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Abstract

In this paper, we formulate the multi-population mortality forecasting problem based
on 3-way (age, year, and country/gender) decompositions. By applying the canonical
polyadic decomposition (CPD) and the different forms of the Tucker decomposition to
multi-population mortality data (10 European countries and 2 genders), we find that the
out-of-sample forecasting performance is significantly improved both for individual popu-
lations and the aggregate population compared with using the single-population mortality
model based on rank-1 singular value decomposition (SVD), or the Lee-Carter model. The
results also shed lights on the similarity and difference of mortality among different coun-
tries. Additionally, we compare the variance-explained method and the out-of-sample val-
idation method for rank (hyper-parameter) selection. Results show that the out-of-sample
validation method is preferred for forecasting purposes.
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1 Introduction

Mortality modelling is an important topic in actuarial science and insurance practice. We divide
the development of mortality modelling into four stages. In the first stage, the models are
deterministic and 1 dimensional. Gompertz (1825) model suggests that mortality increases
exponentially with age during the adult years of life. Makeham (1860) extends the Gompertz
(1825) model by adding an age-independent component. The Gompertz-Makeham law states
that the human death rate is the sum of an age-independent component (the Makeham term) and
an age-dependent component (the Gompertz function) which increases exponentially with age.

*Correspondence to: Fei Huang, Research School of Finance, Actuarial Studies and Applied Statistics,
College of Business and Economics, Australian National University, Canberra, ACT 2601, Australia. Email:
fei.huang@anu.edu.au, Phone: (+61) 2 612 57390, Fax: (+61) 2 612 50087.



In the second stage, mortality models are deterministic and 2 dimensional. People began to
realise at the start of the 20th century that time trends are important (especially for mortality
of annuitants) and need to be incorporated in mortality models. Thus, the subject “Mortality
tables for annuitants” was one of the main subjects discussed at the 5Sth International Congress
of Actuaries in 1906 in Berlin, see Cramer & Wold (1935) for more information. Some mod-
els are based on the independent projection of age-specific mortality or hazard rates, includ-
ing mortality reduction factor models (e.g. CMI 1990, CMI 1999, Willets 1999, Renshaw &
Haberman 2000). The CMI first proposes an age-based innovation in 1924. This kind of mod-
els allows each age-specific rate to change at its own individual rate, though the projected age
profile of mortality may depart from plausible, historically observed patterns (Keyfitz 1981).
Some models are based on the projection of parameters of specific mortality laws, for example
the Gompertz-based projection in Wetterstrand (1981) and the Heligman and Pollard-based pro-
jection in Forfar & Smith (1985). Comparing with the age-based models, the law-based models
are usually more parsimonious. However, both models generate implausible projected mortality
trends for age-specific mortality rates. A good reference on the history of mortality models is
"History of Actuarial Science’ (Haberman & Sibbett 1995).

In the third stage, a number of new approaches have been developed for forecasting mortal-
ity using stochastic models, which focus on the age-sex-specific mortality data within a specific
population. The seminal paper in this stage is the Lee & Carter (1992) model, which applies the
singular value decomposition (SVD) method on the 2 dimensional mortality data. Although this
model is an enlightening pioneer to subsequent researches, it also has drawbacks. For example,
Lee & Miller (2001) find that the mortality forecast is biased when using the fitting period 1900
to 1989 to forecast the period 1990 to 1997 under the Lee & Carter (1992) framework. Also,
it is pointed out that the pattern of changes in mortality is not fixed over time, contradicting
an assumption of the Lee-Carter model. To fix the above issues, Lee & Miller (2001) changes
the starting point of the fitting period to 1950 instead of 1933 and adjusts the mortality index
k; (year vector) by fitting to e(0). Later, Renshaw & Haberman (2006) generalise the Lee &
Carter (1992) model to include a cohort effect term. Currie et al. (2006) introduces the simpler
Age-Period-Cohort (APC) model, in which mortality rates are influenced independently by age,
period and cohort effects. The Cairns-Blake-Dowd (CBD) model, developed by Cairns et al.
(2006), was primarily designed for older-age mortality predictions and has the advantage of a
linear structure. There are two factors in this model. The first has a uniform over age effect on
mortality rate dynamics, while the second has a differential effect on mortality rate dynamics.
Since then, the CBD model has been further generalised by including additional terms, includ-
ing those corresponding to cohort and quadratic age effects (Cairns et al. 2009). There have
also been other developments in this stage, for example Acton et al. (2009), Yao et al. (2018).

In recent years, there have been research on multi-population mortality models, for example
using a group of countries with similar social-economic status, or males and females in the same
population. We call multi-population mortality modelling as the fourth stage. The seminal paper
in this stage is the Li & Lee (2005) model, which extends the Lee & Carter (1992) model to
allow for a group of populations. They use a common factor to describe the long-term mortality
trend shared by all countries within a group and use a country-specific factor to describe the
short-term country-specific mortality patterns. From then on, many other scholars develop their
own models inspired by Li & Lee (2005). For example, Kleinow (2015) proposes a common-
age-effect (CAE) multi-population model, which firstly uses a common set of age-response



parameters across the different populations. Li et al. (2015) consider two-population variants of
seven of the models first considered by Cairns et al. (2009). Enchev et al. (2017) find that the
Li & Lee (2005) potentially suffers from robustness problems when calibrated using maximum
likelihood. An important application of the multi-population mortality models is to assess the
demographic basis risk involved in an index-based longevity hedge by comparing and projecting
the mortality experience for the reference and target populations. For example, Villegas et al.
(2017) conducted a comparative study of two-population models for the assessment of basis
risk in longevity hedges.

As discussed in Yao et al. (2018), the single-population mortality modelling problem can
be solved based on matrix decomposition (or matrix factorization), which is to approximate
the original data matrix using low-rank matrix representations. For example, Lee & Carter
(1992) use the SVD method to forecast the US mortality data. However, the single-population
models cannot be applied to multi-population mortality data with 3 or more dimensions. A
natural extension of the matrix decomposition (2 dimensions) is tensor decomposition (3 or
more dimensions), which can be used for multi-population mortality modelling. A tensor is a
multidimensional or N-way array. There are mainly two commonly used tensor decomposition
methods: the canonical polyadic decomposition (CPD) and the Tucker decomposition, see Ra-
banser et al. (2017). Decompositions of higher-order tensors (i.e., N-way arrays with N > 3)
have been motivated and applied in many other fields. For examples, Appellof & Davidson
(1981) first use tensor decompositions in chemometrics. Shashua & Levin (2001) apply ten-
sor decompositions to image compression and classification. This approach has also been used
in data mining, multilayer networks, signal processing and elsewhere, see Acar et al. (2005),
Acar et al. (2006), Kiveld et al. (2014) and Comon (2009). In the field of mortality modelling,
Russolillo et al. (2011) first use a rank-2 Tucker decomposition to analyse the mortality of 10
European countries, which can be regarded as a natural extension of the Lee-Carter model. They
choose the rank-2 Tucker model, because it can explain 84.75% of the total variation. They also
highlight that tensor decomposition allows researchers to obtain combined estimates for the
three modes (age, time and different populations) and see relationships among them. In this pa-
per, we generalise the model used in Russolillo et al. (2011) by analysing both the CPD method
and 3 forms of the Tucker method to allow for different ranks in different dimensions (i.e. age,
year and country/gender). By applying the CPD and Tucker methods to mortality data of 10
European countries and 2 genders, we evaluate the out-of-sample forecasting performance of
the new methods. We also compare the variance-explained method and the out-of-sample val-
idation method for selecting ranks from the perspective of prediction accuracy. The results of
this paper indicate that the proposed tensor models can significantly and consistently improve
out-of-sample predicting performance. We hope that the paper will motivate researchers and
practitioners to apply tensor decomposition in multi-population mortality modelling and other
related fields.

The paper is organised as follows. Section [2| formulates the multi-population mortality
modelling problem based on tensor decompositions and describes the main steps to model and
forecast mortality rates using the CPD method and the Tucker method. Section [3] discusses
the modelling and prediction results using the mortality data of 10 European countries and 2
genders. Finally, Section ] concludes this paper.



2 Model

Assume M € RX¥*T*H g the tensor data to be modelled and predicted, which has three dimen-
sions: age, year and country. The element (z, ¢, h) of M is denoted by m, ;5. In this paper, we
define m, ;. ;, to be the centered log mortality for age x, year ¢ and country h. Let ;) be the
central death rate for age x, year ¢ and country h, then we have

Mgit.h = log,u:r,t,h — Qg p (1)

where o, is estimated by averaging the log-mortality logy, ; , over time. We formulate the
multi-population mortality forecasting problem based on two commonly used tensor decompo-
sitions: the canonical polyadic decomposition (CPD) and Tucker decomposition, see Rabanser
et al. (2017).

2.1 The CPD method

Year

Figure 1: CPD method

Using A; € R¥, C; € R¥ and Y; € R to represent the ith latent factors of age, country and
year respectively, the CPD model can be written as,

k
M~M=) AoCoY, @
i=1

where £ is the rank of the tensor decomposition, which indicates the number of latent factors.
It is often useful to assume that the columns of A, C, and Y are normalized to length one with
the weights absorbed into the vector A € R”.

k
M~ M=) NAioCioY, (3)
i=1
The o symbol denotes the vector outer product, which means that each element of the tensor is
the product of the corresponding vector elements. Let the jth entry of vectors A;, C; and Y; be
@ (@) (1)
a - and y;

¢ J

;s C , respectively. Elementwise, we have

k
M X i = D diaey @)
i=1



The predicted value can be calculated by,

k
Mpred = Z >\2Az o Oz o }/i,pred (5)

i=1

In this paper, we apply the canonical polyadic decomposition (CPD) method for mortality mod-
elling and forecasting, which factorises the tensor into a sum of rank-1 tensors. We use the
alternating least squares (ALS) algorithm to compute the CPD of a tensor. The key idea be-
hind this algorithm is to fix all factor matrices except for one in order to optimise the non-fixed
matrix and then repeat this step for every matrix repeatedly until some stopping criteria is sat-
isfied (Rabanser et al. 2017). The details of this algorithm can be found in the supplementary
materials. The solution of the CPD method is usually not uniqueﬂ To overcome this problem,
we randomly initialise 300 times for the CPD method, and select the solution with the optimal
fit using the root mean square error (RMSE) as the selection criterion. Assume léguxm is the
fitted value and logy:, ; 5, is the actual observation in the data set, we have

. 2
Zf:l Zthl Zthl (logﬂm,t,h - IOng,t,h)

RMSE = ~TH

The reason for using RMSE is that the cost function in the algorithm of the tensor decomposition
is the square root of the sum of the square errors, see Kolda & Bader (2009). Hence, it is
reasonable to apply a consistent criterion. We find that the RMSE becomes stable when the
number of random initializations is over 200 times, so 300 times is good enough to make sure
the solution converges. Through this process, we can get the unique solution for a given rank.

After getting the decomposition result, we fit random walk with drift (RMD) models to the
estimated year vectors Y; to capture their dynamic patterns while keeping the number of pa-
rameters consistent and low for each time-series mode]ﬂ Combining the predicted year vectors
Y prea With the fitted country vectors C; and age vectors A;, we can obtain the predicted M4
following Equation (5).

''As tensor decomposition is a non-convex optimization problem, we are unable to find the global optimum.
Hence, each time that we implement the tensor decomposition, we will obtain a local optimum.

2If we fit a different automatic autoregressive integrated moving average (ARIMA) to each latent year vector,
the final model will be very complex. However, we have considered the same ARIMA(p,d,q) model structure
to each latent year vector to reduce the complexity. The out-of-sample forecasting result shows no significant
improvement. So we choose to use the more parsimonious random walk with drift model.



2.2 The Tucker method
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Figure 2: Tucker method

The Tucker decomposition is a form of higher-order principal component analysis (PCA). It
decomposes a tensor into a core tensor () multiplied by a matrix (A, B, C') along each mode.
A, B and C correspond to the age, year and country matrices, respectively. The algorithm that
we use to compute the Tucker decomposition is the higher order orthogonal iteration (HOOI),
which is essentially an ALS algorithm as discussed in Section 2.1. For more details of this
algorithm, please refer to the supplementary materials. In the three-way case, the Tucker de-
composition can be written as,

Ma~M=Gx,AxyBx3C (6)

In this setting, G € R**®*¢ is the core tensor, which expresses how the principal components
interact with each other. The factor matrices A € R¥*?, B € RT*% and C' € R¥*¢ are often
referred to as the principal component in the respective tensor mode. The vectors within each
factor matrices are orthogonal. The a, b, ¢ are the ranks of A (age), B (year) and C' (country)
respectively. The n-mode product of a tensor G € R1*/2%In and a matrix X € R/*!" is
denoted by Y = G x,, X with Y € RIv>In-1xxIns1..XIN  Elementwise, we have

a b c
Mg th = Myt = E § E gi,j,qam,ibt,jChm (7)

i=1 j=1 g=1

where g; j ¢, @i, by j and ¢, 4 are elements of G, A, B and C, respectively. If a, b, ¢ (ranks) are
smaller than X, H and T, the core tensor GG can be regarded as a compressed version of M. In
this paper, we find the core tensor G significantly smaller than the original tensor M.

The predicted values can be calculated by,

Mpred:leAXQB X3 Cpred (8)

Tucker is more flexible than CPD as there are 3 hyper-parameters (a, b, ¢) to consider. In
other words, the rank of each dimension (a, b, and c) can be different from each other. In fact,
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the CPD can be viewed as a special case of Tucker where the core tensor is superdiagonal and
a = b = c. In order to investigate the best Tucker model for mortality forecasting, we consider
3 forms of the Tucker models:

e The first form is called the Tucker (aaa), which is similar to the CPD because the con-
straint is @ = b = c¢. Russolillo et al. (2011) considered Tucker (222) in their paper.

e The second form is called the Tucker (aab), whose constraint is a = b. We consider this
form because the lengths of the Age and the Year are comparable in this research.

e The last form is the Tucker (abc), which is the most flexible form among the three.

We will investigate how the flexibility of the Tucker models affects their predictive ability.
Similar to the CPD method, the Tucker method usually does not provide unique solutions.
So we apply the same process mentioned in the Section [2.1] with 50 random initializations to
select the optimal ﬁtﬂ Then we fit a random walk with drift model to each latent year vector of
the matrix B in Figure [2 Combining each predicted year vectors with the core tensor GG, age
matrix A and country matrix C, we can obtain the predicted M,,.q following Equation (8]
The latent year vectors in the Tucker models are orthogonal and uncorrelated, which, how-
ever, is not the case for CPD models. To make the model structures consistent and parsimonious,
we apply the univariate RMD models for all latent year vectors considered in the paper to cap-
ture the dynamic patterns. Additionally, fitting a multivariate time series model for the latent
year vectors, such as vector autoregressive moving average (VARMA), is not appealing in this
case, as there are usually more than 3 latent factors. VARMA models are seldom used directly
in practice when the dimension is more than 3. This is partially due to the lack of identifiability
for VARMA models in general (Chang et al. 2018). On the other hand, we did not fit different
ARIMA models on different latent year vectors, as the final model would be too complex.

2.3 Modelling steps

We summarise the modelling process by the following 5 steps which are feasible for both the
CPD method and the Tucker method. For brevity, we only use the CPD method as an example
to illustrate the modelling steps. We use the Matlab Tensor Toolbox by Bader et al. (2017) to
do the tensor decomposition.

Step 1: Centering the Data We conduct the log transformation of the central death rates and
organise the data in a 3-dimensional way. Then we center the log-mortalities by subtracting the
mean of each row from the 3-dimensional data, see Equation (I)). After centering the data, we
name the cube as the target tensor, see Figure [I] The main objective of the transformation is to
reduce the data complexity. We divide the target tensor chronologically into three parts, which
are the training set, the validation set and the testing set, see Figure 3

3The required number of random initializations of Tucker method is much smaller than that of the CPD method,
which leads to faster computation applying the Tucker method.
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Figure 3: Organising the mean centered log-mortality in 3-dimension

Step 2: Selecting the Rank The rank of a tensor decomposition is the only hyper-parameter
in the model, which is selected using the out-of-sample validation. Out-of-sample validation is
a widespread strategy because of its simplicity and its (apparent) universality, see Arlot et al.
(2010). The goal of out-of-sample validation is to test the model’s ability to predict new data that
was not used in estimating it, in order to flag problems like over-fitting or selection bias (Cawley
& Talbot 2010); and to give insight into how the model will generalise to an independent dataset.
The procedures for using out-of-sample validation to select ranks are as follows. We firstly
apply tensor decomposition on the training set with rank numbers from 1 to 10 El, see Equation
. We then forecast the 10 models with different ranks in the time period of the validation set,
see Figure [4] as an example of rank n and Equation (5)). By comparing the root mean square
forecasting error (RMSFE EI) of the 10 models in the validation set, we select the model with
the optimal rank, which has the lowest RMSFE. The selected rank will be used in later steps.

Step 3: Model Fitting In this step, we combine the training set and the validation set together
as a new training set for model fitting. Assume we have selected the rank n of the tensor
decomposition in Step 2. We then apply the tensor decomposition model to the new training set
with the selected rank, see Figure [5|as an example of the rank n.

“In this paper, we set the largest possible rank to be 10 for the CPD, which is the length of the country vector.
For the Tucker method, the largest theoretical ranks (a, b and c) are the lengths of the age vector, year vector and
country vector respectively. To avoid the Tucker model being too complex, we set the maximum values of a and b
to be 15.

> The formula for RMSFE is the same as that for RMSE, except that for RMSFE, légumynh denotes the predicted
log-mortality.
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Figure 4: Constructing the rank-n forecasts in the validation set
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Figure 5: Decomposing the new training set into the determined rank decomposition

Step 4: Model Forecasting Given the model fitting results obtained in Step 3, we apply
the random walk with drift to the fitted year vectors Y; and get the predicted values Y; pycq
in the forecasting time horizon. Combining the predicted year vectors Y; ,..q with the fitted
country vectors C; and age vectors A;, we obtain the predicted M4 following Equation (5)
in the forecasting time horizon, see Figure [0] as an example of the rank n. We can also add
uncertainties using the random walk with drift forecasts.
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Figure 6: Constructing the rank-n model forecasts

Step 5: Model Testing By forecasting the model in the time period of the testing set, we
can obtain the RMSFE of the testing set, which can be used to compare the out-of-sample
forecasting performance of different models.

We can obtain unique solutions of all parameters through the above 5 steps. Since the
target of this paper is to optimise the final forecasting performance rather than uncovering the
“true” data generating process, we choose not to add constraints in the fitting process to get
identifiable solutions, as those constraints could potentially lead to unoptimised forecasting
results. However, this decision leads to the difficulty in interpreting the latent factors of the
model, which is a common issue in machine learning practice: the trade-off between model
flexibility and interpretability.

3 Results

We perform our analysis using data obtained from the Human Mortality Database, University of
California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany).
Available at www .mortality.org (Human Mortality Database 2018).

3.1 10 European countries

Russolillo et al. (2011) applied Tucker (2,2,2) model for 10 European countries, which are
geographically closer and share similar social-economic status. Similarly, we also consider 10
European countrief] as an example for modelling and comparison purposes. They are Denmark,
United Kingdom, Finland, France, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland,
which are summarised in Table[I] We consider the ages from 0 to 90 for modelling purposes to
avoid the sparse and noisy data of the older ages. However, the tensor decomposition models
do not require similar mortality experience among different populations, which can be applied
to other more different populations too.

%Note that 8 out of the 10 countries are the same as those used in Russolillo et al. (2011).
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Table 1: Data

Starting time | Ending time
Denmark 1835 2016
United Kingdom 1922 2016
Finland 1878 2015
France 1816 2016
Italy 1872 2014
Netherlands 1850 2016
Norway 1840 2014
Spain 1908 2014
Sweden 1751 2016
Switzerland 1876 2016

The allocation of countries to positions along the Country axis were determined according to
the order of countries listed in the first column of Table 1 in the paper. A change of the allocation
would affect the decomposition results of country vectors for each rank. However, it would only
affect the prediction result a little. From the theoretical and mathematical perspective, if we
could find the global optimum (which may be difficult to find practically), then the decomposed
results would not change if we changed the order of countries ﬂ However, in reality tensor
decomposition is a non-convex problem, which can only achieve a local optimum at each run. If
we changed the order of countries, the decomposition results would change (getting a different
local optimum). However, as explained in Sections 2.1 and 2.2, by running the model multiple
times with random initialisations, we can obtain a stable “optimal” fit, which can be regarded as
very close to the global optimum. So the final forecasting results (RMSFE) would only change
a little if there were a change of the country order, which should not be a big concern nor a
reasonable way to improve the out-of-sample forecasting performance.

Three target tensors are analysed in this paper, which are the total population tensor, the male
tensor and the female tensor. We consider four forecasting horizons: short-term (5 years), mid-
term (10 yeas), long-term (20 years) and extra-long-term (30 years) forecasts. We also consider
two time frames. Time frame A (Table [2)) includes the Second World War period (1939 to 1945)
and Time frame B excludes the Second World War period. The length of validation sets and
testing sets are the same in all cases. Due to the shorter period of Time frame B, we will not do
an extra-long-term forecast in this frame.

"For example, if we changed the order of the first and the second country of a CPD model, then the i-th rank
country vector would be changed to C; = (cg‘)7 cgi), e cgf)). However, the prediction for the first country and the
second country would remain the same (they just changed their seats). Similarly, for the Tucker method, changing
the order or countries would only change the order of the country vectors in matrix C' accordingly, see Figure [2]

and Equation (7).
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Table 2: Time frames A & B

Time frame A
Training | Validation Testing

Short-term (5 Year) | 1922-2004 | 2005-2009 | 2010-2014
Mid-term (10 Year) | 1922-1994 | 1995-2004 | 2005-2014
Long-term (20 Year) | 1922-1974 | 1975-1994 | 1995-2014
Extra-long (30 Year) | 1922-1954 | 1955-1984 | 1985-2014

Time frame B
Short-term (5 Year) | 1950-2004 | 2005-2009 | 2010-2014
Mid-term (10 Year) | 1950-1994 | 1995-2004 | 2005-2014
Long-term (20 Year) | 1950-1974 | 1975-1994 | 1995-2014

Table [3] shows the results of Step 2 (Selecting the Rank). We can see that, holding other
conditions the same, ranks determined in Frame A are larger than those in Frame B upon most
occasions. It suggests that a simpler data frame often requires a simpler model. For the Tucker
(abc) method, a (rank of Age) is always smaller or equal to b (rank of Year). It suggests that
the data structure of the Age dimension is easier to be captured and fitted than that of the Year
dimension. ¢ (rank of Country) is close to its upper bound (10) for most cases. It suggests that
the data structures among 10 countries are so different that almost all ranks are needed to fit the
model. The a (rank of Age) of Tucker(aaa) determined by out-of-sample validation method in
this paper is much larger than that determined by variance-explained method used by Russolillo
et al. (2011), who selected Tucker(222) in their paper. We treat the Tucker(222) model as one
of the benchmarks and we will show how differently models perform in the testing set.

Table 3: The ranks determined in the validation set (Frame A & B)

Time frame A
CPD | Tucker (aaa) | Tucker (aab) | Tucker (abc)

Short-term(5 Year) 9 10*#10*10 11#11*10 10*14*10
Mid-term(10 Year) 7 10*¥10*10 8*8*10 6*8*10
Long-term(20 Year) 6 10*#10*10 14*#14*10 10*14*10
Extra-long(30 Year) 4 9*9*9 11*#11*9 8*14*9

Time frame B
Short-term(5 Year) 10 8*8*8 8*8*10 6*8*9
Mid-term(10 Year) 4 4*4%4 3%3%) 3%3%)
Long-term(20 Year) 8 5*5%5 5*5%4 5%9%*8

Table[d]shows the total number of parameters of each fitted model in Frames A and B respec-
tively. We compare all the tensor decomposition models with independent mortality modelling
of each population using the SVD (Lee-Carter) model. The number of parameters of the CPD
model is always less than that of the SVD (Lee-Carter) model except for short-term (5 years)
forecast in Frame B. Tucker models usually have more parameters to estimate in Frame A due
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to the core tensor needed in the Tucker decomposition, see Figure @ However, the number
of parameters of Tucker models becomes smaller in Frame B compared with that in Frame A.
The reason is that the ranks (a, b ,¢) determined in Frame B are much smaller due to the less
complicated dataset.

Table 4: The total number of parameters for each determined model in Frame A & B.

Time frame A
SVD | CPD (n) | Tucker (aaa) | Tucker (aab) | Tucker (abc)
Short-term(5 Year) | 2650 2566 3750 4134 4482
Mid-term(10 Year) | 2550 2128 3650 2962 2620
Long-term(20 Year) | 2350 1834 3450 4986 4062
Extra-long(30 Year) | 2150 1446 2845 3453 3198
Time frame B
Short-term(5 Year) | 2370 2470 2670 2818 2418
Mid-term(10 Year) | 2270 1494 1558 1356 1356
Long-term(20 Year) | 2070 1918 1665 1630 2030

When forecasting the fitted year vectors Y;, we apply the random walk with drift process.
Table [5] to Table [6] show the out-of-sample forecasting performance of the CPD method and
3 forms of the Tucker method (measured by RMSFE) on the testing data set of Frame A and
Frame B. Table [5] also shows the performance of SVD (Lee-Carter model) on individual pop-
ulations and the improvement ratios of the multi-population Tensor method (CPD & Tucker)
compared with the single-population SVD method. Table [6| summarizes the overall forecasting
performance for 10 countries in different time frames. The improvement ratio is defined as

follows:
RMSFESVD - RMSFETensor

RMSFFEgyp

Positive improvement ratios indicate a better forecasting performance of the Tensor method
compared with SVD (Lee-Carter) method. Generally speaking, the tensor decomposition method
works better when the data set is bigger and has a more complex structure. The results show
that the 3-way decomposition (Tensor) on multi-population mortality outperforms the 2-way
decomposition (SVD) on single-population mortality significantly both for individual countries
and the aggregate populations. We consider three aggregate populations: males, females and
total population (including both genders). And the results are consistent for all three cases. In
this paper, we show the results of the total population (including both genders) as an example.
The improvement in Frame A is more significant than that in Frame B, as shown by Table [6]
The reason is that Frame A includes the World War II data and has a more complicated mortality
structure which is difficult for the SVD model to fit.

In Table[6] we also compare the forecasting performance of the Tensor methods, namely the
CPD method and the 3 forms of the Tucker method. In Frame A, the forecasting performance
of these 4 tensor models are comparable while none of them shows significantly better perfor-
mance than the others. However, the Tucker(222) model performs less well than others con-
sistently. It suggests that selecting the ranks for Tensor model based on the variance-explained

Improvement ratio = x 100%
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method can be improved by the out-of-sample validation method. All the total improvement
ratios of the Tensor model (excluding Tucker(222)) are in the range of 20% to 30% and the
country-specific improvement ratios vary in each scenario. In Frame B, the CPD method shows
more stable forecasting performance than the 3 forms of the Tucker methods especially in the
mid-term and long-term forecasts. More results for each time frame and forecasting horizon
can be found in the supplementary materials.

From Table E], we find that Switzerland, Denmark, Finland and Norway are the countries
with relatively high RMSFEs when using the Tensor method, which could be caused by both
the individual effect (measured by the individual SVD model) and the group effect (not suitable
for groupingﬂ The forecast results of the single-population SVD model show that the RMS-
FEs of Denmark, Finland and Norway are relatively high, which can be used to approximate
the individual effect. However, the improvement ratios of Switzerland and Denmark are rela-
tively low and are negative for some cases (which indicates the SVD model performs better in
those cases); while those of Finland and Norway are relatively high. This finding indicates that
Switzerland and Denmark are not benefiting from the grouping as much as Finland and Nor-
way in Frame A, which sheds lights on the similarity of different populations. It also provides
insights into the clustering of mortality among different populations. Zhu et al. (2017) also find
similar results when using a new classification method for 12 European countries. According
to their results, Belgium and Switzerland show the most similar mortality patterns with each
other and are different from the other European countries. However, Belgium is not considered
in this research.

Table 5: Out-of-sample Short-term forecasting performance, Europe (Frame A)

SVD CPD | Imp.% | T(222) | Imp.% | T(aaa) | Imp.% | T(aab) | Imp.% | T(abc) | Imp.%
Swe. | 0.273 | 0.201 | 26.5% | 0.212 | 22.4% | 0.205 | 24.9% | 0.199 | 27.0% | 0.200 | 26.7%
UK. | 0.247 | 0.141 | 42.9% | 0.162 | 34.5% | 0.103 | 58.4% | 0.102 | 58.5% | 0.094 | 61.8%
Swi. | 0.229 | 0.234 | -2.5% | 0.305 | -33.3% | 0.219 | 4.0% | 0.225 | 1.7% | 0.220 | 3.6%
Den. | 0.282 | 0.291 | -3.1% | 0.330 | -17.0% | 0.269 | 4.6% | 0.285 | -0.8% | 0.267 | 5.2%
Spa. | 0.186 | 0.151 | 19.2% | 0.231 | -24.3% | 0.134 | 28.1% | 0.116 | 37.5% | 0.123 | 33.9%
Fin. | 0.356 | 0.249 | 30.2% | 0.270 | 24.2% | 0.244 | 31.5% | 0.247 | 30.6% | 0.263 | 26.2%
Ita. | 0.193 | 0.112 | 42.0% | 0.157 | -18.6% | 0.110 | 42.9% | 0.108 | 43.9% | 0.114 | 40.9%
Net. | 0.172 | 0.131 | 23.7% | 0.154 | 10.7% | 0.126 | 26.6% | 0.124 | 27.8% | 0.122 | 29.0%
Nor. | 0.334 | 0.247 | 26.1% | 0.251 | 24.9% | 0.248 | 26.0% | 0.246 | 26.5% | 0.297 | 11.1%
Fra. | 0.146 | 0.107 | 26.6% | 0.174 | -18.8% | 0.097 | 33.8% | 0.083 | 42.9% | 0.087 | 40.4%
Total | 0.251 | 0.197 | 21.6% | 0.233 | 7.3% | 0.187 | 25.5% | 0.187 | 25.3% | 0.194 | 22.6%

8Switzerland, Denmark, Finland and Norway are the four countries with the smallest sizes of populations
among the 10 European countries considered for modelling, which could also be one of the reasons of the differ-
ences shown in the results.
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Table 6: Out-of-sample overall forecasting performance, Europe (Frame A & B)

Time frame A
SVD CPD | Imp.% | T(222) | Imp.% | T(aaa) | Imp.% | T(aab) | Imp.% | T(abc) | Imp.%
Short | 0.251 | 0.197 | 21.6% | 0.233 | 7.3% | 0.187 | 25.5% | 0.187 | 25.3% | 0.194 | 22.6%
Mid | 0.269 | 0.214 | 20.4% | 0.233 | 13.5% | 0.197 | 26.7% | 0.201 | 25.3% | 0.199 | 26.1%
Long | 0.305 | 0.226 | 25.9% | 0.233 | 23.8% | 0.232 | 23.9% | 0.239 | 21.8% | 0.236 | 22.6%
Extra | 0.353 | 0.267 | 24.3% | 0.298 | 15.6% | 0.256 | 27.4% | 0.257 | 27.0% | 0.252 | 28.6%
Time frame B
Short | 0.232 | 0.193 | 17.0% | 0.239 | -3.0% | 0.201 | 13.4% | 0.202 | 13.0% | 0.192 | 17.4%
Mid | 0.247 | 0.217 | 122% | 0.244 | 1.2% | 0.214 | 13.6% | 0.227 | 8.4% | 0.227 | 8.4%
Long | 0.268 | 0.259 | 3.4% | 0.252 | 6.0% | 0.255 | 49% | 0.251 | 6.6% | 0.259 | 3.6%

Next, we show some plots in Frame A to illustrate the forecasting performance of the tensor
decomposition method. Figures [7] and [§]illustrate the age-specific RMSFEs of 5-year and 30-
year forecasting horizons for the Lee-Carter (SVD) model and the tensor decomposition (CPD
& Tucker) models. The gap between the red line (SVD) and other lines (CPD & Tucker) in each
plot can be explained by the “improvement ratio”, which we have displayed earlier.

e The RMSFE of all models at young ages below 20 are relatively high. Tensor decomposi-

tion models (CPD & Tucker) are not very stable at younger ages below 10. For example,
we can see peaks of the Tucker(abc) in the Figure [/| at age 8 and the Tucker(222) in the
Figure [§] at age 1. The reason is that the model determined by the out-of-sample method
minimizes the forecasting error in the validation set rather than the testing set. The al-
gorithm of the tensor decomposition could reach to a scenario-specific local optimum for
the validation set and causes the overfitting. To fix the “peak” problem for specific young
ages, we can change the age range or time frame to be modelled. For example, we show
the results without the “peak” problem with different age ranges and time frames in the
supplementary materials.

The tensor decomposition models (CPD & Tucker) perform significantly better than the
Lee-Carter model for ages between 20 and 30.

All models show similar forecasting performances and have relatively low RMSFE for
middle ages between 35 and 45.

The tensor decomposition models (CPD & Tucker) significantly outperform the Lee-
Carter model again for older ages after 50.

The RMSFE curves of 3 Tucker models share similar patterns which are different from
those of the CPD to some extent.

The Tucker(222) performs less well than the CPD and the 3 forms of Tucker model in
most cases. The plots intuitively show how forecasting performance is improved by using
the out-of-sample method instead of the varianced-explained method to select the rank
parameter.

15



The RMSFEs for Total population, Europe (Short-term 5 yesrs, Frame A)
I I I I

0.7 T
-—#-8VD
CPD
Tucker(222)
Tucker(aaa)
0.6 A ~ - Tucker(aab)
: i -~~~ - Tucker(abc)
0.5 — —

RMSFE

S

01
0 | 1 | | | | | |
0 10 20 30 40 50 60 70 80 90
Ages
Figure 7: Age-specific RMSFE for short-term forecasting: 5 years
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Figure 8: Age-specific RMSFE for extra long-term forecasting: 30 years
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3.2 Two genders

In this section, we apply the 3-way tensor decomposition to a population of two genders. The 3
dimensions are Age, Year, and Gender. The mortality data of the USA and UK are considered
in this section. We apply ages 20 to 90 in this section to avoid the sparse and noisy data of the
younger and older ages.

3.2.1 USA

The time periods considered are 1933 to 2016 for Frame A (including the WWII) and 1950
to 2016 for Frame B (excluding the WWII). Similar with the previous analysis, we divide the
entire data set into training, validation and testing sets, which are summarised in Table [7] for
Frame A and Frame B respectively.

Table 7: Time frames A & B

Time frame A
Training | Validation Testing

Short-term (5 Year) | 1933-2006 | 2007-2011 | 2012-2016
Mid-term (10 Year) | 1933-1996 | 1997-2006 | 2007-2016
Long-term (20 Year) | 1933-1976 | 1977-1996 | 1997-2016

Time frame B
Short-term (5 Year) | 1950-2006 | 2007-2011 | 2012-2016
Mid-term (10 Year) | 1950-1996 | 1997-2006 | 2007-2016
Long-term (20 Year) | 1950-1976 | 1977-1996 | 1997-2016

The ranks selected using out-of-sample validation for each forecasting horizon are presented
in Table[8

Table 8: The ranks determined in the validation set, USA (Frame A & B)

Time frame A
CPD | Tucker (aaa) | Tucker (aab) | Tucker (abc)

Short-term(5 Year) 8 2%¥2%*) 14*14%*2 12*%15%2
Mid-term(10 Year) 9 2%¥2%) 9*%9*2 5%9%*2
Long-term(20 Year) 10 2%2*) 11#11%*1 T*15*%1

Time frame B
Short-term(5 Year) 10 2*2%*) 11%11%2 10%12*2
Mid-term(10 Year) 7 1*1*1 TET*2 6*10%2
Long-term(20 Year) 2%Q%) 3#3%) 10*7%2

Table [9) shows the out-of-sample short-term forecasting performance of the tensor decom-
position method compared with the SVD method in Frame A. Table [I0] summarizes the overall
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forecasting performance in Frame A and Frame B. Both the SVD model and Tensor models
have lower RMSFE in Frame B than in Frame A. The two-population CPD model consistently
outperforms the SVD model for both individual genders and the total population. Tucker (abc)
outperforms the other two Tucker models. And the Tucker methods do not perform well over
the long-term horizon, especially in Frame A. It also shows that Tucker(aaa) is not a suitable
model in this case since the upper bound of the ¢ (rank of gender) is 2. However, rank 2 is not
enough to capture the Year information (b) or the Age information (a). Due to the constraint of
rank in Tucker(aaa) model, it is only suitable to use when the rank of the 3 dimensions are in
the similar scale.

Table 9: Out-of-sample Short-term forecasting performance, USA (Frame A)

SVD CPD | Imp.% | Tucker(aaa) | Imp.% | Tucker(aab) | Imp.% | Tucker(abc) | Imp.%

Female | 0.166 | 0.097 | 41.7% 0.129 22.5% 0.094 43.0% 0.094 43.4%

Male | 0.148 | 0.088 | 40.5% 0.081 45.0% 0.087 40.9% 0.088 40.8%

Total | 0.157 | 0.092 | 41.2% 0.108 31.5% 0.091 42.1% 0.091 42.2%

Table 10: Out-of-sample overall forecasting performance, USA (Frame A & B)

Time frame A

SVD CPD | Imp.% | Tucker(aaa) | Imp.% | Tucker(aab) | Imp.% | Tucker(abc) | Imp.%

Short | 0.157 | 0.092 | 41.2% 0.108 31.5% 0.091 42.1% 0.091 42.2%

Mid | 0.158 | 0.096 | 39.7% 0.117 26.4% 0.093 41.6% 0.096 39.6%

Long | 0.187 | 0.151 | 19.5% 0.181 3.1% 0.194 -3.7% 0.194 -3.7%
Time frame B

Short | 0.107 | 0.077 | 28.2% 0.103 4.3% 0.079 26.4% 0.079 26.6%

Mid | 0.105 | 0.080 | 24.2% 0.117 -11.4% 0.081 22.9% 0.079 25.4%

Long | 0.136 | 0.121 | 10.5% 0.154 -13.3% 0.136 -0.5% 0.127 6.3%

Figure [J] illustrates the age-specific root mean square forecasting errors over 10-year fore-
casting horizon of the SVD model and the tensor decomposition (CPD & Tucker) models in
Frame A. The comparative performance of the Tensor methods on different ages is similar with
the previous analysis for 10 European countries, except for Tucker(aaa) due to its constraints
on rank selection.

In conclusion, for the US tensor data with age, year and gender as the three dimensions,
we recommend the use of the CPD model due to its consistent good performance in two time
frames (A and B). For mortality forecasting with short-term (5 years) and mid-term (10 years)
horizons, Tucker(aab) and Tucker(abc) can also be considered.
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Figure 9: Age-specific RMSE for mid-term forecasting: 10 years

3.2.2 UK

The time periods considered using the UK data are 1922 to 2016 for Frame A (including the
WWII) and 1950 to 2016 for Frame B (excluding the WWII). Similar with the previous analysis,
we divide the entire data set into training, validation and testing sets, which are summarised in
Table [[1] for Frame A and Frame B.

Table 11: Time frames A & B

Time frame A
Training | Validation Testing

Short-term (5 Year) | 1922-2006 | 2007-2011 | 2012-2016
Mid-term (10 Year) | 1922-1996 | 1997-2006 | 2007-2016
Long-term (20 Year) | 1922-1976 | 1977-1996 | 1997-2016

Time frame B
Short-term (5 Year) | 1950-2006 | 2007-2011 | 2012-2016
Mid-term (10 Year) | 1950-1996 | 1997-2006 | 2007-2016
Long-term (20 Year) | 1950-1976 | 1977-1996 | 1997-2016

The ranks selected using out-of-sample validation for each forecasting horizon are presented

in Table [12]
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Table 12: The ranks determined in the validation set, UK (Frame A & B)

Time frame A
CPD | Tucker (aaa) | Tucker (aab) | Tucker (abc)

Short-term(5 Year) 7 2¥2%7) 9*9%*7 T*12%2
Mid-term(10 Year) 10 2%2%*) 11%11%2 4*7%
Long-term(20 Year) 4 2¥2%7) 3*3%] 3*7*]

Time frame B
Short-term(5 Year) 7 2%2%) 6%6*2 6*7*2
Mid-term(10 Year) 5 2%¥2%) 5%5%2 5%5%2
Long-term(20 Year) 7 2¥2%7) TET*2 10%5%2

Table [I3]shows the out-of-sample short-term forecasting performance of the tensor decom-
position method compared with the SVD method in Frame A. Table |14 summarizes the overall
forecasting performance in Frame A and Frame B. The tensor decomposition models (CPD &
Tucker) consistently outperform the SVD model significantly for both individual genders and
the total population, except for Tucker(aaa), whose improvement ratios are relatively smaller in
some cases.

Table 13: Out-of-sample Short-term forecasting performance, UK (Frame A)
SVD CPD | Imp.% | Tucker(aaa) | Imp.% | Tucker(aab) | Imp.% | Tucker(abc) | Imp.%
Female | 0.232 | 0.070 | 69.6% 0.120 48.4% 0.068 70.6% 0.068 70.8%
Male | 0.311 | 0.060 | 80.6% 0.114 63.4% 0.064 79.3% 0.060 80.8%
Total | 0.274 | 0.066 | 76.0% 0.117 57.4% 0.066 75.9% 0.064 76.7%
Table 14: Out-of-sample overall forecasting performance, UK (Frame A & B)
Time frame A
SVD CPD | Imp.% | Tucker(aaa) | Imp.% | Tucker(aab) | Imp.% | Tucker(abc) | Imp.%
Short | 0.274 | 0.066 | 76.0% 0.117 57.4% 0.066 75.9% 0.064 76.7%
Mid | 0.320 | 0.093 | 70.9% 0.137 57.0% 0.093 70.8% 0.091 71.5%
Long | 0.358 | 0.181 | 49.5% 0.193 46.1% 0.196 45.1% 0.196 45.1%
Time frame B
Short | 0.117 | 0.062 | 46.9% 0.111 4.4% 0.063 45.7% 0.062 47.0%
Mid | 0.146 | 0.092 | 36.8% 0.129 11.6% 0.089 39.1% 0.089 39.1%
Long | 0.209 | 0.163 | 22.3% 0.174 17.1% 0.163 22.2% 0.171 18.5%

Similar to the conclusion in Section for the USA data, we recommend the use of the
CPD model for UK data too. For the short-term (5 years) and mid-term (10 years) forecasting
horizons, Tucker(aab) and Tucker(abc) can also be considered.

Figure [T0]illustrates the age-specific root mean square forecasting errors over 10-year fore-
casting horizon of the SVD model and the tensor decomposition (CPD & Tucker) models. The
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comparative performance of the tensor methods on different ages is similar with the previous
analysis for the US. The gaps between the SVD curve and Tensor curves are big in all forecast-
ing periods (except for Tucker(aaa) due to its rank constraints), which implies high improvement
ratios.

. The RMSFEs for Total population, UK (Mid-term 10 yesrs, Frame A)
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Figure 10: Age-specific RMSE for mid-term forecasting: 10 years

Comparing the result of UK with that of USA, the improvement ratios in the UK are consis-
tently and significantly higher than those in the USA. The most obvious reason is that the SVD
(Lee-Carter) model performs worse on the UK data while the Tensor models perform consis-
tently well on the data of both countries. This phenomenon possibly reflects the well-known
cohort effect that has been identified in the trends, see Renshaw & Haberman (2006).

We also compare our results with the findings discovered by Tsai & Lin (2017). They pro-
pose a new 2-dimensional model to forecast the gender-specific mortality rates of U.K. and U.S.
for the mid-term (10 years), long-term (20 years) and extra-long-term (30 years). The improve-
ment ratios generated by their model differ significantly between male population and female
population in both the US and UK data (see Table 6 and Table 7 in their paper). However,
the CPD model and Tucker(abc) model show similar forecasting performance on both genders
(The improvement ratios of males and females are close to each other.). Additionaly, the CPD
model and Tucker (abc) model also show much better forecasting performance compared with
the models in Tsai & Lin (2017). This comparison result again implies that tensor decomposi-
tion models can utilise the common information between different populations and improve the
forecast of individual populations.
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3.3 Variance-explained method v.s. Out-of-sample validation for rank se-
lection

In this section, we focus on the comparison of using the varianced explained method and out-of-
sample validation method for rank selection. The Lee & Carter (1992) model is in fact a form of
rank-1 SVD model (SVD(1)). And they used the variance-explained method to select the rank,
as the first rank is able to explain 97.5% of variance over time in all the age groups lower than
85 years old. We can also see similar arguments in many other papers when selecting the rank.
Following the same method, we calculate the variance-explained ratios using the rank-1 SVD
model on both US and UK data sets under the two frames in this paper. In Table[I5] the SVD(1)
model is able to explain 94.04% variance on average in all scenarios. As we have shown in the
previous section, although they have similar ability in explaining the variance of the US and UK
data, the forecasting performance is significantly different.

Table 15: Variance-explained ratios by SVD(1) model on UK and US, Frame A, Training set

US(female) | US(male) | UK(female) | UK(male)
Short-term(5 Year) 97.10% 89.21% 96.65% 87.95%
Mid-term(10 Year) 97.02% 85.67% 97.44% 92.15%
Long-term(20 Year) 98.03% 94.22% 97.59% 95.42%

Dimension-reduction techniques such as SVD and PCA usually require researchers to de-
termine the number of components or factors to retain (Osborne & Costello 2004). One of the
most widely used methods for this purpose is Cattell’s scree test (Cattell 1966). The scree test
is a heuristic graphic method that consists of :

e Plotting the eigenvalues (y-axis) against the components (X-axis)

e Inspecting the shape of the resulting curve in order to detect the point at which the curve
changes drastically (and the "scree on the hill slope" begins). This point on the curve
indicates the maximum number of components to retain.

The scree plot is a decreasing function showing the variance explained by each rank, which
is consistent with the variance-explained method. While the approach is simple and generally
useful, such an intuitive but also fuzzy procedure has been criticized as subjective (Zwick &
Velicer 1982). Figure |11 is the scree plot for the female population of US (Frame A, Short-
term) and we will use it as an visual example in this section. Following the logic of scree plot,
we may choose the rank of SVD model to be 1 or 2 since the slope after rank 3 is relatively flat.
However, it is difficult to see the relationship between the percentage of variance explained by
ranks and their forecasting ability. Is 90% or 95% good enough for forecasting?
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Figure 11: Scree Plot for US, Female, Frame A, Short-term Forecast

In order to compare the scree plot method (variance-explained method) with the out-of-
sample validation method, we apply the out-of-sample validation method to select the rank for
the SVD model in each scenario. For the same data set, we select the rank to be 16 since it
provides the lowest RMSFE in the validation set for the female population of US (Frame A,
Short-term), see Figure[I2] The RMSFEs become relatively stable when the Rank is larger than
8. However, rank 16 gives us the lowest RMSE in the validation set. If forecasting performance
is the only objective to consider, then 16 should be selected according to the result. However,
in practice, if people have other considerations and prefer a more parsimonious model, then
the selected rank should be determined by the trade-off between the model flexibility and the
forecasting performance.
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Figure 12: Validation RMSE for US, Female, Frame A, Short-term Forecast
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In Table[16] the rank selected by out-of-sample validation in all scenarios are shown and the
corresponding variance explained ratios are in brackets. There are two main differences that we
observe. First, the rank selected by out-of-sample method is far larger than 1 in most cases. In
another words, the rank determined by the out-of-sample validation method is far larger than
that determined by the scree plot method. Second, the average variance explained ratio is 99.58
% gained by SVD(k) model, which is also larger than 94.04% gained by SVD(1) model as the
rank increases.

Table 16: The rank selected and the variance explained, Frame A

US(female) US(male) UK(female) | UK(male)

Short-term(5 Year) | 16 (99.89%) | 20 (99.88%) | 4(99.39%) | 20 (99.78%)
Mid-term(10 Year) | 13 (99.86%) | 20(99.85%) | 9(99.66%) | 7 (99.36%)
Long-term(20 Year) | 16(99.92%) | 8 (99.38%) 3(99.31%) 3 (98.73%)

Next, we show the forecasting performance of the SVD(k) model in the testing set in which
k is the rank determined by out-of-sample validation. For the purpose of facilitating the compar-
ison of the forecasting performance between the SVD(k) and SVD(1) models, Table 17| copies
the corresponding RMSFEs of the SVD(1) model from previous sections. Clearly, the forecast-
ing performance of SVD(k) model is consistently and significantly better than that of SVD(1)
model in all cases. Comparing the forecasting performance of SVD(k) to that of CPD model and
Tucker(abc) model in the twelve cases listed in Table[17] we find that both CPD and Tucker(abc)
outperform the SVD(k) in most cases, though the improvement is much smaller than that of the
tensor models over SVD(1). The improvement of SVD(k) over SVD(1) is significant, but it
is only suggested for single-population mortality modelling, as the number of parameters will
explode if we apply it to multiple populations. More results applying the tensor decomposition
models to USA and UK data with different time frames and forecasting horizons can be found
in the supplementary materials.

Table 17: Out-of-sample forecasting performances by SVD(k) and SVD(1), Frame A

US(female) US(male) UK(female) UK(male)
SVD(k) | SYD() | SVD(k) | SVD1) | SVD(k) | SVD() | SVD() | SVD(1)
Short-term(5 Year) 0.095 0.166 0.085 0.148 0.070 0.232 0.068 0.311
Mid-term(10 Year) 0.106 0.165 0.080 0.152 0.092 0.253 0.100 0.374
Long-term(20 Year) | 0.167 0.195 0.133 0.179 0.163 0.272 0.201 0.427

In this section, we show how the out-of-sample validation method can be used to improve the
forecasting ability of the SVD model. It also reveals the weaknesses of the variance-explained
method (e.g. scree plot method). We summarise the two weaknesses of the variance-explained
as below:
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¢ In the case of one population, the relationship between variance explained and forecasting
performance is ambiguous. One way to increase the variance explained is to increase the
rank of the SVD model, but it may not improve the forecasting ability of the model.
Hayton et al. (2004) remark that: "Although the scree test may work well with strong
factors, it suffers from subjectivity and ambiguity, especially when there are either no
clear breaks or two or more apparent breaks".

e In the case of many populations, there is no uniform criterion for the variance that models
should explain when using different datasets. For example, SVD(1) model explains on
average 93.54% variance on US data and on 94.53% on UK data. However, the fore-
casting ability of SVD(1) in US data is much better than that in the UK data. On the
other hand, the SVD(k) model determined by out-of-sample method could explain on av-
erage 99.80% variance on US data and 99.37% on UK data. Different data sets require
different explained variance ratios to optimize their forecasting ability. Zwick & Velicer
(1986) state that scree plot interpretations often lack consistency and depend heavily on
the training received by the examiners and on the nature of the solution.

Based on these two weaknesses and the consistently better forecasting performance of the
SVD(k) model and Tensor models, we suggest using the out-of-sample validation method to
select the rank parameter for mortality forecasting if forecasting performance is the only focus
(objective).

4 Conclusion

Comparing multi-population mortality modelling using tensor decomposition methods (CPD
& Tucker) with single-population mortality modelling using SVD (Lee-Carter model), we see
that tensor decomposition methods always achieve superior out-of-sample forecasting perfor-
mance both for individual populations and the overall population. There are two reasons to
explain this. The first reason is that, multi-population decomposition methods have far fewer
parameters (latent factors) to estimate compared with using the single-population SVD method.
The more parsimonious structure of the tensor decomposition methods generates lower estima-
tion error and hence leads to better forecasting performance. This reason could expain why
the forecasting performance of tensor decomposition methods outperforms SVD for the overall
population. The second reason is that different populations with similar socio-economic status
share similar mortality trends (common information) to some extent. That common information
could be extracted and utilised in the multi-population framework to help forecast the mortality
of individual populations. However, when using the single-population SVD method, this com-
mon information is ignored and each population is modeled independently. This reason could
explain why the forecasting performance of tensor decomposition methods outperforms SVD
for individual populations.

We also compared using the variance-explained method and out-of-sample validation method
to select the rank parameter. We show that for predictive modelling (forecasting performance is
the focus), out-of-sample validation is a better method to select the rank for mortaltiy forecast-
ing.
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Supplementary Material

Supplementary Materials: The sumplementary materials are provided to include more figures,
tables and algorithms related to this paper.

Codes: The codes to reproduce results, including figures and tables, in this paper can be ob-
tained via https://github.com/YumoDong/Tensor—-mortality—-prediction.
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