

City, University of London Institutional Repository

Citation: Soultatos, O., Papoutsakis, M., Fysarakis, K., Hatzivasilis, G., Michalodimitrakis,

M., Spanoudakis, G. & Ioannidis, S. (2019). Pattern-driven security, privacy, dependability
and interoperability management of iot environments. IEEE International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks, CAMAD, doi:
10.1109/CAMAD.2019.8858429

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24127/

Link to published version: https://doi.org/10.1109/CAMAD.2019.8858429

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Pattern-driven Security, Privacy, Dependability and
Interoperability management of IoT environments

Othonas Soultatos∗†, Manos Papoutsakis∗†, Konstantinos Fysarakis§, George Hatzivasilis†,
Manos Michalodimitrakis†,George Spanoudakis§, Sotiris Ioannidis†
∗ Department of Computer Science, City, University of London, London, UK

† Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
§ Sphynx Technology Solutions AG, Zug, Switzerland

othonas.soultatos@city.ac.uk, {fysarakis,spanoudakis}@sphynx.ch, {paputsak,hatzivas,manmix,sotiris}@ics.forth.gr

Abstract—Achieving Security, Privacy, Dependability and In-
teroperability (SPDI) is of paramount importance for the ubiq-
uitous deployment and impact maximization of Internet of
Things (IoT) applications. Nevertheless, said requirements are
not only difficult to achieve at system initialization, but also
hard to prove and maintain at run-time. This paper highlights an
approach to tackling the above challenges, through the definition
of pattern language and a framework that can guarantee SPDI
in IoT orchestrations. By integrating pattern reasoning engines
at the various layers of the IoT infrastructure, and a machine-
processable representation of said pattern through Drools rules,
the proposed framework can provide ways to fulfill SPDI
requirements at design time, and also provide the means to
guarantee those SPDI properties and manage the orchestrations
accordingly. Moreover, an application example of the framework
is presented in an Industrial IoT monitoring environment.

Index Terms—Pattern-driven engineering, Internet of Things,
Security, Privacy, Dependability, Interoperability.

I. INTRODUCTION

The ubiquitous presence of smart computing devices, re-
ferred to as the IoT, has the potential to significantly enhance
everyday lives, as it could be the enabler of anything from
smart home and industrial automation to fully autonomous sys-
tems. Nevertheless, IoT applications and their enabling plat-
forms increasingly interact directly with the physical world,
often in critical applications, while they often generate and use
sensitive personal data. This leads to significant security and
privacy concerns, which are exacerbated by the heterogeneity
of IoT devices and the intrinsic, often strict, quality of service
requirements of the various application domains [1]–[3].

Motivated by the above, this work proposes a holistic
approach to the management of IoT environments based on
the definition of architectural SPDI patterns and a framework
built on top of that, able to process and reason on said
patterns in an automated manner, across all layers of an IoT
deployment (backend, network, field). Through this approach,
the high level concept of which has been presented in [4],
the proposed framework enables the design-time and run-
time guarantee of the SPDI properties of IoT and Industrial
IoT (IIoT) applications, also triggering adaptations when the
desired properties are violated, to revert the system to the
desired state.

This paper is organized as follows: Section II presents
a background to the underlying technologies and concepts

used; Section III presents our pattern language definition
model and some implementation aspects; Section IV details
an application used in an wind-park environment; Section V
presents some related works, and; Section VI features the
concluding remarks and pointers to future work.

II. BACKGROUND

A. SPDI requirements in IoT environments

Considering the dynamicity, scalability and heterogeneity
of IoT and IIoT environments, as well as the intrinsic security
and privacy requirements of the various areas of application,
the proposed pattern-driven approach aims to provide a holistic
approach covering the Security, Privacy, Dependability and In-
teroperability properties of IoT/IIoT systems. The subsections
below provide more details on each of the key properties.

1) Security: Security is generally composed of the three
properties of confidentiality, integrity, and availability, some-
times also abbreviated as CIA. In more detail:

• Confidentiality: the disclosure of information happens
only in an authorised manner; i.e. non-authorised access
to information should not be possible.

• Integrity: maintenance and assurance of the accuracy and
consistency of data.

• Availability: the invocation of an operation to access some
information or use a resource leads to a correct response
to the request.

Therefore, a holistic approach will need to cover these three
aspects, at the component as well as at the end-to-end level.

2) Privacy: There have been plenty attempts to define
privacy over the years but, so far, no universal definition
could be created. Despite the fact that the claim for privacy
is universal, its concrete form differs according to the current
era and context (technical landscape) [6]. In any case, IoT
devices generate, process, exchange and store vast amounts
of security add safety-critical data as well as privacy-sensitive
information hence careful handling is needed, both from an
ethical as well as a regulatory perspective (esp. in cases where
medical data is involved). It is important to understand that
information collected in a system becomes personal if identity
can be correlated with an activity [7]. Such identification can
be direct or indirect.This is why data protect law does not

apply to anonymous data (i.e., data in which the data subjects
are no longer identifiable).

3) Dependability: Dependability is the ability of a system
to deliver its intended level of service to its users [8]. The
main attributes which constitute dependability are reliability,
availability, safety and maintainability. Dependable systems
impose the necessity to provide higher fault and intrusion
tolerance. The satisfaction of these attributes can avoid threats
such as faults, errors and failures offering fault prevention,
fault tolerance and fault detection.

4) Interoperability: Desired interoperability characteristic
imposes special requirements on the designed framework.
Interoperability gives an ability to a system or a product
to connect and work with other systems or products. In-
teroperability is defined as a characteristic of a product or
system, whose interfaces are completely understood, to work
with other products or systems, present or future, in either
implementation or access, without any restrictions [9].

The following types of interoperability can be defined:
Technological interoperability enables seamless operation and
cooperation on heterogeneous devices that utilize different
communication protocols; Syntactic interoperability estab-
lishes clearly defined formats for data, interfaces and encoding;
Semantic interoperability settles commonly agreed information
models and ontologies for the used terms that are processed
by the interfaces or are included in exchanged data; Or-
ganizational interoperability cross-domain service integration
and orchestration through common semantic and programming
interfaces.

B. SPDI patterns

Patterns are re-usable solutions to common problems and
building blocks to architectures [10], [11]. In this work,
SPDI patterns encode proven dependencies between secu-
rity, privacy, dependability and interoperability properties of
individual components of IoT applications and correspond-
ing properties of orchestrations of such components. More
specifically, a pattern encodes relationships of the form
P1andP2andandPn → Pn + 1 where Pi(i = 1, , n) are
properties of individual components and Pn+1 is a property of
the orchestration of these components. The relation encoded
by a pattern is an entailment relation. The runtime adaptations
that can be enabled by SPDI patterns may take three forms:
(1) to replace particular components of an orchestration;
(2) to change the structure of an orchestration, and; (3) a
combination of (1) and (2).

C. Automated pattern processing

An important requirement for implementing a usable SPDI
pattern-driven management and adaptation of the IoT infras-
tructure is to support the automated processing of developed
patterns. To achieve this, the SPDI patterns can be expressed as
Drools [12] business production rules, and the associated rule
engine, by applying and extending the Rete algorithm [13].
Drools is a business-rule management system with a forward-
chaining and backward-chaining inference-based rules engine,

allowing fast and reliable evaluation of business rules and com-
plex event processing. A rules engine is also a fundamental
building block to create an expert system which, in artificial
intelligence, is a computer system that emulates the decision-
making ability of a human expert.

In this work Drools are used to encode the relationship
between orchestration-wide (end-to-end) and component prop-
erties in SPDI patterns in ways that allow the inference of
the component-level and orchestration-level SPDI properties
required.

III. IMPLEMENTATION APPROACH

A. Pattern language definition

The first step in implementing the envisioned framework is
to define a language through which patterns can be expressed;
said language must enable: the design of IoT applications
that satisfy required SPDI properties; the verification that
existing IoT applications satisfy required SPDI properties at
design time, prior to the deployment of the application, and;
the adaptation of IoT applications or partial orchestrations
of components within them at runtime in a manner that
guarantees the satisfaction of required SPDI properties.

Considering the above, the defined language needs to: pro-
vide constructs for expressing/encoding dependencies between
SPDI properties; be structural; support static and dynamic
verification of SPDI properties; be machine process-able.

1) IoT orchestration system model: An IoT orchestrations’
system model was defined for the specification of IoT ap-
plication components and their interactions, as well as the
SPDI properties which may be required of such components
and their orchestrations. Once defined, this model (referred
to as IoT system model in the rest of this document) can
be used in conjunction with patterns to enable the reasoning
required for determining the applicability of particular SPDI
patterns in specific IoT applications and subsequently reason
based on them to enable different types of adaptation. The IoT
system model advocates an orchestration-based approach. In
this approach, the interactions between the different types of
components of such applications (e.g., software components,
software services, sensors, actuators) interact with each other
as specified as orchestration(s) within the IoT application.
Such orchestrations are modelled by an Orchestration entity.
An orchestration of activities may be of different types depend-
ing on the order in which the different activities involved in
it must be executed; i.e, an orchestration may be defined as a
Sequential, Parallel,Merge, Choice or Iterate orchestra-
tion.

Moreover, an orchestration involves orchestration activities.
The types of IoT application activity implementers are grouped
under the general concept of placeholder. The language
introduces also subclasses of the general class Placeholder
to represent Orchestration and OrchestrationActivity. A
placeholder is accessible through a set of interfaces. An
interface is a named set of operations through which the
functions and the data of the placeholder can be accessed from
any element outside it.

The individual operations that constitute the interface of
a placeholder are represented by the class Operation. An
operation has a set of parameters: i) name, ii) input and iii)
output. Name is used as an identifier for the Operation and
the input and output are a set of Parameters.

Placeholders (of all different types) may also be charac-
terised by their SPDI and QoS properties. A property of
a placeholder is specified according to the class Property.
According to it, a Property has a name, a type, a verification,
a category and a dataState. The attribute type refers to the
state of the property, which can be required or confirmed. A
required property is a property that a placeholder must hold
in order to be included (considered for) the orchestration. For
example, if the required property of an orchestration defining a
secure logging process is Confidentiality, then all placeholder
activities involved in the orchestration and the links between
them may be required to have the Confidentiality property.
On the other hand, a confirmed property is a property that is
verified at runtime, through a specific means as defined in the
Verification.

V erification is a class that describes the way a Property
of a Placeholder is verified. The verification process can
be done through monitoring, testing, a certificate or via a
pattern. In case of a pattern the Mean of verification is the
pattern itself; in all the other cases we need an interface to
a corresponding monitoring tool, testing service or certificate
repository through which the verification can take place.

A Property can belong to confidentiality, integrity, availabil-
ity, privacy, dependability, interoperability or QoS. In this way
a classification of the properties is achieved.

The final attribute, dataState, is referred to state of the
data of a Placeholder. If the Placeholder is an Orchestration,
then the state of the data will be in transit. If we have to do
with an OrchestrationActivity and the OrchestrationActivity is
bound to a storage service for example, then dataState could
also be at rest. If the OrchestrationActivity is bound to a
service or device that transforms data, then dataSate could
be in processing.

Finally, the set of all the SPDI properties that are inferred
for the different placeholders of an orchestrator by a pattern
are aggregated into PropertyPlan object.

Based on the IoT system model presented above we created
a corresponding language the constructs of which constitute an
EBNF grammar. Due to the lack of space only a snippet of
this grammar is presented in Figure 1.

B. Translation to machine process-able format

To enable the automated verification of SPDI properties,
the IoT deployments described using the above language need
to be translated to Drools; to achieve this they are used as
input to an ANTLR4 [14] lexer, parser and listener. These
programs create a Drools fact for every orchestration activity,
control flow operation and property. The Drools facts are then
inserted in the Knowledge base of Drools, a repository of all
the application’s knowledge definitions. Sessions are created
from the KnowledgeBase in which data can be inserted and

Fig. 1. EBNF of pattern language (snippet)

process instances started. A knowledge session is the way to
interact with Drools and the core component to fire Drools
rules. Rules themselves are also hold in a knowledge session.
The information that is stored in the KnowledgeBase is used
for reasoning.

For example, Figure 2 shows a simple orchestration along
with its description using the IoT application language. As
we can see, the orchestration consists of two Placeholders,
Accelerometer and VibrationAnalytics, and a Link between
them, named L1. Moreover, they are in sequence (Sequence1),
which means that the output of the former is consumed as input
by the latter.

Fig. 2. Simple orchestration

During the first step of the translation of an IoT application
orchestration to Drools facts the ANTLR4 lexer recognizes
keywords and transforms them in tokens. The created tokens
are used by the ANTLR4 parser for creating the logical
structure, i.e. the parse tree. Next, the ANTLR4 listener allows
us to communicate with Drools every time a node in the parse
tree is entered. The listener takes information from the tokens
and sends it to Drools. Drools then creates instances from the
corresponding Java classes and stores the received information
at the class attributes. During the last step, the created java
instances are inserted as facts into the knowledge session.
These Drools facts are used by Drools rules, which are fired
when a condition is met.

C. Pattern-driven property verification - Privacy Example

As mentioned in section III-A1 a mean to verify a SPDI
property is by using the patterns. In this subsection a privacy-

focused example is analyzed.
In order to guarantee privacy not only components that

form the service should be checked for privacy but also their
composition. At each layer of composition, the data union
that the layer produces should be evaluated. As an example,
consider the composition of a service C of two components
A, B. Let us assume that for each xinA,B,C

• OUT x are the sets of outputs of x
• INx are the sets of inputs of x
• Ex = INx ∪OUT x

• V x and Cx are two disjoint subsets of EX which partition
it into public parts V x and confidential parts Cx

• L is a corpus of sets that are predefined that expose
privacy

Then in order the composition to satisfy the privacy require-
ments, the following properties must hold:

1) V A ∩ L = ∅
2) V B ∩ L = ∅
3) V C ∩ L = ∅

Moreover, when data are at rest (i.e. in storage) we should
take precautions that:

4) (V A ∪ V B ∪ V C) ∩ L = ∅
Still, the following properties should also hold:

5) (V A ∪ V B) ⊆ V C

6) (V A ∪ V B) ∩ CC = ∅
The machine process-able format of the above patterns in

the form of Drools is shown in Fig: 3. On this pattern we
make the appropriate checks that the pattern can be applied
on lines 2 till 9 then we make the appropriate definitions and
we call at line 14 a predefined function that is created to make
the above checks at the sets mentioned above.

Fig. 3. Identifiability

D. Key modules

The implementation of the SPDI pattern-driven approach of
this work relies on the development of some key components
and their integration at the various layers of an IoT deploy-
ment. These are:

• (Backend) Pattern Orchestrator: Module featuring an un-
derlying semantic reasoner able to understand instantiated

Patterns, as received from the Admin and transform them
into composition structures (orchestrations) to be used by
architectural patterns to guarantee the required properties.
The Pattern Orchestrator (PO) is then responsible to
pass said patterns to the corresponding Pattern Modules
(as defined in the Backend, Network and Field layers),
selecting for each of them the subset of these that refer to
components under their control (e.g. passing field-specific
patterns to the IoT gateway).

• Backend Pattern Module: Features the pattern engine for
the framework backend, along with associated subcompo-
nents (knowledge base, reasoning engine). It enables the
capability to insert, modify, execute and retract patterns
at design or at runtime in the backend; these interactions
will happen through the interfacing with the Pattern
Orchestrator (see above). It is able to reason on the
SPDI properties of aspects pertaining to the operation
of the framework backend. Moreover, at runtime the
backend Pattern module may receive fact updates from
the individual Pattern Modules present at the lower layers
(Network & Field), allowing it to have an up-to-date view
of the SPDI state of said layers and the corresponding
components.

• Network Pattern Module: Integrated in the network (typ-
ically on a Software Defined Network controller) to
enable the capability to insert, modify, execute and retract
network-level patterns at design or at runtime.

• Field Layer Pattern Module: Typically deployed on the
IoT/IIoT gateway, able to host design patterns as pro-
vided by the Pattern Orchestrator. Since the compute
capabilities of the gateway can be limited, the module
is able to host patterns in an executable form compared
to the pattern rules as provided in the other layers. The
executable patterns are able to guarantee SPDI properties
locally based on the data retrieved and processed by the
monitoring module.

IV. APPLICATION EXAMPLE

To demonstrate the use of the concepts and constructs
defined in the above sections, a simple use case is analyzed,
featuring a Wind Park IIoT deployment. In more detail, we
assume that data captured by an IIoT accelerometer sensor
on the Wind Turbine is relayed to IIoT gateway for vibration
analytics, and the output of the analytics is relayed to the back-
end for monitoring and alarm purposes. We further assume
that the required SPDI property is end-to-end confidentiality,
throughout the interactions involved.

When defining the orchestration depicted in Fig. 4, the end-
to-end confidentiality property required is broken down to
individual properties for the two activities and the link between
them. Using the language defined in subsection III-A1, the
above workflow can be formally described as depicted in Fig.
5.

In Fig. 6 the steps of the next phase, i.e. the system
deployment, are shown, following the generic process detailed
in the previous section.

Fig. 4. Sample Application - Windpark IIoT deployment

Fig. 5. Scenario orchestration definition

The rules for the individual properties are stored on the
Pattern Global Repository and then relayed by the Pattern
Orchestrator to the pertinent layers for monitoring and ver-
ification; i.e. AP1, at the IIoT gateway, AP2 to the SDN
Controller, while AP3 only stays at the backend. At runtime,
the individual SDN pattern engines collect monitoring data
from the corresponding interfaces defined for each property at
the specific layers components, reason on collected data and
trigger adaptation actions if needed. Changes in the system
state related to the monitored properties are stored as new
facts or trigger updates in the stored facts in the corresponding
Pattern repositories; for the network and field pattern engines,
these are also transferred to the backend repository, to enable
it to have an up-to-date global view of the SPDI state of the
whole deployment. This process is shown in Fig. 7.

For brevity reasons, let us analyze only the interactions
between Pattern Orchestrator and Network Pattern Engine: As
soon as PO receives the instantiated pattern as shown in Fig:5
on line 6 it sees that a Link should be created. So PO contacts
the Network pattern Engine and checks if the Link Pattern was
previously send. If not PO creates the pattern and sends it to
the Network Pattern Engine. An example of the link pattern
appears below.� �

package r u l e s
i m p o r t sdn.P a t h m a n a g e r C r e a t o r;
i m p o r t b a c k e n d P a t t e r n N o t i f i c a t o r
rule "Link"

when
$link:Link()
e x i s t s P l a c e h o l d e r(name== $link. e n d p o i n t 1)
e x i s t s P l a c e h o l d e r(name== $link. e n d p o i n t 2)
then
$link.ID=P a t h M a n a g e r C r e a t o r.C r e a t e L i n k(

$link. e n d p o i n t 1 , $ l i n k. e n d p o i n t 1);
end
rule "Link DELETION"

Fig. 6. Sequence - System deployment phase

when
m: Message(s t a t u s ==Message.

LINKDELETED)
then

b a c k e n d P a t t e r n N o t i f i c a t o r. s e t M e s s a g e(
"link" + m.g e t L i n k I d()+"deleted")
;

end� �
Listing 1. Link Pattern

The PO sends this pattern to the Network pattern Engine
along using its Northbound API and also add some facts to
the network pattern engines working memory. Those facts are
listed below.� �

P l a c e h o l d e r(ID="ID1" ,name="vibration analysis
" , d e s c r i p t i o n ="Vibration analysis
description...");

P l a c e h o l d e r(ID="ID2" ,name="Monitoring Alarm"
, d e s c r i p t i o n ="Monitoring Alarm
description...");

Link(ID="Link1" , e n t p o i n t 1="vibration analysis
" , e n t p o i n t 2="Monitoring Alarm")� �

Listing 2. Facts inserted

As soon as those facts are inserted in the working memory
of the drools engine it will fire the Link rule described in
Listing 1 which will create the link between the vibration
analysis offering and the monitoring alarm offering.

V. RELATED WORKS

Researchers have long sought the ability to verify the
desired properties of service orchestration as part of the design
process, long before the introduction of the IoT concept.
They build upon two different approaches to secure SOA
applications: model-driven development [15]–[17] and the use
of security patterns [18]. In the former, software component
and service compositions are modelled using formal languages
and the required security properties are expressed as properties
on the model [19]. Pattern-based approaches can be found in
different research areas such as service-oriented systems [20].

The pattern-driven approach presented herein is inspired
from similar pattern-based approaches used in service-oriented

Fig. 7. Sequence - Runtime phase

systems [20], cyber-physical systems [21], and networks [22],
while covering the intricacies of IoT deployments and addi-
tional properties, while providing guarantees and verification
capabilities that span both the service orchestration and de-
ployment perspectives.

VI. CONCLUSION

In this work we presented a pattern language, and a frame-
work built to run this language, that can be used to guarantee
Security, Privacy, Dependability and Interoperability in an
IoT infrastructure. Moreover an proof of concept example is
presented that ensures privacy between sensors communication
in an Windpark IoT application. Further work can be done to
improve the usability of the framework by creating a Graphical
User Interface for the creation and instantiation of the patterns
proposed.

ACKNOWLEDGMENT

This work has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No. 780315 (SEMIoTICS), as well as the Marie
Skodowska-Curie Actions (MSCA) Research and Innova-
tion Staff Exchange (RISE), H2020-MSCA-RISE-2017, under
grant agreements No. 777855 (CE-IoT)

REFERENCES

[1] Rantos K. et al., ”Secure policy-based management solutions in hetero-
geneous embedded systems networks”, 2012 International Conference
on Telecommunications and Multimedia (TEMU), pp 227-232, 2012,
DOI:10.1109/TEMU.2012.6294723

[2] Fysarakis K. et al., ”Policy-based access control for DPWS-enabled ubiq-
uitous devices” Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA), 2014, DOI:10.1109/ETFA.2014.7005233

[3] Fysarakis K. et al., ”RT-SPDM: Real-Time Security, Privacy and De-
pendability Management of Heterogeneous Systems”. In: Tryfonas T.,
Askoxylakis I. (eds) Human Aspects of Information Security, Privacy,
and Trust. HAS 2015. Lecture Notes in Computer Science, vol 9190,
Springer, Cham, 2015.

[4] Fysarakis K. et al., ”Architectural Patterns for Secure IoT Orchestrations”,
Global IoT Summit 2019 (GIoTS’19), Aarhus, Denmark, June 17-21,
2019.

[5] Hatzivasilis G. et al., ”The industrial internet of things as an enabler for
a circular economy Hy-LP: a Novel IIoT protocol, evaluated on a wind
parks SDN/NFV-enabled 5G industrial network”, Computer Communica-
tions, 119, 127-137, 2018.

[6] Lukacs A., ”What Is Privacy? the History and Definition of Privacy,” p.
256265, 2017.

[7] Dennedy M. et al., ”The Privacy Engineers Manifesto: Getting from
Policy to Code to QA to Value,” Apress, p. 400, 2014.

[8] Laprie J., ”Dependable computing and fault-tolerance,” in Digest of
Papers FTCS-15, 1985.

[9] Hatzivasilis, G. et al., ”The Interoperability of Things: Interopera-
ble solutions as an enabler for IoT and Web 3.0.” 10.1109/CA-
MAD.2018.8514952.

[10] Abowd G. D., Allen R., and Garlan D., ”Formalizing style to understand
descriptions of software architecture”, ACM Transactions on Software
Engineering and Methodology (TOSEM), 4(4), 319-364, 1995.

[11] Schumacher M., ”Security engineering with patterns: origins, theoretical
models, and new applications”, Vol. 2754, Springer Science & Business
Media, 2003.

[12] Business Rules Management System (BRMS), https://www.drools.org
[13] Forgy C., ”Rete: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem,” Artificial Intelligence, vol. 19, p. 1737, 1982
[14] ANother Tool for Language Recognition, https://www.antlr.org
[15] Bartoletti M, et al. ”Semantics-based design for secure web services.”

Software Engineering, IEEE Trans. on, 2008.
[16] Deubler M., et al. ”Sound development of secure service-based systems.”

In Proc. of the 2nd Int. Conf. on Service oriented computing. ACM, 2004.
[17] Geor G., et al. ”Verification and trade-off analysis of security properties

in UML system models.” IEEE Trans. on Software Engineering, 36(3):
338-356, 2010.

[18] N. A. Delessy and E. B. Fernandez, ”A Pattern-Driven Security Process
for SOA Applications,” 2008 Third International Conference on Avail-
ability, Reliability and Security, Barcelona, 2008, pp. 416-421.

[19] Dong, J., et al, Automated verification of security pattern compositions.
Inf. Softw. Technol., vol. 52, no. 3, 2010.

[20] Pino L., et al. Pattern Based Design and Verication of Secure Service
Compositions. IEEE Transactions on Services Computing (2017)

[21] Maa A. et al. Extensions to Pattern Formats for Cyber Physical Systems.
Proceedings of the 31st Conference on Pattern Languages of Programs
(PLoP14. Monticello, IL, USA. Sept. 2014.

[22] Petroulakis N. et al., ”Fault Tolerance Using an SDN Pattern Frame-
work”, 2017 IEEE Global Communications Conference (GLOBECOM),
2017

