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Abstract: A model-predictive scheme for load frequency control of a multi-area power system is
proposed. The method depends on a decoupling technique which allows for a control design with
a distributed architecture. Treating the total power inflows of each area as input variables, a
decoupled linearized model for each area is derived. This allows for the formulation and solution
of a model predictive control problem with a quadratic performance index and input saturating
constraints on the individual tie-line power flows, along with an overall equality constraint to
address the energy balance of the network. It is assumed that the interconnection topology
(tie-lines) coincides with the communication topology of the network. The only information
which needs to be shared between interconnected areas is the local frequency variables. The
effectiveness of the method is illustrated via a simulation study of a three-area network. Future
work will attempt to establish formally the stability of the control scheme and to enhance the
versatility of the method by including constraints on the state variables.

Keywords: distributed model predictive control, load frequency control, automatic generation
control, interconnected power system.

1. INTRODUCTION

Power system networks are formed of control areas which
are interconnected via transmission lines referred to as tie-
lines. Each area is assumed to maintain a single nominal
frequency across its geographical region and comprises
either a single generator or group of generators. The
area is responsible for meeting power demand of its own
consumers as well as certain neighboring areas with which
the power exchange is normally scheduled for a contracted
value. However, due to power load differentiation with
the power generation, the frequency of each area along
with the scheduled power exchange with its interconnected
peers are altered from their nominal value. This violation
of the network steady-state operation can be described as a
disturbance rejection problem of large-scale interconnected
systems with state and input constraints.

Load Frequency Control (LFC) is one of the most challeng-
ing problems in multi-area power systems. Textbooks pro-
viding an introduction to power systems design and LFC
can be found in Bevrani (2010) and Kundur (1994). In
typical situations the geographical expanse and the mere
complexity of the system resulting from dynamical cou-
plings among the areas make centralized control schemes
either impossible or undesirable (Scattolini (2009)). Hence,
decentralized and distributed control is typically needed
to ensure stable network operation. Analytical methods
for designing decentralized and distributed load frequency
control have been presented in Siljak et al. (2002); An-
dreasson et al. (2012); Bidram et al. (2014). A set-theoretic

⋆ This work was supported by a City, University of London scholar-
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method for LFC design in the context of cyber-physical
power systems can be found in Kontouras et al. (2018)
while the authors Dritsas et al. (2018) propose LFC design
based on an anti-windup compensator assuring stability
of the closed-loop system even in cases of large load dis-
turbance. In this work we propose a distributed model
predictive based load frequency controller to recover the
nominal value of frequency and tie-line power exchange
and compensate for unknown step disturbances represent-
ing power load demand deviations.

Model predictive control has attracted attention from the
power system community in recent years due to its con-
venience to manage online disturbance rejection problems
with state and input constraints, a feature which is highly
desired for LFC design. Distributed model predictive based
LFC for multi-area interconnected power systems has been
presented in Ma et al. (2014). Therein a standard cou-
pled state-space model of each area is employed for state
predictions by the MPC scheme where Generation Rate
Constraint (GRC) and load reference constraint are con-
sidered. Model predictive control with decentralized and
distributed structure with application to power systems
have been also presented in Mohamed et al. (2011) and
Venkat et al. (2008), respectively.

Our method depends on a decoupling technique which
allows for a control design with a distributed architecture.
Treating the total power inflows of each area as input vari-
ables, a decoupled linearized model for each area is derived.
This allows for the solution of a model predictive control
problem with a quadratic performance index and input
saturating constraints on the individual tie-line power
flows, along with an overall equality constraint to address
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Fig. 1. Block-diagram of two-area power system.

the energy balance of the network. The effectiveness of the
method is illustrated via a simulation study of a three-area
network.

The remaining of the paper is organized in three sections.
In section 2 modelling of two-area power system is pre-
sented which is then extended to the multi-area case. Sec-
tion 3 is devoted to model predictive control design with
distributed structure. In the same section a case study of
a three-area power system is examined. Section 4 presents
the main conclusions of the work where a discussion of the
main results and suggestions for future work are provided.

2. MULTI-AREA POWER SYSTEM DESIGN

2.1 Two- area Modelling

We consider a standard linearized model Bevrani (2010)
of a two area power system the block diagram of which
is depicted in Fig. 1. The analysis provided next will
be extended to the multi-area power system design in
the following section. Neglecting saturator dynamics the
linear state-space model of the two-area system takes the
following form:

ẋ = Ax +Buu +Bww, x0 = x(0) (1)

where

x = [∆f1 ∆f2 ∆PG1 ∆PG2 ∆Ptie,1]′ (2)

u = [∆PC,1 ∆PC,2]′ (3)

w = [∆PL,1 ∆PL,2]′ (4)

represent state, input and disturbance vectors, respectively
and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

Tp1
0

Kp1

Tp1
0 −

Kp1

Tp1

0 − 1

Tp2
0

Kp2

Tp2
+
Kp2

Tp2

− Kt1

R1Tt1
0 − 1

Tt1
0 0

0 − Kt2

R2Tt2
0 − 1

Tt2
0

Ktie1,2 −Ktie1,2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

Bu =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Kt,1

Tt,1
0 0

0 0 0
Kt,2

Tt,2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

′

, (6)

Bw,5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
Kp,1

Tp,1
0 0 0 0

0 −
Kp,1

Tp,2
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

′

. (7)

Here, the notation ∆ indicates deviation from steady-state
operation conditions; for i = 1,2, ∆fi is the frequency
deviation from the common nominal value and ∆PG,i is
the deviation from equilibrium value of the electrical power
generated by the aggregate generating units of each area.
The latter is taken equal to the mechanical power produced
in the output of the turbines. ∆Ptie,1 denotes the total
power inflow to the area 1 with dynamics described by

∆Ptie,1 =Ktie,1,2 ∫
t

0
(∆f1(τ) −∆f2(τ))dτ, (8)

where Ktie,1,2 = 2πT1,2 is the synchronization coefficient
between areas 1 and 2. Since power inflow to the area 1
corresponds to equal power outflow from area 2, ∆Ptie,2 =
−∆Ptie,1 is redundant state and is neglected in eq. (1). All
parameters involved in (1) along with basic power system
terminology are summarized in Table 1. The disturbance
signal ∆PL,i for i = 1,2 denotes time-varying demand
of the consumers of the i-th area and corresponds to
unknown, piece-wise constant and bounded power load
deviations with known upper and lower limits. Here, we
study the case where

∆PL,i,min ≤ ∆PL,i ≤ ∆PL,i,max, for i = 1,2. (9)

Table 1.

Parameter,Symbol Area 2 / Area 1,3 Units

Nominal Frequency, fo 50/50 Hz
Power Base, PB,i 2000/1500 MW

Load Dependency Factor,Di 16.66/10.50 MW
Hz

Speed Droop, Ri 1.2 × 10−3/1.3 × 10−3 Hz
MW

Generator Inertia Gain, Hi 5 /4 s
Turbine Static Gain, Kt,i 1 /1 MW

MW
Turbine Time Constant, Tt,i 0.3 /0.25 s

Area Static Gain, Kp,i 0.06 /0.0952 Hz
MW

Area Time Constant, Tp,i 24 /22.8571 s
Tie-line Coefficient, Ktie,i 1090/1090 MW

Hz

The total control signal of the i-th control area is the
sum of two components: ∆utot,i = ∆Pf,i + ∆PC,i namely
the primary frequency control action, defined as ∆Pf,i =
− 1

Ri
∆fi and the automatic generation control (AGC)

∆PC,i to be designed. The first is a fixed static linear
control law performed by the speed governor which is a
regulating unit attached on the prime mover. Detailed



description of this topic can be found in Kundur (1994).
The static gain Ri is commonly referred to as speed droop
or speed regulation. The signal ∆utot,i, i = 1,2 is subjected
to a component-wise saturation hard constraint of the form

∆utot,i,min ≤ ∆utot,i ≤ ∆utot,i,max, i = 1,2 (10)

where the saturator limits are assumed symmetric in the
sense that ∆utot,i,max = −∆utot,i,min. Also, ∆utot,i,max

is assumed to be greater than the maximum expected
load deviation ∆PL,i,max with i = 1,2, otherwise, zero
frequency deviation error is not guaranteed. Negative
values of ∆utot,i,min allow for handling of negative values
of ∆PL,i, that is, in case of load reduction.

Since hard constraints apply to the total input signal of
each area it makes sense to formulate the state-space (1)
such that ∆utot,i appears in the input vector u. This is
shown next. Let the AGC signals be written as:

[∆PC,1
∆PC,2

] = [∆utot,1∆utot,2
] − [∆Pf,1

∆Pf,2
] (11)

or

[∆PC,1
∆PC,2

] = [∆utot,1∆utot,2
]+ [1/R1 0 0 0 0

0 1/R2 0 0 0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bf

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∆f1
∆f2

∆PG,1
∆PG,2
∆Ptie,1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

x

. (12)

Then adding BuBfx to (5) with Bf given in (12), changes

the input vector u in (1) to u = [∆utot,1 ∆utot,2]′ and elim-
inates the primary frequency control from the dynamical
equation. The matrix (5) is now altered to:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/Tp,1 0 Kp,1/Tp,1 0 −Kp,1/Tp,1
0 −1/Tp,2 0 Kp,2/Tp,2 +Kp,2/Tp,2
0 0 −1/Tt,1 0 0
0 0 0 −1/Tt,2 0

Ktie,1,2 −Ktie,1,2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13)

while matrices Bu and Bw in (6) and (7), respectively, are
unaffected. Essentially, once ∆utot,i has been designed the
AGC signal of each area can be generated by:

∆PC,i = ∆utot,i +
1

Ri
∆fi (14)

since the primary frequency control law ∆Pf,i, i = 1,2, is
pre-specified.

2.2 State-augmentation for integral action

A well-established technique for tackling step-disturbances
with zero steady-state error is to include integral action
into the state-space model. For the i-th area consider per-
formance variable expressed as a summation of frequency
deviation ∆fi multiplied by a bias factor Bi and tie-line
power exchange ∆Ptie,i or zi = Bi∆fi+∆Ptie,i. This quan-
tity is referred to as Area Control Error (ACE) and a usual
choice for Bi is Di + 1

Ri
, Bevrani (2010). Parameters Di

and Ri are defined in Table 1. Take now z = [z1 z2]′ = Czx
with x given in (2) and

Cz = [B1 0 0 0 1
0 B2 0 0 −1] (15)

and consider the augmented state-vector:

xa(t) = [x(t)′ ∫
t

0
z1(τ)dτ ∫

t

0
z2(τ)dτ]

′
. (16)

Then the augmented state-space form of the two-area
power system is written as:

ẋa = Aaxa +Bu,au +Bw,aw (17)

with Aa = [A 05×2
Cz 02×2], Bu,a = [ Bu

02×2] and Bw,a = [Bw
02×2],

where A, Cz, Bu and Bw are given in (13), (15), (6) and
(7), respectively. Due to state-augmentation by the inte-
gral of the ACE signal of each area, designing stabilizing
controller u for (17) leads to zero steady-state frequency
and tie-line power exchange deviations, provided these are
driven by step disturbances ∆PL,i, i = 1,2.

In the following section, we propose an equivalent repre-
sentation of the state-space form of the two-area system
which will allow us to derive a pseudo-decoupled model for
each area facilitating the multi-area power system design.
This will also prove highly useful for the distributed control
design. In the sequel all state-space representations are
given in the augmented form.

2.3 Decoupled state-space model and multi-area design

By viewing eq. (1) we remark that the two areas are
governed by differential equations of the same structure
differing only in parameters. Also the coupling between the
dynamics is due to ∆Ptie,1 variable pertaining to the power
exchange deviation between the two areas. By introducing
the variable ∆Ptie,2 = −∆Ptie,1 defined by

∆Ptie,2 =Ktie,2,1 ∫
t

0
(∆f2(τ) −∆f1(τ))dτ, (18)

where Ktie,2,1 = Ktie,1,2 the state-space form of each area
in a two-area system can be written as:

⎡⎢⎢⎢⎢⎢⎢⎣

∆ḟi
∆ṖG,i

∆Ṗtie,i
zi

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

Tp,i

Kp,i

Tp,i
−
Kp,i

Tp,i
0

0 − 1

Tt,i
0 0

Ktie 0 0 0
Bi 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∆fi
∆PG,i
∆Ptie,i

∫ zidτ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎣

0
0

−Ktie
0

⎤⎥⎥⎥⎥⎥⎦
∆fj +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
Kt,i

Tt,i
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∆utot,i +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
Kp,i

Tp,i
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∆PL,i, (19)

for i, j = 1,2, where Ktie =Ktie,1,2 =Ktie,2,1.

Consider now multi-area power grid composed of N ar-
eas (generically non-identical). These are interconnected
through transmission lines referred to as tie-lines the topol-
ogy of which is modelled by an undirected graph G = (V,E)
since the power exchange between interconnected areas is
considered bidirectional. Node i ∈ V represents the i-th
interconnected area while (i, j) ∈ E stands for the corre-
sponding link between area i and j. We assume that the
graph is not necessarily complete which implies that the
topology of tie-lines is sparse. The set of areas connected
to the i-th node through tie-lines is denoted by Ni ⊂ V.
Let now ∆Ptie,i represent the total power inflow to the
i-th area with dynamics described by

∆Ptie,i = ∑
j∈Ni

Ktie,i,j ∫
t

0
(∆fi(τ) −∆fj(τ))dτ (20)

for i = 1,⋯,N . A decoupled state-space equation of the
i-th interconnected area can take the following form:



⎡⎢⎢⎢⎢⎣

∆ḟi
∆ṖG,i
zi

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

Tp,i

Kp,i

Tp,i
0

0 − 1

Tt,i
0

Bi 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ai

⎡⎢⎢⎢⎢⎢⎣

∆fi
∆PG,i

∫ zidτ

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xi

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −
Kp,i

Tp,i
Kt,i

Tt,i
0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bu,i

[∆utot,i
∆Ptie,i

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ui

+

⎡⎢⎢⎢⎢⎢⎢⎣

−
Kp,i

Tp,i
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bwi

∆PL,i

´¹¹¹¹¹¸¹¹¹¹¶
wi

(21)

with ∆utot,i = ∆PC,i + ∆Pf,i for i = 1,⋯,N . Note that
∆Ptie,i has been eliminated from the state-vector and
instead is included in the input vector of the i-th area. This
technical manipulation results in dynamical decoupling
of the interconnected areas and will be utilized in the
derivation of LFC controllers with distributed architec-
ture. A schematic representation of (21) is shown in Fig.
2. Since ∆Ptie,i is defined by (20) to avoid any dynamical
discrepancy in the model of the i-th area the exact value of
this pseudo control variable will be fixed by including hard
equality constraints in the control design. We note that
this decoupling approach which has not been noticed in
the context of relevant literature, will provide considerable
flexibility in the control design with distributed architec-
ture.

∆PC,i + Σ
∆utot,i Kt,i

sTt,i+1
∆PG,i

Σ

∆Ptie,i

−

∆PL,i

−
Kp,i

sTp,i+1 ∆fi

1
Ri

−

Fig. 2. Single block representation of the i-th intercon-
nected area.

In a multi-area power system the power generation rate of
each area should not exceed a specified upper bound. This
can be considered as state constraint by the control of each
area with typical maximum value for thermal units being
0.0017 p.u.MW /s. Comprehensive treatment of this topic
can be found in Ma et al. (2014). In this study only input
constraints are employed for control design. The control
problem examined in this work is stated next.

2.4 Problem statement

Possible power load change in the i-th area of an inter-
connected power system causes the electrical frequency fi
to deviate from its nominal value. Due to interconnections
among the areas through tie-lines and the dependence of
the power exchange between the i-th and j-th area upon
the difference ∆fi −∆fj , any power load deviation occur-
ring in the i-th area will affect also the linked j-th area
causing transients in its frequency fj . Here, we formulate
the Load Frequency Control of a multi-area power system
as disturbance rejection problem with input constraints.
We assume that each area can produce LFC signals in-
dependently despite the dynamical coupling with certain
number of its counterparts, referred to as neighboring
areas, with whom it can exchange state information. Effec-
tively, we consider that the topology of physical links (tie-
lines) and the topology of information exchange among

areas coincide and are described by the same graph. For
the problem outlined above, a model predictive controller
with distributed architecture is proposed in the following
section.

3. LOAD FREQUENCY CONTROL DESIGN

3.1 Model predictive control formulation

Consider multi-area power system of N areas with lin-
earized dynamics described by (21), written here in com-
pact form as:

ẋi = Aixi + [Bu,i Bw,i] [uiwi
] , xi,0 = xi(0), (22)

for i = 1,⋯,N . Note that this model is augmented by
the ACE signal of each area for integral action purposes.
The actual power system evolves in real time while the
control subsystem of each area predicts local states within
a fictitious future horizon utilizing the system model.
For control design, the variables (xi, ui,wi) in (22) are
discretized and the predicted discrete-time variables are
denoted by (x̂(⋅), û(⋅), ŵ(⋅)). We assume that the local
state can be measured while an estimate of the disturbance
signal wi is obtained by appropriate observer.

In our control design the predicted horizon and the control
horizon are assumed to be identical and equal to p. The
discrete model of the i-th area, obtained as the zero-order-
hold equivalent to (22) (continuous-time model), is written
as:

xi[k + 1] = Ad,ixi[k] + [Bd,u,i Bd,w,i] [ui[k]wi[k]]

xi,0 = xi[0].
(23)

We note here that the hatted variables are not necessarily
the same as the actual variables. Hence, x̂i[k + p∣k] is the
predicted state of the i-th area after p sampling intervals
starting from k and propagating to the future horizon
p driven by a sequence of open-loop input functions
ûi[k∣k],⋯, ûi[k + p − 1∣k]. For the i-th area let

Xi[k] = Φixi[k] +Ψi,1Ui[k] +Ψi,2Wi[k] (24)

be aggregate vector which stacks p consecutive predicted
states from the instant k, with

Xi[k] = [x̂i[k + 1∣k]′ x̂i[k + 2∣k]′ ⋯ x̂i[k + p∣k]′]
′
, (25)

Ui[k] = [ûi[k∣k]′ ûi[k + 1∣k]′ ⋯ ûi[k + p − 1∣k]′]′ , (26)

Wi[k] = [ŵi[k∣k]′ ŵi[k + 1∣k]′ ⋯ ŵi[k + p − 1∣k]′]′ , (27)

Φi = [A′
d,i A

2
d,i

′ ⋯ Ap
d,i

′]′ , (28)

Ψi,1 =

⎡⎢⎢⎢⎢⎢⎢⎣

Bd,u,i 0 ⋯ 0
Ad,iBd,u,i Bd,u,i ⋯ 0

⋮ ⋮ ⋱ ⋮
Ap−1

d,i Bd,u,i A
p−2
d,i Bd,u,i ⋯ Bd,u,i

⎤⎥⎥⎥⎥⎥⎥⎦

, (29)

Ψi,2 =

⎡⎢⎢⎢⎢⎢⎢⎣

Bd,w,i 0 ⋯ 0
Ad,iBd,w,i Bd,w,i ⋯ 0

⋮ ⋮ ⋱ ⋮
Ap−1

d,i Bd,w,i A
p−2
d,i Bd,w,i ⋯ Bd,w,i

⎤⎥⎥⎥⎥⎥⎥⎦

. (30)

Essentially, the vector Xi[k] contains all the state predic-
tions over the future horizon p. These are computed by the
controller which employs the actual state xi[k] to initialize
the prediction. In the extreme case where the actual value
xi[k] is not available at the k-th instant, the controller
may perform the prediction starting from the last available
predicted state, e.g. x̂i[k∣k − 1].



The constrained optimal control problem for each area
i = 1,⋯,N at time instant k is formulated as:

min
Ui[k]

J(xi[k], Ui[k]) (31)

with

J(xi[k], Ui[k]) =Xi[k]′Q̃iXi +Ui[k]′R̃iUi[k] (32)

subject to:

Xi[k] = Φixi[k] +Ψi,1Ui[k] +Ψi,2Wi[k] (33)

[Ip ⊗ [0 1]]Ui[k] =

⎡⎢⎢⎢⎢⎢⎢⎣

∆Ptie,i[k]
∆P̂tie,i[k + 1∣k − 1]

⋮
∆P̂tie,i[k + p − 1∣k − 1]

⎤⎥⎥⎥⎥⎥⎥⎦

(34)

[ Ip ⊗ [1 0]
−Ip ⊗ [1 0]]Ui[k] < [Ip ⊗ γiIp ⊗ γi] (35)

where Q̃i = Ip ⊗Qi, R̃i = Ip ⊗ Ri and γi = ∣∆utot,i,max∣ =
∣∆utot,i,min∣. Qi = Q′

i ≥ 0 and Ri = R′
i > 0 weigh predicted

states and inputs, respectively, at each iteration of the
predicted horizon. They are tuning parameters of the MPC
controller the choice of which can be guided by simula-
tions. The parameter γi in (35) represents saturation hard
constraint of each area.

Note that the first equality constraint (referring to first
instant of the prediction horizon) in (34) is given by
the actual value of ∆Ptie,i[k] which is a known signal
at instant k. This can be either measured directly or
computed as:

∆Ptie,i[k] = ∆Ptie,i[k − 1]
+ ts ∑

j∈Ni

Ktie,i,j(∆fi[k − 1] −∆fj[k − 1]) (36)

with ts representing the sampling period of the discretiza-
tion. Also, ∆Ptie,i[k − 1], ∆fi[k − 1] and ∆fj[k − 1] are
actual and known signals at the k-th time instant by
the i-th controller. Note that the difference equation (36)
can be considered as the zero-order-hold equivalent to the
continuous model (20). This implies that the proposed
MPC controller does not violate the dynamics of the ac-
tual model while performs state predictions depending on
actual values at the k-th instant. The remaining equality
constraints in (34) referring to the following p− 1 instants
of the prediction can be produced by the last available
predicted states as shown below:

∆P̂tie,i[k + 1 + µ∣k − 1] = ∆P̂tie,i[k + µ∣k − 1]
+ ts ∑

j∈Ni

Ktie,i,j(∆f̂i[k + µ∣k − 1] −∆f̂j[k + µ∣k − 1]) (37)

with µ = 0,⋯, p − 1.

In the above quadratic program the finite prediction
horizon p was selected identical to the control horizon.
We assume that at each iteration k the controller of the
i-th area measures the local state xi[k] and estimates
the disturbance signal wi[k]. At the same time it receives
the current and the predicted states from its neighboring
areas. Also it transmits its own local information (current
and predicted states) to them. The distributed model
predicted controller for a multi-area interconnected power
system can be designed by the following algorithm.

Area-2

Area-1 Area-3

MPC-3MPC-1 MPC-2

Fig. 3. Topology of physical links (tie-lines) and commu-
nication scheme.

Algorithm 1.
1: Measurement: Measure xi[k] and estimate wi[k].
2: State Transmission: Send xi[k] and Xi[k − 1] to

neighboring controllers and receive respective informa-
tion from neighboring areas, xj[k], Xj[k − 1], j ∈ Ni.

3: Initialization: Initialize state prediction starting
from xi[k].

4: Optimization: Solve quadratic program (31).
5: Assignment: If (31) is feasible:
utot,i[k] = [1 0p−1]Ui[k], otherwise:
utot,i[k] = ûtot,i[k − 1].

6: Implementation: Apply AGC signal ∆PC,i[k] =
utot,i[k] + 1

Ri
∆fi[k].

7: Prediction: Construct Xi[k].
8: Termination: set k = k + 1 and return to 1.

Remark 1. The optimal control problem (31) requires data
transmission among coupled areas. This implies that the
communication topology should coincide with the physical
topology of the power network in order for the model
predictive control strategy proposed to be implemented.
Yet, interconnected areas only need to exchange their fre-
quency information (actual and future predictions) while
variables associated with the remaining state-vector are
not communicated. Hence, in sparse networks with limited
interconnections, the communication will not be excessive.

We also wish to mention that important aspects of MPC
control, such as recursive feasibility and convergence of the
MPC algorithm, are not discussed here. These represent
topics of future work. Also, future research will investigate
the effects of model uncertainty in conjunction with more
advanced techniques from robust MPC.

3.2 Case study: Conceptual three-area power system

Consider a power system of three control areas which are
interconnected via tie-lines. The topology of the network
is shown in Fig. 3 where the physical links and the com-
munication topology are represented by thick and dashed
lines, respectively. The linearized open-loop dynamics of
each area is described by (21) with the parameters of
the i-th plant being given in Table 1. Each control area
is subjected to unknown piece-wise constant disturbances
(power demand deviations from equilibrium operation).
One scenario is considered for simulation purposes where
disturbances ∆PL,i for i = 1,2,3 occur at different in-
stances well-spread out over the simulation interval which
is taken as 40 [sec]. The disturbance of area 1, ∆PL,1 = 150
[MW ], appears at the first second of the simulation while
those of area 2, ∆PL,2 = 200 [MW ], and 3, ∆PL,3 = 150
[MW ], at the 11-th and 21-th second, respectively. The
control subsystem of each area implements the MPC Al-
gorithm 1 in order to construct its total control signal
∆utot,i. Then the signal which drives the LFC controller
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Fig. 6. Total optimal control signal of each area.

∆PC,i of each area is derived by (14). The algorithm is
performed every ts = 0.1 [sec] using prediction and control
horizon p = 15. In the simulation the MPC controllers of
the three areas have been tuned identically. The choice
of the weighting matrices is: Qi = diag(500,0,500) which
penalizes local states and Ri = 100I2 which weighs inputs.
The hard constraint γi has been taken 10% greater than
the magnitude of the respective disturbances of each area.

Fig. 4 and 5 show the transient response of the frequency
deviation and the total power-flow deviation from the
equilibrium operation of each area. The AGC signal to
be constructed at each iteration is given in Fig. 7. This is
derived from the optimal control input computed by the
MPC controller of each area. This is the total signal which
drives the control subsystem of each area and is depicted
in Fig. 6. Despite the fact that it is subjected to hard
saturation constraints the stable operation of the network
is maintained.

4. CONCLUSION
Model predictive load frequency control of a multi-area
power system was proposed based on a decoupling tech-
nique which allows for control design with distributed
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Fig. 7. AGC signal of each area.

architecture. Manipulating the total power inflows to each
area as input variables, a decoupled linearized model for
each area was derived. This formulation admits of solution
to a model predictive control problem with a quadratic
performance index and input saturating constraints on
the individual tie-line power inflows. An overall equality
constraint to address the energy balance of the network
was also included in the optimization problem. The only
information which the scheme requires be shared between
interconnected areas is the local frequency variables. Sta-
bility analysis of the control scheme proposed as well as
enhancement of the method by including constraints on
the state variables will be included in an extended version
of this paper.
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