 0.9 1.0 0.15 0.65 

Cohen’s 

 

Claims 

YES/NO 

Best 

parameters 
0.9 0.4 0.20 0.60 

  Best model 0.9 0.4 0.25 0.45 

 
Claim ratio 

class 

Best 

parameters 
0.9 0.2 0.30 0.40 

  Best model 0.9 0.2 0.20 0.55 
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Appendix D. Accuracy—Cohen’s  Scatterplots 

Figure A1 shows scatterplots to highlight the relationship between the performance measures 

“accuracy” and “Cohen’s ” for all investigated ML techniques and prediction tasks. The data results 

from applying all models developed during the parameter optimisation exercise to the test data.  
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Figure A1. Scatterplots of Accuracy and Cohen’s . 
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Appendix E. Boxplots on ML Technique Performance 

The boxplots shown in Figure A2 illustrate the performance of all models developed during the 

parameter optimisation exercise of this study. The left side of the table shows performance variations 

measured during validation, mirrored on the right by the corresponding performance of the same 

models applied to the test data. 

  

  

  

  

  

Figure A2. Boxplots: Comparison of ML techniques’ performance (validation and test data).  
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