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Purpose: To explore the feasibility of using various easy-to-obtain biomarkers to
monitor non-compliance (measurement error) during visual field assessments.

Methods: Forty-two healthy adults (42 eyes) and seven glaucoma patients (14 eyes)
underwent two same-day visual field assessments. An ordinary webcam was used to
compute seven potential biomarkers of task compliance, based primarily on eye gaze,
headpose, and facial expression.Wequantified theassociationbetweeneachbiomarker
and measurement error, as defined by (1) test–retest differences in overall test scores
(mean sensitivity), and (2) failures to respond to visible stimuli on individual trials (stimuli
−3 dB or more brighter than threshold).

Results: Inhealthyeyes, threeof the sevenbiomarkerswere significantly associatedwith
overall (test–retest)measurement error (P= 0.003–0.007), and at least two others exhib-
ited possible trends (P= 0.052–0.060). The weighted linear sum of all seven biomarkers
was associatedwith overallmeasurement error, in both healthy eyes (r= 0.51, P< 0.001)
and patients (r = 0.65, P < 0.001). Five biomarkers were each associated with failures to
respond to visible stimuli on individual trials (all P < 0.001).

Conclusions: Inexpensive, autonomous measures of task compliance are associated
with measurement error in visual field assessments, in terms of both the overall reliabil-
ity of a test and failures to respond on particular trials (“lapses”). This could be helpful for
identifying low-quality assessments and for improving assessment techniques (e.g., by
discounting suspect responses or by automatically triggering comfort breaks or encour-
agement).

Translational Relevance: This study explores a potential way of improving the reliabil-
ity of visual field assessments, a crucial but notoriously unreliable clinical measure.

Introduction

Visual field assessments are central to the diagnosis
and management of many medical conditions, includ-
ing glaucoma and stroke. When done well, they can
yield important clinical information1 and have been

used successfully as end points in major clinical trials.2
However, visual field assessments are often demand-
ing for patients.3 They require sustained concentration,
and patients can become bored, confused, or fatigued,
sometimes leading to unreliable data.4–6

Previous research has focused primarily on ways to
identify and discard poor-quality test data post hoc.7,8
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What would be better, however, is if perimeters were
capable of recognizing when a patient’s concentration
is beginning towane. Themachine could then automat-
ically take preemptive steps to minimize the acquisition
of bad data, such as by repeating trials, discounting
suspect responses, pausing the test, or offering encour-
agement,9,10 just as a human clinician would do. With
newmachine learning and computer vision techniques,
this may now be possible. For example, by using an
ordinarywebcam it is possible to autonomously extract
real-time measures of head movements, eye gaze, and
facial expressions, all of which may be indicative of
test compliance (affective computing). Such signals
are often used by pediatric clinicians to determine
when a young patient is alert and engaged,11 and they
could in principle be exploited likewise by automated
perimeters when examining adults. This, in turn, could
lead to more reliable perimetric tests, as well as fully
autonomous (non-technician led) assessments of the
sort necessary for home monitoring,12 mass screening,
or rapid triage.

In the present work, we explored the feasibil-
ity of using autonomous derived biomarkers to
monitor compliance. We extracted seven easy-to-
obtain biomarkers and quantified the association with
measurement error, as defined by (1) test–retest differ-
ences in overall test scores (mean sensitivity), and (2)
failures to respond to visible stimuli on individual trials
(lapses in concentration).

Methods

Participants and Procedure

We examined 42 eyes from 42 adults with corrected-
to-normal vision (median [interquartile range, IQR]
age: 26 [22–29] years), and 14 eyes from seven adults
with an established diagnosis of glaucoma (69 [64–74]
years of age).

The seven patients were under ongoing care from an
ophthalmologist in the United Kingdom and had an
established diagnosis of bilateral primary open-angle
glaucoma (n = 6) or unilateral secondary glaucoma
(n = 1). Before participating in the present study,
their condition was confirmed by an assessment by
a glaucoma-accredited optometrist (P.C.), including
a full ocular health check, medical history, logMAR
acuity, and standard automated perimetry using the
Humphrey Field Analyzer 3 (HFA, Carl ZeissMeditec,
Jena, Germany) with the Swedish Interactive Thresh-
old Algorithm (SITA) Fast 24-2. All patients exhibited
best-corrected logMAR acuity < 0.5 in the worse eye,
and none had undergone ocular surgery or laser treat-

ment within 6 months prior to participation. Severity
of visual field loss,13 as measured by HFA mean devia-
tion, varied from –2 dB (early) to –18 dB (advanced),
although the majority of eyes exhibited moderate loss
(median = –8 dB). An example patient’s visual field is
shown in Figure 1B.

Healthy adults wore glasses or contact lenses as
required, and normal vision was defined as no history
of eye disease, binocular best-corrected logMAR
acuity ≤ 0.2 (tested with an Early Treatment Diabetic
Retinopathy Study chart), binocular best-corrected
Pelli–Robson contrast sensitivity ≥ 1.5 logCS (tested
with Pelli–Robson chart at 4 m), and a passing score
(25 correct of the first 25 plates) on the 38-plate
Ishihara pseudoisochromatic test (Handaya, Tokyo,
Japan, 2011 edition). Prior experience of perimetry was
not recorded, but it is likely that few if any of these
participants had undergone a static threshold perime-
try assessment previously.

Participants were recruited via advertisements
placed in the International Glaucoma Association
newsletter (patients) and around City, University of
London (healthy adults). The study was approved
by the Ethics Committee for the School of Health
Sciences, City, University of London (#ETH1819-
0532) and was carried out in accordance with the
tenets of theDeclaration of Helsinki.Written informed
consent was obtained from all participants prior to
testing.

Procedure for Visual Field Assessments

All test eyes underwent two monocular visual field
assessments within a single session.

Normally Sighted Adults
Each of the 42 healthy eyes was assessed using a

custom screen perimeter (Fig. 1A), implemented on an
HP Pavilion x360 15-inch laptop (HP Inc., Palo Alto,
CA). The test was a variant of the Eyecatcher visual
field test, which has been described previously,14 the
source code for which is freely available online (https:
//github.com/petejonze/Eyecatcher). It was modified in
the present work to more closely mimic conventional
static threshold perimetry, most notably by employ-
ing a Zippy Estimation by Sequential Testing (ZEST)
thresholding algorithm,15 a central fixation cross, and a
button press response. The software was implemented
using Psychtoolbox 3,16 and we used bit stealing to
ensure >10-bit luminance precision,17 with extensive
photometric calibration to ensure stimulus uniformity
across the display (see Kyu Han and Jones18 for techni-
cal details regarding the calibration method). Unlike
conventional perimetry, participants received visual
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Figure 1. Visual field assessments. (A) Perimetry was performed using the inexpensive screen perimeter shown here (Eyecatcher). Test–
retest error was computed by examining differences in mean sensitivity (MS) across repeated Eyecatcher assessments (healthy adults) and
between Eyecatcher and a same-day HFA assessment (patients). During the Eyecatcher assessment, live recordings of the participant were
made via the screen’s front facing camera (purplearrow). (B) Examplemeasures of visual field loss froma single participant, with same-patient
data from the HFA for comparison. In all cases, only the central 24 points of the 24-2 grid were analyzed when computing MS. Grayscales
were generated using MATLAB code available at https://github.com/petejonze/VfPlot.

feedback regarding the true stimulus location after
each button press. This was a feature that had previ-
ously been requested by patients and was intended to
keep participants motivated and alert during testing;
it was not considered to have affected the findings of
the present study substantively. The output of each
Eyecatcher assessment was a 4 × 6 grid of differential
light sensitivity (DLS) estimates, corresponding to the
central 24 locations of a standard 24-2 perimetric grid
(Fig. 1B; ±15° horizontal and ±9° vertical). For analy-
sis and reporting purposes, these values were trans-
formed to be on the same decibel scale as the HFA: dB
= 10log10(3183.1/DLScd/m2). A summary measure of
visual field sensitivity was computed by mean averag-
ing these 24 DLSdB values, resulting in two mean
sensitivity (MS) values per participant (one per test;
same eye). Another common summary metric of visual
field sensitivity is mean deviation. None of the present
findings differed if this metric was used instead of MS
(see Supplementary Materials). Test–retest measure-
ment error was quantified as the absolute difference in
MS between each test. The two tests were performed
consecutively in a single session, with a brief pause of
∼60 seconds between tests.

Patients
The 14 patient eyes were assessed only once by

Eyecatcher; therefore, to quantify measurement error
we also analyzed same-day visual field data from the
HFA (SITA Fast 24-2). Note that the results of the

two tests were highly correlated (Pearson correlation,
r12 = 0.86; P < 0.001) with no significant difference in
mean score (repeated measures t-test, t13 = 1.38; P =
0.190). For equivalence with Eyecatcher, MS from the
HFA assessment was computed by averaging across the
central 24 test locations only. Test–retest measurement
error was computed as the absolute difference in MS
between the two tests (MSEyecatcher – MSHFA).

Biomarkers of Task Compliance

Seven potential biomarkers of task compliance were
considered: gaze variability, head location variability,
head rotation variability, mean sadness, mean surprise,
blink rate, andmean response latency. These sevenwere
selected based on informal piloting and pragmatism
(being easy to implement and computable in real time)
and followed an initial assumption that less compliant
individuals would be more likely to fidget or exhibit
displeasure. These seven metrics were not intended
as comprehensive or ideal, however. Other, potentially
more informative, biomarkers can be measured with
additional hardware (see Discussion section). Also,
further variables could have been computed from the
present video data, including additional facial expres-
sions (e.g., disgust, contempt, happiness) and more
complex head- or eye-movement statistics.19

Details of how each variable was computed are
given below. In general, however, they were derived
primarily from the video footage of a low-budget

Downloaded from tvst.arvojournals.org on 08/03/2020

https://github.com/petejonze/VfPlot


Monitoring Compliance During Visual-field Testing TVST | July 2020 | Vol. 9 | No. 8 | Article 31 | 4

Figure 2. Biomarkers of task compliance. Various biomarkers were computed from raw video footage of the Eyecatcher assessment
(recorded using the laptop’s built-in webcam). Measures of eye gaze, head pose, and facial expression were extracted using freely avail-
able machine learning software (OpenFace 2.0). The data shown here are from author P.R.J. and are for illustration purposes only.

webcam (the integrated camera of the HP Pavilion
x360 15-inch laptop, recorded at 5 Hz with 640 × 480
pixel resolution). As illustrated in Figure 2, data were
extracted from the raw video images using OpenFace
2.0, a free machine-learning tool for facial landmark
detection, head pose estimation, facial action unit
recognition, and eye-gaze estimation.20 OpenFace 2.0
uses state-of-the-art techniques, including deep learn-
ing, tomake fast and accurate decisions, and it has been
applied previously to assess dementia,21 depression,22
and suicidal ideation.23 It has also been used to improve
automatic speech recognition,24 perform video classifi-
cation,25 monitor engagement with e-learning materi-
als,26 and inform trauma-recovery regimens.27 The raw
data for all participants, as extracted by OpenFace
2.0, are available as Supplementary Materials (original
video footage not available for reasons of data protec-
tion and personal privacy).

Gaze Variability
Eye gaze was estimated by OpenFace 2.0 using

a constrained local neural fields landmark detector
(expected mean absolute error, ∼9 degrees20). This
yielded one vector of 〈x, y〉 gaze coordinates (in degrees
visual angle) per video frame; for example, a 2 × 1200
matrix of values was produced in a typical 4-minute
test, given the 5-Hz sampling rate at which the camera
was recorded. Gaze variability was quantified as the
median absolute distance of every gaze point from
every other gaze point (i.e., Rousseeuw and Croux’s Sn
factor28). This is a non-parametric and highly robust
measure of dispersion, which, unlike bivariate contour
ellipse area,29 does not require unrealistic assumptions
of normality and is not distorted by small numbers
of statistical outliers.30 The final outcome from each
visual field assessment was a single scalar variable,

given mathematically by

Gaze variability = cnmed
i=1:n

{
med
j �=i

|di j |
}

(1a)

where cn is a bias correction factor for finite sample
sizes (which for present purposes can be assumed to
equal unity), n is the number of video frames, and dij
is the Euclidean distance between the estimated gaze
coordinates in the ith and jth video frames:

di j =
√
(xi − xj )2 + (yi − y j )2 (1b)

Head Location Variability
The location of the head (head pose translation) was

estimated by OpenFace 2.0 using a speed-optimized
convolutional experts constrained local model.20 This
yielded one vector of 〈x, y, z〉 location coordinates
(in millimeters) per video frame. Variability in head
location was computed in the same manner as gaze
variability:

Head location variability

= cn med
i=1:n

{
med
j �=i

{√
(xi − xj )2 + (yi − y j )2 + (zi − z j )2

}}
(2)

Head Rotation Variability
The rotation of the head (head pose orientation)

was estimated as part of the same head pose pipeline
as head location (expected mean absolute error, ∼3
degrees).20 This yielded one vector of 〈yaw, pitch, roll〉
values (in degrees) per video frame. Variability in head
rotation was computed in the same manner as gaze
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variability and head location variability:

Head rotation variability

= cn med
i=1:n

{
med
j �=i

{√
(Yi −Yj )2 + (Pi − Pj )2 + (Ri − Rj )2

}}
(3)

Mean Sadness
OpenFace 2.0 recognizes facial expressions by using

linear kernel Support Vector Machines to detect the
intensity and presence of 18 discrete facial action units
(AUs), each corresponding to entries in the classic
Facial Action Coding System (FACS) taxonomy of
human facial movements.31 The primary output was
18 positive scalar intensity values, where 0 indicates the
complete absence of a given AU. Following established
convention,32 sadness was estimated by summing AU4
(brow lowerer) and AU15 (lip corner depressor). This
yielded one value (in arbitrary units of intensity) per
video frame.Mean sadness was computed simply as the
arithmetic mean of these values:

Mean sadness = 1
n

n∑
i=1

[AU4i + AU15i] (4)

Mean Surprise
Mean surprise was estimated in the same manner

as mean sadness. Following established convention,32
surprise was estimated by summing AU1 (inner brow
raiser), AU2 (outer brow raiser), AU25 (lips part), and
AU26 (jaw drop):

Mean surprise = 1
n

n∑
i=1

[
AU1i + AU2i

+AU25i + AU26i
]

(5)

Blink Rate
The presence of a blink is encoded by AU45 of the

FACS taxonomy. Blink rate was therefore estimated in
the same manner as sadness and surprise:

Blink rate = 1
n

n∑
i=1

AU45i (6)

Mean Response Latency
Unlike the other six biomarkers, response latency

was not derived from the video footage. It was
instead computed simply as the difference (in seconds)
between the onset of a given stimulus presentation
and the participant’s button press response (τ ). This

was recorded only for trials where the participant
responded to the stimulus. Mean response latency was
computed simply as the arithmetic mean of these
values:

Response latency = 1∑N
i=1 [τi �= NULL]

×
N∑
i=1

τi [τi �= NULL] (7)

where N is the total number of trials (i.e., stimulus
presentations).

Composite of All Biomarkers
A composite of all seven individual biomarkers was

computed by standardizing each measure as a z-score,
and then taking their weighted linear sum:

Composite =
7∑

i=1

ωiZ (Xi) (8a)

where the weights, ωi, were proportional to the correla-
tion coefficient (ρ) between eachmeasure and observed
performance (see Fig. 2 for values), normalized so that
they summed to one:

ωi = ρi∑7
j=1 ρ j

(8b)

Note that the decision to average all seven values in
this way was an intentionally crude approach to avoid
overfitting the available data. With a larger dataset,
however, it would be possible to use a machine learn-
ing approach to determine the optimal combination of
parameters required to detect lapses in concentration
(see Discussion section).

Methods of Analysis

Association with Overall (Test–Retest) Measurement
Error

The association between each biomarker and overall
(test–retest) measurement error was assessed using
ordinary linear correlation (Pearson product–moment
correlation). Measurement error was quantified as the
absolute difference in MS between two monocular
visual field assessments: either two Eyecatcher assess-
ments (healthy eyes) or one Eyecatcher assessment and
one HFA assessment (patient eyes). This resulted in
one scalar estimate of measurement error per eye, in
units of dB. Independently, seven potential biomark-
ers were computed as detailed previously, each yield-
ing one scalar value per assessment (Eyecatcher assess-
ments only). For healthy eyes (which were assessed by
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Eyecatcher twice), each pair of biomarker estimates
was mean-averaged to produce a single value. For
patient eyes (which were assessed by Eyecatcher once
and the HFA once), only the biomarker estimates from
the Eyecatcher assessment were available. Any conspic-
uous non-compliance on the HFA test would therefore
not have been detected, and so the predictive power of
the various biomarkers may have been underestimated
in patients.

Association with Trial-by-Trial Measurement Error
To examine whether each biomarker could also be

used in real time to identify lapses in concentration
during testing, the following trial-by-trial analysis was
performed.

For each visual field assessment (Eyecatcher only; all
eyes, healthy and glaucoma together), we took the final
set of 24 pointwise (DLS) estimates as the best guess
of each participant’s true threshold at each location.
We then extracted all individual trials where the stimu-
lus intensity was more than 3 dB below threshold
(brighter) at a given location (i.e., all visible trials).
The −3 dB criterion represents a doubling of stimu-
lus intensity (in cd/m2) and was intended to be well
above the slope of a typical frequency-of-seeing curve,
which is on the order of ∼1 dB for healthy visual
field locations.33,34 Note, however, that slopes can vary
among individuals and can increase to 10 dB or more
for very severely affected locations.33,34 This, together
with the fact that the threshold estimates themselves are
subject to non-trivial measurement error,35,36 means
that the –3 dB threshold should only be taken as
indicative, andwe cannot guarantee that every stimulus
presented below this cutoff was always visible. We do
not anticipate, however, that the present findings would
differ substantively if a somewhat different criterion
had been used. To the extent that “invisible” stimuli
were inadvertently included in analyses, any of the
statistical associations that we report were likely under-
estimated.

This procedure yielded 4598 trials (of 13,867 total).
Of these, we termed a failure to respond as a miss
(false negative), and a successful response was termed
a hit (true positive). Ideally, the hit rate, P(hit), for
such suprathreshold stimuli should equal 1, whereas
missed stimuli (4.6%) we took as being indicative of
a lapse in concentration. Finally, we examined how
well each biomarker predicted hits and misses on each
trial. To do this, we recomputed each biomarker for
each of the 4598 stimulus presentations, using only
video data from that trial, and from the 20 frames
(4 seconds) directly preceding it. Note that the choice
of 20 preceding frames was arbitrary; other values
were never attempted, but we have no reason to expect

that other similar values would not yield qualitatively
similar results. Note also that the response latency
biomarker was not analyzed, as this was by defini-
tion “null” for missed trials and so contained no useful
information regarding missed stimuli.

Results

Predicting Overall (Test-by-Test)
Measurement Error

Results for healthy eyes are shown in Figures 3A
to 3G, broken down by biomarker. Considered in isola-
tion, three of the seven biomarkers (head location
variability, head rotation variability, and blink rate)
were significantly associated with overall (test–retest)
measurement error (P = 0.003–0.007). By inspection,
the four other biomarkers exhibited possible trends,
with at least two associations close to reaching statis-
tical significance (P = 0.052–0.060). Put simply, the
tests with lowest test–retest variability tended to be
those during which individuals moved their eyes least
(P = 0.226), moved their head least (P = 0.007, P =
0.003), exhibited least sadness (P = 0.154) or surprise
(P = 0.052), blinked least (P = 0.007), and responded
consistently quickly (P= 0.060). Furthermore, when all
seven individual biomarkers were averaged together, a
single composite variable was even more highly associ-
atedwithmeasurement error than any single biomarker
alone (Fig. 3H; P < 0.001, r = 0.51).

We used analogous data for the 14 eyes from
glaucoma patients to confirm the repeatability of
these results and to ensure that they generalize to
patients (Fig. 4). As with normally sighted individuals
(shown previously in Fig. 3H), there was a statistically
significant positive association between the compos-
ite biomarker metric and test–retest variability (P =
0.011). The range of measurement errors observed
was much greater in patients, however (Fig. 4; note
the difference in y-axis scale), consistent with previ-
ous reports of higher measurement variability in eyes
with visual field loss.36 Possibly owing to the small
sample size, none of seven individual biomarkers alone
reached significance in patients (P > 0.05; data not
shown). None of the biomarkers was correlated with
false-positive rates (mean P = 0.206) or false-negative
rates (mean P = 0.565) on the HFA.

Predicting Trial-by-Trial Lapses

The foregoing analyses suggest that the proposed
biomarkers are associated with the overall reliability of
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Figure 3. Overall test-retest data from healthy eyes. Each panel shows visual field measurement error (absolute test–retest difference
in mean sensitivity) as a function of seven potential biomarkers of task compliance (A–G), as well as a function of a composite measure
computed as the linear-weighted sum of all seven individual biomarkers (H). SeeMethods section for technical details on how each variable
was computed. Markers show the raw measurements for individual eyes. The marker with a red cross was excluded from all analyses as a
possible statistical outlier. However, all P values were smaller if this point was included. Black lines show geometric mean regression slopes.
Figures within each panel show correlation statistics.

Figure 4. Overall test-retest data from 14 eyes from glaucoma
patients; same format as Figure 3H. Note that in this instance, MS1
was measured using the HFA (not the screen perimeter). However,
in practice the values from the two tests were robustly correlated
(Pearson correlation, r12 = 0.86; P < 0.001), and any deviation
between the two would likely only serve to minimize (add noise
to) any of the effects reported in the present work. The square
marker indicates the fellow eye from the one patient with unilateral
secondary glaucoma for which the visual field was within normal
limits.

a visual field assessment. Such measures could poten-
tially complement or replace existing reliability metrics,

such as fixation stability, false-positive rates, or false-
negative rates,37,38 the latter having been shown to
“depend more on visual field status than on the patient
attentiveness.”39 Even better, however, would be if these
biomarkers could also be used in a more granular
fashion to detect lapses in concentration in real time,
during the test. To examine whether this is possible,
we performed the trial-by-trial analysis detailed in the
Methods section.

The results are shown in Figure 5. They indicate
that at least five of the six biomarkers were predic-
tive of trial-by-trial lapses, with the hit rate, P(hit),
for visible (>3 dB suprathreshold) stimuli decreasing
progressively as a function of biomarker magnitude
(logistic regression, P < 0.001). The only exception to
this was mean sadness (P= 0.448), although by inspec-
tion this too exhibited a possible weak association
(Fig. 5D). In short, the results in Figure 5 indicate that
local biomarkers, computed using video frames from
a single trial (and the 20 frames immediately preced-
ing stimulus onset), were predictive of whether or not
a participant made a “lapse” (false negative response)
on that trial.
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Figure 5. Results of trial-by-trial analyses examining the proportion of easily visible (−3 dB or brighter) stimuli that were correctly
responded to as a function of biomarker magnitude (biomarkers computed using only data from the preceding 4 seconds of each given
trial; see main text for details). We considered a failure to respond to such stimuli as an obvious lapse in concentration. Markers represent
mean hit rate [± 95% confidence intervals] for binned data, aggregated across all participants (binning performed byMATLAB’s “histcounts”
function, separating biomarker values into four log-spaced bins). Black lines and P values represent the result of logistic regressions fitted
to the raw binary (hit/miss) data (not to the displayed markers). Note that these curves are plotted on a log x-axis, although tickmark values
are shown in the original linear units, and all analyses were performed on the original, untransformed data. P values give the results of χ2

tests, examining whether the logistic model fits the data significantly better than a constant model.

Discussion

Data from both normally sighted young adults and
older glaucoma patients indicated that autonomous
biomarkers of task compliance are associated with
measurement error during visual field assessments.
The association was greatest when multiple biomark-
ers were considered in combination and was true in
terms of the overall reliability of a test (with multiple
biomarkers associatedwith test–retest repeatability), as
well as with individual trials (with multiple biomarkers
associated with failures to respond to visible targets).
What is particularly remarkable is that the biomarkers
that we considered here can be computed in real time,
using only an ordinary webcam and without the need
for a powerful computer (e.g., the hardware inside of an
ordinary smartphone or tablet computer is sufficient).

It should be noted that many of the associa-
tions observed, although statistically significant, would
not generally be regarded as strong.40 For example,
the composite of all seven biomarkers (Figs. 3H, 4)
explained only ∼25% of the variation in overall test–
retest reliability. However, even this finding we take
as encouraging, given that this is only a preliminary
investigation of feasibility and given that this essen-
tially represents “free” information: measurements that
can be made in the background without requiring
existing perimetric protocols to be altered in any
way and without extending assessment durations, or
the demands placed on patients. This is in contrast
to traditional compliance metrics, such as false-
negative rate estimation, which often require additional
catch trials,39 thus prolonging the test and poten-
tially increasing the risk of fatigue or lapses in
concentration.
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We were particularly encouraged by the associa-
tion between real-time, trial-by-trial estimates of each
biomarker and performance (lapses) on specific trials
(Fig. 5). Thus, although a measure of overall relia-
bility can be helpful for flagging poor-quality assess-
ments post hoc, being able to monitor task compli-
ance in real time could be even more useful as a way of
proactively reducing measurement error, “at source”.
One straightforward way to do this might be to use
anomalous biomarker estimates to trigger automated
feedback, encouraging the patient to keep going and
remain vigilant. Another complementary optionwould
be to factor the estimated reliability of each data point
(i.e., each button-press response, or absence thereof)
into the underlying psychophysical algorithm. To see
how this might be achieved, note that most modern
perimeters already use probabilistic (maximum likeli-
hood) algorithms to estimate sensitivity.15 These work,
fundamentally, by computing the the likelihood of each
possible sensitivity value (i.e., each possible psychomet-
ric function), given the observed sequence of responses.
This in turn is proportional to the likelihood of having
observed a particular pattern of responses, given each
possible sensitivity value:

p (r| {x, ψ}) =
n∏

i=1

p (ri| {xi, ψ}) (9a)

where xi is the stimulus level on trial i, ri is the partic-
ipant’s response, n is the total number of trials, and
ψ is the set of all possible psychometric functions. As
we have described previously elsewhere,41 trial-by-trial
information regarding compliance can be integrated
into Equation 9a simply by modifying the likelihood
function, such that the participant’s response on each
trial is weighted by the estimated reliability of that
response:

pα (r| {x, ψ}) =
n∏

i=1

[
p(ri| {xi, ψ})α(θi )

]
(9b)

were α(θ i) is the estimated compliance on trial i, trans-
formed to be a value between 0 and 1. When α(θ i)
= 0 (estimated complete non-compliance), that trial is
given zero weight—the response is effectively ignored
and the likelihood function remains unchanged. When
α(θ i) = 1 (estimated perfect compliance), the trial
information is integrated into the likelihood function
exactly as per usual. At intermediate values of α(θ i),
trials are given partial credit. This weighting approach
has been suggested in other domains as a way of
adjusting for anomalous statistical data42 and has been
shown to provide a consistent and efficient likeli-
hood estimate while preserving the same first-order

asymptotic properties of a genuine likelihood function.
Our expectation is that such a probabilistic weight-
ing approach would yield more reliable likelihood
estimates than current methods, which naïvely assume
that every response from every participant is equally
informative.

Under this proposed scheme, all other aspects of the
psychophysical algorithm remain unchanged. It would
therefore still be possible, for example, to compute
expected entropy, which can be used both to deter-
mine the most informative stimulus to present on
the next trial43 and to ascertain when a given level
of measurement certainty has been attained.44 This
would mean that more compliant participants would
be required to complete fewer trials, whereas non-
compliant participants may be asked to complete
additional trials in order to reach a given level of data
quality. (Note that this would prolong some tests but,
unlike with the use of catch trials discussed previ-
ously, would not prolong all tests indiscriminately,
and any additional trials would contribute directly
toward improving measurement precision.) A conspic-
uously non-compliant participant might never reach
the stopping criterion within a prescribed number of
trials and so would be scored as “did not complete.”
However, this seems preferable to the present situation,
where such individuals produce spurious data thatmust
be excluded post hoc by clinicians, often using unstan-
dardized criteria.

Previous Literature

The present study is not the first to consider ways of
monitoring task compliance in perimetry. For example,
Henson and Emuh45 used near-infrared eye tracking
and found that certain eye-tracking parameters (pupil
miosis and fatigue wave amplitude) were related to
vigilance (probability of seeing a stimulus) in glaucoma
patients. Similarly, Wang et al.46 examined blinks and
found that the probability of seeing was reduced
when blinks overlapped with a stimulus presentation,
although there was no association between overall
blink rates and threshold variability. This latter finding
is prima facie inconsistent with the present work.
However, even in the present work, the association
between blink rate and threshold variability was signif-
icant only in healthy eyes (not glaucoma), and in
general no single biomarker was strongly associated
with overall test-retest measurement error—with a
more robust association being observed when multi-
ple biomarkers were combined together. Outside of
ophthalmology, the present study is also not the first
to examine eye movements,47 head movements,48 or
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facial expressions49,50 as ways of determining whether
an individual is alert and engaged.

What is novel about the present work is that we
consider a wide range of different metrics, all of which
can be derived autonomously, in real time and without
the need for expensive or complex hardware. We also
introduce a way of integrating such measurements
into existing perimetric routines and demonstrate that
key findings can be replicated across independent
datasets.

With respect to existing measures of reliability in
perimetry, a number of techniques have been explored
previously.37,38 These include (1) the Heijl–Krakau
method of detecting fixation loss by measuring (false-
positive) responses to stimuli presented to the blind
spot; (2) measuring false positives as responses made
after the end of the current response window (and/or
just after the onset of the next stimulus); and (3)
measuring false negatives as failures to respond to
stimuli more intense than those responded to previ-
ously. These existing measures are far from complete
in capturing non-compliance and often “depend more
on visual field status than on the patient attentive-
ness.”39 It is tempting to speculate whether the sorts
of biomarkers described in the present study could
potentially complement or replace these existing relia-
bility metrics. For example, Ishiyama and colleagues51
advocated the use of gaze tracking metrics, similar to
the gaze variability biomarker used here, and compared
its utility to the traditional metrics described above. To
some extent, however, we regard such comparisons as
moot. These conventional metrics are concerned purely
with the post hoc identification of bad data, and our
goal is to prevent poor quality assessments from occur-
ring in the first place. To achieve this requires us to be
able to continuously monitor compliance throughout
the test and to do so in a way that is fast, automatic and
can be linked directly to the underlying psychophysi-
cal algorithm. In this sense, the present work is perhaps
most closely related not to previous explorations of
perimetric measures of reliability but to acuity card
testing in infants, where pediatric clinicians routinely
use a range of facial and body expressions to gauge
the child’s interest11 and then use this information to
dynamically modify the assessment protocol accord-
ingly (e.g., ignoring suspicious responses, pausing the
test momentarily). The present work is encouraging
in that it suggests that it may be possible to exploit
modern digital technologies to provide a similar level
of care and attention to the assessments of adult
glaucoma patients.

More generally, the present work can also be viewed
in the context of attempts more widely to replace or

augment human technicians (e.g., to facilitate home
monitoring12 or free up manpower in clinics9). Some
of the techniques used in the present study have also
been used elsewhere to make visual field testing more
comfortable and physically accessible to patients (e.g.,
by using head and eye tracking to obviate the need for
chin rests and fixation targets14). It is also interesting
to note that some of the biomarkers considered here
(e.g., blinking, unsteady fixation) have also been shown
to provide direct indices of the presence andmagnitude
of various ophthalmic pathologies.52

Study Limitations

The present work was intended to demonstrate
feasibility only. The methods described are not
intended as optimal or comprehensive.

In terms of the specific biomarkers employed,
other measures have been proposed as possible
indicators of whether an individual is alert and
engaged.53 These include postural instability,41
movements of the upper body and torso,54 skin
conductance/temperature,55 heart rate,56 vocal expres-
sions,57,58 electroencephalogram-based neural activ-
ity,59–61 functional magnetic resonance imaging blood-
oxygen-level-dependent responses,62–65 and pupil
dilation.56,66,67 These additional biomarkers are not
mutually exclusive, and in future it would be instruc-
tive to examine whether greater sensitivity could be
achieved by incorporating such additional measures
into the present battery. Unlike those used in the
present work, however, many of these additional
biomarkers require specialized hardware and may be
less practical for everyday clinical applications.

In terms of precisely how each biomarker was
computed and how information from multiple
biomarkers was combined, care was taken not to overfit
the present data. For example, it is extremely likely
that better (or worse) performance could have been
obtained by using alternative techniques to summarize
the data (e.g., alternative measures of dispersion or
central tendency), by tweaking key parameters (e.g.,
number of frames analyzed in the trial-by-trial analy-
sis), or by attempting to determine the most predictive
combination of parameters (e.g., through the applica-
tion of machine learning). Ultimately, however, a far
larger dataset would be required in order to solve such
questions of optimization, to which end all of the data
from the present study have been made available as
Supplementary Materials.

Equally, it is likely that evenmore sensitive biomark-
ers could be obtained in the future through improved
hardware or more sophisticated computer vision
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algorithms. It is noteworthy, for example, that the
biomarkers in the present study were derived from
an integrated laptop camera, sampled at only 5 Hz
and 640 × 480 pixel resolution. Greater spatiotem-
poral fidelity may allow us to capture more subtle
changes in head pose or facial expression or to
track rapid eye movements (saccades). With accurate
enough gaze tracking, it might even be possible to
explore whether associations between biomarkers and
measurement reliability differ as a function of stimu-
lus location. Against this, however, must be balanced
practical considerations, such as the computational
power required to process and store high-resolution
video data in near real time. Thus, automated measures
of compliance would be particularly beneficial in situa-
tions such as home monitoring where a technician
cannot be present to observe the patient. Such benefits
would be diminished, however, if complex or expen-
sive equipment was required in order to carry out the
assessment in the first place.

In terms of study design, it will be necessary in the
future to assess the present techniques in a larger and
more representative cross-section of patients. Thus,
the present study examined only young university
students and a self-selecting cohort of patients. The
patients in particular appeared highly motivated and
were likely more compliant than the typical individ-
ual seen in a busy glaucoma clinic (e.g., HFA median
[IQR] false-positive and false-negative rates were 1%
[0–3%] and 4% [0–8%], respectively). It may even be
that stronger associations are observed in more hetero-
geneous populations (i.e., exhibiting a wider spread
of measurement error68), and it would be instruc-
tive to examine how robustly the present biomark-
ers are able to identify the most compromised visual
field assessments. Likewise, it is well established that
test variability increases with eccentricity,69–72 whereas
testing in the present study was limited to the central
15°. Future studiesmight use a larger screen to consider
how well biomarkers correlate with a greater dynamic
range of measurement variability at more peripheral
test locations.

In future, it will also be important to examine
patients with a wide range of severities. It is known that
the depth of glaucomatous defect can be a substan-
tive confound in perimetry, both for existing reliabil-
ity metrics37 and estimates of sensitivity.36 It is likewise
conceivable that a patient with advanced loss may
appear more restless or despondent, potentially affect-
ing several of the proposed biomarkers independent
of task performance. The precise relationship between
observed biomarkers and task compliance will there-
fore need to be quantified both rigorously and sensi-
tively.

Conclusions

Using only an ordinary webcam, it is possible
to derive real-time measures of task compliance
during visual field assessment, and these can be used
to identify unreliable assessments and/or unreliable
responses within an assessment. In the long term, such
autonomous measures could facilitate the creation of
more intelligent and accessible forms of vision assess-
ment: assessments in which “compliant” individuals
can be processed even more rapidly than at present,
but wherein individuals who might otherwise strug-
gle to complete an automated test will be given the
additional time, care, and attention required to ensure
robust, clinically useful data.
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