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Abstract: The changing nature of manufacturing, in recent years, is evident in industry’s 

willingness to adopt network connected intelligent machines in their factory development 

plans. A number of joint corporate/government initiatives also describe and encourage the 

adoption of Artificial Intelligence (AI) in the operation and management of production lines. 

Machine learning will have a significant role to play in the delivery of automated and 

intelligently supported maintenance decision making systems. While e-maintenance practice 

provides a framework for internet connected operation of maintenance practice the advent of 

IoT has changed the scale of internetworking and new architectures and tools are needed. 

While advances in sensors and sensor fusion techniques have been significant in recent 

years, the possibilities brought by IoT create new challenges in the scale of data and its 

analysis. The development of audit trail style practice for the collection of data and the 

provision of a comprehensive framework for its processing, analysis and use should be a 

valuable contribution in addressing the new data analytics challenges for maintenance created 

by internet connected devices. This paper proposes that further research should be conducted 

into audit trail collection of maintenance data and the provision of comprehensive framework 

for its processing analysis and use, allowing future systems to enable ‘Human in the loop’ 

interactions. 
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1. Introduction 

Increasingly manufacturing industry is adopting network connected intelligent machines in 

their factory development plans. This has created a new wave of interest in incorporating 

advances in Artificial Intelligence (AI), which is described and encouraged by a number of 

international government/industry initiatives.  The Industry 4.0 movement is one such initiative, 

between the German government and national industries, with a role to envisage and promote 

the use of new technologies and organizational methods for manufacturing (German Federal 

Government, 2016). Cyber Physical Systems (CPS) are a core theme of Industry 4.0, 

encompassing the further integration between machines and computing resources, leveraged 

in part by the Internet of Things (IoT). In addition, the enhanced information processing and 

analysis opportunities provided by the ubiquity of sensor use in modern machinery to provide 

data streams and resulting Big Data sets is seen to create potential for new products and new 

types of manufacturing models.  In the US the Industrial Internet Consortium is an initiative 

setup between the US government and large industrial organizations. While having similarities 

to the vision provided by Industry 4.0 there is a concentration on three core components: 

Intelligent Production Machines, Analysis of Sensed Data, People and Machines working 

together (Posada et al. 2015). The industrial Internet is also much more focused on the 

visualisation of data at both global and local levels (Industrial Internet Consortium, 2017). The 



central differentiator between the two visions is that while Industry 4.0 focusses on 

manufacturing, the remit of the Industrial Internet is much wider bringing in other sectors of 

the economy as well. In the opinion of the authors of this paper the central challenge is how 

maintenance can best utilise the opportunities brought by this expansion of AI into the 

manufacturing arena. The quality and provenance of data are important factors in data 

management and a key success factor for when engaging in any form of analytics. With 

maintenance rapidly adopting key Industry 4.0 technologies, such issues attain increased 

importance for successful applications and services. The path towards Industry 4.0-enabled 

maintenance has seen developments in Predictive Maintenance, Condition Based 

Maintenance, Intelligent Maintenance, and E-Maintenance; leading to the introduction of IoT, 

Context aware computing and Audit Trail concepts for maintenance. This paper offers a critical 

overview of this evolving landscape, including Industry 4.0 applications in the area of 

maintenance. The paper concludes by finding that while maintenance is increasingly adopting 

Industry 4.0 technologies, issues related to data governance, provenance and quality 

management, are already well appreciated in the Big Data literature; these topics deserve 

equal attention in this application domain and to this end a discussion of the potential of using 

the Audit Trail for maintenance data is provided. 

 

2. Intelligent Decision Support 

 

2.1 Condition Based and Predictive Maintenance 

Condition Based Maintenance (CBM) is the standard term employed to describe maintenance 

strategies determined on the basis of the actual condition of assets, as identified by the 

application of condition monitoring programmes (ISO 13372:2012)(BS EN 13306:2017). While 

this general viewpoint holds a central role in literature, details on how exactly CBM benefits 

from individual technologies, methods, has also received significant attention in the literature. 

In industrial practice, CBM involves the performance of maintenance tasks triggered by the 

analysis and interpretation of monitored hardware parameters and the associated decision 

making rules as an integrated process (Liyanage et al., 2009). Peng et al. (2010) describe 

Condition Based Maintenance (CBM) as a “decision making strategy to enable real-time 

diagnosis of impending failures and prognosis of future equipment health, where the decision 

to perform maintenance is reached by observing the “condition” of the system and its 

components” or additionally on the basis of prognostics about the anticipated future condition. 

While the diagnostics and prognostics parts of CBM approaches have benefited from 

incorporated machine intelligence in order to associate measured data and parameters with 

current and future machinery conditions (Jardine et al., 2006) (Emmanouilidis et al., 2006), an 

early criticism of machine intelligence use in CBM has been that the research has 

concentrated on very specific cases with only limited attempts to deliver solutions with generic 

applicability (Lee et al. 2006). As a response to this Lee et al. (2006) put forward a toolkit for 

predictive CBM based on sensor data, capable of working with different manufacturing 

machines and set ups. In their review of machinery diagnostics and prognostics Jardine et al. 

(2006) indicated a number of research directions for Condition Based Monitoring (CBM) 

systems for condition based Maintenance, including the development of a new generation of 

sensors for on-line data collection in real time and investigation into the provision of predictive 

techniques based on collected data. The next step in the maintenance data processing chain 

is to produce action recommendations, as highlighted in the OSA-CBM architecture (MIMOSA, 

2017). This elevates a CBM strategy to proactive maintenance. Within such an approach, 

asset events and errors are decomposed in a process flow, arguing that in understanding the 



conditions leading up to a fault, more accurate estimates of safe operating limits can be 

identified (Radkowski and Jasinski, 2014). The importance of utilising a range of evidence 

contained in multiple data sets and streams when making CBM related decisions is highlighted 

by Niu et al. (2010).  Such a data fusion approach can bring benefits through the combination 

of many condition measurements into a consolidated description of maintenance needs for an 

individual component or unit under observation. Niu et al. (2010) outline a maintenance system 

that takes advantage of data fusion and the OSA-CBM standard, providing a platform for the 

optimised exploration of maintenance decisions and predictions. Building on the availability of 

Big Data Bousdekis et al. (2015) provides a review of Condition Based Maintenance (CBM) 

and proposes a framework for maintenance decision making, utilising expert knowledge, 

which is capable of recommending maintenance actions for implementation. 

The question of how much capital to invest in maintenance practice has been addressed in 

the field of vibration monitoring by Al-Najjar and Alsyouf (2004). These authors concluded that 

a framework of performance measurement should be utilised to ensure value for money is 

being obtained from maintenance activities. Further research has been conducted into 

calculation of the likelihood of failure of assets and the appropriate stage at which to conduct 

maintenance interventions. Yao et al. (2016) identify two types of failure under CBM where in 

the first instance an asset may fail before the monitoring threshold is reached and the second 

where the monitoring threshold is exceeded without asset failure. Goyal et al. (2016) provide 

a more recent review that includes a number of machine intelligence methods for CBM and 

predictive maintenance practice and note that while such techniques provide good offline 

models research scope still exists in harnessing them for real time prediction and decision 

making. Accorsi et al. (2017) add a set of models to aid the prediction of faults in production 

systems and explore machine learning techniques such as decision trees utilised for the 

classification and identification of abnormal operating conditions derived from production 

machine data streams. Accorsi et al. (2017) go onto propose a framework for data mining and 

modelling related to CBM.  

 

Prognostic maintenance practice is based on the prediction of likely breakdowns in hardware 

formed from the analysis of collected parameters and degradation trends. Liyanage et al. 

(2009) identify three prognostic approaches: 

• Model based: Centred on detailed knowledge of a system and its interlinkages; its use 

is limited due to inherent complexity of modern industrial systems. 

• Data-driven: Requires historical parameter collection from monitored assets; requires 

pattern recognition and machine intelligence techniques to realise actionable decision 

making outcomes. 

• Hybrid: Is a combination of the two aforementioned approaches requiring a joint 

analysis of both known information about a system in combination with sensed data 

points. 

The use of prognostic maintenance practice to estimate the remaining useful life of a 

component has been investigated by Van Horenbeek and Pintelton (2013). This work takes 

into account inter-component dependencies in the degradation calculation approach and 

prognostic maintenance policy developed (Van Horenbeek and Pintelton, 2013). Prognostic 

maintenance practice can benefit from advances in data capture and the availability of big 

data for a range of applications. Lee et al. (2013) describe the use of a Digital Twin whereby 

a machine may be represented in digital form utilising CAD models and sensor streams from 

the machine.  Lee et al. (2013) also describe the possibility for similar machines to 

communicate with each other to check and compare status to form more accurate feedback 



to the maintenance monitoring system along with the use of self-aware sensors with built in 

decision making capabilities.  Lee et al. (2013) conclude with an outline of a cloud based cyber 

physical model of machine data capture, analysis and use. The capture and integration of 

expert knowledge to support and validate predicted routines is very much an active subject of 

research. The use of prognostics in condition based maintenance through the construction of 

a hybrid model incorporating expert knowledge is investigated by Galar et al. (2015). In this 

work a combination of discrete data and semantic feedback (provided by experts) is combined 

to provide decision support in relation to issues of component degradation (Galar et al. 2015).  

Baysian approaches to prediction in maintenance are not new; McNaught and Zagorecki 

(2009) have explored the use of a Bayesian network approach to prognostic modelling of 

equipment in terms of maintenance. A more recent technique drawing on Bayesian theory for 

prediction is put forward by Desforges et al. (2017) is described as a support system for 

maintenance planning activities with the aim of modelling fault prorogation in subsystems for 

improved prediction. In addition the technique aims to reduce the downtime of systems 

enabling further efficiencies in planning to take place (Desforges et al., 2017). Niu and Jiang 

(2017) propose a technique for prognostic control at a component level within a system while 

enabling the optimisation of the system as a whole at a global level. This enables the 

development of a suitable overall maintenance interval schedule based on sub system level 

health prognostics (Niu and Jiang, 2017). Ragab et al. (2017) put forward a way of pattern 

selection from condition monitoring data to support prognostic maintenance, a method that 

does not rely on expert judgement and statistical base assumptions on initial set up. A case 

study on prognostic techniques relating the maintenance of railway infrastructure is presented 

by Marugan and Marquez (2016). Binary Decision Diagrams are used with fault trees to 

provide an Internet based decision making process for problem diagnosis in railway points.  

Recent work by Belkacem et al. (2017) investigated the combined approach of integrating 

diagnostic and prognostic maintenance policies to provide a dynamic maintenance system; a 

technique these authors aim to extend and develop further, in terms of its scalability, in future 

research. The practice of prognostic maintenance must of course be viewed within a wider 

maintenance system composed of the latest hardware and software. Such a system is 

envisaged within the field on E-maintenance, which is the subject of the following section of 

this paper. Xia et al. (2018) provide a concise summary of predictive techniques in use for 

maintenance practice in a range of digital manufacturing activities; these authors note that 

innovative manufacturing techniques, such as 3D printing, bring new challenges to the way 

maintenance is performed, demanding new research into how supply chains support products 

manufactured in this way. Vafaei et al. (2019) have investigated CBM from the perspective of 

providing an approach for an early warning system. In this work Vafaei et al. (2019) utilise a 

fuzzy inferencing approach to enable a system capable of developing what-if scenarios based 

on generated rulesets regarding the potential for break downs in monitored production lines. 

In their survey paper on CBM and prognostic techniques in industry Sakib and Wuest (2018) 

make the case that a combination of such techniques is increasingly seen as the most likely 

future path for maintenance practice, involving a multiphase approach to problem detection, 

diagnosis and corrective/mitigating actions. 

 

2.2 E-maintenance 

Incorporating predictive maintenance approaches within E-maintenance aims to integrate 

developments in web enabled communication technologies with semantically described data 

resources, sensing technologies and artificial intelligence algorithms to realise new 

capabilities for remote and ubiquitous maintenance. Levrat et al. (2008) state that inherent in 

the concept of e-maintenance is the remote monitoring and management of assets though 



Internet-based technology. Levrat et al. (2008) go onto propose a framework for e-

maintenance encompassing issues such as infrastructure,  business processes and 

information architecture, noting that further research is needed in terms of unified standards 

for e-maintenance and the communication protocols required for effective operation. A 

particular feature of e-maintenance, enabled though its framework, is the facilitation of fault 

prediction in order to pre-emptively schedule mitigating maintenance activity. Voisin et al. 

(2010) proposes a prognosis business process as a formalisation of the predictive feature of 

e-maintenance practice in their proposed model. Muller et al. (2008) provides a review of the 

main research works in the area of e-maintenance, focussing on definitions of e-maintenance 

ranging from a maintenance strategy to a type of maintenance planning. Muller et al. 2008) 

state that the combination of the latest ICT developments, especially with regard to 

prognostics, with maintenance practice has led to the emergence of e-maintenance. However, 

a more accurate assessment would see e-Maintenance as an enabling factor for more efficient 

maintenance, which would also include prognostics, rather than the other way round. The 

utility of machine learning in the successful delivery of e-maintenance has been noted by Ucar 

and Qiu (2005). These authors also note the rise of wireless communications technology 

(networks, sensors etc.). Arnaiz et al. (2010) provide a review of communication technology 

use in e-maintenance and point to two trends; that of the use of wireless web enabled 

communication technologies and the miniaturisation of sensing devices. The potential value 

of RFID and other associated smart tagging technologies is noted by Adgar et al. (2010) along 

with the rise of ubiquitous computing, a movement describing the almost universal availability 

of miniaturised computing power in a range of, often, portable devices (Arnaiz et al., 2010; 

Krommenacker et al. 2010). The prominence of one particular approach has been identified 

by several authors (Arnaiz et al., 2010; Campos, 2009; Vogel-Heuser et al. 2014); that of 

Agent technology, where sometimes geographically distributed software modules are able to 

cooperate in order to autonomously fulfil a given objective or set of objectives. When used 

with machine learning techniques this approach is particularly relevant to the field of e-

maintenance. Overall, e-maintenance is considered an umbrella term to include a range of 

enabling technologies which facilitate the whole data process chain in maintenance, from data 

acquisition through sensor miniaturisation, smart tags, and sensor networks, to wireless 

communications and mobile devices, all the way to web-based and semantic computing for 

offering maintenance services and decision support, including technology enablers for 

maintenance training (Holmberg et al., 2010).  

Holgado et al. (2016) identify a range of functionalities provided by e-maintenance applications 

listing 10 categories of tools. These focused on provided diagnostic and prognostic 

functionality were rated more highly for usefulness than those than were based on model 

simulation. A recent evaluation work comparing diagnostic and prognostic maintenance 

policies is provided by Belkacem et al. (2017). The use of AR (Augmented Reality), where 

animations and graphics are overlaid on actual scenes in real time, is identified by Azuma 

(1997) and Azuma et al. (2001) as an aid to maintenance activities. Henderson and Fiener 

(2011) explore the use of AR for engineer knowledge assistance in maintenance and repair 

activities. These findings are interesting as Turner et al. (2016) envisages the development of 

AR with simulation, allowing models of production systems to be fed with data in real time and 

overlaid on the actual physical view of the plant/assets in question. Such a combination of 

technologies could act as a context relevant visualisation to aid ‘in-field’ maintenance 

decisions. Ceruti et al. (2019) examine the use of AR within case studies drawn from aviation 

maintenance practice, concluding that such an approach can streamline part identification 

tasks and on the job training and support of maintenance technicians.   

Real world case studies of e-maintenance systems in action can be found in industries such 

as aerospace and rail and road maintenance where sensed data about both static and mobile 



assets may be collected and analysed to make decisions about present and future 

maintenance actions. (Ben-Daya et al., 2016). Ben-Daya et al. (2016) charts the rise of e-

maintenance, from manual systems, and CBM into web connected systems.  

Increasingly industry is witnessing the gradual introduction of Cyber Physical Systems (CPS). 

Such CPS systems are composed of deeply interconnected hardware and software systems 

with sensing capabilities and are often able to provide intelligent decision support and decision 

making functionalities to users (NIST, 2013).  Holgado et al. (2016) notes the importance of 

CPS and the increasing potential of machines to interact with their maintenance systems and 

influence the works carried out and their timing. As a tangent to this Ruiz-Arenas et al. (2014) 

explores many of the e-maintenance issues that pertain to CPS systems themselves and 

provide the case study of a CPS enabled greenhouse as an example. Penna et al. (2014) and 

Botelho et al. (2014) describe an approach for the visualisation of CPS integration in 

maintenance systems and the development of maintenance scenarios using 3D modelling 

tools. The aforementioned visualisation approach focusses on Human Computer Interaction 

issues taking into account and designing interfaces for the support of human operators within 

the maintenance process (Penna et al., 2014). One of the central components of e-

maintenance is the ability to freely collect, exchange and process data. One approach to this 

is through the use of semantic technology and ontology use. Nuñez and Borsato (2017) 

explore the potential of semantic technologies to describe machine health management and 

prognostic forecasting of potential failure. The semantic framework built by Nuñez and Borsato 

(2017) is provided in the form of prototype software to allow experimentation with a wide 

variety of plant and machinery. Zhou et al. (2017) provide a potential augmentation to the 

aforementioned semantic framework through their research of fault diagnosis and provision of 

a requisite knowledge model. This work also utilises a semantic approach and envisages the 

use of pattern recognition approaches such as Neural Network to better identify and classify 

a fault through data analysis (Zhou et al., 2017). Li et al. (2017) in a review of artificial 

intelligence/machine learning use in manufacturing discuss programmes for proactive and 

preventative maintenance that would be possible within an intelligent manufacturing system. 

The interconnected nature of organisational management systems and manufacturing 

production machines in combination with accessible rich data and information sets is leading 

to this new role for machine learning in industry (Li et al. 2017). In applications with high 

maintenance needs there is a requirement to coordinate the supply chain responsible for spare 

parts delivery. This subject has been researched by Espíndola et al. (2012) who put forward 

a conceptual approach to combining an intelligent maintenance system with supply chain 

coordination and planning processes. In addition da Silva et al. (2014a) also investigate the 

integration of parts supply chain and planning with an intelligent maintenance system touching 

on the use of ontology to describe communication within the combined architecture; along with 

Saalmann et al. (2016) who propose a multi-layer ontology incorporating existing semantic 

approaches to supply chain and intelligent systems. A particular use of ontology is in the 

potential integration of spare parts supply chains and the field of CBM, where the two entities 

possess distinct knowledge sets and express their data and parameters in different levels of 

granularity and importance (Saalmann et al., 2016). Saalmann et al. (2016) make the case for 

a common terminology and utilise DPWS (Device Profile for Web Services) in order to obtain 

metadata from physical devices (DPWS is a standardised middleware for exposing 

parameters about and data from physical hardware devices). 

One particular challenge relating to e-maintenance data is that of missing values, where 

connectivity issues and faulty sensors can lead to incomplete data recordings (Loukopoulos 

et al., 2017). The research of Loukopoulos et al. (2017) explores the process of imputing 

missing values in data relating to the e-maintenance practice required for compressors used 

in the oil industry. This work investigates the use of computational intelligence approaches 



such as self-organising map (SOM) Neural Network learning, K nearest neighbours classifier 

and Bayesian techniques. Lou found that while SOM and KNN produced reasonable results 

the best result was produced by Multiple Imputation MI (an uncertainty method used to 

introduce simulated data based on Bayesian theory). Beyond missing values, Liyanage et al. 

(2009) makes the point that there is also a need to keep experts in the loop; networks of people 

are required to enrich data from systems and sensors with their own contributed observations 

or knowledge. Djurjanovic et al., (2003) outline a watchdog agent which has been designed to 

convert sensor data into health management information and Liyanage et al. (2009) place this 

within an overall e-Maintenance framework. In combination with decision management 

functionality the agent is designed as a semi-autonomous software module capable of 

interaction and coordination with enterprise maintenance and manufacturing systems.  

In line with Muller et al. (2008) definition of e-maintenance as a combination of  

‘telemaintenance principles with Web services and modern e-collaboration principles’ enabling 

knowledge exchange and intelligence based on the ability to identify and collect relevant and 

timely parameters, a more recent wave of technologies presents a step change and the 

possibility for real time proactive maintenance. This paradigm addressed existing practices 

that were much more focussed on the improved management of maintenance, from reactive 

to proactive activities, through prognostics based on largely disconnected datasets with 

potential for data quality and timeliness penalties. The increasing importance of maintenance 

as a service in industry is highlighted by Akkermans et al. (2019); these authors highlight that 

the product service methodology has evolved into the provision of smart maintenance services 

to complement products, made possible by more accurate quantifications of service needs 

and costs based on real-time analytics. 

2.3 IOT 

Developments within hardware have increasingly leveraged the availability of almost 

ubiquitous network connectivity provided by internet based communication protocols. This has 

now culminated in IoT whereby hardware from sensors to entire machines may be web 

addressed as interactive objects providing raw and often intelligently filtered data points to 

client software applications. Cloud implementations utilise both network technologies and big 

data production capabilities of IoT connected hardware to provide new distributed 

manufacturing forms and the opportunity for prognostic flexible maintenance based on 

intelligent near real-time analysis of live operating environments. The utilisation of cloud 

technologies to enable CBM is one of the more recent research strands within e-maintenance. 

Karim et al. (2016) make the case for what they term ‘Maintenance Analytics’, where four time 

related perspectives of practice are defined in the utilisation of data provided by industrial 

application cloud platforms. In a rail related case study, ‘Rail Cloud’, Karim et al. (2016) find 

that a systematic treatment of maintenance data is required with its synthesis and integration 

required for decision making in order to support the next generation of digitally monitored plant 

and machinery. In the research of Truong (2018) it is acknowledged that the inherent 

complexity of modern machinery IoT enabled cloud platforms require additional analysis of 

interactions between system components, and that this analysis also requires human 

intervention and decision making capabilities. Truong (2018) go onto propose a system 

capable of automatically recognising when human expertise is required and alerting the 

correct expert for input of knowledge and decision making capability.  While this research 

outlines an architecture for distributed analytics processing Truong (2018) notes that much 

research is still required in the correct mapping of analytics to domain knowledge derived from 

experts an in the facilitation of the ‘Human in the Loop’. Mourtzis et al. (2016) propose a shop 

floor monitoring approach that includes CBM functionality delivered via a cloud infrastructure. 

The approach of Mourtzis et al. (2016) highlighted the possibility of near real time data 



acquisition and monitoring for maintenance decision making. In later work Mourtzis et al. 

(2018) provide a cloud based model for IoT sensor data collection from a manufacturing 

production line; highlighting the potential of such a system in its ability to interconnect the shop 

floor with enterprise IT software, these authors elude to the possibility of fine grain control and 

prediction at the individual machine tool sensor pack level.  Wang et al. (2017) provide an 

example model of cloud based prognostic maintenance practice outlining the advantages of 

local processing of data on mobile devices in order to manage the overall analytics load within 

the system and reduce the communications bandwidth required. In their work Wang et al. 

(2017) cite the need for further research in the development of distributed data analysis 

practice and co-ordination of heterogeneous data streams and for improved security for data 

communication. The question of enhanced security practice for cloud based CBM practice is 

one explored by Tedeschi et al. (2017) who propose a structured approach to the assessment 

of security requirements within a cloud based CBM system. In more recent work Bowden et 

al. (2019) propose a ‘plug and Play’ end to end cloud architecture for predictive maintenance. 

The architecture utilises Docker containers (an open source software that is used to ‘wrap’ up 

unites of code into generically compatible container compliant with common software as a 

service and platform as a service implementations) to provide flexibility in the implementation 

and deployment of the completed analytics system. A case study is provided by these authors, 

based on the monitoring of a Comau industrial robot, with initial results demonstrating a range 

of predictive and near to real time alerting functionalities expected of a future industry 4.0 

maintenance system (Bowden et al., 2019). Predictive maintenance architectures such as 

Bowden et al. (2019) often rely on data streams provided by IoT compliant sensing packs 

composed sensors and Edge data processing devices. It is the opinion of certain research 

works that there are limitations in the utilisation of Cloud platforms for industrial applications 

in that the sheer volume of data transfer that must take place between facility and Cloud 

infrastructure means that more localised processing is necessary (Anaya et al. 2018). Patel et 

al. (2017) also acknowledge the data transfer limitation of Cloud platforms along with the need 

for near to real time processing of data, a factor that is also difficult to achieve in such 

platforms.   

In such circumstances the ability of Edge devices to pre-process data streams emanating from 

production and machine tool sensors takes on additional importance; as such decentralised 

processing of data using Edge devices is an active stream of research within Industrial IoT 

analytics programs to support maintenance activities (Uhlmann et al. 2017). Parpala & Iacob 

(2017) describe how IoT enabled Edge technologies can be used to allow data collection from 

legacy machinery. This work also demonstrates a simple data communication interface to 

complement the sensor and Edge device hardware implementations required (Parpala & 

Iacob, 2017). Jantunen et al. (2018) provide a case study drawn from research of a proactive 

maintenance approach within a power plant. This work examined the output of vibration 

sensors monitoring flue gas blowers within a power plant; the research concluded that a six 

month time difference between component replacement times suggested by use of this 

approach and manual assessments of the same data (Jantunen et al., 2018). A wider 

exploration of Edge computing in the manufacturing domain is provided by Wan et al. (2018) 

who propose an architecture for IoT enabled production. In their maintenance based case 

study Wan et al. (2018) the authors found that the packing of confectionary boxes by robots 

could be performed autonomously with self-organisation and planning undertaken at the 

production line level, made possible by the inherent advantages of co-located processing 

provided by Edge computing devices. The connection and synergies achievable with the 

combined use of IoT, predictive maintenance and 3D printing are elicited by Yamato et al. 

(2017a). Such linkages are explored with regard to aircraft maintenance, and an analytics 

platform is proposed (Yamato et al., 2016) along with a case examining the potential of sound 



stream analysis in maintenance utilising edge devices (Yamato et al., 2017). In terms of 

machine learning use with data streams Tran and Yang (2012) propose a platform for CBM 

utilising intelligent techniques such as Principal Component Analysis (PCA) and Support 

Vector Machine (SVM) in particular to extract features from data and then diagnose faults in 

rotating machinery, respectively. In further studies involving the maintenance practice relating 

to rotating machinery, Yunusa-Kaltungo and Sinha (2017) make the case that while analysis 

of big data obtainable from such equipment is potentially transformative, in the case of 

vibration based parameters more streamlined techniques can hold the potential for lower cost 

and simplified e-maintenance practice. These authors provide an approach utilising 

classification and optimisation techniques for use in the monitoring of such machines (Yunusa-

Kaltungo and Sinha, 2017). Kanawaday and Sane (2017) explore the use of a forecasting 

method, AutoRegressive Integrated Moving Average (ARIMA), on data streams generated by 

IoT sensorised production line machinery. This approach has been used to improve 

maintenance planning and in future research may be adapted to predict remaining useful life 

of a production machine and detect operational anomalies (Kanawaday and Sane, 2017). The 

concept of tele maintenance (remote maintenance) is highlighted by Selcuk (2018) as a future 

direction for prognostic maintenance, made possible by IoT connected sensors, intelligent 

products and machines. This author also points to the emergence of maintenance as a full 

integrated service provided to customers, leveraged through IoT technology (Selcuk, 2018). It 

is also the case that Digital Twins, providing virtual replicas of real world production lines and 

assets, may be used in IoT (Koulamas and Kalogeras, 2018) for connected predictive 

maintenance practice (Qi & Tao, 2018) and administered from both inside and outside the 

customer organisation. A number of interesting new business models for IoT based service 

provision are outlined by Ju et al. (2016). These authors propose a generic framework for the 

enablement of IoT business model development (Ju et al., 2016). Khan et al. (2017) also 

provide a methodology for IoT sensing in industry, illustrated by a use case based on a process 

to facilitate predictive maintenance within an organisation. It is clear that localised processing 

of data streams can provide real benefits in terms of real time decision making and the 

enablement of intelligent automation; for an additional commentary on the mining of streaming 

data for maintenance activities Munir et al. (2018) provide a concise summary.  At this point it 

should be noted that newer IoT enabled maintenance techniques are perhaps not a complete 

replacement for existing techniques such as root cause failure analysis and preventative 

maintenance practice; existing and new techniques can be complimentary in their use, a point 

made by Bengtsson and Lundstrom (2018).    

2.3.1 Data fusion from multiple sensor outputs  

The IoT opens up disparate physical plants and machinery to the potential for ubiquitous and 

real time data connectivity. While much work still remains to be completed on the 

establishment of unified data exchange standards and semantics progress has been made in 

terms of data networking and management approaches for this recent paradigm shift in 

connectivity.  

2.3.1.1 Large scale data internetworking 

Emmanoulidis et al. (2009) make the case for the take up of advanced communication 

networks in conjunction with mobile computing solutions in order to support maintenance 

activities. A reliance on locally available data and resources provided by LAN (local Area 

Network) often means that organisations must undertake manual data mining tasks on 

disconnected data sets in order to make planning decisions on maintenance activities 

(Emmanoulidis et al., 2009). Sayafar et al. (2016) add that the real time optimisation of 

maintenance activity planning, in part enabled through mobile networked devices, will lead to 



universal access to vital asset data for involved workers. The production of data by intelligent 

products provides another IoT enabled source of data. Intelligent products may produce data 

while in operation ‘in the field’ or even while in production while being assembled in a factory. 

McFarlane et al. (2012) investigate the state of the art in intelligent products point to the use 

of RFID (Radio-frequency identification) tags to trace products through the supply chain and 

also note the rise of IOT and its potential to network connect intelligent products. Cuthbert et 

al. (2016) make the case for product intelligence in domestic appliances suggesting that low 

cost electronics could be integrated into such products to enable health tracking for 

maintenance purposes. Improvements in communications networks especially mobile 

networks are helping to leverage interest in IOT. The 5G mobile standard promises 

bandwidths capable of serving the requirements for the wireless connection of IOT devices 

with greater energy efficiency (Andrews et al., 2014). Papakostas et al. (2016) outlines 5G in 

a manufacturing context pointing to the possibility for ubiquitous connectivity and potential for 

plug and play hardware on the shop floor.  

2.3.1.2 Large scale data management and analytics 

The volume of data sets and streams available with networked hardware in manufacturing 

leads to changes in the way that data analysis takes place. Cloud technologies have been 

assessed for this purpose and the concept of Cloud Manufacturing has been put forward as a 

potential analytics solution. The Cloud Manufacturing paradigm is based on the use of 

distributed Cloud Computing technologies for sustainable manufacturing while integrating 

distributed Internet technologies such as IoT (Zhang et al., 2014). Sustainability in 

maintenance practice is a theme explored by Franciosi et al. (2018) who surveyed literature 

and found that proactive and predictive maintenance practices could lead to reduced 

environmental impact in many cases, noting that improved end of life estimation and failure 

modes that take account of emission/environmental damage due to machine breakdown hold 

much potential. The distributed processing of data envisaged by Cloud Manufacturing is one 

way to address the analytics need created by the challenge of continuous maintenance 

particularly of high value long lifecycle products (Roy et al., 2016). Truong (2018) provide a 

predictive analytics approach for maintenance utilising IoT and Big Data Cloud resources.  

More efficient methods of maintenance are required as many high value products are sold as 

product-service offerings whereby maintenance is delivered as part of the retail offer (Baines 

et al., 2009). Cyber Physical Systems (CPS) in manufacturing are entities that both produce 

and consume vast quantities of data in their operation. While encompassing such entities as 

cybernetic extensions to humans CPS systems in terms of manufacturing are more likely to 

be formed of the following components: production capable machines; sensing functionality 

(both hardware and software); intelligent computer processing functionality. With CPS there 

is a need for both local data processing (within the CPS hardware entities), for autonomous 

operation within a shop floor perhaps, and remote analytics for monitoring and global 

coordination. Gubbi et al. (2013) notes that both Cloud and IoT technologies are required to 

fully enable CPS and link together intelligence at both local and global levels; it is this, in the 

authors’ of this paper opinion, that will help to deliver the next generation of manufacturing 

solutions including those focussed at the maintenance level. While realising interconnectivity 

at a hardware and digital communications level is key to the latest maintenance practice an 

often overlooked concept, though one that is gaining in acceptance, is that of context 

awareness in relation to maintenance.  

2.4 Context aware computing  

The area of context awareness in systems has been growing over recent years. Dey et al. 

(2001) describe the context awareness of systems as being provided through the intelligent 



characterisation and interaction of computer applications with their surrounding environment. 

In the view of Dey et al. (2001) context awareness acquisition by a system may be manual as 

well as automatic. The research of Bettini et al. (2010) advises that applications should be 

abstracted away from the context related functionality that they utilise, meaning that changes 

in context data and models should not break the software systems built upon them. To this 

end Bettini et al. (2010) survey the field of context modelling with the aim of identifying good 

practice in order to reduce the complexity of context aware application development; 

recommendations are also made as to the use of formal modelling techniques such as Object-

Role Modelling (ORM) in the development of context models. Blasch et al. (2012) highlights 

the importance of context in the development of a data fusion architecture noting that the use 

of technologies such as simulation in combination with context based information can provide 

further efficiencies at the analysis stage. One key driver for increased interest in context 

awareness is the rise of pervasive computing. Ye et al. (2012) identify pervasive computing 

as a type of computing that through the use of sensors is able to interact with the world with 

minimal or no human intervention. Perera et al. (2014) provide an overview and a taxonomy 

of a lifecycle approach to context awareness for utilisation in conjunction with IoT linked 

middleware, highlighting a progression from context acquisition through processing and 

analysis to its eventual distribution though API (Application Programming Interfaces) and 

appropriate data formats. 

Hong et al. (2009) provide a classification framework for context aware systems in their survey 

of the area identifying five distinct layers: Concept and research layer; Network layer; 

Middleware layer; Application layer; User intrastate layer. Focusing on Enterprise Information 

Systems, El-Kadiri at al. (2016) argue that the multi-networked nature of physical entity 

supported IoT empowers physical products and assets to become intelligent; but in order to 

cope with the breadth, depth, rate, and sheer volume of produced data a context aware 

approach is needed. El-Kadiri at al. (2016) identify abstract context categories (e.g. user, 

environment, system, service and social context) as relevant to a wide range of applications 

but they indicate that such high-level context abstraction needs to be supplemented by 

domain-specific context modelling, providing examples relevant to maintenance and asset 

management.    

Of most interest to this paper are the application and middleware layers. While benefitting from 

the other layers the application and middleware layers contain the logic required to establish 

context and provide intelligent processing and presentation of data to the user while holding 

the potential as a platform for automated decision making. In the research put forward by 

Perera et al. (2014) these authors also sought to examine appropriate data collection 

frequency levels and establish responsible components for data collection and decision 

making within context aware IoT systems. The importance of context in data fusion is 

highlighted by a number of authors (Khaleghi et al. 2013, Fernández-de-Alba et al. 2015, 

Snidaro et al. 2015, Linas et al. 2016).  In particular the fusion of context related data is 

interesting in the work of Fernández-de-Alba et al. (2015) who put forward a framework to 

combine senor data from different sensors and platforms; the framework is demonstrated 

through a case study that guides users to meetings within an organisation. An important 

facilitator of context aware computing is semantic technology.  

The survey of Snidaro et al. (2015) underlines the increasing role of machine learning in the 

analysis and use of context based data, in addition these authors also note the need to provide 

context processing functionality as part of a shared middleware layer that applications utilise 

for information processing. Linas et al. (2016) go onto formalise the roles of context and 

information fusion in their combined use. These authors also promote the JDL (Joint Directors 

of Laboratories) data fusion model which defines five fusion levels their roles in applications 



and the algorithmic approaches associated in their realisation. Smirnov et al. (2015) introduce 

a number of context based knowledge fusion patterns. The seven patterns aim to encapsulate 

the different context based effects that occur in decision support systems when integrating 

new knowledge and changes in semantic mappings to related ontologies.  The role of ontology 

in the collection and analysis of context related data has been researched by a number of 

authors (Perera et al. 2014; Sminov et al. 2015, Sminov et al. 2016, Linas et al. 2016). From 

literature it is clear that semantics and metadata descriptions will play a significant part in the 

development of context awareness, as raised by Sminov et al. (2015) the ability to arrive at 

and distribute processed data with a recognised shared meaning will be key. Perera et al. 

(2014) identify six wider research challenge areas for context aware computing for IoT that in 

the opinion of the authors of this paper also relate to IoT enabled maintenance applications: 

1. Automated configuration of Sensors 

2. Context discovery 

3. Acquisition, modelling, reasoning and distribution 

4. Selection of sensors in sensing as a service model 

5. Security, privacy and trust 

6. Context sharing 

Establishing and describing context for data is an important subject for the further development 

of maintenance practice, though perhaps it still lacks a holistic containing formalisation to 

enable its universal take-up in industry. It is the opinion of the authors of this paper that 

underlying many of the aforementioned IoT, Context, and prognostic maintenance research 

challenges outlined by Perera et al. (2014) it is perhaps that there is a need for an audit trail 

framework to be applied to data collection and semantic description methods, particularly for 

its use with maintenance applications taking into account their transactional nature and need 

for integrated scheduling.  

2.5 The audit trail for maintenance  

The quality and provenance of data are important factors in data management and a key 

success factor for engaging in any form of analytics. With maintenance rapidly adopting key 

Industry 4.0 technologies, such issues attain increased important for successful applications 

and services. Product and asset lifecycle data are increasingly acknowledge as a valuable 

asset (Kubler et al., 2015). Therefore their own lifecycle needs to be appropriately managed 

and this could become a key factor in establishing a credible audit trail for maintenance 

activities and data. Lin et al. (2007) conducted a survey into data quality relating to asset 

management information. The survey found that processes and software for asset related data 

quality management were missing in a majority of organisations interviewed; in addition 

organisations did not have a strategy in place regarding data quality (Lin et al., 2007).  In a 

review of standards relating to Asset Management, Koronios et al. (2007) noted the increasing 

use of XML (eXtensible Markup Language) as a data description standard along with OPC UA 

(OPC Unified Architecture) for industrial system intercommunication. The OPC UA standard, 

while comprehensive in its specification, can be complex and expensive for an organisation to 

implement. The work of Henßen and Schleipen (2014) examines the role that the 

AutomationML mark-up language can play in simplifying the use of OPC UA models with 

existing data sets and streams expressed in XML. According to Henßen and Schleipen (2014) 

use of OPC UA directly is a complex task, utilising AutomationML mapping to OPC UA opens 

up the opportunity of streamlined connectivity with OPC UA compliant systems and 



manufacturing systems. Liyanage et al. (2009) mention the semantic web, ontology and use 

of XML metadata descriptions for information exchange in e-maintenance.  Grangel-Gonzalez 

et al. (2016) take the semantic communication notion a step further by producing a metadata 

software shell for Industry 4.0 components. The approach is based on RDF (Resource 

Description Framework) and OWL (Web Ontology Language) and allows for new functionality, 

described by ontological elements, to be integrated into the communication framework with 

minimum disruption (Grangel-Gonzalez et al., 2016). In combination with machine intelligence 

such a framework could acts as an enabling protocol for automation efforts in maintenance 

activities and factory operations alike. 

Many enterprise systems in organisations, such as ERP (Enterprise Resource Planning), 

possess event logging capabilities. Such event logs may be mined in order to reconstruct a 

chain of activities that have taken place within the organisation and administrated by the 

system (Tiwari et al. 2008, IEEE Task Force on Process Mining 2011, Turner et al. 2012) and 

then further analysed by automated techniques to provide optimised processes (Tiwari et al. 

2010, Vergidis et al. 2015). Similar event logging based audit trails have been utilised in the 

field of cyber threat detection within networked software systems. Bass (2002) details efforts 

made in the development of intrusion detection systems utilising a data fusion approach. In 

this work Bass (2002) highlights the use of pattern detection utilising templates. In later 

research Vaughn et al. (2005) examine the possibility for automated cyber vulnerability 

recognition where sensor data is used to trigger security warnings. The aim of automated 

cyber security is also sought by Abreu et al. (2015) with the use of audit trail data. With this 

work Abreu et al. (2015) and others such as Nehinbe (2014) employ machine learning 

techniques to derive patterns and insights to, in principle, enable automated actions and 

decisions to be made. Duncan and Whittington (2016) advise on the regular analysis of audit 

trails in the effective securing of Cloud based systems. While useful in countering intrusions 

into maintenance systems it is also the case that such approaches provide much of the rigor 

and data management practise required to ensure quality and enforce standards within an 

organisation and its supply chain and linked parties. The use of such audit trail techniques in 

manufacturing has been much less evident though its use with IoT has in outline been 

explored by Lomotey et al. (2018) in research exploring the need for visualisation of Internet 

connected devices. In addition Lomotey et al. (2018) propose a provenance methodology to 

allow for improved traceability and identification of routes through a network that specific data 

points may take. Efforts towards a unified metadata syntax and model for provenance are 

embodied in the work of Moreau et al. (2011) who put forward the Open Provenance Model 

(OPM), enabling the unified and secure exchange of such data between networked systems 

and entities.  Park et al. (2011) also explore issues surrounding the location of provenance 

data for an entity (local vs global storage) and the rights of access to the provenance data by 

other network connected entities. 

Use has been made of audit type data in industrial applications. A sensor fusion approach has 

been used by Payan et al. (2016) in the development of proactive safety metrics for 

Helicopters. In this research Payan et al. (2016) fuse the outputs of flight data monitoring to 

form the basis for predictive safety measures, with the potential to advise preventative actions.  

Such an approach may also inform the development of audit trail compilation and use to 

enhance the scheduling and performance of maintenance activities. An approach to 

combining multi sensor data has been put forward in the information fusion technique of Basir 

and Yuan (2007), who utilise Dempster-Shafer theory evidence theory with an industrial case 

based on engine testing on an automotive production line. Basir and Yuan (2007) found that 

their approach was able to successfully address decision conflicts pertaining to engine fault 

diagnosis with an improved level of accuracy. 



With the use of such audit trail based intelligent data mining there arises the potential need to 

explain the reasoning behind automated decisions to humans for the purposes of 

evaluating/ensuring provenance of maintenance data. Duncan and Whittington (2016) make 

a number of recommendations on how the audit trail for Cloud computing could be improved; 

the following are an adaptation of a subset of those recommendations with relevance to the 

maintenance field: 

• Insufficient logging of data within Cloud environments and manufacturing systems, 

data logging is not set to ‘on’ by default 

• A proper regime of data log migration to data storage is required 

• Further understanding on information flow within a manufacturing system is required 

• Enhanced data security is required to safeguard collected audit trail data and digital 

entry points to manufacturing systems from cyber attackers 

It is the case that a ‘human in the loop’ is also required as their expert knowledge and overview 

capability can be leveraged, in particular, to help ensure data and process security. A vital 

step along the road to automation is the inclusion of human expertise along with standards 

such as the MIMOSA open system architectures for CBM and EAI (Enterprise Application 

Integration) (MIMOSA, 2017), which potentially provide a wider underlying structure for the 

concept of maintenance audit trails. 

Figure 1 illustrates the concept of the audit trail with an example drawn from railway 

maintenance activities. In Figure 1 it can be seen that for a section of track there are a range 

of maintenance activities that may involve: maintenance workers, feeding back reports via 

mobile devices; rail maintenance vehicles with sensors; passenger trains fitted with track and 

infrastructure monitoring sensors.  In addition a number of trackside sensors may also stream 

back data to a control centre concerning a range of environment specific parameters. IoT hubs 

may be co-located with trackside equipment and within train vehicles. Edge devices on 

standard passenger services may be linked to sensors and process and store data for 

forwarding to the IoT hub (allowing for when the passenger service may be out of 

communication range with the advantage of possibly reducing the amount of data to be 

communication due to built-in intelligent processing and filtering stage). The OPC/UA (Open 

Platform Communications – Universal Architecture) standard and message queuing telemetry 

transport protocol (MQTT) would provide the data transfer format to and from IoT hubs. 



 

Figure 1: An audit trail drawn from rail maintenance activities and sensor streams for a 

section of track 

The scenario depicted in Figure 1 relates to the possibility that sensors have registered faults 

with a Balise (track based forming part of an automatic train protection (ATP) system) and 

trackside signals in a period of time after the section of track has been tamped (where the 

ballast bed of the track is adjusted). In addition a bankside sensor has noted some occasional 

subsidence in the past. All these data streams are recorded at a central control centre. The 

use of data mining may establish a causal link between these events taking into account the 

outlier measurement from the bankside sensor leading to the root cause of the fault. The audit 

trail establishes the order of events via timestamps and the output from data mining/machine 

learning. Such audit trails once established can help in the decision making and may also 

advise trackside workers, undertaking maintenance in future scheduled activities, to make 

additional checks based on the history of the track section. 

 

3. Related Work and Discussion  

It is clear that Industry 4.0 enabling technologies are changing attitudes towards digital 

connectivity and automation in manufacturing, though it is also the case that there is a need 

for a holistic understanding of the use of machine intelligence in the achievement of automated 

and autonomous manufacturing visions of the near future. It is also clear from this review that 

standardised data collection processes and intelligent analysis techniques are the subject of 

current investigation by many research groups around the world. As part of this review, using 

the search tool Scopus, it was possible to identify the amount of papers published in the period 

2000 to 2018. Of interest were the findings for papers published involving the subject of E-

maintenance and that of predictive maintenance. Figure 2 shows that predictive maintenance 

papers have shown a gradual increase of the period peaking in 2018. For the same time period 

Figure 3 shows that E-Maintenance papers peaked in 2010 and then have stabilised at around 

15-23 publications per year for the most recent 5 year period.  From this review it was possible 

to identify a number of works that best typify the sub areas highlighted in this paper. Table 1 

summarises these papers in terms of intelligent decision challenges and approaches taken. 



From Table 1 it is clear that there is a wide range of potential solutions and approaches to 

intelligent maintenance, though it is the authors’ opinion this field would benefit from clear 

processes to support audit trail style collection of data and clear framework for its processing, 

analysis and use. There will be a necessity to capture and store data streams from production 

machinery and the audit trails of decision making within Semantic technologies may provide 

a way of describing maintenance data so it may be shared across the manufacturing 

enterprise and potentially within the supply chain. The case for a metadata layer capable of 

semantically describing maintenance data is made in part by Pistofidis et al. (2016) who put 

forward a methodology for maintenance metadata management involving the incorporation of 

expert knowledge. Such technology may be the cornerstone of evolving context awareness in 

maintenance systems to enable automated decision making and scheduling for maintenance 

activities.  

 

Figure 2: Papers published involving predictive maintenance between 2000 – 2018 (Source: 

Scopus) 

 

Figure 3: Papers published involving the subject of e-maintenance between 2000 – 2018 

(Source: Scopus) 
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It is clear that machine learning will have a significant role to play in the delivery of future 

automated and intelligently supported maintenance decision making systems. Predictive 

maintenance programmes will increasingly rely on machine learning techniques in order to 

deliver proactive and dynamic maintenance plans. The extension of the manufacturing 

enterprise to digitally link with its supply chain has gained another potential benefit in the ability 

to order spare parts in advance of potential breakdowns, when predictive forecasting 

techniques are employed.  

It is clear that industry is still missing an overall framework for digital maintenance. Advances 

in sensors and sensor fusion techniques have run-ahead of suitable processes and systems 

capable of fully harnessing their outputs. This is evident in the introduction of Cyber Physical 

Systems (CPS) within manufacturing, though progress is being made in the area of worker 

interactions with shop floor machinery. Both simulation and visualisation technologies, 

especially Mixed Reality, provide a new platform for enhanced machine assistance for human 

engineers and raise the potential for maintenance related Cobot development. Much research 

has concentrated on the further development and use of more readily available data streams 

such as those provided by SCADA systems. Increasingly though papers may be found 

exploring the role IoT can play in the provision of data streams from both new and even legacy 

equipment. This move is especially evident in the area of Condition Based Maintenance (CBM) 

and predictive approaches. Utilisation of Digital Twin systems to replicate industrial production 

assets are now being introduced; a significant focus in Digital Twin development is that of 

health monitoring and prediction of maintenance needs/breakdowns with many organisations 

adopting this virtual representation for the specific goal of increased uptime. For many 

organisations the use of existing systems in combination with new sensor technologies and 

software will provide many of the potential advantages promised by e-maintenance and 

visions such as Industry 4.0. 

 

Table 1: Intelligent Decision Support Challenges and Approaches   

Publication Approach outline Problem targeted 

 
Prognostic maintenance 
 

de Novaes et al. (2017) A review of prognostic 
techniques relating to 
remote field maintenance of 
wind turbines including 
discussion of Hidden 
Markov Model, Neural 
Networks and use of 
SCADA data. 

Prognostic maintenance 
practice relating to remote 
field maintenance of wind 
turbines 

Djurdjanovic et al. (2003) Describes ‘Watchdog agent’ 
capable of sensor 
assessment and prediction 
of machine performance. 
Utilises Neural Network, 
Hidden Markov Model, 
Particle Filter  

Product performance 
degradation prognostics 



Fumagalli and Macchi 
(2015) 

E-maintenance platform 
utilising web services 
approach and statistical 
techniques. 

E-maintenance platform for 
rapid integration of 
maintenance activities 

Katsouros et al. (2013) Bayesian approach for 
maintenance action 
recommendation based on 
historical cases  

Intelligent decision 
support/recommendation 

Kiritsis (2011), Closed loop product 
lifecycle approach for 
Intelligent products 
Definition, Semantic model 
and ontology for data 
interchange respecting IoT 
connectivity possibilities. 

Intelligent products and 
product service model and 
data usage for improved 
product lifecycle including 
maintenance practice. 

Lee et al. (2006)  Tools for prognostics 
utilising Self-Organizing 
Map (SOM),Hidden Markov 
Model, illustrated with case 
studies 

Machine health prognostics 

Lee et al. (2014) A position paper and case 
study detailing. Discussion 
of Self-Organizing Map 
(SOM), Gaussian Mixture 
Model 
(GMM), Bayesian Belief 
Network (BBN), Fuzzy Logic 
for maintenance 

Machine health prognostics 

Leitao et al. (2016) A survey of Smart Agent 
use in combination with 
machine intelligence within 
manufacturing and 
maintenance 

Intelligent Maintenance 
Systems and CPS 
Integration 

Leite et al. (2017) Holistic prognostics to 
support maintenance of 
wind turbines utilising an 
approach incorporating 
Neural Network and  
Particle Filter (maintaining  
assets located in 
inaccessible/remote sites)  

Maintenance Prognostics 

Liyanage et al. (2009) An outline of an integrated 
e-maintenance approach 
and description of the 
Watchdog (Agent-Based 
Real-time Remote 
Machinery Prognostics and 
Health 
Management) toolbox 
application. Utilisation of 
Software agent and custom 
algorithms. 

Framework for E-
maintenance with prognostic 
maintenance application. 



McNaught and Zagorecki 
(2009), 

Development of a model for 
Prognostic maintenance 
decision making and policy 
evaluation utilising Bayesian 
Networks  

Prognostic modelling for 
reliability and maintenance 
policy experimentation 

Niu and Jiang (2017) Custom algorithm for 
dynamic maintenance 
incorporating both local 
health prognostics for 
combination with global 
optimisation approach 

Health Prognostics and 
maintenance optimisation 

Papathanassiou et al. 
(2013) 

E-learning approach to 
support maintenance 
management proposing a 
toolkit for training delivery. 

E-learning for maintenance 
management 

Peng et al. (2010) Classification of common 
prognostic models for 
maintenance. Discussion of 
neural network, Bayesian-
related methods, hidden 
Markov models for 
maintenance. 

Machine health prognostics 
– residual useful life 

Selcuk (2018) Prognostic maintenance, 
made possible by IoT 
connected sensors, 
intelligent products and 
machines. The emergence 
of maintenance as a full 
integrated service provided 
to customers, leveraged 
through IoT technology. 

Maintenance as an IoT 
enabled service 

Vafaei et al. (2019) Fuzzy inferencing for rule 
set composition and 
maintenance scenario 
generation.  

Maintenance decision 
support for CBM. 

Voisin  et al. (2010) Custom algorithm for 
proactive maintenance, 
framework for ‘predict and 
prevent ‘. 

Generic prognostic 
approach and methodology 
for maintenance decision 
support 

Xia et al. (2018) Concise summary of 
predictive techniques in use 
for maintenance practice in 
a range of digital 
manufacturing practices. 

Predictive maintenance 
review of techniques 

Yunusa-kaltungo and Sinha 
(2017) 

Big data and optimisation 
techniques for simplified e-
maintenance practice; 
utilisation of classification 
and optimisation for 
production machine 
monitoring. 

Classification and 
optimisation technique for 
maintenance prognostics 

Zhou et al. (2017) Custom algorithm statistic 
for performance degradation  
forecasting of power 

Performance Degradation 
Prognostics 



machinery based on historic 
and monitored datasets 

 
Remaining useful life prediction 
 

Belkacem et al. (2017) Prognostic and diagnostic 
architecture for industrial 
system maintenance using a 
custom approach based on 
hybrid automata modelling. 

Remaining useful life 
prognostics and diagnostics 

Desforges et al. (2017) Prognostic function for 
maintenance planning 
support. Proposes 
extensions to Object 
Oriented Bayesian Networks 
for Remaining Useful Life 
calculation 

Proposes co-operative 
planning between 
production and maintenance 
to promote their 
synchronisation. 

Fan et al. (2015) Remaining Useful Life 
prediction and prognostics 
approach for LED lights 
utilising a particle filter 
approach based on 
Sequential Monte Carlo 
(SMC) and Bayesian 
techniques. 

Remaining useful life 
prediction and prognostics  

Galar et al. (2015) Residual useful life 
predicted through data 
aggregation and context 
awareness using fuzzy 
approaches and clustering 

Residual useful life 
prediction for condition 
based maintenance 

Kanawaday and Sane 
(2017) 

Use of the forecasting 
method, AutoRegressive 
Integrated Moving Average 
(ARIMA), on data streams 
generated by IoT sensorised 
production line machinery. 
Used to improve 
maintenance planning with 
possible future application to 
RUL. 

Forecasting method utilising 
IoT data streams, with 
application to RUL. 

Marugan and Marquez 
(2015) 

Approach for the monitoring 
of rail track points utilising 
binary decision diagram and 
fault tree analysis. An online 
decision making system 
based on this research is 
envisaged as a next stage. 

Diagnostic and prognostic 
maintenance  decision 
making 

McNaught and Zagorecki 
(2009) 

Development of a model for 
Prognostic maintenance 
decision making and policy 
evaluation modelling with 
utilising Bayesian Networks 

Prognostic modelling for 
reliability and maintenance 
policy experimentation 

Niknam et al. (2015) Prognostic based approach 
for maintenance decision 

Residual life prognostics 
approach 



making based on remaining 
life prediction using a 
custom algorithm  

Ragab et al. (2017) Pattern based approach 
utilising a logical analysis of 
data (LAD) and Kaplan–
Meier (KM) estimator; 
provides an estimated 
reliability curve for a given 
monitored asset. 

Prognostic technique for 
Condition based 
maintenance 

Van Horenbeek and 
Pintelon (2013) 

Dynamic maintenance 
policy development based 
on prognostics using a 
custom algorithm and 
degradation model. 

Prognostic approach for 
component lifetime 
extension 

Zhou et al. (2017 ) Combination of forecasting 
and statistic based method 
to provide a combined time 
and condition based 
maintenance approach. 

Degradation trend 
prognostics and fault 
diagnosis 

 
Intelligent products and assets 
 

Barbosa et al. (2016) Envisages the combination 
of both intelligent products 
with Cyber Physical systems 
(CPS), outlining the 
additional combined use of 
agent based systems to 
provide prognostic 
maintenance and decision 
making. 

Intelligent products in use 
data combined with Cyber 
Physical Systems (CPS) for 
prognostic maintenance.   

Brintrup et al. 2011 Intelligent agent platform 
based on a web service 
approach to leverage in field 
assets data generation. 

Autonomous intelligent 
products in-use data 
harvesting with maintenance 
application. 

Cuthbert et al. (2016) Framework for domestic 
products health monitoring 
describing the potential for 
automated self-repair of 
assets based. A future 
research challenge section 
is set out by this paper 

Intelligent product data use 
and maintenance with self-
repairing assets 

Dhall and Solanki (2017) IoT based predictive car 
maintenance where the 
connected car is able to 
communicate health data so 
that service scheduling is 
streamlined.  

Predictive Car maintenance 
scheduling 

Katsouros, et al. (2015) Embedded event detection 
within intelligent products 
though feature extraction 
and statistical time series 
data analysis. 

Self-aware assets and 
analysis of their generated 
data streams 



Kiritsis (2011) Closed loop product 
lifecycle approach for 
Intelligent products 
Definition, Semantic model 
and ontology for data 
interchange respecting IoT 
connectivity possibilities. 

Intelligent products and 
product service model and 
data usage for improved 
maintenance practice and 
product lifecycle 
management. 

McFarlane et al. (2013), A review of intelligent 
product and RFID tag data 
use. 

Review of intelligent 
products field including 
RFID technologies for active 
participation of products in 
their manufacture and in 
field use 

Meyer et al. (2009) A review of intelligent 
products giving reference to 
maintenance practice that 
may be 
envisaged/leveraged 
through the paradigm. 
Discussion of agent based 
approach for potential 
combination with machine 
intelligence algorithms is 
provided. 

Intelligent products in-use 
data and system interaction 
and interconnectivity, data 
provision potential for 
prognostics and 
maintenance decision 
support systems.  

Parpala & Iacob (2017) Utilisation of IoT hardware 
and protocols to link legacy 
machine tools to internet 
services for the provision of 
automated maintenance and 
status alerts to production 
line operators.  

IoT connectivity to legacy 
machine tools with software 
interface and edge 
hardware implementation. 

Selcuk (2018) Prognostic maintenance, 
made possible by IoT 
connected sensors, 
intelligent products and 
machines. The emergence 
of maintenance as a full 
integrated service provided 
to customers, leveraged 
through IoT technology. 

Maintenance as an IoT 
enabled service. 

Truong (2018)  Predictive analytics 
approach for maintenance 
utilising IoT and Big Data 
Cloud resources.  

Analytics framework for IoT 
connectivity with cloud 
resources and big data for 
maintenance. 

Wuest et al. (2018) Analysis of work and expert 
opinion synthesis regarding 
the present and future of 
intelligent products.  

Future intelligent products 
are projected to move 
beyond providing 
information or decision 
support by becoming more 
proactive.  

 
IoTStreaming Data and Intelligent Decision making 
 

   



Accorsi et al. (2017) Model set to aid the 
prediction of faults in 
production systems, 
framework for data mining 
and modelling related to 
condition based 
maintenance.  
 

Framework for data mining 
and modelling related to 
CBM decision making. 

Barbosa et al. (2016), Envisages the combination 
of both intelligent products 
with Cyber Physical systems 
(CPS), outlining the 
additional combined use of 
agent based systems to 
provide prognostic 
maintenance and decision 
making. 

Integration of Cyber 
Physical Systems and 
Intelligent Products for 
improved decision making in 
maintenance practice 

Bowden et al. (2019) A ‘plug and Play’ end to end 
cloud architecture for 
predictive maintenance, 
utilising IoT Edge 
processing and open source 
Docker containers. Case 
study based on industrial 
robot autonomous 
operation.  

IoT enabled predictive 
maintenance utilising IoT 
Edge devices and a cloud 
platform. 

Chen et al. (2018) IoT Edge computing for 
manufacturing based 
maintenance practice, case 
study and architecture. 

IoT Edge computing 
architecture for 
manufacturing based 
maintenance practice. 

Jantunen et al. (2018) IoT based framework for 
maintenance, detailing a 
case study drawn from 
research of a proactive 
maintenance approach 
within a power plant. 

Industry 4.0 compliant IoT 
based framework for 
maintenance. 

Karim et al. (2016) Knowledge discovery 
framework for cloud based 
maintenance analytics 
platforms with a rail industry 
case study 

Knowledge discovery 
framework for cloud based 
maintenance analytics 
platforms 

Katsouros, et al. (2013) A Bayesian approach to 
maintenance action 
recommendation. The 
technique utilises past 
maintenance event data in 
its classification of problem 
types and probability 
estimation. 

Intelligent decision support 
for maintenance actions. 

Kiritsis (2011), Closed loop product 
lifecycle approach for 
Intelligent products 
Definition, Semantic model 
and ontology for data 

Intelligent products and 
product service model and 
data usage for improved 
product lifecycle including 
maintenance practice. 



interchange respecting IoT 
connectivity possibilities. 

Liyanage et al. (2009) An outline of an integrated 
e-maintenance approach 
and description of the 
Watchdog (Agent-Based 
Real-time Remote 
Machinery Prognostics and 
Health 
Management) toolbox 
application. Utilisation of 
Software agent and, custom 
algorithms. 

Framework for E-
maintenance and with CBM 
prognostic maintenance 
application. 

Mattila et al. (2016), Agent based approach to 
decision making utilising 
data from intelligent 
products respecting the 
product life cycle.  

A distributed agent based 
information architecture for 
decision making utilising 
intelligent product data. 

Meyer et al. (2009), A review of intelligent 
products giving reference to 
maintenance practice that 
may be 
envisaged/leveraged 
through the paradigm. 
Discussion of agent based 
approach for potential 
combination with machine 
intelligence algorithms is 
provided. 

Intelligent products in- use 
data and system interaction 
and interconnectivity, data 
provision potential for 
prognostics and 
maintenance decision 
support systems.  

Trappey et al. (2016), Underlying standards 
supporting IoT technology 
with relevance to 
maintenance systems 
including data linkages 
between hardware and 
software systems for the 
realisation of intelligent 
maintenance practice. 

A review of standards 
supporting IoT use in 
industry with relevance to 
intelligent maintenance 
systems. 

Uhlmann et al. (2017) Maintenance analytics 
approaches for 
decentralised IoT Edge 
platforms; Edge devices 
pre-processing data streams 
emanating from production 
and machine tool sensors. 

Maintenance analytics 
approaches for 
decentralised IoT Edge 
platforms. 

 
Data description and visualisation 
 

Botelho et al. (2014) Maintenance skill capture 
for use in intelligent 
maintenance systems for 
improved automated 
decision making with regard 
to assets degradation 

Method for improved 
Intelligent decision making 
for maintenance with 
inclusion of contextual data 
represented by maintenance 



monitoring using virtual 
reality environment and 
simulation system. 

skill capture from human 
operators. 

Ceruti et al. (2019) AR based visualisation of 
maintenance manual 
instructions and spare parts 
identification and 
information provision within 
an aviation maintenance 
setting. 

Visualisation of spare parts 
and maintenance 
instructions using AR. 

Fumagalli and Macchi 
(2015) 

E-maintenance platform 
utilising web services 
approach and statistical 
techniques. 

E-maintenance platform for 
rapid integration of 
maintenance activities 

Krempl et al. (2014) Mining of data streams open 
challenges highlighting the 
potential role of 
classification and machine 
learning algorithms for pre-
processing of streamed 
data. 

Open challenges for mining 
of data streams provided by 
sensors. 

Loukopoulos et al. (2017) Technique to impute 
missing values in data used 
for maintenance prognostic 
approaches using K Nearest 
Neighbour and Self-
Organising Map algorithms. 

Method to impute missing e-
maintenance data for use in 
prognostic maintenance 
systems. 

Nunez and Borsato (2017) Semantic framework 
expressed through OWL2 
language and 
interoperability with 
SPARQL for decision 
making in prognostic 
maintenance practice. 

Ontology based framework 
for data communication 
between systems promoting 
P-prognostics for machine 
maintenance. 

Penna et al. (2014) 3D visualisation and 
simulation tool using 
Augmented Reality to allow 
for user editing of 
maintenance scenarios to 
support intelligent 
maintenance practice. 

Interactive visualisation, 
simulation and planning of 
intelligent maintenance 
scenarios. 

Turner et al. (2016) VR and AR visualisation and 
DES simulation for potential 
use in visualising the 
decision making process for 
maintenance actions when 
used in combination with 
machine intelligence. 

Visualisation of intelligent 
maintenance decisions with 
VR, AR and DES 
Simulation. 

Zhong et al. (2017) Framework proposed for 
mining and analytics of 
manufacturing shop floor 
data utilising a custom 
algorithm. 

Mining RFID data for 
internet based intelligent 
manufacturing. 

 



Conclusions 

This paper has charted the evolution of intelligent decision support for maintenance practice 

from Condition Based Maintenance (CBM) then prognostic use all the way to the e-

maintenance paradigm and the introduction of IoT and Cloud-enabled solutions. It is arguable 

that the ability to digitally interconnect manufacturing plant and machinery provides many new 

opportunities to raise productivity and efficiency within a production line and in itself leads to 

a potential new era for intelligent maintenance though adoption of Industry 4.0 technologies. 

Many challenges still remain in the provision of intelligent decision support for manufacturing 

maintenance activities. While progress continues to be made in the area of prognostics for 

maintenance and whole life considerations of manufacturing assets it is still the case that there 

is a need for a holistic understanding of the use of machine intelligence in the achievement of 

automated and autonomous manufacturing visions of the near future. The provision of 

appropriate security measures for use in not just digital maintenance systems but throughout 

the manufacturing organisation and its supply chain is a topic that will prompt much research 

over the coming years. IoT technologies and their connectivity potential must be supported by 

standards but also shared semantic descriptions, with OPC/UA (Open Platform 

Communications – Universal Architecture) seen by many as a valid starting point in such 

efforts. Further work remains to be completed on understanding data flows within 

manufacturing and how digitisation of systems and information will impact maintenance 

activities.  

The quality and provenance of data are important factors in data management and a key 

success factor for when engaging in any form of analytics. With maintenance rapidly adopting 

key Industry 4.0 technologies, such issues attain increased importance in the delivery of 

successful applications and services. It is put by the authors that clear processes to support 

audit trail style collection of maintenance data and the provision of a comprehensive 

framework for its processing, analysis and use should be important goals for the work that 

must be completed in the near future for full enablement of digital maintenance practice. The 

concept of ‘Human in the loop’ is also reinforced with the use of audit trails, allowing 

streamlined access to decision making and the ability to mine decisions (and the reasoning 

behind decisions for both machine assisted workers and managers). The ability to provide 

procedural structure to data for reuse and communication within an Industry 4.0 maintenance 

system will be vital for any future move towards semi or fully autonomous maintenance 

activities. 
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