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SUMMARY 15

We consider an extension of Aalen’s additive regression model allowing covariates to have
effects that vary on two different time-scales. The two time-scales considered are equal up to
a constant that varies for each individual, such as for example follow-up time and age in med-
ical studies or calendar time and age in longitudinal studies. The model has been introduced
in Scheike (2001) where it was solved via smoothing techniques. We present a new backfitting 20

algorithm estimating the structured model without having to use smoothing. Estimators of the
cumulative regression functions on the two time-scales are suggested by solving local estimating
equations jointly on the two time-scales. We provide large sample properties and simultaneous
confidence bands. The model is applied to data on myocardial infarction providing a separation
of the two effects stemming from time since diagnosis and age. 25

Some key words: Aalen model, counting process, disability model, illness-death model, generalized additive models,
multiple time-scales, non-parametric estimation, varying-coefficient models.

1. INTRODUCTION

In many bio-medical applications in survival analysis it is of interest and needed to use mul-
tiple time-scales. A medical study will often have a follow-up time, for example time since 30

diagnosis, for patients of different ages. In this case, both time-scales will contain important but
different information about how the risk of, for example, dying is changing. We therefore con-
sider the situation with two time-scales that are equivalent up to a constant for each individual,
such as for example follow-up time and age. Specifically, if a patient is included in a study at
age, a0, then the age of the patient at follow-up time t is ao + t. One may see this as arising 35

from the the illness-death model, or the disability model, where the additional time-scale may
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be duration in the illness state of the model; see Keiding (1991) for a general discussion of these
models. There is rather limited work on how to deal with multiple time-scales in a biomedical
context, see for example Oakes (1995); Duchesne & Lawless (2000) and Iacobelli & Carstensen
(2013); Lee et al. (2017) and references therein. The first two references deal with choosing a rel-40

evant time-scale via transformations, thus considering and finding one useful timescale, an aim
rather different from ours, whereas Iacobelli & Carstensen (2013) an Lee et al. (2017) consider
semi-parametric models for dealing with time-scales such as age and follow-up time in a multi-
plicative hazard setting. These models are quite flexible and easy to fit as pointed by Iacobelli &
Carstensen (2013).45

The aim of our approach is to consider the time-scales jointly and provide a simple non-
parametric regression approach where each time-scale contributes additively to the mortality.
The regression setting models the effect of covariates by additive Aalen models on each time-
scale (Aalen, 1989; Huffer & McKeague, 1991; Andersen et al., 1993; Martinussen & Scheike,
2006). This allows covariates to have effects that change over two different time-scales. We are50

able to interpret that change of effect for each of the two time-scale separately.
We consider an extension of the additive Aalen structure in this paper. Whether one uses an

additive or a multiplicative structure, like the Cox proportional hazard, to model the effects of
the time-scales, and what model that fits best depends on the setting, but we here use the additive
structure because the estimation turns out to be simpler on this scale. A structured approach, e.g.,55

additive or multiplicative assuming a suitable fit, has the advantage that the number of covariates
considered effects the estimation performance only linearly. A fully nonparametric approach is
subject to the curse of dimensionality, i.e., exponentially deteriorating estimation performance in
the number of covariates. Additionally, a structured model enables interpretation of the effects
for each time scale by visualizing the one-dimensional components.60

A popular setting were main effects of several time-scales is considered is the age-period-
cohort model, see e.g., (Kuang et al., 2008a), where interest is on describing how the different
time-scales, i.e., age, period and cohort, affect the hazard. Our model is a simper because we only
allow for two time-scales but also more complicated because we allow for additional covariates
to affect the hazard.65

In an illustrative example, we consider patients that experience acute myocardial infarction
(AMI), and aim at predicting the intensity considering the two time-scales age and time since
myocardial infarction. In a first analysis we do not consider additional covariates. Here as ex-
pected we find a strong effect of the duration time-scale, with a much increased mortality just
after the AMI. This duration effect is visible because our model automatically adjusts for pos-70

sible age effects. As a consequence, we can make survival predictions for patients given their
age at diagnosis. These predictions are direct functions of the mortality components on either
time-scale. Second, we consider a structured regression approach of the same data where we
study the importance of different factors on each time-scale. Here we see that only two covari-
ates seem to be important for the duration time-scale and in addition we get a quantification of75

their importance.
The model of this paper was previously considered in Scheike (2001) where estimation was

based on smoothing for one of the time-scales. A study closely related to ours is Kauermann &
Khomski (2006) who studied the two most common time-scales: age and duration. They con-
sider a multiplicative hazard model without covariates that is estimated via splines. In contrast80

our approach is an additive hazard model including covariates and estimating without smoothing.
Alternative smoothing methodologies to multiplicative hazard estimation includes Linton et al.
(2003); Huang (1999b); Hastie & Tibshirani (1986); Lin et al. (2016). None of the known mul-
tiplicative hazard approaches including the ones mentioned above are able to estimate without
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smoothing, include time varying covariate-effects, or are able to provide simultaneous confidence 85

bands as the additive approach of this paper does provide. We do know that smoothing improves
efficiencies of cumulatively estimated quantities, see Guillen et al. (2007) for the simplest pos-
sible case. However, smoothing is also a complexity and experts applying survival analysis have
developed a practical way of smoothing by eye the underlying rough non-parametric estima-
tors of Kaplan & Meier (1958); Nelson (1972). The advantage of providing estimators without 90

smoothing is that there can be no confusion from the complicated process of picking the smooth-
ing procedure first and the amount of smoothing after that. Even if a smoothing approach is even-
tually used, then the smoothing free procedure would always count as a benchmark approach to
check whether something went wrong during the smoothing. Our backfitting approach is differ-
ent from standard backfitting in regression (Mammen et al., 1999). In the backfitting approach 95

of this paper, the non-parametric dynamics is only taking place in the two time directions, and
the end result is therefore closer to the classical approach of Nelson (1972) with a non-smooth
estimator of the dynamics in the one-dimensional time axis. What is obtained through Aalen’s
additive hazard regression model on two time axes is that the dynamics of the two time effects are
adjusted for covariates in a way that keep the one-dimensional structure of the non-parametric 100

dynamics. The expert user of survival methodology can therefore use the well developed intu-
ition from looking at Nelson-Aalen estimators and Kaplan-Meier estimators when interpreting
the empirical results based on the new methodology of this paper. Another advantage of estimat-
ing directly the cumulative functions is that we are able to obtain a simple uniform asymptotic
description of our estimators. We are thus able to construct confidence bands and intervals, that 105

are based on bootstrapping the underlying martingales.

2. AALEN’S ADDITIVE HAZARD MODEL FOR TWO TIME-SCALES

LetNi(t) (i = 1, ..., n) be n independent counting processes that do not have common jumps
and are adapted to a filtration that satisfy the usual conditions (Andersen et al., 1993). We are
interested in hazard models where the hazard can be written as a sum of components of excess 110

risk terms additively on two time-scales. In the simplest case with no additional covariates, the
intensity of the counting process is λi(t) = Yi(t){α1(t) + β1(t+ ai)}, where Yi(t) is the at-risk
indicator, α1(t) is the hazard, or excess hazard, related to the duration time-scale t and β(t+
ai) gives the hazard on the age time-scale. In the more general case we consider a regression
formulation of this model that makes it possible, for example, to compare the components on 115

each time-scale for males and females, or when additivity is not perfectly satisfied one might
allow different components for the duration time-scale depending on strata defined from ai.

We assume that the counting processes have intensities given by

λi(t) =

p∑
j=1

Xij(t)αj(t) +

q∑
k=1

Zik(t)βk(t+ ai)

= Xi(t)α(t) + Zi(t)β(t+ ai), (0 ≤ t ≤ tmax), (1) 120

where α = (α1, . . . , αp)
T and β = (β1, . . . , βq)

T are vectors of unknown one-dimensional
deterministic functions. We do not impose any structural assumption on α, β. The vectors
XT
i (t) ∈ <p and ZTi (t) ∈ <q are predictable cadlag covariates with X(t) and Z(t) having al-

most surely full rank, and ai is a real-valued random variable observed at time t = 0. No indicator
variables are introduced but are absorbed in the covariates. 125

The model is the sum of two Additive Aalen Models running on two different time-scales,
see also Scheike (2001). The two time-scales are t and a = t+ ai ∈ [a0, amax] where the latter
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time-scale is specific to each individual and a0 is some lower-limit that depends on the possible
range of the second time-scale. The left summand of (1) captures via α how the effect thatX has
on the intensity λ varies over t and the right summand captures via β how the effect that Z has130

on λ varies over a. The case that X and Z have some or all columns equal is generally allowed
but comes with identification issues discussed in the next section.

In the illness-death model, say, t might be time since diagnosis (duration) among subjects that
have entered the illness stage of the model and ai could be the age when the transition to the
illness stage occurred, such that t+ ai is the age of the subject.135

After introducing some notation we present an estimation procedure that leads to explicit
estimators of A(t) =

∫ t
0 α(s)ds = (

∫ t
0 α1(s)ds, . . . ,

∫ t
0 αp(s)ds)

T and B(a) =
∫ a
a0
β(u)du =

(
∫ a
a0
β1(u)du, . . . ,

∫ a
a0
βq(u)du)T . The cumulative functions have the advantage compared to

α(s) and β(a) that they may be used for inferential purposes since a more satisfactory simulta-
neous convergence can be established for these processes. We derive the asymptotic distribution140

for these estimators and a bootstrapping procedure quantifying the estimation uncertainty. Based
on the cumulative functionsA(t) orB(a) one may estimate the intensity α(t) or β(a) by smooth-
ing techniques.

We introduce the following notation. Let Λi(t) =
∫ t
0 λi(s)ds such thatMi(t) = Ni(t)− Λi(t)

are martingales. Let further N(t) = {N1(t), ..., Nn(t)}T be the n-dimensional counting pro-145

cess, Λ(t) = {Λ1(t), ...,Λn(t)}T is its compensator, such that M(t) = {M1(t), ...,Mn(t)}T
is an n-dimensional martingale, and define matrices X(t) = (X1(t), . . . , Xn(t))T and Z(t) =
{Z1(t), . . . , Zn(t)}T , with dimensions n× p and n× q, respectively. The individual entry
times are summarized in one vector a• = (a1, . . . , an). A superscript a > 0 denotes a shift
in the argument, i.e, for a generic function f , fa(y) = f(y + a). For a generic matrix C(t),150

with n rows Ci(t), and a n-dimensional vector v, Cv(t) is defined through shifting the rows:
Cvi (t) = Ci(t+ vi). For a generic matrix C, a minus superscript, C−, denotes the Moore-
Penrose inverse. An integral,

∫
, with no limits denotes integration over the whole range.

3. IDENTIFICATION OF THE PARAMETERS

One needs to be careful when covariates are part of both the X and the Z design, such that155

their risk contribution is changing with respect to both time-scales. This is for example the case
for the simple additive model where the hazard is given as α1(t) + β1(t+ ai), or when such
models are considered jointly for males and females. For some covariates, we might find that the
risk is well described using only one time-scale, for example, in the simple additive model when
α1(t) ≡ α1, and then we can describe the hazard of the event of interest by one function on the160

age time-scale.
In the general case, the parameters are not uniquely determined without some constraints when

they enter both the X and the Z design. Specifically, we can add and subtract a constant to all
components that enter both the X and the Z design. If a covariate enters the model only on
one time-scale its identification is solely a matter of whether the design matrix is invertible as165

for the additive hazards model, see (Martinussen & Scheike, 2006, Section 5). To estimate the
components that enter both time-scales we therefore need to choose some identifiability con-
straint. We have chosen to subtract a constant from the time-component such that it integrates
to 0 over the considered time-scale. Almost equivalent, we might also require that one of the
components integrate to some specific constant, such as the background population mortality on170

the age time-scale. It is typically easy reparametrising the functions once they are estimated, to
go between different parametrizations depending on the constraint that is imposed. In addition to



5

be able to learn about their effects, and how they change over the time-scales we need to estimate
them, even if, for example, survival predictions using the model are not influenced by how we
specifically identify the parameters of the model. 175

Without loss of generality we assume that X and Z share the first d (0 ≤ d ≤ min(p, q))
columns, i.e., for all i = 1, . . . , n,

Xil = Zil, l = 1, ..., d.

In the sequel we resolve the identification issue by adding the constraint that

Al(tmax) =

∫ tmax

0
αl(s)ds = 0, (l = 1, . . . , d). (2)

As noted above it is easy to move between different solutions defined by different constraints, by 180

simply reparametrizing a given solution.

4. LEAST SQUARES MINIMISATION IGNORING THE IDENTIFICATION OF THE
NONPARAMETRIC PARAMETERS

In this section we show how the standard least squares estimates for the additive hazards
models, (Martinussen & Scheike, 2006, Section 5), can be adapted to work for the two time- 185

scale model. This leads to a set of backfitting equations that we then subsequently solve under
identifiability constraint. In this section we ignore the identification problem keeping in mind
that the solutions below are not unique. We motivate our estimator (Â, B̂) as the limit of the
following least squares criteria.

arg min
A,B

∑
i

1

ε

∫ 
∫ t+ε

t
dNi(s)−

∑
j

∫ t+ε

t
Xij(s)dAj(s)−

∑
k

∫ t+ε

t
Zik(s)dB

ai
k (s)


2

dt, 190

for ε converging to zero, and where the integrals can be understood as Stieltjes integrals, noting
that Xi and Zi are left continuous. Minimisation runs over all possible integrators. We note that
the minimizer, if it exists, will be a right continuous step-function, since

∫ t
0 dNi(s) is a right

continuous step function. To simplify notation we will generally work in matrix notation so that
above minimisation criteria can also be written as 195

arg min
A,B

∑
i

1

ε

∫ {∫ t+ε

t
dNi(s)−

∫ t+ε

t
Xi(s)dA(s)−

∫ t+ε

t
Zi(s)dB

ai(s)

}2

dt.

Computations using calculus of variations lead to (Â, B̂) solving the following first order
conditions for all t ∈ [0, tmax], a ∈ [a0, amax]:∑

i

Xi(t)
T
{
dNi(t)−Xi(t)dÂ(t)− Zi(t)dB̂ai(t)dt

}
= 0,∑

i

Z−aii (a)T
{
dN−aii (a)− Z−aii (a)dB̂(a)−X−aii (a)dÂ−ai(a)

}
= 0. 200
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Rearranging yields∑
i

Xi(t)
TdNi(t)−

∑
i

Xi(t)
TZi(t)dB̂

ai(t) = X(t)TX(t)dÂ(t),∑
i

Z−aii (a)TdN−aii (a)−
∑
i

Z−aii (a)TX−aii (a)dÂ−ai(a) = Z−a•(a)TZ−a•(a)dB̂(a).

The last set of equations can be further rewritten as

Â(t) =

∫ t

0
X(s)−dN(s)−

∫
E1(t|u)dB̂(u) (3)205

B̂(a) =

∫ a

a0

Z−a•(u)−dN−a•(u)−
∫
E2(a|s)dÂ(s), (4)

where

E1(s, u) =
∑
i

{XT (u− ai)X(u− ai)}−1X−ai,Ti (u)Z−aii (u)I(ai ≤ u ≤ ai + s),

E2(u, s) =
∑
i

{Z−a•,T (s+ ai)Z
−a•(s+ ai)}−1ZTi (s)Xi(s)I(a0 − ai ≤ s ≤ u− ai).

This last set of equations shows how to compute a solution when the component on the other210

time-scale is known, and we therefore denote these as backfitting equations, Breiman & Fried-
man (1985); Buja et al. (1989). The functions E1 and E2 keep track of how much adjustment is
needed from the other time-scale. Specifically, E1(t|u), shows for time t on the follow-up time-
scale, how much adjustment is needed from the age time-scale at age u. The solutions provided
by the last set of equations do not guarantee that individual cumulative hazards will be increasing215

everywhere on the time-scales, but enforcing a positivity constraint will make the estimation of
the components much more complicated, and is therefore not considered further in analogy with
how the standard additive hazards model is fitted, Aalen (1989); Huffer & McKeague (1991).

Remark 1. In the case with no covariates, i.e., d = p = q = 1, with

λi(t) = Yi(t){α(t) + β(ai + t)},

with Xi(s) = Zi(s) = Yi(s) ∈ <, the adjustment functions are220

E1(s, u) =
∑
i

1∑
i′ Y
−ai
i′ (u)

Y −aii (u)I(ai ≤ u ≤ ai + s),

E2(u, s) =
∑
i

1∑
i′ Y
−ai′
i′ (s+ ai)

Yi(s)I(a0 − ai ≤ s ≤ u− ai).

5. ESTABLISHING EXISTENCE, IDENTIFICATION AND UNIQUENESS OF THE ESTIMATOR

In §3 we outlined the identification problem but ignored it when establishing the estimator in
the previous section. In this section we provide a fully identified estimator of our problem. When225

aiming to solve equations (3) and (4) the identification problem can no longer be ignored. In
order to get a better grip of the situation we will now rewrite the backfitting equations as a linear
operator equation. We can write the equations (3) and (4) in matrix notation:(

Â

B̂

)
=

( ∫ t
0 X(s)−dN(s)∫ a

a0
Z−a•(u)−dN−a•(u)

)
+

(
0 −E1

−E2 0

)
×
(
Â

B̂

)
,
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where with some miss-use of notation Elf(·) =
∫
El(·, y)f(y)dx, (l = 1, 2). Or equivalently

θ̂ = m̂+ Eθ̂, (5) 230

θ̂ =

(
Â

B̂

)
, m̂ =

( ∫ t
0 X(s)−dN(s)∫ a

a0
Z−a•(u)−dN−a•(u)

)
, E =

(
0 −E1

−E2 0

)
.

Note that m̂ is composed of the marginal Aalen estimators of the two time-scales, t and a. Ad-
ditionally, the linear operator E is compact because it is the composition of an integral operator,
which is compact, and a derivative operator, which is bounded. The operator E being compact
means that it can be arbitrarily close approximated by a finite dimensional matrix which simpli- 235

fies both the numerical and theoretical considerations. If the eigenvalues of E are bounded away
from one, then, (I − E) is invertible and we have

θ̂ = (I − E)−1m̂.

Hence existence and uniqueness of our proposed estimator can be translated to properties of the
eigenvalues of E. One can for instance easily verify that if some covariates are both in theX and
the Z design, then E will have an eigenvalue equal to one - as discussed in the following remark. 240

Remark 2. Consider the most simple case 1 = d = p = q, i.e., λi(t) = Yi(t){α(t) + β(ai +
t)}. Given a constant c ∈ <, consider the pair of linear function f1 = (f11, f12)

T with f11(s) =
cs, f12(u) = −c(u− a0). Assuming that

∑
Yi(s) and

∑
Yi(u− ai) are bounded away from

zero on the whole range s ∈ [0, tmax], u ∈ [a0, amax], one can easily verify that E2f11(u) =
c
∫
E2(u|s)ds = c(u− a0), E1f12(s) = −c

∫
E1(s|u)du = −cs. To see this, e.g., for the sec- 245

ond equation, note∫
E1(s|u)du =

∑
i

∫ ai+s

ai

1∑
i′ Yi′(u− ai)

Y −aii (u)du =

∫ s

0

∑
i Yi(t)∑
i′ Yi′(t)

dt = s.

Hence, we have

E

(
f11
f12

)
=

(
−E1f12
−E2f12

)
=

(
f11
f12

)
.

Or equivalently, 1 is an eigenvalue of E with corresponding eigenfunction f1 = (f11, f12)
T . The

identification issue of the model carries over to the estimator. For the general case, fix constants
c1, . . . , cd and define fl as a<p+q valued function having all entries but the l′th and the (d+ l)′th 250

equal zero:

fl(s, u) = {0, · · · , 0, cls, 0, · · · , 0,−cl(u− a0), 0, · · · , 0)}T , (l = 1, . . . , d).

With analogue arguments one can show that the eigenspace corresponding to eigenvalue equal
to one includes the functions in Lin(f1, . . . fd).

We now utilize constraint (2) and incorporate it into new backfitting equations:

Â(t) =

∫ t

0
X(s)−dN(s)−

∫
E1(t|u)dB̂(u), (6) 255

B̂(a) =

∫ a

a0

Z−a•(u)−dN−a•(u)−
∫
E2(a|s)dÂ(s) +

Âdq(tmax)

tmax
(a− a0), (7)
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where Âdq is the q-dimensional vector Âdq = (A1, . . . , Ad, 0, . . . , 0)T . This translates to the new
operator equation

θ̂ = m̂+ Eθ̂, E =

(
0 −E1

−E2 0

)
, (8)

where E2h(a) =
∫
E2(a|s)dh(s)− (a− a0)hdq(tmax)t−1max. The next proposition states that260

the solutions of (8) include all relevant solutions of (5) and that every solution of (8) is a so-
lution of (5).

PROPOSITION 1. (Reparameterisation of a given solution) For every solution θ̂ of (5), define

θ̂0 = (I −Π)θ̂,

where

Π

(
h1(t)
h2(a)

)
=

(
Π1h1(t)
Π2h2(a)

)
=

(
th
dp
1 (tmax)t−1max

−(a− a0)h
dq
1 (tmax)t−1max

)
.

The function (I −Π) is a projection onto the space of functions {(A,B)T : <2 7→265

<p+q| Al(tmax) = 0, l = 1 . . . , d}, i.e, fulfilling the identification constraint (2). Hence, θ̂0 is a
solution of (8) and

θ̂0 + Lin(f1, . . . fd), (9)

are further solutions of (5). Conversely, for every solution θ̂0 of (8), all functions of the form (9)
are solutions of (5).270

The proof can be found in the Supplementary Material.
With Proposition 1 at hand it is justified to define our estimator as the solution of (8). We will

now discuss existence and uniqueness of the solution of (8).
Note thatE is known and hence one can calculate a numerical approximation of its eigenvalues

by working on a grid. Consider the sub-space275

K = {h = (h1, . . . , hd, 0, . . . , 0)| hl : < → <, x 7→ clx, cl ∈ <, l = 1, . . . , d}.

It holds that E2 = E2(I −Π2), where Π2, as defined in Proposition 1 is a projection into K.
We have K ⊆ ker(I − E2). We can check whether K equals ker(I − E2). This can be done by
calculating the dimension of the eigenspace of E2 corresponding to an eigenvalue equal to one.
The dimension will be at least d. If it is exactly d, then K = ker(I − E2).280

The next proposition states that if ker(I − E2) = K, and ker(I − E) = Lin(f1, . . . , fd),
then both I − E2 and I − E are bijective.

PROPOSITION 2. Assume that E2 has eigenvalue 1 with multiplicity d. Then, (I − E2) will
be bijective. If furthermore E has Eigenvalue 1 with multiplicity d, then (I − E) is bijective and
hence invertible. In particular a solution of equations (8) exists and it is unique.285

The proof can be found in the Supplementary Material.
We thus have demonstrated that a way to find all solutions of the backfittingequation (5) is

to solve equation (8) first. Under the assumptions of Proposition 2, that solution exists and is
unique, hence allowing for straightforward numerical calculations as outlined in the Supple-
mentary Material. Other specific solutions of (5) under specific constraints can be computed290

following Proposition 1.
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6. ASYMPTOTICS

We have

θ = m+ Eθ, (10)

where m arises from m̂ by replacing N by Λ. This is seen by direct calculations when dN is re- 295

placed by dM + dΛ with its intensity dΛi = Xi(t)α(t)dt+ Zi(t+ ai)β(ai + t)da. This equa-
tion holds when all inverses exist everywhere, which is required in the asymptotic conditions.
Importantly, E is the observable operator from the previous sections and not some asymptotic
limit.

We conclude that the least square solution (6) and (7) is a plug-in estimator of (10). The 300

estimation error is given as

θ̂ − θ = m̂−m+ E(θ̂ − θ). (11)

As in the last section, If E has eigenvalues all bounded away from one, then

θ̂ − θ = (I − E)−1(m̂−m).

So the asymptotic behaviour of θ̂ − θ can be deduced from the asymptotic behaviour of (I −
E)−1 and m̂−m, with the former being observed and the latter being the compound estimation 305

error of two additive Aalen models on different time-scales.

THEOREM 1. Under assumptions (A)–(E), given in the Supplementary Material, the estimator
θ̂ exists. Furthermore the estimator θ̂ is n1/2 consistent:

n−1/2(θ̂ − θ)→ (I − Ẽ)−1U,

in Skorohod space Dp+q[0, amax]. Here, (θ̂ − θ) is treated as one stochastic process defined on
[0, amax] by setting for j = 1, . . . , p and ν ∈ [tmax, amax], (θ̂ − θ)j(ν) = (θ̂ − θ)j(tmax). And 310

similarly, for j = p+ 1, . . . , p+ q and ν ∈ [0, a0], (θ̂ − θ)j(ν) = 0. The process U is a p+ q
dimensional mean-zero Gaussian process with covariation matrix Σ(ν1, ν2) described in the
Supplementary Material, and Ẽ is the limit of E.

The proof can be found in the Supplementary Material.

7. CONFIDENCE BANDS 315

While we could use the central limit theorem of the previous section to construct confidence
bands, it is often easier computationally and often also leads to better small sample performance
to use some bootstrapping procedure (Lin et al., 1994; Bluhmki et al., 2018; Beyersmann et al.,
2013). Following these authors, we propose a wild bootstrap approach based on the relationship

θ̂ − θ = (I − E)−1(m̂−m) = (I − E)−1
( ∫ t

0 X(s)−dM(s)∫ a
a0
Z−a•(u)−dM−a•(u)

)
= (I − E)−1

(
M1

M2

)
. 320

Since (I − E)−1 is known, it is enough to only approximate M = (M1,M2)
T . We propose

two possible wild bootstrap approximations:

M̂(1) =

( ∫ t
0 X(s)−dÑ(s)∫ a

a0
Z−a•(u)−dÑ−a•(u)

)
, Ñi(s) = GiNi(s),
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or alternatively

M̂(2) =

( ∫ t
0 X(s)−dM̃(s)∫ a

a0
Z−a•(u)−dM̃−a•(u)

)
,∫ t

0
M̃i(s)ds = Gi

[∫ t

0
Ni(s)ds−

{∫ t

0
(Xi(s)dÂ(s) +

∫ t

0
Zi(s)dB̂(s+ ai)

}]
,325

whereGi is a mean zero random variable with unit variance. The random variableGi is generated
such that for fixed i, it is independent of all other variables. It is straight forward to confirm that
for any of the two choices, M̂(r) (r = 1, 2), is a mean zero process that has the same covariance
asM; the covariance ofM is given in the Supplementary Material. Hence, we directly derive
the following proposition.330

PROPOSITION 3. Under assumptions (A)–(E), given in the Supplementary Material, the boot-
strapped estimation error is uniformly consistent, i.e., for r = 1, 2

n−1/2
{

(I − E)−1M̂(r)
}
→ (I − Ẽ)−1U,

in Skorohod space Dp+q[0, T ], where U is is described in Theorem 1.

The proof can be found in the Supplementary Material.
One useful consequence of this is that we can estimate standard errors of our estimator θ̂335

based on the approximation from the bootstrap. We denote these estimators as σ̂r(t) for the two
possibilities r = 1, 2.

COROLLARY 1. Under assumptions (A)–(E), the bootstrapped errors lead to confidence
bands CB(r) for θ(ν) over ν ∈ [ν1, ν2] providing an asymptotic coverage probability of 1− α,
where CB(r)(ν) = θ(ν)±c1−ασ̂r(ν), and340

c1−α = (1− α) quantile of L

 sup
[ν1,ν2]

n−1/2

∣∣∣(I − E)−1M̂(r)
∣∣∣

σ̂r
| X,Z,N


We explore the performance of the estimator of the standard error and the uniform bands in

the next section.

8. SIMULATIONS

We generated data from the simple two-time-scale model with age and duration that resemble
the data we consider in a worked example in the next section. We assume that the hazard for345

those under risk is given as β(t+ ai) + α(t), where β(a) ≡ 0.067 and the entry ages were drawn
uniformly from [0, 25] but with a point-mass at 10 % in 0 (to avoid difficulties with left truncation
in the estimation). The α(t) component was piecewise constant with rate 0.32 in the time-interval
[0, 0.25], then 0.48 in (0.25, 0.5] and then finally to satisfy our constraint −0.044 in (0.5, 5], so
that

∫ 5
0 α(s)ds = 0. All subjects were censored after 5 years of follow up. In all simulations350

we used a discrete approximation based on a time-grid of either 100 points in both the age
direction [0, 30] and on the duration time-scale [0, 5]. We considered sample sizes 100, 200 and
400 to estimate the time component A(t) and age component B(a). In Table 1, based on 1000
realizations, we show a) the bias, b) the point-wise mean standard error. Additionally based on
100 bootstrap samples in each run, using GidNi, we report c) the bootstrap estimate of mean355

standard error and d) coverage of the bootstrapped confidence interval.
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n age bias mean se sd cov time bias mean se sd cov

100 6.7 -0.001 0.224 0.231 0.912 1.0 0.018 0.044 0.045 0.954
100 13.8 0.009 0.297 0.298 0.935 2.0 0.015 0.039 0.04 0.946
100 20.9 0.018 0.351 0.357 0.943 3.0 0.009 0.032 0.034 0.951
100 27.9 0.027 0.391 0.402 0.938 4.0 0.005 0.024 0.024 0.966
100 35.0 0.078 0.460 0.464 0.932 5.0 0.000 0.016 0.017 0.874

200 6.7 0.006 0.158 0.155 0.94 1.0 0.009 0.031 0.031 0.951
200 13.8 0.003 0.207 0.206 0.942 2.0 0.007 0.027 0.027 0.960
200 20.9 0.001 0.243 0.237 0.948 3.0 0.005 0.022 0.022 0.966
200 27.9 0.004 0.271 0.262 0.945 4.0 0.002 0.017 0.017 0.972
200 35.0 0.006 0.328 0.329 0.933 5.0 0.000 0.011 0.012 0.933

400 6.7 −0.004 0.114 0.118 0.948 1.0 0.006 0.022 0.022 0.951
400 13.8 −0.006 0.148 0.153 0.946 2.0 0.005 0.019 0.019 0.957
400 20.9 0.002 0.173 0.18 0.937 3.0 0.003 0.015 0.015 0.960
400 27.9 0.010 0.192 0.196 0.943 4.0 0.002 0.012 0.012 0.970
400 35.0 0.013 0.235 0.245 0.934 5.0 0.000 0.008 0.008 0.950

Table 1. Estimation performance and uncertainty estimated from bootstrap for sample sizes n =
100, 200, 400 for the age component B(a) and time component A(t) for selected ages and time
points. Results are based on 1000 realisations and a bootstrap with 100 repetitions. We report
bias of the estimates (bias), mean of estimated standard errors (mean se), standard deviation of
bootstrap estimates (sd) and 95 % pointwise coverage (cov).

We note that the backfitting algorithm is almost unbiased across all sample size and improves
as the sample size increases. This is despite the fact that the component in the time-direction is
increasing very rapidly, and thus would be hard to estimate based on smoothing based techniques.

We note that the standard error is well estimated by the bootstrapped standard deviation across 360

all sample sizes and for both components. In addition the pointwise coverage is close to the
nominal 95 % level for the larger sample sizes. But even for n = 100 the coverage is reasonable
for most time-points for the two components.

Finally, we also considered the performance of the confidence bands based on our bootstrap
approach. 365

n coverage (age) coverage (time)
100 0.797 0.792
200 0.912 0.915
400 0.952 0.939

Table 2. Coverage of confidence bands estimated from bootstrap for sample sizes n =
100, 200, 400 for the age and time component. Based on 1000 realisations and a boostrap with
100 repetitions.

When n gets larger these bands are quite close to the nominal 95 % level, but for n = 100 the
asymptotics have not quite set in to make the entire band work well.
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9. APPLICATIONS

9.1. The TRACE study
The TRACE study group (see e.g. Jensen et al. (1997) ) has collected information on more370

than 4000 consecutive patients with acute myocardial infarction (AMI) with the aim of studying
the prognostic importance of various risk factors on mortality. We here consider a subset of 1878
of these patients that are available in the timereg R package. At the age at entry, i.e., age of
diagnosis, the patients had various risk factors recorded. We will first consider the simple model
with the only effects of the two-time-scales age and duration. Afterwards we will incorporate375

additional risk factors. It is expected that the duration time-scale has a strong initial effect on
dying that then disappears when patients survive the first period right after their AMI. We will
see that the duration effect is primarily due to two risk factors, and we will quantify their effects
on the duration time-scale.

9.2. The simple model without additional covariates380

We estimate the two-time-scale model λ(t) = Yi(t){α(t) + β(t+ ai)} under the identifiabil-
ity condition

∫ 5
0 α(s)ds = 0. We use only the subset of patients that were more than 40 years of

age, and only consider the first five years of follow-up time after the diagnosis.
For comparison, we also estimate the mortality on the two time-scales separately, i.e., we also

consider the models λ(t) = Yi(t)α(t) and λ(t) = Yi(t)β(t+ ai). In the sequel we call these385

two models marginals, and the estimates are given in Figure 1. Panel (a) shows the cumulative
function on the age time-scale, i.e, B(a), as the marginal estimate (full line) and as component
in the two-time-scale model, i.e., adjusted for duration effects (broken line). Panel (b) shows
the mortality on the duration time-scale, i.e, A(t), as the marginal estimate (full line) and as
component in the two-time-scale model, i.e., adjusted for age effects (broken line). In addition390

we show 95% confidence bands based on our bootstrap (regions), and the pointwise confidence
intervals (dotted line).
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Fig. 1. Cumulative baseline on the two time-scales es-
timated marginally (full line) and in the two-time-scale
model (broken line). Confidence bands (regions) and point-

wise confidence intervals (dotted lines).
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Taking out the duration effect slightly alters the estimates on the age time-scale. In contrast,
on the duration time-scale, the time effect is strongly affected by adjustment of the age effect
estimates, and here the two-time-scale model more clearly demonstrates what is going on on the 395

duration time-scale. Before we come to this, we stress that the interpretation of the cumulative
functions on the two-time-scales is not straight forward, due to the constraint that needs to be
imposed to identify a specific solution. While straight lines can be added and subtracted without
altering the fit, differences in the slope, i.e., second derivatives, do not depend on a specific
solution. Back to our results, the duration effect has a very steep slope initially and then after 400

surviving the first 220 days we see a protective effect (dotted vertical line). After those 220
days there is a constant, i.e., not much changing, negative slope, hinting that the duration effect
vanishes after 220 days.

The two time-scale components that jointly make up the hazard for an individual, can also be
used for prediction purpose. Within the additive structure, the duration effect can be interpreted 405

as giving relative survival due to the duration time-scale. In addition we conclude that there is
important variation along the duration time-scale. This is formally tested by using the confidence
bands.

9.3. Regression modelling of effects
We now illustrate a more detailed regression analysis where we study the importance of the 410

important risk-predictors, VF (ventricular fibrilation, yes/no), CHF (clinical heart pump failure,
yes/no) and diabetes (yes/no).

We start by considering the following intensity model

λi(t) = α1(t) + α2(t)VFi + α3(t)CHFi + α4(t)diabetesi
+β1(t+ ai) + β3(t+ ai)VFi + β4(t+ ai)CHFi + β4(t+ ai)diabetesi

where ai is the age of the ith subject at the time of entry. To identify the model we assume that∫ 5
0 αj(s)ds = 0 for all j. 415

We estimated the model using our backfitting equations and estimated the uncertainty using
our bootstrap approach.

First considering the duration effects that are identified up to a slope within the first 5 years
after the AMI, we note that VF and CHF are important risk predictors on this time-scale. The
presence of CHF or VF will increase the mortality quite notably right after the AMI. Taking out 420

effects of VF and CHF there is only a rather small effect left for the intercept (subjects without
diabetes, CHF and VF), with the cumulative being at most 0.04 within the first time-period. In
addition we note that diabetes does not seem to interact with the duration time-scale.

On the age time-scale VF, CHF and diabetes are not significantly different from a straight
line. Hence, in terms of describing the mortality all effects of VF, CHF and diabetes seems rather 425

consistent with constant additive effects, and the mortality might therefore also be described with
intercept and diabetes to represent the age time-scale and effects of CHF and VF together with
intercept on the duration time-scale, that is

λi(t) = β1(t+ ai) + β2(t+ ai)diabetesi + α1(t) + α2(t)VFi + α3(t)CHFi.

In this model, β2, α2 and α3 can be fitted without identifiability constraints which makes the
interpretation of the effects simpler. 430

Indeed the structured model, shows the effects of VF and CHF are strongly time-varying on
duration time-scale, and increases the mortality significantly right after the AMI. There is only a
rather small duration effect left for the intercept when the VF and CHF duration effects are taken
out. It is also interesting that VF leads to a highly increased hazard only in the time right after



14

40 50 60 70 80 90

0
5

10
15

Age: Intercept

40 50 60 70 80 90

-5
0

5
10

15

C
um

ul
at

iv
e 

ha
za

rd

Age: Diabetes

40 50 60 70 80 90

0
5

10
15

C
um

ul
at

iv
e 

ha
za

rd

Age: chf

40 50 60 70 80 90

0
5

10
15

20
25

30

C
um

ul
at

iv
e 

ha
za

rd

Age: vf

0 1 2 3 4 5

-0
.0
2

0.
00

0.
02

0.
04

0.
06

Duration: Intercept

0 1 2 3 4 5

-0
.2

-0
.1

0.
0

0.
1

0.
2

C
um

ul
at

iv
e 

ha
za

rd

Duration: Diabetes

0 1 2 3 4 5

-0
.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

C
um

ul
at

iv
e 

ha
za

rd

Duration: chf

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

C
um

ul
at

iv
e 

ha
za

rd

Duration: vf

Fig. 2. Estimates (broken line). Confidence bands (regions)
and pointwise confidence intervals (dotted lines).
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AMI, note that this is in contrast to the overall effect on the duration time-scale considered in the435

previous section. Further we note that CHF has an effect on the duration time-scale that is less
local than VF, but still with a strongly increased risk right the AMI.

10. DISCUSSION

By using the additive structure we have demonstrated that one can estimate and separate the
effects of two time-scales directly via a backfitting algorithm that does not involve smoothing.440

Our model includes a regression setting with multiple covariates using both time-scales simulta-
neously. In the example of the TRACE data-set, we find that VF and CHF are primarily acting
through the duration time-scale, while diabetes acts via the age-time scale.
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An advantage of working only on the cumulative scale is that we achieve a uniform asymp-
totic description leading to a simple bootstrap procedure for getting estimates of the uncertainty 445

and for constructing for example confidence intervals. These cumulative hazards may form the
basis for smoothing based estimates when the hazard function itself is of interest, but often the
cumulative hazards are the quantities of key interest for example when interest is on survival
predictions.

Our model has two key assumptions. (1) Covariates have a linear effect on survival and (2)
additivity between the two time-scales and between the different covariate effects. With regard to
the first point, the assumption on linearity did not have an impact in our particular application be-
cause we only studied the effect of binary variables on survival. If continuous variables are to be
included that do not act linearly, then one can extend our model easily via splines, e.g. p-splines
(Eilers & Marx, 1996), while obeying the framework set in this paper. Alternatively, a more com-
plicated nonparametric approach could be employed by replacing αj(t)xj(t) by αj(t, xj(t)).
This latter approach changes the problem from a one-dimensional to a two-dimensional prob-
lem and would make smoothing necessary. We now discuss the second point, i.e., the additivity
assumption. Assuming some structure is necessary so that the estimation performance does not
deteriorate exponentially with the number of covariates. Additionally, if not prediction but in-
terpretation is the goal, i.e., understanding how different time-scales and covariates running on
these different time-scales affect survival, then a model that separates the different effects must
be employed. An alternative to the additive structure considered in this paper is the multiplica-
tive, i.e., proportional hazard, structure, employed by Iacobelli & Carstensen (2013). A useful
extension in both the additive and the multiplicative structure is the manual inclusion of interac-
tion effects between the time-scales. To allow for interactions without changing the framework
of our paper one can, for example, consider to divide the age-interval in two disjoint subsets: I1
and I2:

β(t+ ai) + I(ai ∈ I1)α1(t) + I(ai ∈ I2)α2(t).

Another variation could bring our new methodology closer to the type of approach of Iacobelli
& Carstensen (2013), for example,

β(t+ ai) + α1(t) exp{β(ai + t)},

providing a new multiplicative time-age effect. This latter model has been considered in Lee 450

et al. (2017) and is beyond the implemented framework of this paper. It would be interesting to
see how an extension of our model would compare to the solution provided by Lee et al. (2017).
It would also be interesting for the future to extend our new model to incorporate both our new
additive modelling and the multiplicative hazard approaches of Iacobelli & Carstensen (2013)
and Lee et al. (2017) in one single model. 455

R code for fitting the simple model is available at
https://github.com/MHiabu/Two_Timescale_Aalen.
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