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Distributed LQR design for identical dynamically coupled systems:
Application to load frequency control of multi-area power grid

Eleftherios E. Vlahakis1, Leonidas D. Dritsas2 and George D. Halikias3

Abstract— The paper proposes a distributed LQR method
for the solution to regulator problems of networks composed
of dynamically dependent agents. It is assumed that these
dynamical couplings among agents can be expressed in a
state-space form of a certain structure. Following a top-down
approach we approximate a centralized LQR optimal controller
by a distributed scheme the stability of which is guaranteed
via a stability test applied to convex combination of Hurwitz
matrices. The method is applied to N-identical-area power grid
where a distributed state-feedback Load Frequency Controller
(LFC) is proposed to achieve frequency regulation under
power demand variations. An illustrative numerical example
demonstrates the applicability of the method.

I. INTRODUCTION

Networked systems are important in engineering and of
special interest to control community due to their wide
spectrum of applications. Vehicle platoons, groups of UAVs,
supply chains and multi-area power systems are just a few
paradigms. These schemes can be decomposed into a number
of distinct subsystems (or just systems) often referred to
as agents, each one having autonomous actuation capacity.
Agents, despite their independent operation, have also the
ability to cooperate with certain of their counterparts within
the network towards a common objective [1], [2]. In some
cases, the topology of the network may be imposed by
structural links such as in power systems where agents
correspond to power generators and the interconnections are
represented by power transmission lines [3], [4].

Here, we focus on networks composed of identical dy-
namically coupled linear time-invariant (LTI) systems. We
assume that couplings are expressed in state-space form
of a certain structure. Each system representing an agent
can produce actuation signals independently and is dynami-
cally coupled with certain number of its peers referred to
as neighboring agents with whom it can exchange state
information. Effectively, we assume that the topology of
physical couplings and the topology of information exchange
among agents are described by the same graph. Network
stabilization is one of the most challenging problems in
multi-agent network control. In typical situations the mere
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complexity of the system makes centralized control schemes
either impossible or undesirable.

In this paper, we propose a stabilizing distributed LQR-
based controller. Via a top-down method we approximate a
centralized LQR optimal controller by a distributed scheme.
Overall network stability is guaranteed via a stability test
applied to a convex combination of Hurwitz matrices. This
condition is consistent with the stability of a class of net-
work topologies which is identified. Sufficient condition for
stability of convex combination of Hurwitz matrices can
be found in [5]. Our approach is inspired by [6]. Therein,
the subsystems constituting the network are dynamically
decoupled and the stability of the distributed scheme relies
on the stability margins of LQR control. Unfortunately, this
elegant feature, which automatically guarantees stability of
the distributed scheme in [6], does not hold in the presence
of dynamical couplings between neighboring agents. Thus,
the control design proposed in our work extends the results
in [6] to a more general setting. This represents the main
contribution of this paper.

A distributed LQR method has also been presented in [7].
This consists of a bottom-up approach in which optimal
interactions between self-stabilizing agents are defined to
minimize an upper bound of a global LQR criterion. It is still
assumed that systems are open-loop decoupled. A thorough
procedure for designing distributed controllers for a class
of coupled systems based on a decomposition approach has
been presented in [8]. The validity of this method relies on
certain structural properties satisfied by the system matrices.
Rigorous methods for cooperative control design for multi-
agent systems with distributed or decentralized pattern have
been established in [9]–[13].

Our definition of multi-agent networks with dynamical
couplings is motivated by the structure of multi-area power
systems. Thus, to illustrate the applicability of our control
algorithm, we consider a large-scale power network formed
of identical control areas interconnected through weak trans-
mission lines referred to as tie-lines. In the study, we focus
on Load Frequency Control (LFC) of a multi-area power
system [14]. Textbooks providing an introduction to power
system design and LFC can be found in [15], [16]. Analytical
methods for designing decentralized and distributed load
frequency control are presented in [4], [17], [18] while a
set-theoretic method for LFC in the context of cyber-physical
power systems can be found in [19]. Here, we formulate the
LFC problem as a large-scale optimal control problem in the
absence of state and input constraints. An arbitrary number of
identical areas is considered. Our interest in distributed LFC



arises from the need to avoid centralized schemes which have
often high communication and processing costs and suffer
from a single-point-of-failure drawback [4]. The proposed
distributed LFC controller is stabilizing even if tie-line inter-
connections are added to or removed from the overall system,
as long as this does not violate the stability condition stated
in Section III. This powerful feature gives integrity to the
control subsystem of each area and enhances the resilience
of the system in the presence of interconnection variations.

From a power system perspective, the assumption that the
dynamical models of each area are identical may be unreal-
istic in practice. However, it simplifies the design problem
considerably, which is especially hard due to the coupling
terms appearing in the model. Future work will attempt
to eliminate or relax this assumption. Preliminary results
can be found in [20], [21]. The model and the control
strategy considered in this work have also been utilized in
[22]. Therein, extensive simulation results under considerable
perturbations in the model parameters of each area suggest
that this hypothesis is valid and that our results can be
extended to the general case.

The remaining of the paper is organized in six sections.
In Section II preliminaries on graph theory are presented.
The main results of our work appear in Section III and IV,
where the distributed control algorithm is derived. Section
V is devoted to multi-area power grid control design along
with simulation results. The main conclusions of the paper
and suggestions for further work are included in Section VI.

II. PRELIMINARIES

A graph G is defined as the ordered pair G = (V,E), where
V is the set of nodes (or vertices) V = {1,⋯,N} and E ⊆V×V
the set of edges (i, j) with i ∈ V , j ∈ V . The degree d j of
a graph vertex j is the number of edges which start from
j. Let dmax(G) denote the maximum vertex degree of the
graph G. We denote by A(G) the (0,1) adjacency matrix
of the graph G. In particular, Ai j = 1 if (i, j) ∈ E ∀ i, j =
1,⋯,N, i ≠ j and zero otherwise. Let j ∈Ni if (i, j) ∈ E and
i ≠ j. We call Ni the neighborhood of node i. The adjacency
matrix A(G) of undirected graphs is symmetric. We define
the Laplacian matrix as L(G) =D(G)−A(G), where D(G)
is the diagonal matrix of vertex degrees di. Let S(L(G)) =
{λ1(L(G)),⋯,λN(L(G))} be the spectrum of L associated
with an undirected graph G arranged in nondecreasing semi-
order. The following two results are standard [6], [23].

Proposition 1. Let G be a complete graph (with all possible
edges) with NL vertices and L(G) be the corresponding
Laplacian matrix. Then S(L(G)) = {0,NL,⋯,NL}.

Proposition 2. Let A, B be matrices of appropriate dimen-
sions and L be Laplacian matrix with spectrum S(L) =
{λ1,⋯,λN}. Then the spectrum S(I ⊗ A +L⊗ B) can be
reduced to ⋃i∈[1∶N]S(A+λiB) with λi ∈ S(L).

III. CENTRALIZED LQR DESIGN FOR DYNAMICALLY
COUPLED SYSTEMS

Consider a network of NL dynamically coupled LTI sys-
tems referred to as agents. At local level the dynamics of the

i-th agent is represented in state-space form as:

ẋi = A1xi+A2

NL

∑
j=1, j≠i

(xi−x j)+Bui, x0,i = xi(0) (1)

where xi ∈Rn, ui ∈Rm are states and inputs of the i-th system,
respectively. A complete graph G = (V,E) with Laplacian
matrix Lc models the topology of the physical links between
agents. Node i ∈ V of G corresponds to local state xi while
edge (i, j) ∈E corresponds to the xi−x j term in (1). Now con-
struct the aggregate state x̃ ∈RnNL and input vector ũ ∈RmNL

by stacking all state and input vectors, respectively, of all NL
systems taken in ascending order. The aggregate state-space
of the network becomes:

˙̃x = Ãx̃+ B̃ũ, x̃0 = x̃(0) (2)

with
Ã = INL ⊗A1+Lc⊗A2, B̃ = INL ⊗B (3)

Consider now LQR control problem for the network of NL
coupled systems:

min
ũ

J(ũ, x̃0) s.t. ˙̃x = Ãx̃+ B̃ũ, x̃0 = x̃(0) (4)

where the cost function is

J(ũ, x̃0) = ∫
∞

0
x̃′Q̃x̃+ ũ′R̃ũ dt (5)

with
Q̃ = INL ⊗Q1+Lc⊗Q2 and R̃ = INL ⊗R. (6)

Here, the weighting matrices Q1 = Q′
1 ≥ 0 and R = R′ > 0

penalize local states and inputs of each node, respectively,
while Q2 = Q′

2 ≥ 0 weighs relative state differences between
subsystems. The following assumptions guarantee a solution
to LQR problem (4).

Assumption 1. Let C′
1C1 = Q1. The pair (A1,B) is stabiliz-

able and (A1,C1) is observable.

Assumption 2. Let C′
12C12 = Q1 +NLQ2. The pair (A1 +

NLA2,B) is stabilizable and (A1+NLA2,C12) is observable.

With Assumption 1 and 2 in force, problem (4) admits
a unique stabilizing solution ũ = K̃x̃, which gives minimum
performance index (5) equal to x̃′0P̃x̃0 (see [24] and refer-
ences therein). Then, the optimal LQR gain is K̃ = −R̃−1B̃′P̃,
where P̃ is the symmetric positive definite (s.p.d.) solution
to the (large-scale) Algebraic Riccati Equation (ARE):

Ã′P̃+ P̃Ã− P̃B̃R̃−1B̃′P̃+ Q̃ = 0. (7)

Due to the specific formulation of (4), matrices K̃ and P̃ re-
tain certain structure which will prove essential for designing
stabilizing distributed controllers in the next section.

Theorem 1. Assume P̃ is the s.p.d solution to (7) associated
with the optimal solution to (4). Let P̃ ∈RnNL×nNL be decom-
posed into N2

L blocks of dimension n× n, each denoted by
P̃i j. Then, the following hold true.

I. ∑NL
j=1 P̃i j = P where P = P′ ≥ 0 is the stabilizing solution

to single-node ARE:

A′1P+PA1−PBR−1B′P+Q1 = 0. (8)



II. P̃i j = P̃kl = P̃2 for all j ≠ i, l ≠ k where P̃2 is symmetric
matrix associated with the node-level ARE:

(A1+NLA2)′(P−NLP̃2)+(P−NLP̃2)(A1+NLA2)
−(P−NLP̃2)BR−1B′(P−NLP̃2)+Q1+NLQ2 = 0. (9)

Detailed proof of Theorem 1 can be found in [22]. By
assumption, matrices R̃ and B̃ are selected block diagonal.
Consequently, the gain K̃ = −R̃−1B̃′P̃ retains the same struc-
ture with P̃. This leads to the following Corollary.

Corollary 1. Assume K̃ = −R̃−1B̃′P̃ is the optimal state-
feedback gain obtained from the solution to (4) with P̃ being
the s.p.d solution to (7). Let K̃ ∈RmNL×nNL and P̃ ∈RnNL×nNL

be decomposed into N2
L blocks of dimension m×n and n×n

denoted by K̃i j and P̃i j, respectively. Then, the following are
true;

I. P̃ = INL ⊗P−Lc⊗ P̃2.
II. ∑NL

j=1 K̃i j = −R−1B′P for i = 1,⋯,NL.
III. K̃ii = −R−1B′P+(NL−1)R−1B′P̃2 for i = 1,⋯,NL.
IV. K̃i j = −R−1B′P̃2 for i, j = 1,⋯,NL and j ≠ i.
V. K̃ = INL ⊗K −Lc ⊗K2, where K = −R−1B′P and K2 =

−R−1B′P̃2.

In view of Corollary 1, the closed-loop matrix Ã+ B̃K̃ can
be written as:

Acl = INL ⊗(A1+BK)+Lc⊗(A2−BK2). (10)

Since ũ = K̃x̃ is stabilizing, the matrix Acl is Hurwitz. Via
Proposition 2 the spectrum of Acl can be decomposed as

S(Acl) =
NL

⋃
i=1

S(A1+BK+λc,i(A2−BK2)) , (11)

where λc,i = {0,NL,⋯,NL}. The following remark follows
straightforwardly from the special spectrum of the Laplacian
matrix of a complete graph.

Remark 1. The matrix A1+BK+αNL(A2−BK2) is Hurwitz
for α = 0 and α = 1.

In the sequel we require that:

Condition 1. The matrix A1 +BK +αNL(A2 −BK2) is Hur-
witz for all α ∈ [0,1].

In essence, Condition 1 states that all convex combinations
of two Hurwitz matrices

µĀ1+(1−µ)Ā2 with µ ∈ [0,1] (12)

are Hurwitz, where Ā1 = A1 +BK +NL(A2 −BK2) and Ā2 =
A1+BK. Sufficient conditions for Hurwitz stability of convex
combination of Hurwitz matrices can be found in Theorem
2.2 in [5]. In general, the validity of the condition can be
checked via a simple graphical test.

IV. DISTRIBUTED CONTROL DESIGN FOR DYNAMICALLY
COUPLED SYSTEMS

Let a network be formed of N identical and dynamically
coupled LTI systems. Each subsystem has the ability to
exchange state-information with all counterparts it is cou-
pled with. The two graphs defining energy and information

exchanges are assumed to be identical. This is denoted by
G = (V,E) with Laplacian matrix L. Let the dynamics at
local level of the i-th system be

ẋi = A1xi+A2 ∑
j∈Ni

(xi−x j)+Bui, x0,i = xi(0) (13)

where xi ∈Rn and ui ∈Rm. The aggregate state-space of the
network becomes

˙̂x = Âx̂+ B̂û, x̂0 = x̂(0) (14)

where x̂ ∈RnN , û ∈RmN and

Â = IN ⊗A1+L⊗A2, B̂ = IN ⊗B. (15)

Note that L in (15) does not necessarily correspond to a
complete graph in contrast to (3) and generically matrix Â
in (15) is sparse. A stabilizing distributed controller for (14)
is constructed in the following Theorem.

Theorem 2. Consider a network of N coupled systems with
dynamics described in (13) modelled by graph GN with
Laplacian matrix LN . Let λN be the maximum eigenvalue of
LN and denote by dmax the smallest integer which is greater
than or equal to λN . Consider problem (4) for NL = dmax,
define P and P̃2 via (8) and (9), respectively, and assume
Condition 1 holds. Define also: K =−R−1B′P, K2 =−R−1B′P̃2
and

K̂ = IN ⊗K−LN ⊗K2. (16)

Then, the closed-loop matrix

Acl = IN ⊗(A1+BK)+LN ⊗(A2−BK2) (17)

is Hurwitz.

Proof: Consider the spectrum S(Acl) = S(IN ⊗ (A1 +
BK)+LN ⊗ (A2 −BK2)). Let VN ⊗ In be state-space trans-
formation where VN ∈ RN×N is an orthogonal matrix whose
columns are the eigenvectors of LN . In the transformed
coordinates, Ācl = IN ⊗ (A1 +BK)+ΛN ⊗ (A2 −BK2) where
ΛN = diag(0,λ2,⋯,λN) with λN ≤ dmax. Then

S(Ācl) =
N
⋃
i=1

S(A1+BK+λi(A2−BK2)) (18)

where λi, i = 1,⋯,N are the eigenvalues of LN . Condition
1 holds, hence (A1 +BK)+αdmax(A2 −BK2) is Hurwitz for
all α ∈ [0,1]. Consequently Ācl is also Hurwitz since λi ∈
[0,dmax] for all i = 1,⋯,N. This proves the Theorem.

Remark 2. For a time-varying graph G(t) = (V,E(t)) with
fixed number of vertices (N) and time-varying edges the
maximum eigenvalue of the time-varying Laplacian matrix
L(t) is bounded by 2N. Consequently, solving (4) for NL =
2N and assuming Condition 1 is in force leads to a distributed
controller K̂ which stabilizes the network for all possible
interconnection schemes among the N systems. Naturally,
this does not imply stability of switching between stable
network topologies.



V. MULTI-AREA POWER GRID

We consider power system networks which can be decom-
posed into multiple distinct dynamical subsystems, referred
to as areas, each one having two primary characteristics;
(1) it comprises of either a single generator or a group of
generators, and (2) it maintains a single frequency across its
geographical expanse. The areas are responsible for meeting
the demand of their own consumers and are interconnected
with each other through tie-lines, over which they exchange
power normally scheduled for a contracted value.

A. Modelling

Let a multi-area power system be formed of N areas
the interconnection topology of which is modeled by an
undirected graph G = (V,E). Each node i ∈ V represents
an area and an edge (i, j) ∈ E between two nodes denotes
interaction between the two nodes/areas. We note that the
edge (i, j) of the graph determines coupling terms in the
dynamics of area i and j and also indicates state-information
exchange between node i and j. We denote by Ni the set
of all the adjacent nodes to i. The open-loop linearized
dynamics of the i-th interconnected area is represented by
a model widely used in literature [15], the block diagram of
which is shown in Figure 1.

∆PC,i

∆Pf ,i

Σ
∆utot,i Kt,i

sTt,i+1
∆PG,i

Σ

−∆Ptie,i

−∆PL,i

Kp,i
sTp,i+1 ∆ fi

− 1
Ri

Fig. 1: Block representation of the i-th interconnected area.

The linearized dynamics of the total power inflow (∆Ptie,i)
to the i-th area from all interconnected areas j ∈Ni is

∆Ptie,i = ∫ ∑
j∈Ni

Ktie,i, j(∆ fi−∆ f j) dt. (19)

Notation ∆ indicates deviation from steady-state operation.
The total control signal of the i-th area is the sum of
two components: ∆utot,i = ∆Pf ,i +∆PC,i, namely the primary
frequency control action, defined as ∆Pf ,i = − 1

Ri
∆ fi and the

automatic generation control (AGC) signal ∆PC,i. The first is
a fixed static linear control law while the second (AGC) is
the control signal to be designed (see [15], [16] for details).
The disturbance signal ∆PL,i denotes time-varying demand of
the i-th area consumers. It is assumed to be unknown, piece-
wise constant power load deviations with known bounds.
Here, we study the case where ∆PL,i,min ≤ ∆PL,i ≤ ∆PL,i,max
for i = 1,⋯,N. All variables and parameters involved in the
block representation of Fig. 1 are summarized in Table I.

A thorough description of the power system model con-
sidered in this paper can be found in [22]. The frequency
regulation problem of a multi-area power grid of N identical
areas is stated in the next paragraph.

TABLE I: Parameter Values for each Control Area.

Parameter Symbol Value Units
Nominal Frequency f o 50 Hz

Power Base PB,i 2000 MW
Load Dependency Factor Di 16.66 MW/Hz

Speed Droop Ri 1.2×10−3 Hz/MW
Generator Inertia Gain Hi 5 s

Turbine Static Gain Kt,i 1 MW/MW
Turbine Time Constant Tt,i 0.3 s

Area Static Gain Kp,i 0.06 Hz/MW
Area Time Constant Tp,i 24 s
Tie-line Coefficient Ktie,i 1090 MW/Hz

B. Problem statement

Power load change in the i-th area of an interconnected
power system causes the electrical frequency fi to deviate
from its nominal value. Due to interconnections among the
areas through power transmission tie-lines and the depen-
dence of the power exchange between the i-th and j-th area
upon the respective difference ∆ fi −∆ f j (see eq. (19)), any
power load deviation occurring in the i-th area will also affect
the linked j-th area, causing transients in its frequency f j.
Here, we formulate the LFC of multi-area power systems
as an optimal control problem in the absence of state and
input constraints. The special case of N identical areas is
considered. According to Fig. 1, the state-vector xi of the i-th
area is constructed as xi = [∆ fi ∆PG,i ∆Ptie,i ∫ zi]′, where the
signal zi = β∆ fi+∆Ptie,i is referred to as Area Control Error
(ACE). A usual choice for β (bias factor) is Di + 1

Ri
, [15].

Parameters Di and Ri are defined in Table I. Note that the
state augmentation by the integral of the ACE signal enforces
integral action into the control scheme of each area. This
is a standard technique for disturbance rejection problems
(see [22] for more details). The aggregate dynamics of the
network can now be represented by a state-space model of
the form:

˙̂x = (IN ⊗A1+L⊗A2)x̂+(IN ⊗Bu)û+(IN ⊗Bw)ŵ
x̂0 = x̂(0)

(20)

with x̂ = col(x1,⋯,xN), û = col(∆PC,1,⋯,∆PC,N),
ŵ = col(∆PL,1,⋯,∆PL,N) and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
Tp

Kp
Tp

−Kp
Tp

0
− Kt

RTt
− 1

Tt
0 0

0 0 0 0
B 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A1

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

Ktie 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A2

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
Kt
Tt
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
±

Bu

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Kp
Tp

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¶

Bw

where the subscript i has been neglected from all entries of
A1, A2, Bu, and Bw since all areas are assumed to be identical.
Next, the distributed LQR control design presented earlier is
applied to a six-area power network subjected to power load
deviations and switching topology.

C. Numerical example
Consider a power system network of six identical areas in-

terconnected via tie-lines. Assume the network has switching
topology where a single interconnection scheme is modelled



by a time-invariant graph G = (V,E). Three topology schemes
are shown in Fig. 2 which are considered in the simulations.
The corresponding Laplacian matrix for each case is given
in (21). The switching topology considered is utilized to
demonstrate stable network operation under the same control
scheme for a class of network topologies. We stress that the
stability of switched stable systems is beyond the scope of
this work.

1 2

3

45

6

(a) Topology S1,
Laplacian L1.

1 2

3

45

6

(b) Topology S2,
Laplacian L2.

1 2

3

45

6

(c) Topology S3,
Laplacian L3.

Fig. 2: Tie-line switching topology of six interconnected
control areas.

In the study, we consider one scenario where disturbances
∆PL,i for i = 1,⋯,6 occur at different instants well-spread out
over the simulation interval. During the simulation period the
network interconnections are altered according to the order
shown in Fig. 2. The distributed controller constructed in
Section IV is used here to drive the AGC signal (∆PC,i) of
each area. The control objective of each area is to meet its
load demand shown in Fig. 3 and regulate its frequency. The
construction of the distributed controller is summarized next.
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area 1
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Fig. 3: Power demand deviation ∆PL,i, i = 1⋯,6.

The maximum eigenvalue of each matrix (L1,L2,L3) in
(21) is 4.3028, 4.3028 and 4.1701, respectively. We take the
smallest integer denoted by dmax which is greater than or
equal to the maximum of these (4.3028), i.e., dmax = 5. We
solve optimal problem (4) for NL = dmax = 5 for two different
selections of the weights Q̃, R̃. In the first, Q̃ = I5 ⊗Q1,
with Q1 = diag(100,10,10,5000) and R̃ = I5 ⊗100 while in
the second R̃ is kept the same and Q̃ = I5 ⊗Q1 +L5 ⊗Q2
where Q2 = 200Q1 and L5 is Laplacian matrix corresponding

to complete graph (all possible edges) with 5 nodes. The
matrix Q2 penalizes the relative state-difference (xi − x j)
between neighboring areas in (5). According to Theorem 2,
we compute the respective K and K2 state-feedback gains for
each tuning. These are:

K = [−2502.857 −1.203 −1.757 −7.071]
K2 = [342.491 0.104 −0.225 0.000]

(22)

for the first tuning where Q2 = 0 and

K = [−2502.857 −1.203 −1.757 −7.071]
K2 = [12084.071 2.356 6.374 43.329]

(23)

for the case where Q2 = 200Q1. Note that K = −R−1B′uP is
the same for both cases since P is the solution to a single
node-level ARE with parameters (A1,Bu,Q1,R). We also
test the validity of Condition 1 which can be seen to hold.
Fig. 4 displays the real part of the maximum eigenvalue
of (A1 +BuK)+αdmax(A2 −BuK2) with α ∈ [0,1] for both
tunings. In essence, this implies stable operation of the
network under both control schemes for all possible topolo-
gies corresponding to Laplacian matrices with maximum
eigenvalue bounded by dmax.

At network level the distributed stabilizing controller K̂
takes the form

K̂ = I6⊗K−Ls⊗K2 (24)

where Ls is given in (21) according to the topology with
s = [1 ∶ 3]. Node-wise, the AGC signal at each area is

∆PC,i =Kxi−K2 ∑
j∈Ni

(xi−x j) (25)

with i = 1,⋯,6 and j ≠ i. In effect each area requires ac-
cessibility to the local and neighboring states in order to
construct its control signal. Fig. 5 and 6 show the response
of the frequency deviation and the total power-flow deviation
of the tie-lines from the equilibrium operation of each area
for the two control schemes given in (22) and (23). The
time-intervals for the three topologies S1, S2 and S3 are
depicted in Fig. 5a. Stable operation is guaranteed for both
control choices even for area-3 (denoted by yellow bold
in the graphs) which is isolated over the third part of the
simulation during which the network acquires the topology
S3 (Fig. 2c).

Note also, the magnitude of the total power flow over
the tie-lines is significantly limited in the case where the
controller is designed as in (23). This stems from the large
weighting matrix Q2 selection in the performance index (5).
Since the relative state-difference between neighboring areas
is highly penalized, the areas tend to acquire same frequency

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 3 −1 0 −1
0 0 −1 2 −1 0
−1 0 0 −1 2 0
0 0 −1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 0
0 1 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 0 0 −1 2 0
0 0 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and L3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 −1 −1
0 1 0 −1 0 0
0 0 0 0 0 0
0 −1 0 2 −1 0
−1 0 0 −1 3 −1
−1 0 0 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)
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Fig. 4: Stability test and validity of Condition 1.
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Fig. 5: Frequency deviation for two different tunings.

deviations during the transients (see Fig. 5b) and thus the
total power flow over the tie-lines given in (19) is kept low.
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Fig. 6: Total power flow over tie-lines for two different
tunings.

VI. CONCLUSIONS
Stabilizing distributed LQR-based controller for networks

of identical dynamically coupled agents was proposed based
on a large-scale LQR optimal problem. This method has
originally been proposed in [6] for the decoupled case
and was extended here to include couplings between the
subsystems representing autonomous agents. First, a fully
centralized controller was designed which was subsequently
substituted by a distributed state-feedback gain with sparse
structure. The control scheme was obtained by optimizing
an LQR performance index with a tuning parameter utilized
to emphasize/de-emphasize relative state difference between
interconnected systems. Our approach enhances the multi-
agent system modularity and leads to a simple and verifiable
stabilizability condition for a class of network topologies.
The control scheme was applied for two different tunings to a
multi-area power system which was subjected to power load
demand variations and switching topologies. The authors are
currently working on the extension of the method to the case

of non-identical dynamically coupled agents based on results
proposed in [20], [21].

ACKNOWLEDGMENTS
Leonidas Dritsas acknowledges financial support from

the Special Account for Research of ASPETE through the
funding program “Strengthening research of ASPETE faculty
members”

REFERENCES

[1] K. K. Oh, M. C. Park, and H. S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[2] J. Xie and C.-C. Liu, “Multi-agent systems and their applications,” J.
Int. Counc. Electr. Eng., vol. 7, no. 1, pp. 188–197, 2017.

[3] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziargyriou,
F. Ponci, and T. Funabashi, “Multi-Agent Systems for Power Engi-
neering Applications – Part II: Technologies, Standards, and Tools
for building Multi-Agent Systems,” IEEE Trans. Power Syst., vol. 22,
no. 4, pp. 1753–1759, 2007.

[4] A. Bidram, F. L. Lewis, and A. Davoudi, “Distributed control systems
for small-scale power networks: Using multiagent cooperative control
theory,” IEEE Control Syst., vol. 34, no. 6, pp. 56–77, 2014.

[5] S. Białas, “A sufficient condition for Hurwitz stability of the convex
combination of two matrices,” Control Cybern., vol. 33, no. 1, 2004.

[6] F. Borrelli and T. Keviczky, “Distributed LQR design for identical
dynamically decoupled systems,” IEEE Trans. Autom. Contr., vol. 53,
no. 8, pp. 1901–1912, 2008.

[7] P. Deshpande, P. P. Menon, C. Edwards, and I. Postlethwaite, “Sub-
optimal distributed control law with H2 performance for identical
dynamically coupled linear systems,” IET Control Theory Appl., vol. 6,
no. 16, pp. 2509–2517, 2012.

[8] P. Massioni and M. Verhaegen, “Distributed control for identical dy-
namically coupled systems: A decomposition approach,” IEEE Trans.
Automat. Contr., vol. 54, no. 1, pp. 124–135, 2009.

[9] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems: Algo-
rithms and Theory,” IEEE Trans. Autom. Contr., vol. 51, no. 3, pp.
1–20, 2006.

[10] J. A. Fax and R. M. Murray, “Information Flow and Cooperative
Control of Vehicle Formations,” IFAC Proc. Vol., vol. 35, no. 1, pp.
115–120, 2002.

[11] R. Ghadami and B. Shafai, “Distributed observer-based LQR design
for multi-agent systems,” in World Autom. Congr. Proc., 2014.

[12] C. Langbort, R. S. Chandra, and R. D’Andrea, “Distributed control
design for systems interconnected over an arbitrary graph,” IEEE
Trans. Automat. Contr., 2004.

[13] Q. Wang, C. Yu, H. Gao, and F. Liu, “A distributed control law with
guaranteed convergence rate for identically coupled linear systems,”
in 2013 Eur. Control Conf. ECC, 2013.

[14] C. E. Fosha and O. I. Elgerd, “The Megawatt-Frequency Control
Problem: A New Approach Via Optimal Control Theory,” IEEE Trans.
Power Appar. Syst., 1970.

[15] H. Bevrani, Robust Power System Frequency Control. Springer, 2010.
[16] P. Kundur, Power System Stability And Control. McGraw-Hill, 1993.
[17] D. D. Siljak, D. M. Stipanovic, and A. I. Zecevic, “Robust Decen-

tralized Turbine/Governor Control Using Linear Matrix Inequalities,”
IEEE Power Eng. Rev., 2002.

[18] M. Andreasson, H. Sandberg, D. V. Dimarogonas, and K. H. Jo-
hansson, “Distributed integral action: Stability analysis and frequency
control of power systems,” in 51st IEEE Conf. Decis. Control, 2012,
pp. 2077–2083.

[19] E. Kontouras, A. Tzes, and L. Dritsas, “Set-theoretic detection of data
corruption attacks on cyber physical power systems,” J. Mod. Power
Syst. Clean Energy, vol. 6, no. 5, pp. 872–886, 2018.

[20] E. E. Vlahakis and G. D. Halikias, “Distributed LQR Methods for
Networks of Non-Identical Plants,” in 57th IEEE Conf. Decis. Control,
2018, pp. 6145–6150.

[21] ——, “Model-Matching type-methods and Stability of Networks con-
sisting of non-Identical Dynamic Agents,” IFAC-PapersOnLine, 2018.

[22] E. Vlahakis, L. Dritsas, and G. Halikias, “Distributed LQR Design for
a Class of Large-Scale Multi-Area Power Systems,” Energies, vol. 12,
no. 14, 2019. [Online]. Available: https://www.mdpi.com/1996-
1073/12/14/2664

[23] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[24] B. Anderson and J. Moore, Optimal Control. Prentice-Hall, 1989.


