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A�������: We construct a time-dependent double well potential as an exact spec-

tral equivalent to the explicitly time-dependent negative quartic oscillator with a time-

dependent mass term. Defining the unstable anharmonic oscillator Hamiltonian on a

contour in the lower-half complex plane, the resulting time-dependent non-Hermitian

Hamiltonian is first mapped by an exact solution of the time-dependent Dyson equation

to a time-dependent Hermitian Hamiltonian defined on the real axis. When unitary trans-

formed, scaled and Fourier transformed we obtain a time-dependent double well potential

bounded from below. All tranformations are carried out npn-perturbatively so that all

Hamiltonians in this process are spectrally exactly equivalent in the sense that they have

identical instantaneous energy eigenvalue spectra.

1. Introduction

Anharmonic oscillators have a wide range of applications in quantum mechanics as they

describe for instance delocalization and decoherence of quantum states, e.g. [1]. They also

occur naturally in relativistic models, e.g. [2]. From a mathematical point of view their

nonlinear nature make them ideal testing grounds for various approximation methods,

such as perturbative approaches [3]. Based on a perturbative expansion of the energy

eigenvalues it was shown in [4] that the quartic anharmonic oscillator with mass term is

spectrally equivalent to a double well potential with linear symmetry breaking. The first

hint about the fact that even the unstable quartic anharmonic oscillator posses a well

defined bounded real spectrum, despite being unbounded from below on the real axis, was

proved in [5, 6], where it was proven that its energy eigenvalues series is Borel summable.

The spectral equivalence between an unstable anharmonic oscillator and a complex double

well potential was then proven directly by Buslaev and Grecchi in [7].

Subsequently the unstable quartic anharmonic oscillator without mass term was treated

in [8] as part of the general series of PT -symmetric potentials V (x) = x2(ix)ε, i.e. ε = 2,
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where it was shown numerically that the Hamiltonians in this series have real and posi-

tive spectra for ε ≥ 2 . Applying the techniques developed in this area of non-Hermitian
PT -symmetric quantum mechanics [9, 10] Jones and Mateo [11] showed that the two

Hamiltonians

H = p2 − gx4, and h =
p4

64g
− 1
2
p+ 16gx2, (1.1)

are spectrally equivalent. This was established by first defining H on a suitable contour

in the complex plane, x→ −2i
√
1 + ix, within the Stoke wedges where the corresponding

wavefunctions decay asymptotically. Subsequently the resulting complex Hamiltonian was

similarity transformed to a Hermitian Hamiltonian h that is well defined on the real axis.

Here our central aim is to extend the analysis by making the Hamiltonian explicitly

time-dependent H → H(t) through the inclusion of an explicit time-dependence into the

coefficients. The similarity transformation acquires then the form

h(t) = η(t)H(t)η−1(t) + i∂tη(t)η
−1(t), (1.2)

often referred to as the time-dependent Dyson equation [12, 13, 14, 15, 16, 17, 18, 19, 20],

in which H �= H† is a non-Hermitian explicitly time-dependent Hamiltonian, h = h†

a Hermitian explicitly time-dependent Hamiltonian and η(t) the time-dependent Dyson

map. The latter can be used to define a time-dependent metric ρ(t) via the relation

ρ(t) = η†(t)η(t). Spectral equivalence is then understood on the level of the instantaneous

energy eigenvalues for the operators h(t) and the corresponding operator for the non-

Hermitian system

H̃(t) = η−1(t)h(t)η(t) = H(t) + iη−1(t)∂tη(t). (1.3)

Note while H̃ is observable it is not a Hamiltonian governing the time-evolution and satis-

fying the time-dependent Schrödinger equation. On the other hand the Hamiltonian H(t)

is not observable. Besides the aforementioned interest in the unstable anharmonic oscilla-

tor itself, there are not many known exact solutions [15, 17, 21, 18, 22, 19, 23, 24, 25, 26,

27, 28, 29, 30] to the time-dependent Dyson equation (1.2), so that any new exact solution

provides valuable insights.

2. The time-dependent unstable harmonic oscillator

The Hamiltonian we investigate here is similar to the one in equation (1.1), but with

time-dependent coefficient functions and an additional mass term

H(z, t) = p2 +
m(t)

4
z2 − g(t)

16
z4, m ∈ R,g ∈ R+. (2.1)

Defining H(z, t) now on the same contour in the lower-half complex plane z = −2i
√
1 + ix

as suggested by Jones and Mateo [11], it is mapped into the non-Hermitian Hamiltonian

H(x, t) = p2 − 1
2
p+

i

2
{x, p2} −m(t)(1 + ix) + g(t)(x− i)2, (2.2)

— 2 —
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with {·, ·} denoting the anti-commutator. Next we attempt to solve the time-dependent
Dyson equation (1.2) to find a Hermitian counterpart h. Making the following general

Ansatz for the Dyson map

η(t) = eα(t)xeβ(t)p
3+iγ(t)p2+iδ(t)p, α, β, γ, δ ∈ R, (2.3)

we use the Baker-Campbell-Hausdorff formula to compute the adjoint action of η(t) on all

terms appearing in H(x, t)

ηxη−1 = x+ δ + 6αβp+ 2γp+ 3iα2β + 2iαγ − 3iβp2, (2.4)

ηpη−1 = p+ iα, (2.5)

ηx2η−1 = x2 − 9β2p4 − 12iβ (3αβ + γ) p3 +
�
54α2β2 + 36αβγ + 4γ2 − 6iβδ

�
p2 (2.6)

+4(3αβ + γ) [δ + iα(3αβ + 2γ)] p+ 2
�
δ + 3iα2β + 2iαγ

�
x

+(6αβ + 2γ) {x, p} − 3iβ
�
x,p2

�
− (3α2β + 2αγ − iδ)2,

ηp2η−1 = p2 − α2 + 2iαp, (2.7)

η{x, p2}η−1 = {x, p2} − 6iβp4 + (24αβ + 4γ)p3 +
�
36iα2β + 12iαγ + 2δ

�
p2 − 2α2x (2.8)

+4
�
iαδ − 6α3β − 3α2γ

�
p− 2iα2

�
3α2β + 2αγ − iδ

�
+ 4iα{x, p}.

The gauge like terms in (1.2) and (1.3) are calculated to

iη̇η−1 = ixα̇+ iβ̇p3 −
�
3β̇α+ γ̇

�
p2 −

�
3iβ̇α2 + 2iγ̇α+ δ̇

�
p+ β̇α3 + γ̇α2 − iδ̇α, (2.9)

iη−1η̇ = ixα̇+ iβ̇p3 − (3α̇β + γ̇)p2 − (2iγα̇+ δ̇)p− iδα̇, (2.10)

where as commonly used we abbreviate partial derivatives with respect to t by an overdot.

Using the expressions in (2.4)-(2.9) for the evaluation of (1.2) and demanding the right

hand side to be Hermitian yields the following constraints for the coefficient functions in

the Dyson map

α =
ġ

6g
, β =

1

6g
, γ =

12g3 + 6mg2 + ġ2 − gg̈
4ġg2

, δ = c1
g

ġ
− g ln g

2ġ
, (2.11)

with c1 ∈ R being an integration constant. Moreover, the time-dependent coefficient func-
tions in the Hamiltonian (2.1) must be related by the third order differential equation

9g2 (
...
g − 6gṁ) + 36gġ (gm− g̈) + 28ġ3 = 0. (2.12)

Integrating once and introducing a new parameterization function σ(t), we solve this equa-

tion by

g =
1

4σ3
, and m =

4c2 + σ̇
2 − 2σσ̈
4σ2

, (2.13)

with c2 ∈ R denoting the integration constant corresponding to the only integration we

have carried out. The time-dependent Hermitian Hamiltonian in equation (1.2) then results

to

h(x, t) = σ3p4 + fpp(t)p
2 + fx(t)x+ fp(t)p+ fxp(t){x, p}+ fxx(t)x2 +C(t). (2.14)

— 3 —
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with

fpp =
σ
�
σ
�
2
�
σ
�
σ̇2 − 4c2

�
− 2
�
σ̈ + 16c22 + σ̇

4
�
+ 16c2

�
+ 4

4σσ̇2
, fxp =

�
σ
�
σ̇2 − 4c2

�
− 2
�

4σ2σ̇
,

fp =
2c1

�
σ
�
4c2 + σ̇

2 − 2σσ̈
�
+ 2
�
+ ln

�
4σ3

�

12σσ̇2
, fx = −

2c1 + ln
�
4σ3

�

12σ2σ̇
, fxx =

1

4σ3
,

C =

�
2c1 + ln

�
4σ3

��
2 + 36σ̇2

�
4c22 + σ̈

�

144σσ̇2
+
1

8

�
σ̇2 − 4c2

�
σ̈ − σ̇2

4σ2

We may choose to set c1 = c2 = 0 and reintroduce the original time-dependent coefficient

functions g(t), m(t) so that the Hamiltonian simplifies to

h(x, t) =
p4

4g
+

	
18g2(2g +m)

ġ2
+

ġ2

72g3
− 2g +m

4g



p2 − 3

�
g2m+ g3

�
ln g

ġ2
p+

g2 ln(g)

ġ
x

+

	
ġ

12g
− 6g

2

ġ



{x, p}+ gx2 + 1296g

8 ln2 g + ġ6 − 36ġ4g2(2g +m)
5184g5ġ2

− m
2
. (2.15)

Notice that σ(t) can be any function, but the coefficient functions g(t) and m(t) must be

related by (2.12) that is (2.13).

The massless case for m(t) = 0 is more restrictive and leads to σ(t) being a second

order polynomial σ(t) = κ0 + κ1t+ κ2t2 with real constants κi. This case is consistently

recovered from (2.13) with the choice c2 = κ1κ3 − κ22/4. The solution found for the time-
independent case in [11], would be obtained from (2.3) in the limits α → 0, β → 1/6g,

γ → 0, δ → i and m→ 0. While this limit obviously exists for α and β, the constraints for

γ and δ are different from those reported in (2.11). In fact, setting δ(t) → iδ(t) enforces

g to be time-independent and there is no time-dependent solution corresponding to that

choice. The energy operator H̃ defined in (1.3) is obtained directly by adding H(x, t) in

(2.2) and the gauge-like term in (2.10).

Let us now eliminate the terms in h(x, t) proportionate to x and {x, p} by means of a
unitary transformation

U = e−i
fxp
2fxx

p2−i fx
2fxx

p, (2.16)

which leads to the unitary transformed Hamiltonian

ĥ(x, t) = σ3p4 +

�

fpp −
f2xp
fxx

�

p2 +

	
fp −

fxfxp
fxx



p+ fxxx

2 +C − f2x
4fxx

. (2.17)

Similarly as in the time-independent case [11], we may scale this Hamiltonian, albeit now

with a time-dependent function, x→ (fxx)−1/2x. Subsequently we Fourier transform ĥ(x, t)

so that it is viewed in momentum space. In this way we obtain a spectrally equivalent

Hamiltonian with a time-dependent potential

h̃(y, t) = p2y + σ
3f2xxy

4 +
�
fxxfpp − f2xp

�
y2 +

	

fxxfp −

fxfxp√
fxx



y +C − f2x

4fxx
, (2.18)

=
g

4
y2
	
y2 +

ġ2

36g3
+
72g2m

ġ2
− m
g
+ 2



+

�
36g2m+ ġ2

�√
g ln g

12ġ2
y (2.19)

+
ġ4

5184g5
− ġ2m

144g3
− ġ2

72g2
− m
2
,
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where for simplicity we have set c1 = c2 = 0 in (2.19). The potential in h̃(y, t) is a double

well that is bounded from below. We illustrate this for a specific choice of σ(t), that is g(t)

and m(t), in figure 1.

Figure 1: Spectrally equivalent time-dependent anharmonic oscillator potential V (z, t) in (2.1)

and time-dependent double well potential Ṽ (y, t) in (2.19) for σ(t) = cosh t, g(t) = 1/4 cosh3 t,

m(t) = (tanh2 t− 2)/4 at different values of time.

3. Conclusions

We have proven the remarkable fact that the time-dependent unstable anharmonic oscilla-

tor is spectrally equivalent to a time-dependent double well potential that is bounded from

below. The transformations we carried out are summarized as follows:

H(z, t)
z→x→ H(x, t)

Dyson→ h(x, t)
unitary transform→ ĥ(x, t)

Fourier→ h̃(y, t).

We have first transformed the time-dependent anharmonic oscillator H(z, t) from a com-

plex contour in a Stokes wedge to the real axis H(x, t). The resulting non-Hermitian

Hamiltonian H(x, t) was then mapped by mean of a time-dependent Dyson map η(t) to

a time-dependent Hermitian Hamiltonian h(x, t). It turned out that the Dyson map can

not be obtained by simply introducing time-dependence into the known solution for the

time-independent case [11], but it required to complexify one of the constants and the

inclusion of two additional factors. In order to obtain a potential Hamiltonian we have

unitary transformed h(x, t) into a spectrally equivalent Hamiltonian ĥ(x, t), which when

Fourier transformed leads to h̃(y, t) that involved a time-dependent double well potential.

A detailed analysis of the spectra and eigenfunctions using approximation methods for

time-dependent potential [31] is left for future investigations. Moreover, it is well known

that Dyson maps are not unique, in the time-dependent as well as time-independent case,

and it might therefore be interesting to explore whether additional spectrally equivalent

Hamiltonians to H(z, t) can be found in the same fashion for new type of maps.
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