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The formation of caustics by inertial particles is distinctive of dispersed �ows. Their
pressureless nature allows crossing trajectories resulting in singularities that cannot
be captured accurately by standard Lagrangian approaches due to their �ne spatial
scale. A promising method for the investigation of caustics is the Osiptsov method or
Fully Lagrangian Approach (FLA). FLA has the advantage to identify caustics, but its
applicability is hindered by the occurrence of singularities. We present an original robust
framework based on the FLA that provides an explicit expression of the dispersed phase
structure that does not degenerate in the vicinity of caustics, using a single representative
particle. The FLA is extended to account for the Hessian of the Dispersed Continuum
(DC). It demonstrates the integrability of the FLA number density and allows for the
calculation of the number density on a given length scale, retaining the functionality of
the FLA.
Number density models based on the �second�order� representation of the DC and on

the one�dimensional structure of the particle distribution, that account for the anisotropy
of the DC on caustics, are derived and applied for analytical �ows. The number density is
linked to a �nite length scale, needed for the introduction of the FLA to spatially �ltered
�ow �elds. Finally, the method is used for the calculation of the inter-particle separation
on caustics. The identi�cation of the structure of caustics presented in this work paves
the way to a robust understanding of the mechanisms of particle accumulation.

Key words: Hessian; Fully Lagrangian Approach; Particles; Droplets; Caustics.

1. Introduction

Inertial droplets and/or particles in dispersed �ows exhibit compression regions and
intersecting trajectories which result in caustic formations (Crisanti et al. 1992; Meneguz
& Reeks 2011). Caustic formations (Caustics) are zones of high concentration and their
intensity is important to a great variety of environmental, biological, engineering and
consmological (Tomita & Den 1986) applications. For example, the behaviour of microor-
ganisms is a�ected by the accumulation of nutrients (Vogel 1994) and the migration of
sea organisms and coral colonies is governed by the formation of caustics created by
sea currents (Serrano et al. 2016). Sea currents and weather systems result to the local
accumulation of pollutants, plastic debris (Lebreton et al. 2018) and aerosols (Knight
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2 A. Papoutsakis, M. Gavaises

2012). Also, environmental pollution (Bell et al. 2007), the impact of radioactive particles
(Thomas & Martin 1986) and the potency of spray delivered medication (Rygg et al.

2016), are strongly dependent on the formation of such accumulation regions (Sazhin
2014). In internal combustion engines the vortical structures of the in-cylinder carrier
phase �ow �eld induce accumulation regions of the spray droplets during fuel injection,
a�ecting the local stoichiometry of the mixture (Papoutsakis et al. 2018b). Caustics
in cumulus clouds has been reported to a�ect the patterns of rain (Ravichandran &
Govindarajan 2015) due to the sling e�ect of the vortical structures (Wilkinson et al.

2007).
In the general case particles interact only due to collisions (Marble 1970), for a

diluted system of dispersed �ows (Kasbaoui et al. 2019), however, interparticle collisions
can be neglected (Williams 1958; Bec 2003), resulting to a pressureless continuum
model (Kasbaoui et al. 2019; Tomita & Den 1986). The pressureless nature of dispersed
�ows allows the crossing of particle trajectories and results in caustic structures which
are compression regions formed by the undulation of the dispersed phase. Standard
Lagrangian Approaches (LA) use a representative sub-set of the actual number of physical
particles. Instances of caustics are singularities that cannot be captured accurately since
they consist of a large concentration of particles focused in a small length scale, and
demand a prohibitive number of representative Lagrangian particles to be described
(Healy & Young 2005). In Papoutsakis et al. (2018a) it was shown that the number
density calculated with LA could not converge even for 106 representative particles per
direction for a simple one�dimensional �ow �eld.
The Fully Lagrangian Approach, (standard FLA or Osiptsov method) (Osiptsov 1984),

o�ers an e�cient alternative by treating the particulate phase as a continuum. FLA
solves the particle number conservation equation in Lagrangian form along a single
trajectory and provides the equations for the components of the Jacobi matrix of
transformation from the Eulerian to the Lagrangian coordinates. This is essentially a
method of characteristics and can deal with complex cases such as intersecting particle
trajectories and caustics and presents unique properties in capturing the occurrence
of accumulation regions. FLA utilises the de�nition for the density ρ for a deformed
continuum, by introducing the Jacobian matrix determinant |J | (i.e. ρ0 = |J |ρ) as it is
used in solid mechanics (Healy & Young 2005). Although a dispersed phase consists of
scattered individual entities, a Dispersed Continuum (DC) can be de�ned. This implies
continuous �elds for the particle number density and the particle velocity. Of course,
the limit of the continuum assumption must be respected. Under the DC assumption,
particles transport remaining attached to the Lagrangian DC, which is following the
motion of the particles. Due to the absence of pressure in dispersed �ows (in contrast
to solid mechanics) the continuum can intersect itself, creating overlapping folds, and
particle collisions may occur among particles that are attached to overlapping folds
(Ravichandran & Govindarajan 2015). The folds are areas of negative Jacobian, some-
thing that is not observed in continuum mechanics. It must be stressed here that even if
pressure due to particle collisions is accounted for, dispersed �ows do present intersecting
trajectories. In the process of the creation of the folds for the DC, areas of zero Jacobian
will emerge. The loci of zero Jacobian are characterised by in�nite number density thus
identifying caustic formations.
The e�ciency and the modelling capabilities of the FLA in identifying the spatial

structure of caustics was demonstrated in Healy & Young (2005) and in Ijzermans et al.
(2009). The introduction of the FLA into the study of turbulent �ows (Meneguz & Reeks
2011) and (Picciotto et al. 2005) resulted in the identi�cation and analysis of spatial
structures of the dispersed phase distribution using the moments of concentration. Ac-
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cording to Picciotto et al. (2005) FLA has great potential for reductions in computational
time compared with the standard Eulerian�Lagrangian approach (LA) and provides a
sound mathematical framework for interpreting the physics of particulate �ows.
However, the occurrence of singularities in FLA hinders the applicability of the method.

Singularities pose a serious controversy in the interpretation of the FLA results. In
literature, singularities are treated either by clipping large values of density (see Ducasse
& Pumir (2009)) or by introducing the concept of number density moments (i.e na =〈
|J |1−a

〉
(Ijzermans et al. 2010)) which was used for the analysis of spatial structures of

the dispersed phase in turbulent �ows. The zeroth moment has been used in Meneguz
& Reeks (2011) and in Ijzermans et al. (2010) for the evaluation of an averaged number
density. This approach, however, cancels out the e�ect of the continuum deformation
by multiplying the FLA density 1/|J | by |J |, and results to the transformation of
the FLA to a standard Lagrangian approach. The averaged number density for higher
moments gives non-physical values that reach to the order of 1010 (Meneguz & Reeks
2011; Ijzermans et al. 2010). The actual values of these peaks are coincidental and
are mostly related to the temporal resolution of the numerical integration during the
instances of sign change of the Jacobian. A turbulent di�ussion model was introduced
for the ��rst�order� FLA in Papoutsakis et al. (2018a). The extended ��rst�order� FLA
was implemented and assessed for Direct Numerical Simulations (DNS) for Stokesian
droplets in Homogeneous Isotropic Turbulence (HIT) using the standard LA. and was
shown that the FLA singularities infect the spatially averaged result. Thus, it becomes
essential that the FLA number density should be interpreted alongside with the spatial
structure of the DC �DC-structure� and must be connected to a length scale within a
robust mathematical framework.
In this work we present an integrated framework that lifts the ambiguity of the FLA

number density de�nition. We understand that because the FLA number density is
de�ned for an in�nitesimally small volume resulting to a point-wise density it results to
singularities. Our approach is based on the observation that a) the particulate phase and
the DC are not identical concepts, instead the particles are sporadically attached to the
DC at �nite inter-particle distances, and b) the deformation of the DC cannot be captured
by linear expressions, thus it is necessary to account for the curvature of its structure. The
model is based on representing the dispersed phase as a local approximation for the spatial
�DC-structure�, using the Jacobian and the Hessian of the transformation of the DC
from the Lagrangian to the Eulerian coordinates. Choosing a �rst�order representation
we obtain the standard FLA method, in a formulation that highlights the modelling
capabilities and shortcomings of the standard FLA as a �rst�order approximation of
the �DC-structure�. In a �second�order� expression of the �DC-structure� we obtain the
derivation of an original �second�order� model, which provides the averaged FLA number
density on a �nite volume either by utilising the modelled second�order structure or by
assuming a simpli�ed one�dimensional structure on a primary direction.
Speci�cally, we present a model for the multi-dimensional structure of a dispersed

phase based on the Jacobian and the Hessian of the transformation from the Lagrangian
to the Eulerian coordinates. The Hessian and the Jacobian matrices are obtained by
solving an initial value problem in multiple dimensions presented here, using a derivation
that is in line with the Osiptsov method. Number density expressions are derived either
from the 3D structure or assuming a one�dimensional structure which is then projected
along a primary direction. An algebraic model for the number density is derived and can
be used for a reduced model of the number density and the �DC-structure� by rotating
the coordinate system along a primary direction. Thus, the derivation of all the elements
needed for the application of the method to engineering problems is presented. The results
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inferred from the di�erent approaches presented in this work are compared with the
results stemming from the direct integration of individual particles. For the comparison
of the two approaches (i.e. the LA and the FLA), the anisotropy of the length scales
parallel and the perpendicular to the caustic front are accounted for. In our study the
proposed methodology is used for the investigation of caustic events for di�erent Stokes
numbers. Finally, the pressureless continuum assumption on a caustic is investigated by
calculating the length scales of the average inter-particle separation.

In Section 2, a representation of the local �DC-structure� based on the Taylor expansion
of the DC coordinates is presented. This approach lays the foundations of the �second�
order� FLA and also provides an insightful representation of the standard �rst�order
FLA. In addition, the initial value problem for the calculation of the Hessian matrix
in multi�dimensional problems is derived. In Section 3 the local �DC-structure� for
a Stokesian dispersed phase convected by Taylor vortices is calculated using direct
integration of a lattice of particles and is compared to the result from the �rst and
the �second�order� representations. In Section 4, the number density on a �nite volume
is de�ned. The results from the calculation of the number density, on multiple dimensions
assuming a �second�order� one�dimensional �DC-structure� based on the Hessian of the
Lagrangian transformation, (i.e. the curvature of the deformed DC) are also presented.
In the next sections the e�ect of the Stokes number on the structure of caustic formations
is discussed.

2. Second order Fully Lagrangian Approach

FLA provides a method to calculate the number density for a DC along the trajectory
of a particle. A particle trajectory is the evolution of the position xp(t) of a particle
with Lagrangian coordinate (xp0, t) in time t. The vector xp0 is the initial position of the
particle at time t = 0. The calculation of the number density in the FLA context is based
on the transformation of an in�nitesimal volume VL de�ned on the initial Lagrangian
coordinates xp0 to the deformed Lagrangian volume at t. The compression or expansion

of VL is quanti�ed by the Jacobian of the transformation de�ned as Jij =
∂xpi
∂xpj,0

, where

xpj,0 is the Lagrangian coordinate and xpj refers to the particle p and is equivalent with
the Eulerian coordinate xj . In the FLA the number density np along a trajectory, non�
dimensionalised by the initial number density np0 is:

np =
1

J
, (2.1)

where J is the determinant of the Jacobian matrix J. When J tends to zero the number
density tends to in�nity, thus signifying the occurrence of a caustic. The occurrence
of singularities is due to the point-wise de�nition of the number density in the FLA

framework np = limV→0N/V
np0

. Since the particles are dispersed and are characterised

by a minimum �nite separation scale, this point-wise density corresponds to the �DC-
structure� rather than the particulate phase itself.

In order to investigate the integrability of this number density on a caustic, we need to
focus in the Eulerian spatial structure of the DC. This can be revealed by representing the
dispersed phase distribution in the vicinity of a particle trajectory using the coordinates
of a particle xp(xp0 + δ, t) neighbouring to xp(xp0, t), where the vector δ is the initial
separation of the particles. Assuming a Taylor expansion for the distribution of the
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neighbours of xp(xp0) at a time t, the �DC-structure� can be represented as:

xp(xp0 + δ) = xp(xp0) +
∂xp

∂xpj,0
δj +

1

2

∂2xp

∂xpj,0∂x
p
k,0

δjδk + . . . . (2.2)

Employing a linear expansion in three dimensions, the position x + ε of the particle
(x0 + δ, t) in the vicinity of (x0, t) is expressed as:

εi(δ) = Jijδj , (2.3)

where δ = x0 − xp0 is the displacement vector of a particle at t = 0 and ε = x − xp is
the displacement vector of the same particle at t. Vector indices i, j correspond to vector
components and summation is assumed among the repeated indices. It can be observed
that the �rst�order spatial derivatives in 2.2 correspond to the Jacobian matrix, thus, 2.3
can be perceived as the expression of the �DC-structure� in the standard FLA framework.
In the following Sections it will be shown that in the case of caustic formations (i.e. J = 0)
the expression 2.3 results in an unde�ned structure where all particles collapse on a plane.
The linear representation of the dispersed phase degenerates when J = 0, however,

this is not the case for the actual distribution of the particles. The expression 2.2 can
be extended to account for a �second�order� description of the DC which provides the
�DC-structure�, even for small values of J , as:

εi(δ) = Jijδj +
1

2
Hijkδjδk , (2.4)

where Hi is a two dimensional matrix, for each Cartesian coordinate i, and is de�ned as

Hijk =
∂2xpi

∂xpj,0∂x
p
k,0

. Hi corresponds to the Hessian matrix of the transformation from the

Eulerian to the Lagrangian coordinates.
For a particulate �ow �eld with characteristic length L and a characteristic velocity

U we can de�ne the non�dimensional carrier phase velocity �eld U and the induced

particulate velocity V. In the classical FLA, the Jacobian Jij =
∂xpi
∂xpj,0

is calculated by

introducing the auxiliary variable ωij , which is the time derivative of the Jacobian:

ωij =
∂Jij
∂t

=
∂

∂t

(
∂xpi
∂xpj,0

)
=

∂Vi
∂xpj,0

. (2.5)

Although the calculation of the Jacobian can be extended for non-Stokesian particles
(Papoutsakis et al. 2018a) we will assume a Stokesian drag force in our analysis. In this
case the non�dimensional acceleration of the particles is: ẍi =

∂Vi
∂t = 1

St (Ui − Vi) where
St= tp/T is the Stokes number of the �ow (Sazhin 2014), tp is the particle relaxation
time and T = L/U is the characteristic time. Thus, following Osiptsov (1984), the initial
value problem for ωij is obtained as:

∂ωij
∂t

=
∂

∂xpj,0

(
∂Vi
∂t

)
=

1

St

(
∂xpm
∂xpj,0

∂Ui
∂xm

− ∂Vi
∂xj,0

)
=

1

St

(
Jmj

∂Ui
∂xm

− ωij
)
, (2.6)

where addition is assumed among the terms with index m. For the derivation of 2.6 the

chain rule ∂(·)
∂xi,0

= ∂(·)
∂xi

∂xpi
∂xpi,0

is used with xpi ≡ xi. The equation 2.6 is integrated using the

initial condition ωij =
∣∣∣t=0

∂Vi
∂xj

stemming from 2.5.

For the derivation of an expression for the Hessian Hijk, needed for the �second�order�
FLA in three dimensions, the auxiliary variable ψijk is inroduced, de�ned as the time
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derivative of the Hessian:

ψijk =
∂Hijk

∂t
. (2.7)

The Hessian time rate ψijk can be expressed as the spatial derivative of the rate of the
Jacobian ωij over the Lagrangian coordinate xpk,0 as:

∂ψijk
∂t

=
∂

∂t

(
∂ωij
∂xpk,0

)
=

∂

∂xpk,0

(
∂ωij
∂t

)
=

∂

∂xpk,0

(
1

St

(
Jmj

∂Ui
∂xm

− ωij
))

. (2.8)

Using the chain rule as in 2.6 we �nally obtain an expression for the Hessian time rate:

∂ψijk
∂t

=
1

St

(
Hmjk

∂Ui
∂xm

+ JmjJnk
∂2Ui

∂xm∂xn
− ψijk

)
, (2.9)

where addition is assumed among the terms with indices m and n. For t = 0 the
Lagrangian derivative coincides with the Eulerian derivative, thus, the initial condition

for ψ is ψijk(t = 0) = ∂2Vi
∂xj∂xk

. Assuming that at t = 0 the DC is not deformed, the

expression H(t = 0) = 0 can be used as the initial value for Hijk.
The initial value problem for the calculation of the Hessian and the Jacobian under

the �second�order� FLA concept as described by the equations 2.5, 2.6, 2.7 and 2.9 can
be summarised by the non-linear �rst�order di�erential system:

∂

∂t


Jij
ωij
Hijk

ψijk

 =


ωij

1
St

(
∂Ui
∂xm

Jmj − ωij
)

ψijk
1
St

(
Hmjk

∂Ui
∂xm

+ JmjJnk
∂2Ui

∂xm∂xn
− ψijk

)
 ,

Jij
ωij
Hijk

ψijk


t=0

=


1
∂Vi
∂xj

0
∂2Vi
∂xj∂xk

 ,
(2.10)

where addition is assumed among the terms m = 1 . . . 3 and n = 1 . . . 3. The system
of equations 2.10 is integrated with an appropriate numerical method (e.g. Runge�
Kutta) and provides the entries of the Jacobian and the Hessian matrices along a particle
trajectory.
From the Equation 2.10 it can be inferred that for a linear converging �ow �eld with

U(y) = −y, ∂2U/∂x2=0, the Hessian is zero and at the focal point y=0 the number
density will be genuinely in�nite (Morse point) as all particles will meet at the same
location. As the curvature of the carrier phase �eld becomes non-zero, the Hessian will
be generally non-zero (H 6= 0 ) and the number density would be �nite.

3. Second order structure of a Stokesian dispersed phase in a periodic

two�dimensional array of Taylor vortices

In this section we present the result from a Kinematic Simulation (KS) (see Monchaux
et al. (2012)) of the structure of a DC that conveys in a carrier phase �ow �eld that
consists of a periodic distribution of two�dimensional stationary Taylor vortices. Similar
synthetic �ow �elds have been used in the analysis of Crisanti et al. (1992). The dispersed
phase consists of 500 × 500 individual particles with Stokes number St = 0.1. Initially,
the particles are uniformly distributed in a square with size L. The carrier phase �ow
�eld U = (U1, U2) is an incompressible synthetic �ow �eld de�ned by the analytical
expression:

U1(x, y) = U0 cos(2πnx) sin(2πny), and U2(x, y) = −U0 sin(2πnx) cos(2πny) , (3.1)
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Figure 1: (a) Distribution of particles at t = 0.4. (b) Solid black line: Trajectory of
the reference particle from t = 0 to t > 0.45 as calculated by direct integration of
the particle equation of motion assuming Stokes particles. Black dots: Distribution of
the neighbouring particles calculated by direct integration of the particle equation of
motion. Red lines: Particle distribution inferred from the �second�order� description
of the DC structure. Black lines: Particle distribution inferred from the �rst�order
description of the �DC-structure�. The particle distributions are shown at regular intervals
t = 0.00, 0.05, 0.10, 0.15, . . . , 0.45 and at t = 0.1655. Instance t = 0.1655 corresponds to
a caustic formation. The vector �eld represents the carrier phase velocity �eld.

where x and y are the dimensionless coordinates, normalised by L. The velocity amplitude
U0, non�dimensionalised by U, is equal to U0 = 5 and the wavenumber is n = 2. The result
of the particles distribution at time t = 0.4 as calculated by integrating the equation of
motion ẍp = (U−V)/St, is shown in �gure 1(a). The expression 3.1 provides the exact
values of the velocity �eld and its spatial derivatives at any point of the Eulerian domain,
needed for the integration of the initial value problem described by the equation 2.10, as
well as for the solution of the equation of motion. The equation of motion and the initial
value problem 2.10 are both integrated using a fourth order Runge Kutta method.

In �gure 1(a) the position of each particle is shown by transparent black coloured
circles and the particle agglomeration is identi�ed by the dark �laments shown in this
�gure. The trajectory of a single particle initially located at (−0.05, 0.1) is shown in
�gure 1(b). The distribution of 80 particles neighbouring to the reference particle and
arranged in a rectilinear lattice of 9× 9 particles with a initial separation |δ| = 0.0005 is
also shown in �gure 1 (b). Their trajectories are calculated by direct integration and they
are presented as black dots at regular intervals. The black and red lines in �gure 1(b)
represent the local �DC-structure� as calculated by 2.3 and 2.4 which correspond to the
�rst and �second�order� representation of the DC structure, using the initial separation
vector |δ| for each neighbouring particle. The components of the Jacobian and the Hessian
matrices needed by 2.3 and 2.4 are calculated by the initial value problem 2.10, derived
in the previous section.
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4. Calculation of the particle number density

In this section a method for calculating a number density de�ned at a �nite length�
scale is presented. This number density is calculated from the �rst and the �second�order�
model for the DC structure. An analytical model for the number density, assuming a
one�dimensional �second�order� representation of the DC is also derived. In the �gures
2(a-d) we focus in the dispersed phase for four instances. From the �gures 2(a-d) and
from the �gure 1(b) it can be inferred that the �second�order� FLA can provide a
satisfactory approximation of the DC structure even at signi�cant distances from the
reference trajectory. The method not only captures the compression of the DC but also
resolves the complex non-isotropic �DC-structure� even when this collapses to a caustic
�lament (see �gure 2(b)).
In conjunction with the point-wise density np, a number density n̂p de�ned at a �nite

length�scale can be inferred from the �DC-structure� for each one of the three above
mentioned methods as:

n̂p =
1

St
, (4.1)

where n̂p has been normalised by the initial number density np0, and St is the surface of
the lattice de�ned by the eight particles closest to the reference particle p at t normalised
by the initial surface of the lattice S0. The number density n̂p in 4.1 is de�ned at a
�nite length�scale ∆ ∼

√
St. Figure 2(b) corresponds to the instance t = 0.1655, for

which the particles agglomerate to a caustic. In �gure 2(b) it can be observed that the
�rst�order structure as provided by 2.3 and indicated by the black line mesh, collapses
to a single line with St = 0, since J11J22−J12J21 = 0. This results to an in�nite number
density n = 1/J . The rationale behind the occurrence of in�nite number densities in the
standard FLA lays on the fact that the �rst�order approach provides a point-wise number
density (i.e. the number density that corresponds to an in�nitesimally small volume) and
is based on the local DC deformation. This behaviour is nonphysical because number
density should be de�ned for a �nite length�scale. The particulate phase is dispersed,
thus the de�nition of a point-wise de�nition breaches the continuity assumption.
For the derivation of an analytical model for a number density de�ned at a �nite

length�scale, we can assume a simpli�ed one�dimensional �second�order� �DC-structure�
for a caustic formation. This assumption can be based on the observation that these
formations appear as �laments with a one�dimensional structure along a preferential
direction (see �gure 1). A coordinate system δ, ε attached to the reference particle and
perpendicular to the �lament can be chosen so that J and H are both positive (see �gure
3). Thus a one�dimensional �DC-structure� can be expressed as ε(δ) = Jδ + 0.5Hδ2 ( or

as δ(ε) = −J+
√
J2+2Hε
H , where the binomial root closer to the reference point is chosen).

The solid line in �gure 3 depicts the schematic representation of a one�dimensional
DC. The DC is presented in terms of the Lagrangian x0 and Eulerian x coordinate. In
the speci�c example the DC has folded, thus it is multiply de�ned for a part of the
Eulerian �eld. The local coordinate ε corresponds to the Eulerian coordinate x and the
local coordinate δ corresponds to the Lagrangian coordinate x0. The averaged point-
wise number density 1/J = dδ/dε for an interval [−Rε, Rε] with length L = 2Rε at the
proximity of the point A shown in the �gure 3 (scenario A) is:

n̂p =
1

2Rε

∫ Rε

−Rε

dδ

dε
dε =

|δ(Rε)− δ(−Rε)|
2Rε

, (4.2)

where δ(±Rε) = (−J +
√
J2 ± 2HRε)/H.

For the lower bound of the interval [−Rε, Rε] (i.e. ε = −Rε) the equation ε(δ) = −Rε
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Figure 2: Black dots: Distribution of particles neighbouring to the reference trajectory.
Red lines: Particle distribution inferred from the �second�order� description of the �DC-
structure�. Black lines: Particle distribution inferred from the �rst�order description
of the �DC-structure�. Orange lines: Particle distribution inferred from the �rst�order
one�dimensional description of the �DC-structure�. Figure (b) corresponds to a caustic
formation, where the lattice that corresponds to the �rst�order representation (shown
with black grid lines) has degenerated to a straight line.

will not have a root if J2 < 2HRε (see scenario B �gure 3(a)). This scenario occurs
when the caustic occurs within the Eulerian interval [−Rε, Rε] and there is a minimum

ε = Jδ + 0.5Hδ2, εmin = − J2

2H > −Rε for δmin = δ(εmin) = −J/H. In this case the
integration is done along the interval [εmin, Rε], with length L1 = Rε − εmin for the �rst
branch of the caustic formation; and along an interval with length L2 on the second
branch of the caustic. By ensuring that L = L1 + L2 = 2Rε for the two branches, the
interval for the second branch is [εmin, Rε + 2εmin]. Thus, the averaged number density
for scenario B is:

n̂p =
1

2Rε

∫ Rε

εmin

dδ

dε
dε+

1

2Rε

∫ Rε+2εmin

εmin

dδ

dε
dε =

|δ(Rε)− δmin|+ |δ(Rε + 2εmin)− δmin|
2Rε

.

(4.3)
Finally, introducing the roots δ(±Rε) = (−J +

√
J2 ± 2HRε)/H in the expression 4.2

for the scenario A and the roots δ(Rε) = (−J +
√
J2 + 2HRε)/H, δ(εmin) = −J/H and

δ(Rε+2ε) = (−J +
√
2HRε − J2)/H in the equation 4.3 for the scenario B, n̂p averaged

on a characteristic length�scale 2Rε is:

n̂p =

{
2√

J2+2HRε+
√
J2−2HRε if J2 − 2HRε > 0

√
J2+2HRε+

√
−J2+2HRε

2RεH
if J2 − 2HRε < 0 .

(4.4)

For J2 >> 2HRε, the above expression simpli�es to the classical FLA expression n̂p =
1/J .
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For the calculation of a scalar magnitudeH for the Hessian, along the primary direction
of a caustic �lament from Hijk, the angle θ between the coordinate systems that are
attached to the fold (i.e. (η, ζ) and (η0, ζ0)) in relation to the global coordinates (x, y)
and (x0, y0) is assumed. The transformation between the two systems for both the initial
and the current positions is written as:

(η, η0) = (x, x0) cos θ + (y, y0) sin θ , (ζ, ζ0) = −(x, x0) sin θ + (y, y0) cos θ , (4.5)

(x, x0) = (η, η0) cos θ − (ζ, ζ0) sin θ , (y, y0) = (η, η0) sin θ + (ζ, ζ0) cos θ . (4.6)

Based on the assumption of the one�dimensional structure of the caustic �lament the
curvature of the DC on the ζ direction can be ignored and the Hessian magnitude H on

the direction ζ can be de�ned as H = ∂2η
∂η20

. In order to evaluate the second derivative, we

start from the �rst derivative which can be written as:

∂η

∂η0
=

∂η

∂x0

∂x0
∂η0

+
∂η

∂y0

∂y0
∂η0

=
∂x

∂x0
cos2 θ +

∂y

∂x0
sin θ cos θ +

∂x

∂y0
sin θ cos θ +

∂y

∂y0
sin2 θ .

(4.7)
This result is obtained using the transformation equations 4.5 for η and ζ in terms of

x and y and the partial derivatives of the Lagrangian coordinates, deduced from 4.6 (i.e.
∂x0

∂η0
= cosθ and ∂y0

∂η0
= sinθ). The second derivative is obtained by di�erentiating 4.7 on

η0 using the expressions ∂x0

∂η0
= cosθ and ∂y0

∂η0
= sinθ and also the following evaluations

of the chain rule:

∂

∂η0

(
∂x

∂x0

)
=

∂2x

∂x0∂x0

∂x0
∂η0

+
∂2x

∂y0∂x0

∂y0
∂η0

,
∂

∂η0

(
∂y

∂x0

)
=

∂2y

∂x0∂x0

∂x0
∂η0

+
∂2y

∂y0∂x0

∂y0
∂η0

∂

∂η0

(
∂x

∂y0

)
=

∂2x

∂x0∂y0

∂x0
∂η0

+
∂2x

∂y0∂y0

∂y0
∂η0

,
∂

∂η0

(
∂y

∂y0

)
=

∂2y

∂x0∂y0

∂x0
∂η0

+
∂2y

∂y0∂y0

∂y0
∂η0

.

(4.8)

The second derivative H = ∂2η
∂η20

can be obtained from 4.7 as:

H = H111 cos
3 θ +H121 cos

2 θ sin θ +H211 cos
2 θ sin θ +H221 cos θ sin

2 θ

+H112 cos
2 θ sin θ +H122 cos θ sin

2 θ +H212 cos θ sin
2 θ +H222 sin

3 θ . (4.9)

The primary direction of the fold is calculated by �nding the θ ∈ [0 : 2π] that maximises
H in 4.9. This maximum value H is used for the evaluation of the number density for a
�nite volume with radius Rε as dictated by 4.4. The result of this analysis for n̂p at the
instance t = 0.4 and Rε = 0.001 is shown in �gure 4. It can be observed that this method
provides a �nite value for n̂p and the loci of number density maxima corresponds to the
caustic formations shown in �gure 1.
The orange grid lines in the �gures 2(a-d) represent the �DC-structure� as described

by the �second�order� FLA, assuming this one�dimensional structure, that accounts for
the DC curvature along the primary direction only. The Taylor expansion of the Eulerian
coordinates (η, ζ), expressed in terms of the Lagrangian coordinates (η0, ζ0), across the
primary direction θ, is:

η = J1,1η0 + J1,2ζ0 + 0.5Hη20 , ζ = J2,1η0 + J2,2ζ0 , (4.10)

where the second derivatives on the ζ direction are assumed to be equal to zero, i.e.
∂2

∂ζ20
= 0, and also ∂2ζ

∂η20
= 0. Rotating the above expression by the principal direction

angle θ, the �DC-structure� on the x, y plane (ε1 = x− xp and ε2 = y − yp) is expressed
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Figure 3: One�dimensional structure of the DC for the scenario A:J2−2HRε > 0 and for
the scenario B:J2 − 2HRε < 0, when the caustic fold occurs within the �ltering volume.

as:

x−xp = J1,1δ1+J1,2δ2+0.5Hδ21 cos
3 θ+H cos2 θ sin θδ1δ2+0.5H cos θ sin2 θδ22 , (4.11)

and

y− yp = J2,1δ1+J2,2δ2+0.5Hδ21 cos
2 θ sin θ+H cos θ sin2 θδ1δ2+0.5H sin3 θδ22 , (4.12)

where δ1 = x0 − xp0 and δ2 = y0 − yp0 .
In �gure 5 we present a comparison of the number densities for the reference particle

(−0.05, 0.1) calculated using both the standard FLA (using the model 2.1) the �second�
order� FLA ( 4.1), and the �second�order� FLA using a one�dimensional structure for
the DC (see equations 4.4 and 4.9) , compared to the result inferred from the direct
numerical integration of particle trajectories using 4.1.
In order to calculate all densities from the various models and compare them to the

LA result, at a consistent length scale, the analytical model described by 4.4 is evaluated
at a length scale Rε which is inferred from the LA simulation. Rε shown in the �gure 3
corresponds to the length�scale of the caustic formation across the agglomeration front.
The deformed DC on a caustic is a strongly anisotropic �lament and is characterised by
a maximum and a minimum length, namely Rmax and Rmin respectively. An estimate
for the thickness of this caustic �lament Rε can be obtained from Rmin. Given that we
know the surface of the caustic St the minimum length�scale that corresponds to the
deformed caustic can be calculated from Rmax as Rmin = St/(4Rmax). Thus an estimate
for Rε is: Rε = St/(4Rmax).
As it can be inferred from �gure 5(a), all approaches predict the number density as

calculated by the direct integration of a dense cloud of particle trajectories using the
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n̂p

Figure 4: Instance t = 0.4, represented as a deformed DC. The gradient of the surface
identi�es the caustic formations and its curvature is related to the intensity of the
caustics. The surface is coloured by n̂p, with Rε = 0.001. St = 0.1.

standard LA for almost the whole interval of the simulation. At the instance t ∼ 0.1655,
however, and for a duration of ∆t ∼ 0.001, the reference particle goes through a caustic.
The performance of the approaches presented close to the caustic is shown in detail
in �gure 5(b). As expected, the �rst�order FLA identi�es the caustic as a singularity
point. The �second�order� FLA succeeds in calculating the number density accurately,
by predicting the particle distribution as shown in �gure 2(b). The one�dimensional
analytical model for n̂p expressed by 4.4, also predicts the occurrence and the intensity
of the caustic for Rε = St/(4Rmax). Additionally, the result of the same model is shown
for a constant Rε = 3.5 · 10−6. This is the minimum length scale observed during the
singularity. As can be inferred from 5(b), the choice of Rε a�ects the identi�cation of
the onset of the caustic. The length�scale Rε = St/(4Rmax) is larger before and after
the singularity thus the time interval of the caustic is over predicted. When using the
constant length�scale Rε = 3.5 · 10−6 the predicted period for the caustic is closer to
the one calculated by the other methods. As the LA simulation progresses in time, the
neighbours of the reference particle eventually diverge signi�cantly and their motion
becomes uncorrelated. This results to the divergence of the results calculated by the
Fully Lagrangian methods, to the result calculated by the standard LA, after t = 0.4
(see �gure 5).

5. Particle structure for di�erent Stokes numbers

In �gure 6 density distributions for the KS of 250000 particles transported by the Taylor
vortex �eld described in 3.1 are presented for two di�erent Stokes numbers (i.e. St = 0.001
and St = 0.01). The result for St = 0.1 is shown in the �gure 4. Although the particles
manage to escape the vortices of the carrier phase �ow �eld for the higher Stokes number
case (see �gure 4), this is not the case for the lower St number simulations. From the �gure
6 it can be inferred that for the smallest and intermediate Stokes numbers (i.e. St = 0.001
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Figure 5: Number density n̂p along the reference particle trajectory. Black circles:
Direct integration (LA). Blue curve: standard FLA. Red curve: result inferred from
the �second�order� continuum structure. Black curve: Second order FLA analytical
model for one�dimensional �DC-structure� assuming a variable predicted �ltering width
Rvrε = St/(4Rmax). Thin black curve: Second order FLA analytical model for one�
dimensional �DC-structure� assuming a cosntant �ltering width that corresponds to the
Rvarε on the caustic Rεct = 3.5 · 10−6. a: t = 0− 0.5. b: t = 0.16− 0.17.

n̂p n̂p

(a) (b)

Figure 6: Instance t = 0.4, represented as a deformed DC. The surface is coloured by n̂p,
with Rε = 0.001. a: St = 0.001. b: St = 0.01.

and St = 0.01) the particles do not escape the bounds of their initial distribution and
remain trapped within the Taylor vortices. In the same �gure 6 we can observe that for
St = 0.001 the particles follow the carrier phase velocity �eld. They asymptotically reach
the bounds of each Taylor vortex to agglomeration regions at the positions of high shear.
For the intermediate Stokes numbers, though, the particles undulate across the shear
layer to neighbouring vortical cells but they still remain engulfed within the vortices. In
both cases though, it is evident that strong caustics form at the boundary of each vortex.
In the �gures 7 to 9 we present the ensemble average < · >= 1

N

∑
i=1,N (·) of the

number density for the three di�erent KS (i.e. St = 0.001, St = 0.01 and St = 0.1).
For the lowest Stokes number case, shown in the �gure 7 the point-wise number density
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Figure 7: Evolution of number density n̂p averaged at di�erent length scales, compared
with the standard FLA number density 1/J. Black curve: Standard FLA Rε = 0. Thin
red curve: �second�order� FLA with Rε = 0.0001. Thick red curve: �second�order� FLA
with Rε = 0.001. Results for St = 0.001.

presents no evidence of singularities and crossing trajectories and the averaged point-wise
density increases monotonically in time. The averaged density de�ned at �nite length
scales (i.e. Rε = 0.0001 and Rε = 0.001), though reaches a constant level after t = 2.5.
For the intermediate Stokes number case St = 0.01, shown in the �gure 8, the point-wise
number density presents intense spikes due to singularities related to crossing trajectories.
It can be inferred from the �gure 6 that caustics appear at the boundaries of the vortices
(see Chen et al. (2006)), for both the low and the intermediate Stokes number cases. In
the �rst case though, the agglomeration is achieved by particles that reach the edge of
each vortex in an asymptotic manner. For the intermediate Stokes number, however, the
particles undulate across the vortex boundaries presenting crossing trajectories. Thus, it
can be deduced that the instances of J = 0 cannot be perceived as su�cient criteria for
the formation of caustics. The accumulation of particles in caustics is rather characterised
by the number density value, which provides a measure for the intensity of the caustic.
The actual values of the spikes in the �rst�order FLA number density are spurious and

coincidental. These values are dependent on the temporal resolution of the integration of
the initial value problem in 2.10 during the change of sign of the Jacobian. Nevertheless,
the average point-wise density is monotonically increasing in time. The average density
de�ned at �nite length�scales (i.e. Rε = 0.0001 and Rε = 0.001) though, reaches a
constant value after t = 0.1. The evolution of the �ltered number densities to a constant
value can be attributed to the length scale of the caustics becoming smaller than the
�ltering length Rε. From that critical point and onward the focusing e�ect of the �ow
on the particle distribution is �ltered out. Given that for both cases the particles remain
within a constant volume, the averaged number density remains constant. For the higher
Stokes number con�guration the particles have enough inertia to sling out the eddies,
thus, the DC is expanding in time resulting to the gradual reduction of the average
number density.
The �ltering e�ect stemming out of the de�nition of a number density for a �nite

length�scale is presented in the �gure 10. In this �gure the Probability Density Function
(PDF) for the number density at t = 0.4 for the St = 0.1 KS is shown. The �ltering
operator (̂·) is cutting o� the higher instances of the number density which a�ect the
symmetry of the number density PDF (Meneguz & Reeks 2011; Fessler et al. 1994).
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Figure 8: Evolution of number density n̂p averaged at di�erent length scales, compared
with the standard FLA number density 1/J . Black curve: Standard FLA Rε = 0. Thin
red curve: �second�order� FLA with Rε = 0.0001. Thick red curve: �second�order� FLA
with Rε = 0.001. Results for St = 0.01.
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Figure 9: Evolution of number density n̂p averaged at di�erent length scales, compared
with the standard FLA number density 1/J . Black curve: Standard FLA Rε = 0. Thin
red curve: �second�order� FLA with Rε = 0.0001. Thick red curve: �second�order� FLA
with Rε = 0.001. Results for St = 0.1.

6. Discussion

Equation 4.10 can provide an estimate of the interparticle distance given an initial
particle separation ∆δ. The result for the reference particle studied in the previous
Section, is presented in the �gure 11 for three di�erent levels of initial particle loading
∆δ = 0.01, 0.001 and 0.0001. As it can be inferred from the equation 4.10, the interparticle
distance is not necessarily zero on the caustic but proportional to the Hessian magnitude
H (i.e.∆ε = 1/2H (∆δ)

2
). It can be observed that for low initial loadings (e.g.∆δ = 0.01)

the decrease of the interparticle distance is less than one order of magnitude which can
be well above the particles size. At this point we need to highlight the di�erences between
the dispersed continuum (DC) and the particulate phase. We suggest that although the
dispersed continuum can overlap with itself, the particles (or droplets) do not need to.
The reason for this is that although the DC is continuous, the particulate phase is not.
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Figure 10: Probability density function for the number density distribution at t = 0.4 for
the St = 0.1 case. Black curve: Standard FLA Rε = 0. Thin red curve: �second�order�
FLA with Rε = 0.0001. Thick red curve: �second�order� FLA with Rε = 0.001.

The particles are dispersed and the DC is the continuous Lagrangian space upon which
the particles are attached. Thus, the DC being an immaterial entity (i.e. a Lagrangian
space), it can fold and intersect itself, resulting to multiply de�ned layers where multiple
velocities can be attributed for each one of the folds at the same Eulerian point.
It is evident that the occurrence of caustics can be identi�ed by the standard FLA (see

(Gustavsson & Mehlig 2016)). The standard FLA though, cannot provide a prediction
of the number density on the caustic. Furthermore, the spurious values close to the
caustic and on the singularity itself, infect analyses based on the standard FLA (Picciotto
et al. 2005). For example, the number density gradients needed for the closure of the
turbulent di�usion as described in the model of Papoutsakis et al. (2018a) are a�ected
by the FLA singularities. Furthermore, the study of the compressibility of the dispersed
continuum and the temporal evolution of the number density in Meneguz & Reeks
(2011) is also a�ected by the occurrence of singularities. Clipping these values results
to an indeterminacy of the actual value. Limiting the FLA solution to the value that
corresponds to the physical size of the particles or droplets is a rational practice, although,
this is not necessary for the �second�order� FLA where the interparticle distances are
�nite as exhibited in the �gure 11.
In Ravichandran & Govindarajan (2015) particle collisions have been related to caus-

tics due to the increased number density and to opposing velocities, thus it is likely for
particles belonging to di�erent folds to collide (Wilkinson & Mehlig 2005; Wilkinson et al.

2007), and this can happen at any part of the domain where the DC is multiply folded (see
Wilkinson et al. (2007)). Taking into account the dispersed continuum assumption, the
particulate velocity �eld on a fold is continuous (and di�erentiable), Lagrangian neigh-
bours have similar velocities (Papoutsakis et al. 2018a) (i.e. lim∆x0→0 (V (x0 +∆x0, t)) =
V(x0, t)). Thus, a collision among Lagrangian neighbours in a caustic is less likely than
among particles belonging to overlapping folds.
Here, we present an extension of the FLA that actually predicts the �DC-structure�

and does not degenerate in the event of the formation of a caustic. The �second�order�
description of the dispersed structure presented in this paper ( see 2.4) and depicted by
the red mesh in the �gure 2(a-d) shows an excellent agreement with the direct integration
of discrete particles. Gustavsson & Mehlig (2016) and Gustavsson et al. (2012) relate the
clustering by caustics to a �catastrophe in mathematical terms� as described in Arnold
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(1992). Picciotto et al. (2005) justi�es the in�nite number density as a singularity in a
mathematical sense. Here, we lift the fold singularity by acknowledging the overlapping
of the dispersed phase folds which is inevitable in a pressureless continuum (Papoutsakis
et al. 2018a). Thus we do not believe that the in�nite number density occurs because the
collisions of the particulate medium are not accounted, they occur at a small length scale
lower than the limit of the continuity assumption. The in�nite number density is related
to the deformation of the DC itself and does not correspond to the number density of
the dispersed particles. It is alleviated by de�ning the number density at a �nite length
scale using models that account for the curvature of the DC structure.

The method presented can be implemented for carrier phase �ow �elds inferred either
from computational simulations or by experimental data. It needs to be stressed, however,
that both the �rst ∂Ui/∂xj and the second ∂2Ui/∂xj∂xk derivatives need to be obtained
at the same levels of accuracy as the velocity �eld U(x, t). An approach like this could
be used to provide insight for dispersed environmental �ows (Lebreton et al. 2018)
characterised by small particle loading which makes the identi�cation of caustics a
challenging task. An LA would need long computational times on a statistically signi�cant
number of individual particles.

The length scale Rε = St/(4Rmax) derives from the assumption of a one�dimensional
compression of the dispersed phase across the caustic �laments. This is in agreement
with the observation of Gustavsson & Mehlig (2016) for the �small scale clustering� of
�lamentary structures much smaller than the Kolmogorov scales. Although, the dispersed
phase exhibits length�scales that are not related to the carrier phase �ow-�eld, in our
model, the intensity of the caustics is the result of the integration of the carrier phase
�ow �eld history as seen by the particle. This is described by the model equation 4.4. In
this equation, the model introduces the e�ect of the carrier phase velocity and its �rst
derivative (standard FLA) and also introduces the e�ect of the second spatial derivative
of the carrier phase velocity. The e�ect of the curvature of the carrier phase �ow �eld
for the agglomeration of droplets and the segregation of droplets with various sizes has
been investigated in Pinsky & Khain (1997).

The relation between the Stokes number of a dispersed �ow and the temporal evo-
lution of the averaged �rst moment for the number density has been expressed by the
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proportionality coe�cient γ as (Meneguz & Reeks 2011; Ijzermans et al. 2010) :

< nd >∝ eγt . (6.1)

For �ows that do not exhibit crossing trajectories (low Stokes numbers) it was found that
γ varies with the Stokes number. For higher Stokes numbers, though, it was reported that
the intermittent events of in�nite number density dominate the statistics (see Ijzermans
et al. (2010)) so this analysis was not extended for higher Stokes numbers. In Meneguz &
Reeks (2011) the negative compressibility was attributed to the e�ect of the singularities.
The introduction of the zeroth moment did not augment the understanding of the
evolution of the number density since the zeroth moment results in a degeneration of
FLA to a standard Lagrangian method (LA). For �ows that do exhibit caustics (high
Stokes numbers), the frequency of caustic instances was studied instead of the number
density. The frequency of singularity events was chosen as a measure of the accumulation
of particles in a dispersed �ow, since the FLA number density was infected by singularities
(Gustavsson et al. 2012). The �nite length�scale number density, though, shown in the
�gures 7 to 9 is not a�ected by singularities. In our case the proportionality coe�cient
γ is related to the expansion of the DC and exhibits a simpler behaviour. Speci�cally,
for the low Stokes numbers an invariable averaged number density is identi�ed due to
the fact that the DC cannot escape the vortices. For the higher Stokes number case,
which results to a monotonically expanding DC, the average number density reduces,
thus implying negative values for γ.
In the analysis presented here it became evident that caustics are not necessarily related

to singularities in 1/J . The singularities identify crossing trajectories which result to
high spurious number densities. High number densities were also achieved by the gradual
agglomeration of particles as shown for the low Stokes number KS. This is in agreement
to the multiple mechanisms for the formation of caustics documented in Gustavsson &
Mehlig (2016). Thus, it can be deduced that the instances of J = 0 cannot be perceived
as su�cient criteria for the formation of caustics. The accumulation of particles to caustic
formations is rather characterised by the actual value of the number density itself.
The standard LA needs three kinematic equations for each direction and three mo-

mentum equations for the particle velocity resulting to six (6) equations per particle.
FLA instead demands 9 more equations for the Jacobian entries and 9 the corresponding
rates of the Jacobian, i.e. twenty-four (24) ODE's in total. For the �second�order� FLA
in three dimensions 78 ODE's need to be solved. Thus, the computational cost for the
FLA is four times bigger than an LA and for the �second�order� FLA it is 13 times more
than the LA. However, we must keep in mind that the FLA approaches do not need
an exhaustive number of representative particles to obtain the number density. FLA
and �second�order� FLA provide a particle/droplet number density by solving of the
mass conservation in a Lagrangian formulation and not by integration of a statistically
signi�cant number of representative particles as in the standard Lagrangian Approach
(LA).
The suggested extended approach presents a wide applicability, since the added features

do not impose extra computational restrictions that would narrow down its implementa-
tion range in relation to the standard Lagrangian approaches. The current formulation
can be applied to particles transporting under a drag force that is related to the particle-
carrier phase slip velocity including the Stokes drag case investigated in this work.
The importance of the introduction of a length scale in the de�nition of the number

density is emphasised in Monchaux et al. (2012), where the identi�cation of particle
clustering was based on the relation of the number density to the length�scale of the
averaging volume on which the number density is de�ned. Here, an explicit relation
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between the density of the dispersed phase to the length on which the number density
is de�ned has been presented and the relation between the temporal evolution of the
averaged number density for higher Stokes numbers was investigated. The number density
was linked to a �nite length scale on a robust analytical framework that highlights
the physics of the formation of the caustics and explains the causes of the resulting
singularities. This framework is needed for the introduction of the FLA to turbulent
�ows in the LES context (Papoutsakis et al. 2018a). The identi�cation of the structure
of caustics presented in this work paves the way to a robust understanding of the
mechanisms which induce caustics from the �second�order� structure of the carrier phase
�ow �eld (Marchioli 2017).
One important impact of the �second�order� FLA and the solution for a number density

de�ned on a given length scale is that it can be coupled with the �ltered �ow �elds. FLA
has been subject to criticism in Ravichandran & Govindarajan (2015), because it accounts
for the carrier phase velocity gradients at the locality of the reference particle (e.g. in
geophysical �ows). For �ows with high Reynolds numbers the Kolmogorov scale can
be much smaller that the interparticle distance. Thus, the apparent drift velocity among
Lagrangian neighbours is not correlated. Filtering the turbulent �ow �eld, however, allows
for accounting only for the large coherent vortical structures while the e�ect of the
remaining �ltered unresolved smaller scales can then be accounted for by a di�usion
model as in Papoutsakis et al. (2018a).
In�nite number density has been related to trajectory crossings (Healy & Young 2005).

However, we understand that trajectory crossings are related to the DC rather that the
particles as such, since they are attached to the DC in a dispersed manner with �nite
non-zero interparticle separation. Thus, the fact that the DC continuum may overlap it
does not necessarily mean that the particles are overlapping too.

7. Conclusion

Caustics are characterised by the compression of the dispersed phase to a �ne scale,
thus their identi�cation using Lagrangian methods demands an exhaustive number of
representative particles. The standard FLA succeeds in identifying caustics, but results
in singular values for the number density. In this work, we present the derivation of
an original method which predicts the �second�order� �DC-structure�. This method is
a �second�order� extension of the FLA that can identify and quantify the occurrence
and intensity of caustics. The model requires only one trajectory for the calculation
of the particulate number density, by integrating the Jacobian and the Hessian of the
transformation from the Lagrangian to the Eulerian coordinates using information from
the carrier phase velocity �eld and its �rst and second spatial derivatives. Number density
is calculated from the �DC�structure�, either numerically from the deformed DC, or by
a novel analytical model which assumes a one�dimensional structure. Furthermore, the
integrability of the point-wise number density of the FLA approach was exhibited. The
model presented relates the FLA number density to a �nite length scale ∆ needed for
the introduction of the FLA to turbulent �ows. The identi�cation of the �DC-structure�
of caustics presented in this work paves the way to a robust understanding of the
mechanisms which induce caustics from the �second�order� structure of the carrier phase
�ow �eld.
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