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Abstract—In this paper, an established distributed LQR con-
trol methodology applied to identical linear systems is extended
to control arbitrary formations of non-identical UAV’s. The non-
linear model of a low-speed experimental UAV known as X-RAE1
is utilized for simulation purposes. The formation is composed of
four dynamically decoupled X-RAE1 which differ in their masses
and their products of inertia about the xz plane. In order to
design linear controllers the nonlinear models are linearized for
horizontal flight conditions at constant velocity. State-feedback,
input and similarity transformations are applied to solve model-
matching type problems and compensate for the mismatch in
the linearized models due to mass and symmetry discrepancies
among the X-RAE1 models. It is shown that the method is based
on the controllability indices of the linearized models. Distributed
LQR control employed in networks of identical linear systems is
appropriately adjusted and applied to the formation of the non-
identical UAV’s. The applicability of the approach is illustrated
via numerous simulation results.

Keywords—Cooperative distributed LQR, formation control,
non-identical agents, UAV, model-matching.

I. INTRODUCTION

Multi-vehicle systems have attracted a lot of attention of
the control community in recent years due to their wide range
of applications, such as area mapping and monitoring [1],
formation control [2], [3], vehicle platoons [4], etc. Such
schemes are often referred to as multi-agent systems with each
agent being represented by a dynamical system and having
the ability to communicate with other counterparts within
the network. The interactions established among the agents
determine the network topology and define a communication
pattern. The need for forming networks of systems in many
cases arises from the fact that some problems might not be
resolved by individual systems.

Stability issues play key role in multi-vehicle systems
[2], [5] where cooperative controllers should be designed to
ensure stable operation for the network. Two complementary
distributed LQR methods are proposed in [6] and [7]. In the
first (top-down) approach [6], the centralized optimal LQR
controller is approximated by a distributed control scheme
whose stability is guaranteed by the stability margins of LQR
control. The second [7] consists of a bottom-up approach in
which optimal interactions between self-stabilizing agents are

defined so as to minimize an upper bound of the global LQR
criterion. A limitation of both methods is the assumption that
networks are formed by identical plants, a fact which is often
unrealistic in real applications. For background theory and
fundamental results in the area of cooperative control over
networks see [8].

In [3] the distributed LQR method introduced in [6] is
used to solve the formation control problem of a network
of identical UAV’s. In this work, we extend this top-down
approach to networks formed of non-identical UAV’s. The
non-linear model of the low-speed experimental UAV used
in [3] known as X-RAE1 is also utilized in this paper for
simulations purposes. The formation flying is considered to
be composed of dynamically decoupled X-RAE1 which differ
in their masses and their symmetry about the xz plane. In order
to design linear controllers the nonlinear models are linearized
for horizontal flight conditions at constant velocity. State-
feedback, input and similarity transformations are applied to
solve model-matching type problems and compensate for the
mismatch in the linearized models due to mass and symmetry
discrepancies among the X-RAE1 models. To our knowledge
no direct extension method of distributed LQR control with
non-identical dynamics based on the methodology of [6] and
[7] has been reported in the literature. The distributed LQR
method proposed in [3] to solve the formation control of four
identical UAV’s is appropriately adjusted and applied to the
formation of the non-identical UAV’s. Note that, in contrast
to recent methods in the area, our approach does not rely on
a two-step design procedure in which high-level formation
control based exclusively on kinematics is superimposed on
a low-level flight control scheme of each individual UAV in
the formation, based on a fully dynamic model. We show the
applicability of our approach via numerous simulation results.

The rest of the paper is organized in five sections. First,
in Section II preliminaries on graph theory and Kronecker
products are presented. In Section III the nonlinear and the
linearized models for certain operating point of four X-RAE1’s
are introduced. In Section IV model-matching approach is pro-
posed to compensate for discrepancies among the linearized



models of four non-identical UAV’s of a formation flying
followed by a distributed LQR methodology to solve the
formation control problem. In Section V simulation results are
presented while the conclusions of the paper appear in Section
VI.

II. PRELIMINARIES

A graph G is defined as G = (V ,E ), where V is the set
of nodes (or vertices) V = {1, · · · ,N} and E ⊆ V ×V the
set of edges (i, j) with i ∈ V , j ∈ V . The degree d j of a
graph vertex j is the number of edges which start from j. Let
dmax(G ) denote the maximum vertex degree of the graph G .
We denote by A(G ) the (0, 1) adjacency matrix of the graph G .
Let Ai, j ∈R be its i, j element, then Ai, j = 1 if (i, j)∈E , ∀i, j =
1, · · · ,N, i 6= j. Let j ∈Ni represent the neighbourhood of the
ith node if (i, j)∈ E and i 6= j. The adjacency matrix A(G )
of undirected graphs is symmetric. We define the Laplacian
matrix as L(G ) = D(G )−A(G ) where D(G ) is the diagonal
matrix of vertex degrees di (also called the valence matrix).Let
S(L(G )) = {λ1(L(G )), · · · ,λN(L(G ))} be the spectrum of the
Laplacian matrix L associated with an undirected graph G
arranged in nondecreasing semi-order. Further definitions and
results on graph theory can be found in [9]. The Kronecker
product of A = [ai j] ∈ Rm×n and B = [bi j] ∈ Rp×q is denoted
by A⊗B ∈ Rmp×nq.

III. MODELLING OF XRAE1
A. Equations of motion

The aircraft’s model has been obtained from [3], [10].
The equations of the longitudinal and the lateral motions are
considered. Six equations of motion describe the dynamical
behavior of the X-RAE1 with respect to longitudinal and
lateral modes of the aircraft. Three more equations give the
relationship between the Euler-angle rates and the body-axis
rates. The corresponding nonlinear differential equations are
given next.

1) Three Translational equations of motion along the x, y
and z body axes:

U̇ = RV −QW −gsinΘ

+[qS(CL sina−CD cosa)+T ]/m
V̇ = PW −RU +gcosΘsinΦ)+(qSCy)/m
Ẇ = QU−PV +gcosΘcosΦ

+[qS(−CL cosa−CD sina)]/m

2) Three Rotational equations of motion around the x, y
and z body axes:

ṖIx− ṘIxz = QR(Iy− Iz)+PQIxz +qSbCl

Q̇Iy = PR(Iz− Ix)− (P2−R2)Ixz+qScCm

+qS(CL sina−CD cosa)h0 +TeT

ṘIz− ṖIxz = PQ(Ix− Iy)+QRIxz +qScCn

3) Relationship Between Euler-Angle Rates and Body-Axis
Rates:Φ̇

Θ̇

Ψ̇

=

1 sinΦ tanΘ cosΦ tanΘ

0 cosΦ −sinΦ

0 sinΦsecΘ cosΦsecΘ

P
Q
R



where
• U , V , W represent forward, side and downward velocities

along the x, y and z body axes, respectively.
• P, Q, R represent roll, pitch and yaw angular velocities

around the x, y and z body axes, respectively.
• Φ, Θ, Ψ represent roll, pitch and yaw angles.
• T is the thrust.
• CL, CD, Cy are lift, drag and side force coefficients.
• Ix, Iy and Iz are moments of inertia about the correspond-

ing body axes.
• Ixz is the product of inertia. Ixy = Iyz = 0 since xz is a

plane of symmetry of the aircraft.
• a, q are the angle of attack and the dynamic pressure,

respectively.
• m, g, S, eT , h0, b and c are known parameters.

Detailed description of the above variables and values of the
corresponding parameters can be found in [10].

B. Linearization about operating point

For a straight, steady, symmetric and horizontal flight the
nonlinear model of the aircraft’s motion can be replaced by
the linearized version provided the perturbations about the
nominal operating conditions are sufficiently small. Thus the
control design may be carried out on the linear model and lin-
ear controllers can be constructed. The linearized equations of
motion are separated into longitudinal and lateral-directional
equation sets. Since the two inputs (thrust and elevator)
employed in longitudinal motion do not affect the lateral
motion due to symmetry of the xz aircraft’s plane, the two
linearized models (longitudinal and lateral) are dynamically
decoupled in the case of height control. In this work we are
interested in the longitudinal stability of networks of non-
identical X-RAE1’s about operating points which are called
trim conditions. For simulation purposes, different mass mi and
product of inertia Ixzi for each system have been considered.
This mismatch which in real applications might arise for non-
identical payloads, leads to different linearized models for
each X-RAE1. At a constant velocity VT0 = 30ms−1 the trim
conditions for the ith X-RAE1’s is:

U0i =VT0 cosa0i, W0i =VT0 sina0i, Θ0i = a0i

V0i = P0i = Q0i = R0i = 0, Φ0i = Ψ0i = 0
(1)

The state-space form of the linearized model for the longitu-
dinal motion of the ith aircraft takes the form

ẋi = Aixi +Biui, xi(0) = xi0 (2)

where xi =
[
ui wi qi θi hi

]T and ui =
[
ni δTi

]T repre-
sent the deviation of the state and input vector, respectively,
from the trimmed values (i.e., Ui −U0i = ui). Note that in
our linear model (2) an additional variable has been included
which represents height deviation hi from a desired reference
point. This augmentation can be used to provide asymptotic
tracking of step references. Table I shows the selection of mass
and product of inertia of four X-RAE1 models and Table
II illustrates the mismatch in the corresponding Ai and Bi
matrices.



TABLE I
MASS AND PRODUCT OF INERTIA OF FOUR X-RAE1 MODELS

X-RAE1 mi [kg] Ixz [kg ·m2]
agent-1 18.5 0.17
agent-2 20.5 0.26
agent-3 16.5 0.08
agent-4 15.5 0.26

TABLE II
DYNAMICS AND INPUT MATRICES (A,B) OF FOUR LINEAR MODELS.

X-RAE1 Ai Bi

agent-1


−0.142 −0.227 2.493 −9.771 0
−1.033 −4.476 28.639 0.837 0
−0.042 −2.744 15.351 −0.134 0

0 0 1 0 0
−0.087 −0.996 0 30 0



−1.136 1.444
−13.060 0
−137.157 −2.036

0 0
0 0



agent-2


−0.125 −0.155 2.264 −9.773 0
−0.963 −4.053 28.780 0.758 0
−0.022 −2.836 15.383 −0.122 0

0 0 1 0 0
−0.078 −0.997 0 30 0



−0.928 1.3032
−11.811 0
−137.399 −2.036

0 0
0 0



agent-3


−0.163 −0.317 2.717 −9.764 0
−1.120 −5.002 28.468 0.915 0
−0.059 −2.636 15.315 −0.147 0

0 0 1 0 0
−0.095 −0.995 0 30 0



−1.392 1.619
−14.605 0
−136.867 −2.036

0 0
0 0



agent-4


−0.175 −0.370 2.826 −9.760 0
−1.171 −5.314 28.367 0.954 0
−0.065 −2.573 15.294 −0.153 0

0 0 1 0 0
−0.099 −0.995 0 30 0



−1.545 1.724
−15.525 0
−136.670 −2.036

0 0
0 0



IV. DISTRIBUTED CONTROL FOR NON-IDENTICAL UAV’S

As Table II illustrates, the four linearized models obtained
for operating conditions specified earlier are not identical due
to discrepancies in mass and product of inertia among the X-
RAE1’s. This drawback renders the distributed LQR method
presented in [6] and utilized in [3] not directly applicable
to enforce longitudinal stability of a formation of X-RAE1’s.
In this section, first a model-matching approach to overcome
the mismatch among non-identical linear systems is presented
for a certain class of linear systems and then the cooperative
distributed control method utilized in [3] is extended to the
case of non-identical UAV’s.

A. Model-Matching of multi-input systems with common con-
trollability indices

The aim of the method shown in this paragraph is to map
a set of linear systems to a common target system specified a
priori via state-feedback, similarity and input transformations.
The class of systems to be considered consists of multi-
input systems with fixed controllability indices µ j. Recall that
∑

m
j=1 µ j = n where m stands for the number of inputs and n

the state dimension. Note that the controllability indices define
completely the class without the need for specifying input and
state sizes. The following Lemma is standard and is included
without proof (see [11] for details).

Lemma 1. Given (A,B) controllable, then
(P(A+BF)P−1, PBG) has the same controllability indices, up
to reordering, for any P, F and G (det(P) 6= 0, det(G) 6= 0)
of appropriate dimensions.

The controller canonical form of a multi-input plant is now
analyzed. Let the pair (A, B) be controllable with control-
lability indices {µ j} where A ∈ Rn×n and B ∈ Rn×m. There
is always similarity transformation P (see [11] for how to

construct matrix P) such that the pair can be reduced to
controller canonical form, namely, (Ac, Bc) where

Ac = Āc + B̄cAm, Bc = B̄cBm (3)

with Am ∈ Rm×n and Bm ∈ Rm×m being free. The pair (Āc,
B̄c) is called the Brunovsky canonical form [11] and is
unique (up to reordering) for the class of pairs (Ai, Bi)
with common controllability indices. The matrices (Āc, B̄c) =
(diag(Ā11, · · · , Āmm),diag(B̄11, · · · , B̄mm)) where

Ā j j =


0
... Iµ j−1
0
0 0 · · ·0

∈Rµ j×µ j , B̄ j j =


0
...
0
1

∈Rµ j for j = 1, · · · ,m.

Theorem 1. Consider a set of N linear systems with state-
space

ẋi = Aixi +Biui, with Ai ∈ Rn×n, Bi ∈ Rn×m and i = 1, · · · ,N

arbitrarily chosen from the class of controllable systems with
controllability indices {µ j} and ∑

m
j=1 µ j = n. Let also

ẋN+1 = AN+1xN+1 +BN+1uN+1

a target linear system which belongs to the same class. Then,
there are always state-feedback Fi and input Gi transforma-
tions such that

(sI−Ai−BiFi)
−1BiGi = Φi(sI−AN+1)

−1BN+1 (4)

with |Φi| 6= 0 for i = 1, · · · ,N.

Proof. Consider a set of N+1 systems arbitrarily chosen from
the class defined by the controllability indices µ j. The state-
space equations of the plants are given by

ẋi(t) = Aixi(t)+Biui(t), yi(t) = xi(t) (5)

where i = 1, . . . ,N +1, Ai ∈ Rn×n, Bi ∈ Rn×m. The (N + 1)th

index corresponds to a target plant. There are similarity
transformations Pi such that the state-space representation of
all plants in the set can be reduced to canonical form with
dynamics and input matrices being given as in (3). The state-
space equations of the set of the N plants and the target plant
in the new coordinates (xci = Pixi) are given as

ẋci = Acixci +Bciui, yi = P−1
i xci for i = 1, · · · ,N (6)

ẋcN+1 = AcN+1xcN+1 +BcN+1uN+1, yN+1 = P−1
N+1xcN+1 (7)

respectively, with the pairs (Aci, Bci) for i = {1, · · · ,N + 1}
having identical Brunovsky forms (Āc, B̄c). The N plants can
match the input-to-state part of the target system by applying
state-feedback and input transformations

ui = Fci,N+1xi +Gi,N+1vi

with the corresponding matrices (F , G) being given as

Fci,N+1 = Bm
−1
i (AmN+1−Am1), Gi,N+1 = Bm

−1
i BmN+1 (8)



where the state-feedback gain in the original coordinates can
be recovered by Fi,N+1 = Fci,N+1Pi. The state-space equations
of the closed-loop systems take the following form

ẋci = (Aci +BciFi,N+1)xci +BciGi,N+1vi, yi = P−1
i xci (9)

with Aci +BciFci,N+1 = AcN+1 and BciGi,N+1 = BcN+1 which
are identical to the corresponding matrices of the target system.
Since all the N + 1 systems have the same dynamics and
input matrices in the transformed coordinates, the state-space
equations can be rewritten in the form

ξ̇ = AcN+1ξ +BcN+1v, yi = P−1
i ξ and yN+1 = P−1

N+1ξ (10)

for i = {1, · · · ,N}. The relationship between the transfer
function of the ith transformed plant and the target system
is given by

(sI−Ai−BiFi,N+1)
−1BiGi,N+1 = Φi(sI−AN+1)

−1BN+1 (11)

with Φi = P−1
i PN+1 and |Φi| 6= 0 since Pi and PN+1 are square

and non-singular. This proves the theorem.

B. Large-scale LQR problem

First the analysis of a large-scale LQR problem defined in
[6] is briefly presented here. Let NL identical systems (A,B)
constitute a network described by a complete graph (i.e., the
graph with all possible interconnections) which has the ability
to exchange state information between any two nodes. Since
the systems in the original method are considered identical the
state-space form of the network shown next is obtained from
augmenting the individual systems using Kronecker products:

˙̃x = (I⊗A)x̃+(I⊗B)ũ, x̃0 = [xT
1 (0), · · · ,xT

NL
(0)]T (12)

where x̃ = [xT
1 , · · · ,xT

NL
]T and ũ= [uT

1 , · · · ,uT
NL
]T . Consider now

a performance index that couples the dynamical behavior of
the individual systems:

J(ũ, x̃0) =
∫

∞

0

NL

∑
i=1

(
xT

i Qiixi +uT
i Rui

+
NL

∑
j 6=i

(xi− x j)
T Qi j(xi− x j)

)
dτ (13)

with Qii ≥ 0, Qi j ≥ 0 and R > 0 or, written in a more compact
form:

J(ũ, x̃0) =
∫

∞

0

NL

∑
i=1

(
x̃T Q̃x̃+ ũT R̃ũ

)
dτ (14)

where

Q̃ =

 Q̃11 Q̃12 · · · Q̃1NL
...

. . .
...

...
Q̃NL1 · · · · · · Q̃NLNL

 , R̃ = INL ⊗R (15)

with Q̃ii = ∑
NL
k=1 Qik and Q̃i j =−Qi j.

Let Qii = CT
ii Cii and Qi j = CT

i jCi j. Under the assumption
that (A,B) is controllable and all pairs (A,Cii) and (A,Ci j) are
observable, the following large scale LQR problem

min
ũ

J(ũ, x̃0) s.t. ˙̃x = (I⊗A)x̃+(I⊗B)ũ, x̃0 (16)

leads to the networked state-feedback gain K̃ = −R̃−1B̃T P̃
where the Lyapunov function P̃ is the unique symmetric
positive definite solution to the large scale ARE:

ÃT P̃+ P̃Ã− P̃B̃R̃−1B̃T P̃+ Q̃ = 0

where Ã = INL ⊗A and B̃ = INL ⊗B. Let now Qii = Q1 and
Qi j = Q2 with Q1 ≥ 0 and Q2 ≥ 0 then

P̃ =

P− (NL−1)P̃2 P̃2 · · · P̃2
...

. . .
...

...
P̃2 · · · · · · P− (NL−1)P̃2

 (17)

where P is the unique symmetric positive definite solution to
the single-node ARE:

AT P+PA−PBR−1BT P+Q1 = 0.

Since K̃ = −R̃−1B̃T P̃ the structure of P̃ is also preserved in
the networked state-feedback gain K̃. For more details see [6].

C. Distributed LQR-based control for a network of non-
identical linear systems

Consider N interconnected, non-identical and dynamically
decoupled linear systems (Ai,Bi), i = 1, · · · ,N characterized
by the same controllability indices {µ j}. The augmented state-
space form of the network is given by

˙̃x = diag(A1, · · · ,AN)x̃+diag(B1, · · · ,BN)ũ, x̃(0) = x̃0 (18)

where x̃ = [xT
1 , · · · ,xT

N ]
T and ũ = [uT

1 , · · · ,uT
N ]

T . A stabilizing
distributed control scheme is described in the following The-
orem.

Theorem 2. Consider N non-identical agents in a network
with state-space form given by (18) and topology specified by
a graph with Laplacian matrix L and maximum vertex degree
dmax. Assume that the agents share the same controllability
indices and therefore according to Theorem 1 there exist Fi,
Gi and Φi such that (11) holds for all i = 1, · · · ,N. Consider
reduced-order networked LQR problem (16) for NL = dmax+1
identical plants defined by

(AN+1,BN+1), (Φ−1
i (Ai +BiFi)Φi,Φ

−1
i BiGi)

and specify P and P̃2 according to (17). Let M = aL where
a > NL

λ2(L)
and construct the (large-scale) state-feedback gain

K̂ = IN⊗K1 +M⊗K2 (19)

where K1 =−R−1BT
N+1P and K2 = R−1BT

N+1P̃2. Let Ni repre-
sent the neighbourhood of the ith agent. Then the state-space
equation

ẋi = [Ai +Bi(Fi +GiK1Φ
−1
i )]xi

+aBiGi ∑
j∈Ni

K2(Φ
−1
i xi−Φ

−1
j x j) (20)

is asymptotically stable for all i = 1, · · · ,N.

The proof is omitted due to lack of space. Fig. 1 shows a
schematic representation of the distributed scheme presented
in Theorem 2 at local level i. Note that the target model may



be selected such that the perturbations in the agents models
produced by state-feedback controllers are minimal in a sense
that a measure of the joint model-matching control effort is
minimized. This refinement of our approach is currently under
investigation.

ẋi xi

x j

...
...

xk

· · ·· · ·

· · ·

Gi Σ Bi Σ
∫
Ai

Fi

Φ
−1
iK1Σ

−Φ
−1
jaK2Σ Σ

−Φ
−1
kΣaK2

Fig. 1. Closed-loop configuration of the ith agent with ( j, · · · ,k) ∈Ni.

V. SIMULATIONS

In this section a formation control problem of four X-
RAE1’s is solved and results of numerous simulations are
presented. Let four X-RAE1’s move at a nominal height
and exchange information about their states according to the
interconnection topology shown in Fig. 2. The corresponding
connected graph has maximum vertex degree dmax = 2.

1 2

3 4

Fig. 2. Interconnection topology of the four {1,2,3,4} X-RAE1’s.

The four UAV’s of the formation differ from each other with
respect to their mass and symmetry about the xz plane of their
body axes. Masses and products of inertia Ixz of each X-RAE1
are shown in Table I. The non-linear models of the four X-
RAE1’s are linearized for a straight flight at constant velocity
VT0 = 30ms−1 about the trim conditions specified in section III
and the corresponding matrices of the linear systems are given
in Table II. The augmented state-space form of the linearized
model about the operating point of the formation is given as

˙̃x = diag(A1,A2,A3,A4)x̃+diag(B1,B2,B3,B4)ũ, x̃0 (21)

where x̃0 = x̃(0), x̃= [xT
1 ,x

T
2 ,x

T
3 ,x

T
4 ]

T and ũ= [uT
1 ,u

T
2 ,u

T
3 ,u

T
4 ]

T .
The main control objective ũ is to stabilize the formation.
Further, all UAV’s in the network are required to recover their
vertical nominal positions in the presence of impulsive distur-
bances, perturbations on the trim conditions, communication
failures etc. The control procedure is now presented.

Since the pairs (Ai,Bi) for i = 1,2,3,4 have the same
controllability indices, the model-matching approach proposed
earlier is applied to overcome the mismatch among the lin-
earized models. Let the linearized model (A1,B1) be the target

system and assume that Fi, Gi and Φi matrices have been
found such that (A1,B1) = (Φ−1

i (Ai +BiFi)Φi,Φ
−1
i BiGi) for

i = 2,3,4. Consider the following LQR problem presented in
IV-B with performance index J̃ having the same structure as
in (13) for NL = dmax +1 = 3:

min
K̃

J̃(v,ξ0) s.t. ξ̇ = (I3⊗A1)ξ +(I3⊗B1)v, ξ (0) = ξ0 (22)

with weighting matrices being given as Qii = 10I5, Qi j = 100I5
and R= diag(1,100) for i= 1,2,3 and j = 1,2,3. The solution
of the above LQR problem leads to the following structured
lyapunov function P̃

P̃ =

P̃1 P̃2 P̃2
P̃2 P̃1 P̃2
P̃2 P̃2 P̃1

 (23)

The distributed state-feedback control ũ = K̂x̃ stabilizes (21)
with

K̂ =diag(02×5,F2,F3,F4)+

diag(I2,G2,G3,G4)(−I4⊗R−1BT
1 P+

M⊗R−1BT
1 P̃2)diag(I5,Φ

−1
2 ,Φ−1

3 ,Φ−1
4 ) (24)

where P = P̃1 + 2P̃2 and M = aL reflects the structure of the
graph with Laplacian matrix

L =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

 and a = 1.7

The matrices Fi and Gi for i= 2,3,4 can be constructed via (8)
while Φi = T−1

i T1 with Ti for i = 2,3,4 being similarity trans-
formations that bring the linearized models into controllable
canonical form. See [11] for how to construct the Ti similarity
transformations.

The nonlinear equations of motion were modelled using s-
Functions in MatLab and the deviation of forward velocities
and height responses from nominal values of each X-RAE1
were simulated in Simulink. The first simulation depicts height
deviation and forward velocity response in the presence of
non-uniform wind field which is approximated by arbitrary
impulse acceleration along the vertical axis of each UAV. The
distributed LQR controller (24) is applied to the non-linear
model and as Fig. 3 and Fig. 4 show the height reference and
the forward velocity are regulated about the nominal values.

Next, random perturbations on the initial forward and down-
ward velocities of the four agents are considered and Fig. 5
illustrates that the distributed LQR controller stabilizes the
formation and the four UAV’s return to their nominal vertical
positions (i.e. their heights). Note that the simulations in Fig. 3,
4 and 5 show that the formation is recovered along the vertical
axis but the steady-state relative positions in the horizontal
direction are altered. The longitudinal deviation along the x-
axis can be regulated, if required, by additional integral action.

Finally, a simulation was reproduced under the following
conditions: Agent-1 was subjected to vertical impulse acceler-
ation representing an environmental disturbance. In addition,
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Fig. 3. Height deviation in the presence of impulse acceleration along the
vertical axis.
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Fig. 4. Forward velocity response in the presence of impulse acceleration
along the vertical axis.

agent-2 fails to transmit promptly its state to its neighbours.
A Transport Delay block from the Simulink library was
employed in the simulation environment to represent the delay
of τ seconds over the communication channels from agent-
2 to agent-1 and to agent-4. The delay was considered to
be identical for both interconnections. Figure 6 demonstrates
the height deviation of agent-1 and agent-2 for four different
values of τ and highlights the robustness of the proposed
distributed control scheme despite the presence of strong
nonlinearity in the model. Further simulations were performed
and robust stability was maintained for a delay up to 5 seconds.
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Fig. 5. Height deviation in the presence of random perturbations on the
trimmed value of the downward velocity.
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Fig. 6. Height deviation of agent-1 and agent-2 in the presence of impulse
vertical acceleration in agent-1 and delay τ in the communication from agent-
2 to agent-1 and to agent-4.

VI. CONCLUSION

We have extended an established technique for solving
longitudinal stability formation control problems of UAV’s to
the case of non-identical dynamics. The formation flying was
composed of four X-RAE1’s with differences in their masses
and their symmetry about the xz plane. Model-matching type
techniques have been considered to map the four linearized
models to a target linear system via state-feedback, input and
similarity transformations. Distributed LQR control employed
in networks of identical linear systems was appropriately
adjusted and applied to the formation control problem. Further
work is needed to extend the method to general flight condi-
tions including lateral dynamics and therefore be implemented
successfully in practical applications.
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