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ABSTRACT 

Unbonded posttensioned precast concrete (UPPC) structure has shown its 

excellent aseismic performance in laboratory tests and earthquake investigation. 

However, the progressive collapse behavior of UPPC subjected to column removal 

scenario is still unclear. To fill this knowledge gap, two 1/2 scaled UPPC beam-

column sub-assemblages were tested under a penultimate column removal scenario. 

The dynamic test results indicated that UPPC sub-assemblages have desirable load 

redistribution capacity to mitigate progressive collapse. The failure modes of the sub-

assemblages observed in dynamic test were quite similar to that in static counterparts.  
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Progressive collapse was defined as the spread of an initial local failure from element 

to element, eventually resulting in the collapse of an entire structure or a 

disproportionately large part of it (ASCE 7-11 2011). It was first obtained attention 

after the collapse of Ronan Point Apartment in 1968. However, extensive studies 

carried out on vulnerability of structures against progressive collapse after the 

collapse of Twin Towers of the World Trade Center in 2001. Alternate load path (ALP) 

method was frequently used to evaluate the ability of structures to resist progressive 

collapse. ALP method was mainly focused on the bridge ability of the remaining 

structures after removal of one or couple columns or partial of walls. Qian and Li 

(2012) designed an innovated sudden column removal device to simulate suddenly 

column removal scenario in laboratory. It was found that seismically design and 

detailing succeeded in increasing the resistant capacity of the structures against 

progressive collapse. Structures with longer length exhibited a higher vulnerability 

for progressive collapse compared to structures with shorter span length. It was 

found that the dynamic load increase factor of the specimen could be less than 1.38. 

Qian and Li (2013) evaluated the slab effects on dynamic response of beam-slab 

substructures after suddenly removal of a corner column. It was found that the first 

peak displacement could increase up by 264.4 % in absence of reinforced concrete 

(RC) slab to redistribute the initial corner column’s axial force. Yu et al. (2014) 

studied the dynamic behavior of beam-column sub-assemblages after explosively 

removal of a middle column. It was found that initially the middle column achieved 

upward displacement at the beginning 2ms-20ms. After the shock wave stage, the 

sub-assemblage started falling down due to applied gravity loads in the time range 

of 100-500 ms. Qian et al. (2018) investigated the effects of multi-column removal 

on the dynamic behavior of flat slab substructures experimentally. It was found that 

missing a single interior column achieves larger dynamic response than that of the 

loss of a single corner or an exterior column. For missing two-column scenarios, the 

substructures under the loss of both a corner column and an adjacent exterior column 
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simultaneously may experience more severe damage than that of the substructures 

subjected to the combined loss of an interior column and an adjacent exterior column. 

Orton and Kirby (2014) found that there is a very fine tipping point at which the 

structure is pushed past the compressive arch or flexural range of response into the 

catenary action range of response. 

Although a number of dynamic tests were carried out for evaluation of the 

dynamic response of RC frames subjected to column missing scenarios, little studies 

had been carried out on dynamic behavior of precast concrete (PC) frames due to 

suddenly column removal, especially for PC frames with high performance dry 

connections.   

PC frames were popular used in practice due to its high-construction speed, low 

labour requirements, and less pollution. The performance of PC frames with 

emulating connections subjected to the loss of column scenarios was investigated by 

Kang and Tan (2015) and Qian et al. (2019). Kang and Tan (2015) indicated that PC 

frame with emulating connections was able to develop much higher rotation 

compared to the requirements in DoD (2009) if catenary action in the beam is 

considered. Qian et al. (2019) found that precast slab together with topping layer 

could ensure the integrity of the slab system. However, as the wire mesh in the 

topping layer is the source of tensile membrane action, the tensile membrane action 

in PC beam-slab substructures is much less than that in cast-in-place substructures. 

The progressive collapse behavior of PC frames with dry connections was studied 

by Lew et al. (2017), Qian and Li (2018). Lew et al. (2017) found that the fracture 

of bottom anchorage bars at the welded connection prevents the mobilization of 

tensile catenary action. Qian and Li (2018) indicated that the gap existing between 

beam and column interfaces for bolted connected specimens prevented the 

development of compressive arch action and catenary action. However, due to large 

rotational capacity of bolted connected specimens, the tensile membrane action due 

to wire mesh of topping layer could be developed significantly. However, for welded 
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connected specimens, due to fracture at the weld anchorage, no reliable compressive 

arch action, catenary action, and tensile membrane action were developed. Therefore, 

comparing to cast-in-place RC frames (Su et al. 2009; Orton et al. 2009; Choi and 

Kim 2011; Qian and Li 2012a; Yu and Tan 2013; Li et al. 2014; Lew et al. 2014; Ren 

et al. 2016; Lu et al. 2017) or PC frames emulating connections, PC frames with 

welded or bolt connections has poor behavior to resist progressive collapse. Thus, it 

was necessary to found high performance dry connections to resist progressive 

collapse. Based on seismic investigation, it was found that unbonded post-tensioning 

precast concrete (UPPC) frames performed well in resisting seismic load. Therefore, 

the progressive collapse behavior of UPPC, one of dry connections, frames was 

evaluated in the present study. Moreover, it was well known that the column loss 

normally was suddenly due to terrorist attack or vehicular impact. Therefore, the 

sudden column loss device, which was commonly used in previous studies, was also 

used to conduct dynamic test of UPPC beam-column sub-assemblages subjected to 

the loss of a penultimate column scenario.         

EXPERIMENTAL STUDY 

Specimen design 

In this study, two 1/2 scaled UPPC beam-column substructures, which were 

extracted from the prototype structure at the inflection points, were tested subjected 

to dynamic loading regimes: UPPC-DL and UPPC-DH. The designation “UPPC” 

represents Unbonded Posttensioned Precast Concrete frame. The letter “D” 

represents dynamic test. In addition, the last letter “L” and “H” denote axial 

compression ratio of 0.2 and 0.4 at the side column, respectively. It should be noted 

that all specimens have identical reinforcement detailing and dimensions. As shown 

in Fig. 1, the specimen consists of two beams, two side columns, one middle column 

stub, and an overhanging beam beyond one of the side columns as a penultimate 

column removal was assumed. The side column with overhanging beam represents 

interior side column (to simulate horizontal restraints from surrounding bays). 
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Conversely, the side column without overhanging beam represents exterior side 

column where no additional horizontal restraints.  

 

Figure 1. Dimensions and reinforcement details of test specimen  

At the day of tests, the concrete compressive strength of UPPC-DL and UPPC-

DH were 37.5 MPa and 38.1 MPa, respectively. The yield strength of R6, T12, and 

T16 were 368 MPa, 462 MPa, and 466 MPa, respectively. The nominal diameter of 

the strand was 12.7 mm. The yield strength and ultimate strength of the strand were 

1649 MPa and 1970 MPa, respectively.   

Test setup and instrumentation 

The test setup is shown in Figure 2. For interior column (with extending beam), the 

top column and the extending beam connected with the A-shaped frame by rollers. 

Each roller installed a tension/compression load cell for measuring the reaction force. 

The column bottom was seated on a pin connection. For measuring the reaction force 

of the pin connection, a load pin was installed. For exterior column (without 

extending beam), only the top column connected to the A-shaped frame by a roller 

and bottom column seated on the pin support. The penultimate column was replaced 

by a sudden column removal device (SCRD), which was used frequently in previous 

studies (Qian and Li 2012; Qian et al. 2018). To prevent undesired out-of-plane 

failure, a steel box with steel column (Item 3 in Figure 2) was specially designed. 
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Before test, the SCRD was erected. Then, the weights were hung below the beams. 

After that, the SCRD was knocked down by impact load.  

 

Figure 2. Test setup  

 

PRELIMINARY RESULTS 

Varying of axial force in SCRD 

Figure 3 presents the varying of axial force in SCRD after removal of SCRD 

suddenly. It can be seen that, for UPPC-DL, the initial axial force was 40.5 kN before 

column removal at a time of 0.01 s and it reduced to 0.0 kN at a time of 0.018 s. 

Thus, the duration was 0.008 s, which is about 1.1 % of its natural period of vibration. 

Similarly, the duration of UPPC-DH was 0.005 s, which is about 0.9 % of its natural 

period. Thus, the reliability of the SCRD was ensured. 

Dynamic displacement responses 

Figures 4a and b illustrate the displacement response of UPPC-DL and UPPC-DH, 

respectively. For UPPC-DL, the maximum displacement was 320 mm at a time of 

2.1 s. The maximum displacement of VD1, VD2, VD3, VD4, VD5, and VD6 were 

88 mm, 170 mm, 253 mm, 250 mm, 168 mm, and 86 mm, respectively. For UPPC-

DH, the maximum displacement was 295 mm a time of 1.99 s. The maximum 

displacement of VD1, VD2, VD3, VD4, VD5, and VD6 were 76 mm, 160 mm, 235 

mm, 230 mm, 153 mm, and 73 mm, respectively. Regarding the position of LVDTs, 
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please refer to Figure 2. 

 

 

 

 

 

Figure 3. Varying of axial force in SCRD 
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                  (a)                               (b) 

Figure 4. Displacement response: (a) UPPC-DL, (b) UPPC-DH 

Failure mode 

The crack pattern and local damage of UPPC-DL and UPPC-DH were illustrated in 

Figures 5 and 6, respectively. The differences caused by different axial compression 

ratio were mainly reflected in the crack pattern of the side columns. It could be found 

that the cracks observed in the side columns of UPPC-DH were much fewer than 

that in UPPC-DL. Moreover, the cracks formed in the interior column were milder 

than that in the exterior one for both specimens. 

 

 

Figure 5 Crack pattern and local damage of UPPC-DL (from the author) 

 

Figure 6 Crack pattern and local damage of UPPC-DH (from the author) 

Horizontal reaction force 

Figure 7 illustrates the total horizontal reaction force at each side of tested specimens. 

For exterior side (without overhanging beam) of UPPC-DL, after removal of the 

column over 1.0 s, total horizontal reaction force reached maximum compressive 
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force of -71 kN a time of 1.388 s, but then the compressive reaction force began to 

decrease. When the time is over 1.71 s, the horizontal reaction force changed from 

compression to tension. The maximum tensile force of 110 kN was measured at a 

time of 2.15 s. After vibration, the residual force of 89 kN was measured. For interior 

side (with overhanging beam), the maximum horizontal compressive and tensile 

force were measured to be -84 kN and 185 kN at times of 1.323 s and 1.97 s, 

respectively. Therefore, the interior side achieved larger compressive and tensile 

reaction force due to stronger horizontal restraints. For UPPC-DH, the maximum 

horizontal compressive force at exterior side and interior side were -75 kN and -96 

kN, respectively, whereas the maximum horizontal tensile forces were 104 kN and 

148 kN, respectively. Therefore, both compressive arch action and tensile catenary 

action were able to develop in dynamic tests. 

 

 

 

Figure 7 Total horizontal reaction-time curves 

 

CONCLUSIONS 

1. Unbonded post-tensioning precast concrete (UPPC) frames exhibited 

excellent resilience and integrity to resist progressive collapse caused by the loss of 

a penultimate column.   
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2. Exterior joint suffered more severe damage than that of interior joint due to 

less horizontal constraints from surrounding beam. The rotation and damage of the 

beam concentrated in the beam-column interfaces and little damage was observed in 

the beam itself.  

3. Test results indicated that even sudden column removal was considered, 

compressive arch action and tensile catenary action were able to develop in UPPC 

frames to resist progressive collapse.   
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