IT City Research Online
UNIVEREIST; ]OggLfNDON

City, University of London Institutional Repository

Citation: Fring, A. & Tenney, R. (2020). Spectrally equivalent time-dependent double wells
and unstable anharmonic oscillators. Physics Letters A, 384(21), 126530. doi:
10.1016/j.physleta.2020.126530

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24187/

Link to published version: https://doi.org/10.1016/j.physleta.2020.126530

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.




City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk



http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

3
xﬁx

CITY Spectrally equivalent t-dependent double wells/unstable anharmonic oscillators

Spectrally equivalent time-dependent double wells and
unstable anharmonic oscillators

Andreas Fring and Rebecca Tenney

Department of Mathematics, City University London,
Northampton Square, London EC1V 0HB, UK
E-mail: a.fring@city.ac.uk, rebecca.tenney@city.ac.uk

ABSTRACT: We construct a time-dependent double well potential as an exact spec-
tral equivalent to the explicitly time-dependent negative quartic oscillator with a time-
dependent mass term. Defining the unstable anharmonic oscillator Hamiltonian on a
contour in the lower-half complex plane, the resulting time-dependent non-Hermitian
Hamiltonian is first mapped by an exact solution of the time-dependent Dyson equation
to a time-dependent Hermitian Hamiltonian defined on the real axis. When unitary trans-
formed, scaled and Fourier transformed we obtain a time-dependent double well potential
bounded from below. All tranformations are carried out npn-perturbatively so that all
Hamiltonians in this process are spectrally exactly equivalent in the sense that they have

identical instantaneous energy eigenvalue spectra.

1. Introduction

Anharmonic oscillators have a wide range of applications in quantum mechanics as they
describe for instance delocalization and decoherence of quantum states, e.g. [1]. They also
occur naturally in relativistic models, e.g. [2]. From a mathematical point of view their
nonlinear nature make them ideal testing grounds for various approximation methods,
such as perturbative approaches [3]. Based on a perturbative expansion of the energy
eigenvalues it was shown in [4] that the quartic anharmonic oscillator with mass term is
spectrally equivalent to a double well potential with linear symmetry breaking. The first
hint about the fact that even the unstable quartic anharmonic oscillator posses a well
defined bounded real spectrum, despite being unbounded from below on the real axis, was
proved in [5, 6], where it was proven that its energy eigenvalues series is Borel summable.
The spectral equivalence between an unstable anharmonic oscillator and a complex double
well potential was then proven directly by Buslaev and Grecchi in [7].

Subsequently the unstable quartic anharmonic oscillator without mass term was treated
in [8] as part of the general series of P7-symmetric potentials V (z) = 22(ix)¢, i.e. € = 2,
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where it was shown numerically that the Hamiltonians in this series have real and posi-
tive spectra for € > 2 . Applying the techniques developed in this area of non-Hermitian
PT-symmetric quantum mechanics [9, 10] Jones and Mateo [11] showed that the two

Hamiltonians
H=p*—ga* d h—ﬁ—l 16922 1.1
=p* — gx*, an = 6ig 2+ g, (1.1)
are spectrally equivalent. This was established by first defining H on a suitable contour
in the complex plane, x — —2i+/1 + iz, within the Stoke wedges where the corresponding
wavefunctions decay asymptotically. Subsequently the resulting complex Hamiltonian was
similarity transformed to a Hermitian Hamiltonian h that is well defined on the real axis.
Here our central aim is to extend the analysis by making the Hamiltonian explicitly
time-dependent H — H(t) through the inclusion of an explicit time-dependence into the

coefficients. The similarity transformation acquires then the form

h(t) = n()H()n~ (8) +idm(t)n~(t), (1.2)

often referred to as the time-dependent Dyson equation [12, 13, 14, 15, 16, 17, 18, 19, 20],
in which H # H' is a non-Hermitian explicitly time-dependent Hamiltonian, h = hf
a Hermitian explicitly time-dependent Hamiltonian and 7(t) the time-dependent Dyson
map. The latter can be used to define a time-dependent metric p(t) via the relation
p(t) = nf(t)n(t). Spectral equivalence is then understood on the level of the instantaneous
energy eigenvalues for the operators h(¢) and the corresponding operator for the non-
Hermitian system

H(t) =0~ (t)h(t)n(t) = H(t) +in " (£)m(t). (1.3)

Note while H is observable it is not a Hamiltonian governing the time-evolution and satis-
fying the time-dependent Schrodinger equation. On the other hand the Hamiltonian H ()
is not observable. Besides the aforementioned interest in the unstable anharmonic oscilla-
tor itself, there are not many known exact solutions [15, 17, 21, 18, 22, 19, 23, 24, 25, 26,
27, 28, 29, 30] to the time-dependent Dyson equation (1.2), so that any new exact solution
provides valuable insights.

2. The time-dependent unstable harmonic oscillator

The Hamiltonian we investigate here is similar to the one in equation (1.1), but with
time-dependent coefficient functions and an additional mass term

t t
H(z,t) =p* + %22 - %24, m € R,g € RT. (2.1)

Defining H(z,t) now on the same contour in the lower-half complex plane z = —2i/1 + ix
as suggested by Jones and Mateo [11], it is mapped into the non-Hermitian Hamiltonian

H(zx,t) = p* — %p + %{x,pQ} —m(t)(1 +iz) + g(t)(xz — i), (2.2)
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with {-,-} denoting the anti-commutator. Next we attempt to solve the time-dependent
Dyson equation (1.2) to find a Hermitian counterpart h. Making the following general
Ansatz for the Dyson map

n(t) = WSO+ 0 5y 5 ER, (2:3)

we use the Baker-Campbell-Hausdorff formula to compute the adjoint action of 7(t) on all
terms appearing in H(x,t)

nen =z + 0 + 6a8p + 2yp + 3ia® B + 2iay — 3ifp?,
npn - = p+ia, .
na’n~t = 2% —9p%p* — 12ip (3aB +7) p® + (54a2ﬁ2 + 36afy + 492 — 62’65) p? (2.6)
+4(3aB +7) [0 +ia(3aB + 27)] p+ 2 (6 + 3ia®B + 2iay) x
+(6a + 2v) {x,p} — 3ip {x,pZ} — (3028 + 22y — i6)?,
np*n~t = p? —a? + 2iap, (2.7)
n{x, p*In~t = {z,p*} — 6iBp* + (24aB + 47)p® + (36ia2ﬁ + 12i0ry + 20) p? — 20z (2.8)
+4 (iod — 6033 — 3a2’y) p — 2ia? (30426 + 20y — i6) + dic{z, p}.

1

The gauge like terms in (1.2) and (1.3) are calculated to
it = ixa +iBp® — (3[-Ja n 1) p?— (3@6042 + 2+ 5) p+ Bl + 402 —ida, (2.9)
il = dza + ifp® — (3B +)p? — (2iva + §)p — ida, (2.10)
where as commonly used we abbreviate partial derivatives with respect to ¢t by an overdot.
Using the expressions in (2.4)-(2.9) for the evaluation of (1.2) and demanding the right

hand side to be Hermitian yields the following constraints for the coefficient functions in
the Dyson map

1 :12g?’+6m92+92—g§ 5:cg_glng

g
- /B - ) Y 17
6g 4gg* g 29

= 2.11
“ 6g’ (2.11)

with ¢; € R being an integration constant. Moreover, the time-dependent coefficient func-
tions in the Hamiltonian (2.1) must be related by the third order differential equation

9¢% (G — 6g1n) + 36949 (gm — §) + 285> = 0. (2.12)

Integrating once and introducing a new parameterization function o(t), we solve this equa-

tion by
1 dey + 62 — 206
g:r‘_?’, and m:T, (213)
with c2 € R denoting the integration constant corresponding to the only integration we
have carried out. The time-dependent Hermitian Hamiltonian in equation (1.2) then results

to

h(z,t) = o°p" + fop(Op® + fo(O)z + o0 + fop(t){z, P} + faa(t)2® + C(t).  (2.14)
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with
{0 [2(0 (6% —4c2) —2) 5 +16¢3 + 6] + 16c2} + 4 (0 (6% —4cp) —2)
T = 4062 o o= 4025 ’
_ 2¢1 [0 (4e2 + 6% —206) + 2] 4 In (407) _ 2c1+1n(40?) 1
I = 12052 =T ety ST g
~ (2c141n (40%)) % +366% (4c53+6) 1., . o’
©= 144062 T30 )i g5

We may choose to set ¢; = ca = 0 and reintroduce the original time-dependent coefficient
functions g(t), m(t) so that the Hamiltonian simplifies to

vt (8PQotm) ¢ 2gtm) 5 3(gPmtg?) L O
4g g2 7293 dg g2 g

g 6g? o 12966°In” g + g5 — 369%g*(29 +m) m
+< ){x,p}+g:c + 5

129 g 5184g5 2

h(z,t) =

(2.15)

Notice that o(t) can be any function, but the coefficient functions g(¢) and m(t) must be
related by (2.12) that is (2.13).

The massless case for m(t) = 0 is more restrictive and leads to o(t) being a second
order polynomial o(t) = kg + k1t + kot? with real constants ;. This case is consistently
recovered from (2.13) with the choice ca = k1k3 — k3/4. The solution found for the time-
independent case in [11], would be obtained from (2.3) in the limits « — 0, § — 1/6g,
v —0, d — i and m — 0. While this limit obviously exists for a and 3, the constraints for
~ and ¢ are different from those reported in (2.11). In fact, setting §(¢) — i0(¢) enforces
g to be time-independent and there is no time-dependent solution corresponding to that
choice. The energy operator H defined in (1.3) is obtained directly by adding H(z,t) in
(2.2) and the gauge-like term in (2.10).

Let us now eliminate the terms in h(z,t) proportionate to z and {z,p} by means of a
unitary transformation

74f12 > . fx
U=e¢ "2faa? "2faa?, (2.16)

which leads to the unitary transformed Hamiltonian
2

7 _ 3,4 _fLQP 2 _fzfzp 2 _Jz
h(z,t) = a’p* + | fop For | P + 1 Jp 7 P+ foxr® +C 7 (2.17)

Similarly as in the time-independent case [11], we may scale this Hamiltonian, albeit now

with a time-dependent function, z — (fyz)~>/2z. Subsequently we Fourier transform h(z, t)
so that it is viewed in momentum space. In this way we obtain a spectrally equivalent
Hamiltonian with a time-dependent potential

2

pz +0° z2zy4 + (fmfpp - :?p) v+ <\/Efp - M) y+C—7—,(2.18)

h(y,t)

) 2 2 2
g o o g 29°m m (369 m—i—g)\/ﬁlng
== e —— +2 2.19
rEd <y T + ) * 1242 Y (2.19)
n g* B g*m B g _m
5184¢5  144¢g3 T2¢2 2’
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where for simplicity we have set ¢; = ¢3 = 0 in (2.19). The potential in h(y,t) is a double
well that is bounded from below. We illustrate this for a specific choice of o(t), that is g(t)
and m(t), in figure 1.
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Figure 1: Spectrally equivalent time-dependent anharmonic oscillator potential V(z,¢) in (2.1)
and time-dependent double well potential V(y,t) in (2.19) for o(t) = cosht, g(t) = 1/4cosh®t,
m(t) = (tanh®t — 2)/4 at different values of time.

3. Conclusions

We have proven the remarkable fact that the time-dependent unstable anharmonic oscilla-
tor is spectrally equivalent to a time-dependent double well potential that is bounded from
below. The transformations we carried out are summarized as follows:

H(Z, t) z:x H(!E, t) D}is)n h({E, t) unitarygansform iL(IE, t) Fogjer iL(y, t).

We have first transformed the time-dependent anharmonic oscillator H(z,t) from a com-
plex contour in a Stokes wedge to the real axis H(z,t). The resulting non-Hermitian
Hamiltonian H(z,t) was then mapped by mean of a time-dependent Dyson map 7(t) to
a time-dependent Hermitian Hamiltonian h(z,t). It turned out that the Dyson map can
not be obtained by simply introducing time-dependence into the known solution for the
time-independent case [11], but it required to complexify one of the constants and the
inclusion of two additional factors. In order to obtain a potential Hamiltonian we have
unitary transformed h(z,t) into a spectrally equivalent Hamiltonian A(z,t), which when
Fourier transformed leads to ﬁ(y, t) that involved a time-dependent double well potential.
A detailed analysis of the spectra and eigenfunctions using approximation methods for
time-dependent potential [31] is left for future investigations. Moreover, it is well known
that Dyson maps are not unique, in the time-dependent as well as time-independent case,
and it might therefore be interesting to explore whether additional spectrally equivalent
Hamiltonians to H(z,t) can be found in the same fashion for new type of maps.
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