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Abstract 

A novel decision bias, called the evaluation bias (EB), was reported by White et al. (2014). In a 

sequence of two stimuli of opposite affective valence, evaluating the first stimulus leads to a 

more contrasting evaluation for the second one, compared to when the first stimulus is just 

observed. The EB is consistent with a long tradition of constructive influences or decision biases 

in questionnaire judgments. The prediction of the EB was based on the application of a quantum 

probability model, taking advantage of the unique role of evaluations in quantum probability. In 

the present work, we develop the quantum model so as to examine whether similar predictions 

are possible in the context of real questionnaires, where precise control over the relative valence 

of stimulus pairs is impossible. It is shown that an EB prediction can be extracted and we test 

this prediction in an organizational opinion survey, administered to a range of organizations 

across four experiments (total N = 868 and 84 organizations) and with two different languages. 

In all experiments, there was clear evidence for an EB. We examine the result with the quantum 

model and Hogarth and Einhorn’s (1992) belief-adjustment model. Both models can broadly 

capture the empirical findings and so offer promise for providing a formal understanding of 

constructive influences.   

 

Keywords:  cognitive biases; constructive influences; quantum theories; decision making 
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The cost of asking: how evaluations bias subsequent judgments 

 

1. Introduction  

1.1 General overview  

There have been several evocative results that show how a judgment or evaluation can affect 

subsequent cognitive processing (e.g., later judgments, opinions, or preferences). For example, in 

the context of a Gallup opinion poll, Moore et al. (2002) famously reported the following result. 

Consider the two questions ‘Is Clinton honest?’ and ‘Is Gore honest?’. Perhaps unsurprisingly, 

for the first question, the rate of affirmative responses was 50% and for the second one 68%. 

When for other participants the same questions were presented in the reverse order, the 

affirmative responses dropped to 60% for Gore and increased to 57% for Clinton. The size of 

these differences certainly appears shocking, given the importance opinion polls can have in 

public life. Order effects can also appear when assessing evidence relating to a hypothesis, 

including, perhaps worryingly, in diagnosis tasks with participants as medical trainees (Bergus et 

al., 1998) and in a jury decision making task (McKenzie, Lee, & Chen, 2002; Pennington & 

Hastie, 1986; Trueblood & Busemeyer, 2011). As another example, making a choice can 

influence preference for the choice. For example, Sharot, Velasquez, and Dolan (2010; Ariely & 

Norton, 2008; Brehm, 1956) showed that a blind choice between two options influenced post-

choice preference for the options, but not when the choice was dictated by a computer. In other 

work, there has been evidence that in tasks based on cues or factors, decisions alter the way the 

cues or factors are perceived, so as to make them more consistent with the decisions. For 

example, Glöckner et al. (2009) demonstrated what they called coherence shifts. These are 

changes in subjective cue validities related to a decision, in a direction indicating greater 
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consistency with the decision. Likewise, in a complex hypothetical legal case, Holyoak and 

Simon (1999) showed that the evaluation of arguments changed to become more consistent with 

the produced verdict and Simon et al. (2001) generalized this finding under a variety of 

conditions. But it is not only choices or judgments which can affect subsequent behavior. For 

example, in affect labelling, expressing an emotion can attenuate this emotion in subsequent 

statements (Torre & Lieberman, 2018).  

 Such results can be partly summarized under the labels of question order effects and 

constructive influences of judgments. They are interesting because they challenge baseline 

intuitions for objectivity in human judgments. We might think that questionnaire responding 

should reveal underlying views or attitudes, regardless of preceding questions, and that 

assessment of evidence should be independent of the order in which that evidence is considered. 

These are reasonable intuitions in general, but especially so for judgments involving experts, as 

in the study of Bergus et al. (1998).  

The present focus is a finding in this category. Across several experiments, White et al. 

(2014, 2015) considered pairs of stimuli (e.g. advertisements for smartphones or faces of 

celebrities) of opposite valence (positive, P, or negative, N; trustworthy or untrustworthy). The 

second stimulus would always be rated and White et al. (2014, 2015) examined this rating, 

depending on whether the first stimulus was rated as well (double rating condition) or not (single 

rating condition). The double rating condition consistently led to an increase in the rating 

intensity for the second stimulus compared with the single rating condition. That is, consider an 

affective evaluation task in which stimulus pairs could either be positive then negative (PN) or 

negative then positive (NP). Then, in the PN condition, the rating of the second stimulus was 

more negative when the first stimulus was rated as well compared to when it was not rated. 
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Similarly, in the NP condition an intermediate rating of the first stimulus led to a more positive 

evaluation for the second stimulus. We can call this finding the Evaluation Bias (EB). We call 

this effect a ‘bias’ because evaluating the first stimulus biases the judgment for the second 

stimulus. The default expectation is that the judgment for the second stimulus should not depend 

on whether the first stimulus is evaluated or not.  

The EB is a surprising finding, since just the difference between evaluation vs. 

observation for the first stimulus can robustly lead to a more intense impression for the second 

stimulus for the same participant responding twice to exactly the same stimulus. The apparent 

importance of the intermediate evaluation contrasts with research showing that just observing a 

stimulus should be sufficient for the automatic formation of an impression of the stimulus’s 

affective valence, independent of other cognitive processes, without fully processing the features 

of the stimulus, and regardless of the familiarity of the stimulus (e.g., Bargh, Chaiken, Govender, 

& Pratto, 1992; Damasio, 1994; Duckworth, et al., 2002; Fazio, et al., 1986; Greenwald, et al., 

1989; LeDoux, 1996; Zajonc, 1980). Clearly, the intermediate evaluation changes something, 

even though affective information from the first stimulus would be available just from observing 

the first stimulus.  

The EB has been replicated a number of times (White et al., 2014, 2015). There exists 

familiar terminology to characterize questionnaire decision biases. Recency vs. primacy refers to 

whether the first or the last question has more influence. Assimilation vs. contrast describes 

whether the relative influence of two questions is one of convergence or divergence. In general, 

we prefer to not employ such terms for the EB, because their use depends on which condition 

(the single or the double rating one) is considered the baseline. For convenience, below we 

sometimes employ such terms when the context makes one condition the natural baseline. 
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Instead, the EB is essentially an effect of evaluation. The theoretical challenge is to explore how 

existing theory might offer guidance regarding possible explanations for the EB. We consider 

several potentially relevant ideas.  

First, a drive to reduce cognitive dissonance could lead to constructive influences and 

coherence shifts in judgment (Festinger, 1957; Glöckner et al., 2009; Sharot et al., 2010). For 

example, when making a choice, cognitive dissonance could arise from tension or regret from 

having to abandon some of the original available alternatives. The possibility of constructive 

influences is not limited to a cause from cognitive dissonance, they could arise in alternative 

ways.  

Second, for stimuli evaluated in a fixed order, evaluating an earlier stimulus could impact 

on the processing of subsequent ones, because of recognition or fluency processes. For example, 

evaluating a stimulus could lead to increased availability of information about the stimulus 

(Goldstein & Gigerenzer, 2002; Lewandowsky & Smith, 1983), which could in turn affect the 

familiarity and fluency of subsequent ones (Allport & Lepkin, 1945; Schwarz et al., 2007, for an 

overview). In turn, increased fluency can influence evaluation, but note that the direction of this 

influence has been inconsistent across studies (Sanna et al., 2002). 

Third, the inclusion/exclusion model (IEM; Schwarz & Bless, 1992; Bless & Schwarz, 

2010) seeks to explain context effects in feature-based evaluative judgements. According to the 

model, the way previous information is used at the time of a judgement will lead to one of two 

effects. One effect is assimilation, when the information is used to form a representation of the 

target. The other effect is contrast, when the information is used to form a representation of a 

standard against which the target is compared. 
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Fourth, classical probability theory (CT) has provided an influential framework for 

decision making (Oaksford & Chater, 2009; Tenenbaum et al., 2011). Regarding question order 

effects, if we denote as A, B the events corresponding to yes to questions A, B, then the 

probability of A and then B is given by 𝑃𝑟𝑜𝑏(𝐴)𝑃𝑟𝑜𝑏(𝐵|𝐴). But, 𝑃𝑟𝑜𝑏(𝐴)𝑃𝑟𝑜𝑏(𝐵|𝐴) =

𝑃𝑟𝑜𝑏(𝐴&𝐵) = 𝑃𝑟𝑜𝑏(𝐵)𝑃𝑟𝑜𝑏(𝐴|𝐵), because conjunction in CT is commutative. That is, 

baseline CT cannot inform order effects  However, one could extract question order effects from 

CT through appropriate conditionalization, so that the probability of A and then B is written as 

𝑃𝑟𝑜𝑏(𝐴&𝐵|𝑜𝑟𝑑𝑒𝑟 1), which can be different from 𝑃𝑟𝑜𝑏(𝐴&𝐵|𝑜𝑟𝑑𝑒𝑟 2). An analogous 

approach could be adopted for constructive influences. As an aside, note that many of the so-

called probabilistic fallacies can be made consistent with baseline CT, in ways analogous to the 

above.  

Finally, an influential idea concerning question order effects is that earlier judgments 

reveal thoughts or perspectives which can affect later ones (Asch, 1946; Schwarz, 2007; Wang & 

Busemeyer, 2013). Partly based on this idea, Hogarth and Einhorn (1992; McKenzie et al., 2002) 

developed their belief-adjustment model, according to which a belief state is adjusted based on 

an initial anchor and the subsequent pieces of information which are encountered. The model 

distinguishes between whether there is an end of sequence (EoS) or step by step (SbS) 

consideration of the evidence. In an EoS process, a single judgment is made after all evidence 

has been presented; the belief state changes only once, after this single judgment. In a SbS 

process, a judgment is made after each piece of evidence; the belief state changes after each 

judgment. Therefore, Hogarth and Einhorn’s (1992) incorporates an assumption of constructive 

influences, that is, changes to the belief state as a result of judgments.  
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The diversity of this literature reveals a theoretically rich landscape, but also a challenge 

in terms of a degree of interchangeability between various ideas. For example, question order 

effects could reflect contextuality, activated thoughts (cf. Asch, 1946), constructive influences 

(cf. Sharot et al., 2010) or any combination of these effects. Within existing empirical results 

discriminatory conclusions can be hard. One advantage of the EB is that the simplicity of the 

paradigm makes it easier to exclude certain viewpoints. This, in turn, enables a focus on the 

essential idea that can provide a satisfactory explanation.  

It is hard to explain the EB in terms of cognitive dissonance, because there is no overt 

link between the two stimuli (participants are not told that the stimuli are organized in pairs and 

each stimulus is presented independently of the others). Likewise, because the stimuli are 

presented as independent, it is hard to see how the EB could arise from coherence shifts 

(Glöckner et al., 2009), since these assume a set of judgments contributing together towards a 

hypothesis. However, the EB could reflect a constructive influence arising from the judgment of 

the first stimulus. That is, the first stimulus could just drive a corresponding change in the 

opinion; while this idea appears appealing, it is clearly incomplete without further elaboration.  

Availability or fluency accounts are also challenged by the EB. There has been some 

debate on how fluency impacts on later judgments (Sanna et al., 2002). Nevertheless, in the EB 

paradigm, a reasonable approach would be as follows. Consider the PN condition. The 

evaluation of the second stimulus might depend on ease of processing of the features of this 

stimulus. Which features benefit from ease of processing would be affected by which features 

were primed when processing the first stimulus, since evaluation of the first stimulus would 

increase the memory strength and availability of its features. Putting these assumptions together, 

if the first stimulus is evaluated, there will be more P features available when considering the 
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second stimulus, compared to when the first stimulus is not evaluated. That is, in the PN 

condition, evaluating the first stimulus will increase fluency for any positive features the second, 

N stimulus has, thereby making the second stimulus appear more positive. This line of reasoning 

predicts an effect opposite to the EB. However, it has to be said that without a more formal 

approach to fluency the above line of reasoning is not watertight.  

The IEM can allow a prediction about the difference between the single and double rating 

condition if the participant’s cognitive representation of the first stimulus is different depending 

on whether or not it was rated. According to the IEM (Schwarz & Bless, 1992; see also the 

set/reset model; Martin, 1986; Martin & Shirk, 2007), the perceived accessibility, 

representativeness and relevance of the first stimulus will determine whether it is either included 

in the cognitive representation of the target leading to assimilation or used to construct a 

representation of the standard against which the target is compared leading to contrast. Primed 

concepts are included in a representation of a target, which leads to assimilation effects, when the 

participant is not aware of their influence. When the participant is aware of the potential 

influence of a prime, then the primed concepts are excluded from the representation of the target, 

leading to contrast effects. For example, Mussweiler and Neumann (2000) observed contrast 

effects for externally provided primes and assimilation effects for internally generated primes, 

because, they argued, the external primes were more obviously a potential source of 

contamination, with respect to the subsequent judgement about an ambiguously described 

person. The key point in these and similar studies, as Clore and Colcombe (2003) noted, is that it 

is the participant’s attributions regarding the source of information that determines whether a 

contrast vs. assimilation effect is observed. 
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There are obvious differences between the methodology used in White et al.’s (2014, 

2015) experiments and those used in both subliminal and blatant priming studies. Typically, in 

the priming experiments, prime and target are related, the target is often ambiguous and the 

priming task is different from the subsequent judgement task for the target stimulus. In White et 

al.’s (2014) experiments, the first and second stimuli were unrelated, they were unambiguously 

positive or negative, and the judgement task was identical for all stimuli. With a degree of 

stretching the original IEM ideas, one could propose that the first stimulus impacts on the second 

one in a way that makes the participant less aware of this influence in the single rating condition; 

but in the double rating condition, rating the first stimulus makes the participant more aware of 

the influence, producing increased contrast. So, the model of White et al. (2014) could be seen as 

a formalization of IEM ideas, as applied specifically for the EB paradigm.  

Fourth, considering a baseline CP account for the EB, even though we can write 

𝑃𝑟𝑜𝑏(𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) ≠

𝑃𝑟𝑜𝑏(𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 |𝑓𝑖𝑟𝑠𝑡 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑛𝑜𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑), this 

conditionalization does not allow us to distinguish between the EB (the first probability less than 

the second) and an effect opposite to the EB (the first probability higher than the second). The 

problem with applying CT to the EB and to constructive judgments generally, is that in baseline 

CT there is no native mechanism for incorporating the role of judgments. In CT, probabilities 

reflect epistemic uncertainty, so a judgment or evaluation is assumed to reveal what is already 

true. To accommodate a constructive influence one would need to postulate some additional 

mechanism on top of the baseline CT process (Pothos & Busemeyer, 2013). It is important to 

note that cognitive modelers employing CT have been pursuing elaborations better suited to the 

study of cognition, e.g., incorporating linguistic and pragmatic influences (Goodman et al., 2015) 
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or bounded rationality considerations (Lieder & Griffiths, 2019). It is possible that these more 

sophisticated approaches would be able to account for order effects and constructive influences 

in more natural ways. 

Finally, the EB appears consistent with the idea that evaluating the first stimulus creates a 

context that is different from when just observing it (Asch, 1946; Schwarz, 2007), but any 

attempt along such lines will need to be reconciled with evidence regarding automatic generation 

of affective information (e.g., Damasio, 1994; Zajonc, 1980). That is, any explanation based on 

contextuality will need to consider how the process of making an evaluation differs from 

observing it. Perhaps more promising is Hogarth and Einhorn’s (1992) belief-adjustment model, 

since this is a formal model which incorporates a constructive influence. A key objective of the 

model was to provide a systematic attempt to organize question order effects in a single 

framework. However, the EB cannot obviously be an order effect since it concerns a pair of 

stimuli presented in the same order. The distinction in Hogarth and Einhorn’s (1992) model 

between SbS and EoS processes fits well with the EB experimental paradigm. The SbS process 

can be thought of as equivalent to the double rating condition, because in the latter there is a 

judgment after each stimulus. Analogously, the EoS process is equivalent to the single rating 

condition, because in the latter two stimuli are presented, but a judgment is made only at the end. 

A potential complication with these analogies is that Hogarth and Einhorn (1992) considered 

pieces of evidence all bearing on a single final hypothesis. By contrast, in the EB paradigm 

stimuli were presented independently of each other – participants were never given any 

indication that the judgment for one stimulus should impact on that for another. We will ignore 

this complication and simply assume that Hogarth and Einhorn’s (1992) model is applicable to 

the EB paradigm.  
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Hogarth and Einhorn’s (1992) review of the relevant literature creates a confusing picture 

regarding the EB. They noted that EoS can induce primacy, and SbS can induce recency. This 

statement appears consistent with the EB. The double rating condition is analogous to SbS and 

the EB is analogous to a recency effect, if we consider the single rating condition the baseline. 

However, they also noted that recency is associated with more complex tasks and the paradigm 

employed for the EB is extremely simple by the standards in Hogarth and Einhorn’s (1992) 

review.  

The application of Hogarth and Einhorn’s (1992) model to the EB paradigm can be 

approached in different ways. White et al. (2014) carried out one analysis and showed that, under 

fairly benign assumptions, the model cannot predict the difference between the single and double 

rating conditions, corresponding to the EB. This was because only two questions are involved; 

Hogarth and Einhorn’s (1992) model was designed to deal with longer sequences of pieces of 

information. In the present work, we adopted an alternative approach with Hogarth and 

Einhorn’s (1992) model, which allows a prediction of constructive influences in the EB 

paradigm (Appendix 1). We believe this is the first formal application of the model to 

constructive influences. As we shall see, the success of the model provides an encouraging 

message regarding the enduring relevance of this classic formalism.  

In summary, the EB challenges the applicability of several of the predominant 

approaches. We have seen how the emergence of the EB as a result of a prior evaluation vs. 

observation perhaps suggests a constructive influence or contextual effect, but clearly there is a 

need to further formalize such ideas to unambiguously predict the EB in the observed direction. 

White et al. (2014) approached this challenge in a technical way, by adopting a modeling 

framework which requires constructive influences as a result of measurements or judgments. Our 
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objective is to develop this framework and so seek deeper understanding of the EB and the 

corresponding cognitive principles.  

 

1.2 Quantum theory  

We call quantum probability theory (QT) the probability rules from quantum mechanics, without 

the physics. It is a formal framework for probabilistic inference, much like CT, but based on 

different axioms (Busemeyer & Bruza, 2011). QT is relevant in the study of constructive 

influences because a fundamental principle of QT is that a judgment has to alter the underlying 

state in a certain way. More generally, QT cognitive models have been pursued in cases where 

behavior appears at odds with baseline CT prescription, e.g., when probabilities appear 

contextual (Aerts, 2009; Busemeyer & Bruza, 2011; Haven & Khrennikov, 2013; Pothos & 

Busemeyer, 2013), such as in the case of questionnaire order effects (Trueblood & Busemeyer, 

2011; Wang et al., 2014). QT decision models have nothing to do with the controversial ideas 

regarding a quantum brain (e.g., Litt et al., 2006; Khrennikov et al., 2018) – QT simply provides 

a coherent set of computational-level principles for cognitive modelling, not unlike CT. Finally, a 

one sentence introduction to QT is that it is just like CT, but instead of having a single, all-

inclusive space of events, events are separated into different ‘partitions’: within each partition, 

probabilistic inference is fully classical, but across partitions effects arise which appear as 

classical errors (Lewandowsky & Kirsner, 2000, Lewandowsky et al., 2002).  

 We consider the main elements of QT: the state vector, Hilbert space, subspaces, the 

probability rule, projection, rotation, and the collapse postulate.  

 In QT, the system is represented by a normalized vector in a Hilbert space. In 

psychological applications, the system is typically the mental state of a participant prior to going 
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through an experimental manipulation. A Hilbert space is a complex vector space, with some 

additional convergence properties. A subspace in a Hilbert space is a part of the overall space. 

For example, in Figure 1, the overall space is two-dimensional. In this two-dimensional space, 

we can have one-dimensional subspaces, called rays. Subspaces represent question outcomes. 

For example, in Figure 1, we could ask whether a hypothetical person, Jane, likes a particular 

font for her party invitations. Both the overall Hilbert space and subspaces can have varying 

dimensionalities, depending on the complexity of the experimental situation and relevant 

questions. A fundamental aspect of QT is how to associate probabilities to subspaces. This is 

done via the Born rule, according to which the probability of producing different outcomes when 

responding is equal to the squared length of the projection of the state vector to the 

corresponding subspaces. For example, in Figure 1, assume that Jane is considering the font 

indicated by Stimulus 1, so that the mental state is represented by a vector along the Stimulus 1 

ray. Is she likely to like or dislike Stimulus 1? We ‘lay down’ (project) the Stimulus 1 state vector 

onto the Like subspace. This projection is indicated by the perforated line. The squared length of 

this line is the probability we seek. That is, the probability of particular outcomes depends on the 

overlap or projection between the mental state and the corresponding subspace, so that greater 

overlap implies higher probability (cf. Sloman, 1993). A surprising theorem shows that there is 

only one consistent way to associate probabilities to events (Hughes, 1989). The probability rule 

and the associated mathematical theorems warrant the label ‘quantum’, rather than a label along 

the lines of ‘projective geometry’.  

 We now reach the key consideration for the present work. The mental state vector can 

change in two ways. First, when the participant is presented with new information, the vector is 

rotated in a corresponding way. For example, in Figure 1, if Jane encounters a font she does not 
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like, the mental state vector will rotate towards the Dislike subspace. The degree of rotation will 

depend on the strength of the stimulus. Second, when a decision or evaluation is made, the 

mental state vector has to identify with (be projected to) the subspace of the chosen outcome. 

This is the fundamental collapse postulate in QT. In physics, the collapse postulate has been 

puzzling, since in some cases elementary particles cannot be said to have any properties, such as 

position or momentum, prior to a measurement. In psychology, it is perhaps easier to accept that 

judgments sometimes alter mental states. Let us consider again Jane in Figure 1. She considers 

the font represented by the Stimulus 1 vector. Suppose she is asked whether she likes Stimulus 1 

and she answers yes. Then, the state vector will now become a normalized vector along the Like 

subspace. Therefore, whether Jane makes this judgment or not will impact on subsequent 

decisions, such as whether she likes another font, indicated by Stimulus 2 in Figure 1.   

 

Figure 1. An example of how answering a question alters the mental state. Assume the mental 

state vector is indicated by Stimulus 1. Then, when answering a question of whether Stimulus 1 

is liked or not, the mental state vector is projected along either the Like or Dislike subspace – in 

the example, we assume the former. The new state vector will be a normalized vector along the 

Like subspace.  
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Psychologically, the closest interpretation of these ideas concerns constructive influences 

in decision making. However, the established motivation for constructive influences typically 

concerns tension between a particular choice and abandoned alternatives (e.g., Festinger, 1957; 

Glöckner et al., 2009). Instead, in the case of QT any judgment forces a constructive influence on 

the mental state, as long as the mental state does not already identify with a response outcome 

(e.g., perfect liking in Figure 1). We also believe the IEM (Schwarz & Bless, 1992) could be 

formalized in QT terms if it is possible to determine how the difference between making a 

judgement vs. just perceiving a stimulus maps onto whether the relevant information affecting 

subsequent judgments is overt vs. covert.  

The application of QT to questionnaire responding entails that multiple responses lead to 

multiple changes in the mental state, with potential for generating systematic response biases 

(Kvam et al., 2015; Trueblood & Busemeyer, 2011; Yearsley & Pothos, 2016; Wang & 

Busemeyer, 2013; Wang et al., 2014). Regarding the EB, White et al. (2014, 2015) considered 

pairs of oppositely-valenced stimuli and the impact of evaluating the first on the evaluation of 

the second vs. the impact of just viewing the first on the evaluation of the second. They assumed 

that introducing a stimulus would lead to a change in the mental state towards the corresponding 

definite response, but evaluating the stimulus would entail an additional change corresponding to 

the identification of the mental state with the response outcome (Section 1.3) – the first 

assumption is shared by most dynamical models, but the second one is characteristic of QT. 

To summarize, the motivation for considering a QT model for the EB is that it constrains 

constructive influences from judgments or evaluations to have a specific form. This removes 

ambiguity regarding whether the EB is predicted to reflect increased or decreased intensity as a 
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result of the intermediate judgment. That is, the EB is a prediction from QT when the stimuli 

conform to a specific configuration. 

 

1.3 The Evaluation Bias and the quantum model, with general data 

White et al. (2014, 2015) demonstrated the EB with stimuli conforming to particular valences, P 

or N; pilot studies were employed to determine stimulus valence or the stimuli were selected 

from image libraries with pre-established affective valence. For such stimuli, a schematic 

application of QT suffices to predict an EB in a straightforward way. In the present case, we wish 

to apply the same ideas for more general stimuli, as would be likely to be encountered in real 

contexts. 

To fully formalize the QT model for the EB, the first step is to define the state vector, 

subspaces, and rotations. We do so in terms of a distinction between P and N affect, as in White 

at. (2014), but clearly the model can apply to any analogous bivalent distinction. As shown in 

Figure 2, we assume a two-dimensional Hilbert space, so that the rays for P, N affect, the stimuli, 

and the mental state are all co-planar. The higher the probability of deciding that the stimulus is 

e.g. N, the more negative the rating for the stimulus.  

Consider first the PN condition. Since the first stimulus is P, the initial mental state can be 

represented with a state vector close to the P subspace, 𝜓𝑝. In the single rating condition, 

introducing the N stimulus leads to a rotation towards the N subspace, so that the mental state 

becomes 𝜓𝑝′. Then, the rating of the second stimulus depends on the overlap between 𝜓𝑝′ and 

the N affect subspace. In the double rating condition, the evaluation of the first stimulus makes it 

likely that the mental state will collapse onto the P ray, so that the new mental state will be a 

normalized vector along the P ray. Then, when introducing the second stimulus, the mental state 



HOW EVALUATIONS BIAS SUBSEQUENT JUDGMENTS 18 

is rotated by the same amount as before, to 𝜓𝑝′′ (cf. Stewart et al., 2005). It can be seen that 𝜓𝑝′′ 

is a little closer to the N affect subspace; the judgment for the first stimulus is equivalent to an 

additional rotation towards the N affect subspace. Therefore, in the double rating condition the 

second stimulus will be judged as more negative than in the single rating condition. The situation 

for the NP condition is analogous and shows an EB as a more positive evaluation for the second 

stimulus, as a result of evaluating the first one. Figure 3 further illustrates the EB, in the PN case.  

Why should we place the initial mental state 𝜓𝑝 in the top left vs. top right quadrant? 

This is arbitrary and makes no difference to the eventual result. In the PN condition, why should 

the rotation be clockwise vs. anti-clockwise? We assume that the direction of rotation is the same 

as the direction of the more likely projection.  

 

Figure 2. A diagram of the QT EB model. The EB in the PN, NP conditions are indicated by the 

thick black lines along the N and P rays respectively. 
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Figure 3. A more detailed illustration of the EB occurring in the PN direction and the assumed 

QT model representations. 

 

 To formalize the QT model, we require a few technical elements and notation. First, a 

projection operator is a linear operator which takes a state vector and projects it to some 

subspace. For the P affect, N affect subspaces, the corresponding projection operators will be 

denoted as 𝑃𝑃  and 𝑃𝑁 . Then, the projection of the state vector onto e.g. the N affect subspace is 

𝑃𝑁𝜓. Recall, probability is length of projection squared. Therefore, 𝑃𝑟𝑜𝑏(𝑁; 𝜓) = |𝑃𝑁𝜓|2. 

Second, rotations of the mental state vector are computed using unitary operators. In the present 

case, it suffices to employ 𝑈(𝑛) = (
cos 𝑛 sin 𝑛

−sin 𝑛 cos 𝑛
), which implements a clockwise rotation of 

angle 𝑛. Define 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃  and 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑁  to be normalized vectors along the P, N subspaces 

respectively. The introduction of the second stimulus rotates the state vector clockwise if the first 

stimulus is more likely to be considered P and anti-clockwise if the first stimulus is more likely 

to be considered N. Also, 𝜓𝑃 = 𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃 , that is, the rating angle is used to set 

the initial mental state vector in the top left quadrant. For a different rating angle, we will have 
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𝜓𝑁 = 𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃. Finally, we introduce the notation FSDR, SSSR, and SSDR, 

which respectively stand for the ratings concerning first stimulus double rating condition, second 

stimulus single rating condition, and second stimulus double rating condition; in all cases, a 

higher value means a more positive rating.  

 The basic equations of the QT EB model are then, for the NP condition:  

𝑃𝑟𝑜𝑏(𝐹𝑆𝐷𝑅; 𝜓𝑃) = |𝑃𝑃 ∙ 𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃|2……………..………………..Equation 1a 

𝑃𝑟𝑜𝑏(𝑆𝑆𝑆𝑅; 𝜓𝑃) = |𝑃𝑃 ∙ 𝑈(𝑛) ∙ 𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃|2…………………….….Equation 2a 

𝑃𝑟𝑜𝑏(𝑆𝑆𝐷𝑅; 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃) = |𝑃𝑃 ∙ 𝑈(𝑛) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃|2………………………………..Equation 3a  

 The basic equations for the PN condition are:  

𝑃𝑟𝑜𝑏(𝐹𝑆𝐷𝑅; 𝜓𝑁) = |𝑃𝑃 ∙ 𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃|2…………………..…………..Equation 1b 

𝑃𝑟𝑜𝑏(𝑆𝑆𝑆𝑅; 𝜓𝑁) = |𝑃𝑃 ∙ 𝑈(−𝑛) ∙ 𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃|2………..….…….…..Equation 2b 

𝑃𝑟𝑜𝑏(𝑆𝑆𝐷𝑅; 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑁) = |𝑃𝑃 ∙ 𝑈(−𝑛) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑁|2………..……….…………..Equation 3b  

 These equations assume that the result of rating the first stimulus in the double rating 

condition is very likely to lead to state 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃 in the PN condition and 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑁  in the NP 

condition. Unfortunately, in the present case we cannot make this assumption. In Equations 2a, 

2b there may be sizeable probabilities to a projection to 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃  and 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑁  regardless of 

condition. In Equations 3a, 3b likewise there may be sizeable probabilities for rotations 

characteristic of a PN vs. NP sequence regardless of condition. The equations of the extended QT 

EB model are:  

𝑃𝑟𝑜𝑏(𝐹𝑆𝐷𝑅; 𝜓) = |𝑃𝑃 ∙ 𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝜓𝑃|2…………………..…………………..Equation 1c 

𝑃𝑟𝑜𝑏(𝑆𝑆𝑆𝑅; 𝜓) = |𝑃𝑃 ∙ 𝑈(𝑛) ∙ 𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝜓𝑃|2 ∙ 𝑃𝑟𝑜𝑏(𝐹𝑆𝐷𝑅; 𝜓) + |𝑃𝑃 ∙ 𝑈(−𝑛) ∙

𝑈(−𝑟𝑎𝑡𝑖𝑛𝑔) ∙ 𝜓𝑃|2 ∙ (1 − 𝑃𝑟𝑜𝑏(𝐹𝑆𝐷𝑅; 𝜓))…………….………………………..Equation 2c 
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𝑃𝑟𝑜𝑏(𝑆𝑆𝐷𝑅; 𝜓) = |𝑃𝑃 ∙ 𝑈(𝑛) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑃|2 ∙ 𝑃𝑟𝑜𝑏(𝐹𝑆𝐷𝑅; 𝜓) + |𝑃𝑃 ∙ 𝑈(−𝑛) ∙ 𝑃𝑒𝑟𝑓𝑒𝑐𝑡𝑁|2 ∙

(1 − 𝑃𝑟𝑜𝑏(𝐹𝑆𝐷𝑅; 𝜓))…………………………………………………………….Equation 3c 

 For example, Equation 2c is a weighted mean of a process assuming the first projection 

would have been to P and then clockwise rotation towards the N subspace and a process 

assuming the first projection would have been to N and then anticlockwise rotation towards the P 

subspace; the weights are determined by the probability that the first projection is to P or N.  

 We consider a few final issues regarding the application of the model. First, participant 

ratings were transformed to probabilities through a linear function, so that lower ratings would 

correspond to lower probabilities for a P evaluation; that is, all probabilities correspond to 

probabilities that a stimulus is evaluated positively. An alternative approach would have been to 

use a softmax function (e.g., as in Rehder, 2014, or Trueblood et al., 2017) or relevant extensions 

to map ratings to probabilities, but this was not considered necessary in the present work. 

Second, for each participant in the present experiments, we obtained three datapoints, FSDR, 

SSSR, and SSDR. The QT EB has two parameters per pair of questions (per participant), rating 

(how positively the first question is perceived) and n (the impact of the second stimulus on the 

mental state vector). With Equation 1c, we extract the rating parameter; with Equation 2c and the 

rating parameter, we extract the n parameter; then, Equation 3c produces the QT prediction for 

the EB. That is, it is not the case that the two available parameters are adjusted to simultaneously 

fit each group of three data points. Once rating and n are determined from Equations 2a, 2b, 

there is no parameter manipulation to improve fit between SSDR and the corresponding QT 

prediction. Finally, with Equations 1c, 2c, 3c it is no longer necessary to distinguish between PN 

and NP processes. However, it is advantageous to continue doing so, partly because we think that 
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practical applications are more likely to be driven by approximate, summary predictions 

regarding the EB, instead of detailed model fits.  

 With stimuli which are not pre-controlled, we need to specify conditions on the stimuli 

which can allow classification into PN vs. NP conditions. Both the quantum model and Hogarth 

and Einhorn’s (1992) model suggest that a triplet of judgments {FSDR, SSDR, SSSR} should be 

assigned to the PN condition if FSDR>SSDR and to the NP condition otherwise. For the 

quantum model, this condition will consistently produce the EB. Consider first that 

𝑃𝑟𝑜𝑏(𝐹𝑆𝐷𝑅) ∝
1

𝑟𝑎𝑡𝑖𝑛𝑔
 and 𝑃𝑟𝑜𝑏(𝑆𝑆𝐷𝑅) ∝

1

𝑛
, which means that 𝐹𝑆𝐷𝑅 > 𝑆𝑆𝐷𝑅 ⟺ 𝑛 >

𝑟𝑎𝑡𝑖𝑛𝑔. As shown in Figure 3, the condition 𝑛 > 𝑟𝑎𝑡𝑖𝑛𝑔 means that 𝜓𝑃  and 𝜓𝑝
′  are on either 

side of the P ray, so that 𝑃𝑟𝑜𝑏(𝑆𝑆𝑆𝑅) ∝
1

|𝑛−𝑟𝑎𝑡𝑖𝑛𝑔|
⟺ 𝑆𝑆𝑆𝑅 > 𝑆𝑆𝐷𝑅, the latter inequality being 

the EB in the PN direction. That is, starting from 𝐹𝑆𝐷𝑅 > 𝑆𝑆𝐷𝑅 we were led to the EB, 𝑆𝑆𝑆𝑅 >

𝑆𝑆𝐷𝑅 . For Hogarth and Einhorn’s (1992) model, the weights for the SbS process depend on the 

relative size between the impression from the current stimulus, 𝑠(𝑥𝑘), and the belief state prior to 

the current stimulus, 𝑅 = 𝑆𝑘−1 (see also below). As the model’s form depends on the outcome of 

successive judgments, it makes more sense to use FSDR, SSDR for the assignment of triplets 

into the PN vs. NP conditions.  

 Does the assignment of participants into PN vs. NP conditions confound the study of the 

EB? Consider PN participants, for whom FSDR>SSDR. The EB prediction is that SSSR>SSDR, 

that is, that the second stimulus in the double rating condition should be more negative ( lower) 

than the rating for the second stimulus in the single rating condition. Knowledge that 

FSDR>SSDR indicates that the second stimulus will be broadly more negative than the first. 

However, this knowledge cannot further inform whether SSSR>SSDR or SSSR<SSDR.  
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Finally, we opted to study the EB in the context of surveys for gathering employee 

impressions of their organization regarding culture, leadership and performance. Organizational 

surveys are a suitable choice for several reasons. First, such surveys are commonly employed 

and often guide organizational communication and strategy. So, the discovery of systematic 

biases in organization surveys is valuable. Second, questionnaires are also commonly employed 

in health and clinical settings, but such applications entail unnecessary complications (e.g., 

regarding participant recruitment). Finally, we had opportunistic availability of large samples of 

professional respondents, thus avoiding problems with restricting sampling to college students or 

online participants. With a degree of optimism, one might expect that individuals (managers and 

professionals) going through an organizational survey about their own organization would 

provide more thoughtful responses than participants responding to questions involving fictitious 

stimuli for a small payment (cf. Camerer & Hogarth, 1999, for failures of incentivizing to restore 

unbiased decision making in indifferent participants).  

 

2. Experimental work 

2. 1 Participants and design for all experiments  

We carried out four replications of the same design, across different times, geographical 

locations, and in one case involving a different language. In all cases participants were managers 

and other senior professionals employed by organizations, responding to questions about their 

organization.  

We describe the participants and design details of all replications together, then consider 

the common design of all experiments. We then describe the results of the first experiment in 
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detail and relegate detailed descriptions of the results for the other experiments to the 

Supplementary Materials section). Finally, we fit the QT EB model to the combined dataset.  

Participants in Experiment 1a (N=240 from 25 different organizations) were recruited 

through managers attending an executive education program in October 2014 at an international 

business school in Europe. Attendant managers were asked to distribute an online questionnaire 

to employees in their respective organizations. These employees would become the participants 

in this study. The questionnaire was in English. Participation was voluntary for the managers on 

the program and the employees in their organization. The survey was anonymous with no 

personally identifying information collected. This was done to encourage honest responses from 

employees in the organizations. Organizations were a mixture of industry types (e.g. financial 

services, manufacturing, pharmaceutical, public sector) and from various countries in Europe, 

the Middle East and Asia.  

Participants in Experiment 1b were recruited through managers attending an executive 

education program in April 2015 (N=193, 17 different organizations) at an international business 

school in Europe. 

Participants in Experiment 1c were recruited through managers attending an executive 

education program in September 2015 (N=140, 15 different organizations) at an international 

business school in Europe. 

Participants (N=295, 27 organizations) in Experiment 1d were recruited in a similar 

manner through managers attending an executive education program in the same business school 

in September 2015. Organizations were a similar mix of types, as in Experiment 1a, except that 

all were based in Brazil. The questionnaire employed in Experiment 1d was the same as in the 

other experiments, but translated into Portuguese.  
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In all cases, because of the format of the data collection, sample sizes were opportunistic; 

essentially we included all participants that were available to us from the education programs. 

Prior to data collection, we were intending to reject samples smaller than 54 participants, since 

this was the sample size in the original laboratory EB demonstration (White et al., 2014; 

Experiment 1). But this turned out to never be the case.  

The experimental design was mixed with two main independent variables. A between 

subjects factor, stimulus valence order, had three levels: positive-negative (PN), negative-

positive (NP) or equal (EQ). Rating condition was within subjects and had two levels, whether or 

not the rating of the second question was preceded by an intermediate rating for the first question 

(double) or not (single). 

 

2.2 Materials and Procedure for all experiments  

The questionnaire consisted of 94 questions and asked respondents for their views on various 

aspects of their organization’s strategy, leadership and culture. Of relevance, participants would 

be presented with a short statement about their organization. In the double rating condition they 

were asked to think about the general state of their organization (see below) and then asked to 

respond to a follow-up question about the organization. In the single rating condition they were 

again asked to think about the general state of their organization but were not asked the follow-

up question. Subsequently, in both conditions, they were asked about the strategy of their 

organization. The strategy question was always presented last, right after the organization one. 

By analogy with White et al.’s (2014) notation, P, N refer to high and low ratings to these 

questions and PN to the situation when the rating for the first question was high and for the 

second low. The two questions were: 
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Organization: 

“Think about the general state of your organization e.g., its overall performance, any financial 

pressures the organization is facing, the demands of customers, challenges from competitors, 

changes in technology, political or regulatory issues, market volatility.” 

[Organization question] “How do you feel about the general state of your organization?” 

 

Strategy: 

[Strategy question] “How do you feel about your business unit's strategy?” 

 

All participants received both the double and single rating conditions (randomized order, 

across the organizations participating in the survey). In between the two pairs of questions, there 

were 88 other questions, irrelevant to the present analysis.  Thus, the double vs. single rating 

condition was a within participants manipulation with each participant answering the question 

about strategy twice. Note, all questions were answered on a seven point Likert scale (very 

negative to very positive).  

There are several considerations which guided the selection of these questions for testing 

the EB and the QT model. First, the first judgment must have the potential to alter our 

perspective for the second judgment. Second, the questions must embody a degree of ambiguity. 

Without some ambiguity, no constructive or QT effects are expected. For example, if participants 

see a hammer and are asked if there is a hammer, no changes to the mental state are really 

expected. Note that there is a converse point here, namely that with too much ambiguity the 

representational assumptions embodied in the QT model are challenged – we take up this point 
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again in the Discussion. Third, the two questions must be broadly thematically related; this 

relates to the assumption that all subspaces and rotations are restricted to the same two-

dimensional space. Finally, the two questions must themselves be presented in an independent 

way. With the current design, participants were asked each question without reference to the 

previous one.  

Following the coding approach we motivated in Section 1.3, in the double rating 

condition, if a participant’s response to the first question was greater than their response to the 

second, in the double rating condition, we assigned him/her to the PN condition and vice versa. 

Note, this assignment was not based on the degree of positivity or negativity, only on the rating 

of the second question relative to the first. For example, if someone rated the first question 7 and 

the second 6, although both responses could be seen as positive (i.e. at the high end of the rating 

scale), the first was less positive than the second and therefore that participant would be allocated 

to the PN condition. If a participant’s response to the two questions was equal, they were 

assigned to the equal condition (EQ), and this served as a control condition, for which no EB is 

expected.  

 

2.3 Results for Experiment 1a 

The statistical approach is identical for all experiments1. First, we conducted a methods check, 

since we could not directly manipulate the P, N status of different questions. Second, we 

examined the evidence for the EB, that is, the hypothesis that for PN participants the 

intermediate judgment reduced the rating for the subsequent N statement; and that for NP 

                                                   

 

1 Data and code for all analysis including QT model fits and experiments 1b, 1c and 1d can be 
found here: https://osf.io/se84w/?view_only=fa9e916b151241dcb5b9f0576f73f8d6 
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participants the intermediate judgment increased the rating for the P statement. Finally, some 

participants encountered the single rating condition at the beginning of the survey and the double 

rating one at the end; for the rest of the participants this was the other way round. We checked 

that the order in which participants completed the single and double rating condition did not 

influence the difference in ratings. For assessing all empirical results, we used JASP (JASP 

Team, 2016) to conduct both Bayesian and standard ANOVAs. 

The methods check was carried out to verify that the stimuli assigned to the positive and 

negative groups were responded to differently. The question is whether the post hoc participant 

assignment to the valence order condition generated some contrast between positive and negative 

affect, as intended for a test of the EB. The methods check involved a mixed measures ANOVA 

with one between participants factor (valence order: PN, NP, EQ) and one within participants 

factor, comparing the rating of the first question vs. the rating of the second question. The main 

effects of valence order and first vs. second rating were significant (F(2,237)=4.39, p=0.013, 

η2
p=0.04, BF10=2.94; F(1,237)=4.29, p=0.039, η2

p=0.02, BF10>100). Our main interest is the 

interaction, which was significant (F(2,237)=365.1, p<.001 η2
p=0.76, BF10>100) indicating, as 

desired, a difference between the first and second rating, depending on the order in valence. That 

is, the first rating would be different depending on whether valence order was NP or PN. The 

results also indicate that the interaction model was preferred to the main effects model 

(BF10>100). Paired samples t-tests showed that, in the PN condition, ratings for the organization 

question (M=5.73, SD=0.95) were significantly higher (i.e., the ratings were more positive) than 

ratings for the strategy question, M=4.46, SD=1.12; t(40)=-16.20, p<.001, all t-tests are two 
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tailed; d=-2.53, 95%, CI2 for the mean difference = [-1.43, -1.11], BF10>100. In the NP 

condition, ratings for the organization question (M=4.38, SD=1.26) were significantly lower than 

ratings for the strategy question, M=5.91, SD=0.81; t(96)=17.33, p<.001; d=1.76, 95% CI for the 

mean difference = [1.35, 1.70], BF10>100. Overall, for both the PN and NP conditions, the Bayes 

factors indicate strong evidence for the alternative hypothesis that, in the PN condition the first 

rating was higher than the second and vice versa for the NP condition, consistent with the 

intended design. In the EQ condition, the ratings for the organization (M=5.53, SD=1.11) and 

strategy (M=5.53, SD=1.11) questions were identical and no t-test was required. 

In order to examine evidence for the EB, we next conducted a mixed measures ANOVA 

with two between factors (valence order: PN, NP, EQ and order of presentation: single rated first, 

double rated first) and one within factor (rating condition: single, double) on participant ratings 

of the strategy question, which was the second question (Figure 4). There was a main effect of 

valence order (F(2,234)=12.2, p<.001, η2
p=0.08, BF10>100) but not of rating condition 

(F(1,234)=2.51, n.s., BF01=6.66). The crucial valence order × rating interaction was significant 

(F(2,234)=28.98, p<.001, η2
p=0.20, BF10>100) indicating, as predicted, that the difference in the 

rating of the second question between the single and double rating conditions depended on NP 

vs. PN order. The valence order × rating interaction model was preferred to the main effects 

model (BF10>100). Paired samples t-tests showed that, in the PN condition, with an intermediate 

rating, ratings for the strategy question (M=4.46, SD=1.12) were significantly lower than those 

without the intermediate question (M=5.15, SD=1.06; t(40)=-4.44, p<.001; d=-0.69, 95% CI for 

the mean difference = [-0.99, -0.37], BF10>100). For those participants who behaved according 

                                                   

 

2 We report frequentist confidence intervals unless stated otherwise. 
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to the hypothesis, the impact of the intermediate question on their rating of the strategy question 

was associated with a decrease in their rating by 1.39 units on average. In the NP condition, with 

an intermediate rating, ratings for the strategy (second) question (M=5.91, SD=0.81) were 

significantly higher than those without the intermediate question (M=5.35, SD=1.28; t(96)=5.43, 

p<.001; d=0.55, 95%, CI for the mean difference = [0.35, 0.76], BF10>100). For those 

participants who behaved according to the hypothesis, the impact of the intermediate question on 

their rating of the strategy question led to an increase in the rating by 1.47 units on average. In 

the EQ condition, ratings for the strategy question with an intermediate rating (M=5.53, 

SD=1.11) were no different from ratings for the strategy question without the intermediate rating 

(M=5.65, SD=1.03; t(101)=-1.83, n.s., 95%, CI for the mean difference = [-0.25, 0.01], 

BF01=1.82). Finally, to determine whether the order of presentation influenced the results we 

looked at the valence order × rating × order of presentation interaction. The model including this 

three-way interaction was essentially indistinguishable from an identical model, but without the 

three-way interaction, BF=0.96. We therefore conclude that order of presentation is not an 

important variable in the analyses and we do not consider further.  

Overall, for both the PN and NP conditions, the Bayes factors suggest strong evidence for 

the role of the intermediate rating in the response to the second question, in the predicted 

direction. For the EQ condition the Bayes factor supports the null hypothesis. The results of 

Experiments 1b, 1c, and 1d replicate this pattern (Supplementary Materials).  
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Figure 4. Results for Experiments 1a, 1b, 1c, 1d: Each point represents a participant’s single and 

double ratings for the strategy question (which was the second question) in the NP and PN 

conditions. Points are jittered to avoid overlap and participants in the EQ condition are omitted 

for clarity. In the NP condition, if a participant behaves according to the prediction, we expect 

blue, square points above the black diagonal line and in the PN condition we expect red, triangle 

points below the diagonal.  

   

 These results illustrate how it is possible to identify a reliable EB effect, even when the 

stimuli/ questions are not controlled a priori, based on a data-driven classification into PN or NP 

conditions. However, this classification relies on participant ratings, which may be noisy. How 

robustly can the present approach identify an EB, given that it exists, but in the presence of 

increasing noise? We considered the means of the second question with (4.46) and without (5.15) 
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the intermediate rating, in the PN condition, with a pooled standard deviation from these 

conditions. The sample size for this particular condition was 40. We then simulated groups of 

scores drawn from the t-distribution (as the population variance is unknown), based on a fixed 

pooled standard deviation, fixing one of the means, and offsetting the other mean from its 

original position across the range [-1,1]. The produced scores were subjected to uniform random 

noise as a percentage of the Likert scale (the max percentage of noise varied from 0 to 100%). 

For each combination of mean shift and max possible percentage noise we computed the p value 

of a paired samples t-test, analogous to the one computed for testing the EB. As seen in Figure 5, 

non-significant p-values are observed only when either the means are closer together or with 

high levels of noise. Note, even though a simple moving average smoothing function was 

applied, the surface remains bumpy because of the way this simulation was carried out. Overall, 

an expectation of noisy data does not greatly undermine the prediction of an EB..  

 



HOW EVALUATIONS BIAS SUBSEQUENT JUDGMENTS 33 

Figure 5. An analysis of when a paired samples t-test between the ratings for the second stimulus 

with and without an intermediate rating fails significance, assuming data analogous to what was 

observed in the PN condition of Experiment 1a. 

 

3. Model fits 

Each response corresponded to a triplet of judgments, {FSDR, SSSR, SSDR}. All 868 responses 

were collated together; there were 240, 193, 140, 295 participants in Experiments 1a, 1b, 1c, and 

1d respectively. Both the QT model and Hogarth and Einhorn’s (1992) model distinguish 

between PN (FSDR>SSDR) and NP processes (FSDR<SSDR). However, for both models there 

should be an adjustment in predictions as the distinction between a PN process and an NP one 

becomes less pronounced. We therefore decided to randomly assign to the PN vs. the NP 

condition data points for which FSDR=SSDR. This approach is reasonable both theoretically and 

because, as it turned out, there were a large number of data points for which FSDR=SSDR. 

Specifically, the number of data points which conformed to FSDR>SSDR, FSDR<SSDR, and 

FSDR=SSDR were respectively 130, 307, 431, for a total of 868, as above. Note that overall we 

observed a majority of positive responses, e.g., for 647 data points FSDR was greater than the 

midpoint of the ratings scale. This could relate to the fact that organizations which are 

performing better are more likely to send their employees to a business school program. Ratings 

on a 1-7 scale were linearly transformed onto a 0-1 scale, as outlined in Section 1.3.  

 The application of the QP model follows Section 1.3. Hogarth and Einhorn’s (1992) 

model has been predominantly applied to question order effect, not to the modelling of 

constructive influences. In Appendix 1 we outline in detail how the distinction between SbS and 
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EoS processes in Hogarth and Einhorn’s (1992) model can be exploited to also predict an EB, 

under particular parameter settings. We summarize Appendix 1 here.  

 We define the following variables: 𝑆𝑘  (0 ≤ 𝑆𝑘 ≤ 1) is the impression of participants after 

considering k statements. 𝑠(𝑥𝑘) is the subjective evaluation of the kth advert. 𝑠(𝑥1, … , 𝑥𝑘) is the 

combined impact of all the statements, statement 1 to k. Because in the present case we are 

employing a unipolar scale, we can assume 0 ≤ 𝑠(𝑥𝑘) ≤ 1 (Hogarth & Einhorn, 1992, p.11). R 

is the reference point against which the impact of the kth statement is assessed. 𝑤𝑘  (0 ≤ 𝑤𝑘 ≤ 1) 

is an adjustment weight in relation to how the kth statement impacts on the belief state. The main 

equation of the model (Equation (1) in Hogarth and Einhorn’s, 1992, paper) is  

𝑆𝑘 = 𝑆𝑘−1 + 𝑤𝑘[𝑠(𝑥𝑘) − 𝑅]……………………………………………………..…..Equation 4 

 This equation dictates how the new belief state will depend on the previous state, the 

impression from the new information that was received relative to a reference point, and an 

adjustment weight. All these details can depend on the format of the evaluation process. 

Moreover, somewhat extending Hogarth and Einhorn’s (1992) original ideas, we can associate 

the SbS process with the double rating condition and the EoS one with the single rating 

condition. With some algebra, it can be shown that the set of equations allowing modelling of the 

EB is, for the PN case:  

𝑆𝑆𝑆𝑅 = 𝑆0 + 𝑎𝑆0[𝑠(𝑥𝑃, 𝑥𝑁) − 𝑆0], from the model equation regarding the EoS 

process………….……………………………………………………………………Equation 5a  

𝐹𝑆𝐷𝑅 = (1 − 𝛽(1 − 𝑆0))𝑆0 + 𝛽(1 − 𝑆0)𝑠(𝑥𝑃), which is the first judgment in the SbS 

process………………………………………………………………………………Equation 6a  

𝑆𝑆𝐷𝑅 = (1 − 𝑎𝑆𝑃)𝑆𝑃 + 𝑎𝑆𝑃𝑠(𝑥𝑁), which is the second judgment in the SbS 

process……………………………………………………………………………….Equation 7a   
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The 𝑎, 𝛽 parameters are sensitivity weights capturing the relative impact of positive vs. negative 

information.  

The equations for the NP case are:  

𝑆𝑆𝑆𝑅 = 𝑆0 + 𝛽(1 − 𝑆0)[𝑠(𝑥𝑁, 𝑥𝑃) − 𝑆0], …….………………………………….Equation 5b  

𝐹𝑆𝐷𝑅 = (1 − 𝑎𝑆0)𝑆0 + 𝑎𝑆0𝑠(𝑥𝑁)….……………………………………………..Equation 6b  

𝑆𝑆𝐷𝑅 = (1 − 𝛽(1 − 𝑆𝑁))𝑆𝑁 + 𝛽(1 − 𝑆𝑁)𝑠(𝑥𝑃)…………………………………Equation 7b  

 To reduce the number of parameters, we assume that, in the NP case 𝑠(𝑥𝑁, 𝑥𝑃) = 𝑠(𝑥𝑃) 

and 𝑆𝑁 = 𝐹𝑆𝐷𝑅 and in the PN case 𝑠(𝑥𝑃, 𝑥𝑁) = 𝑠(𝑥𝑁) and 𝑆𝑃 = 𝐹𝑆𝐷𝑅. In both cases, we can 

further assume 𝑠(𝑥𝑃) = 1 − 𝑠(𝑥𝑁). Additionally, we can assume that 𝑎 = 𝛽 = 1 (Appendix 1). 

Given this specification, Hogarth and Einhorn’s (1992) model can be fitted to the data in a way 

closely analogous to that of the QT model. Equations 5a, 6a, 7a (or 5b, 6b, 7b) have two free 

parameters, 𝑠(𝑥𝑃) and 𝑆0. Notice that 𝑠(𝑥𝑃) is analogous to the n parameter in the QT model, 

since both parameters concern the impact of the second stimulus on the belief/ mental state. Also, 

𝑆0 is analogous to the rating parameter in the QT model, since both parameters concern the 

initial belief/ mental state, prior to encountering the first stimulus. Then, we can use the FSDR 

and SSSR equations to compute the 𝑠(𝑥𝑃), and 𝑆0 parameters, since there are two equations and 

two unknowns. In practice, solving these equations required sum of squares optimization, 

because it was sometimes impossible to solve them analytically given the parameter bounds. 

Given values for the 𝑠(𝑥𝑃) and 𝑆0 parameters, a prediction for SSDR follows. As for the 

quantum model, we consider this version of Hogarth and Einhorn’s (1992) model parameter-free, 

since we employ part of the data to set the parameters and part of the data to test the resulting 

prediction.  



HOW EVALUATIONS BIAS SUBSEQUENT JUDGMENTS 36 

 Models were evaluated with Maximum Likelihood Estimation (MLE), for assessing 

predicted against observed probabilities. We computed 𝐺2 = 2 ∑ (𝑜𝑖 ln
𝑜𝑖

𝑒𝑖
+𝑎𝑙𝑙 𝑡𝑟𝑖𝑎𝑙𝑠

(1 − 𝑜𝑖) ln
1−𝑜𝑖

1−𝑒𝑖
), where the summation extends across all instances of SSDR judgments in the 

experiment (e.g., as applied in Broekaert et al., in press). That is, model fit is based on the 

correspondence between predicted and observed SSDR values. Then, models were compared on 

the basis of the Bayesian Information Criterion, 𝐵𝐼𝐶(𝑚𝑜𝑑𝑒𝑙) = 𝐺2(𝑚𝑜𝑑𝑒𝑙) + ln(𝑁) ∙ 𝑝, where 

N is the number of observations and p the number of model parameters. Setting 𝑝 = 0, we have 

that 𝐵𝐼𝐶(𝑚𝑜𝑑𝑒𝑙) = 𝐺2(𝑚𝑜𝑑𝑒𝑙). To avoid indeterminate results in the Mathematica script 

implementing the 𝐺2 function, probabilities were restricted to a range of [0.0001, 0.9999]. BIC 

allows us to compare non-nested models, as is the case with the quantum and Hogarth and 

Einhorn’s (1992) models. We fitted and compared the models separately for the PN and NP 

conditions.  

 For the PN condition after randomly assigning data points for which FSDR=SSDR we 

had N=346. For the quantum model 𝐵𝐼𝐶 = 85. For Hogarth and Einhorn’s (1992) model 𝐵𝐼𝐶 =

66. For the NP condition we had N=522. For the quantum model 𝐵𝐼𝐶 = 129. For Hogarth and 

Einhorn’s (1992) model 𝐵𝐼𝐶 = 135. Readers might wonder whether the qualitative conclusions 

change if we exclude the data points for which FSDR=SSSR. This was mostly not the case. For 

the PN condition, N=130, for the quantum model 𝐵𝐼𝐶 = 64, and for Hogarth and Einhorn’s 

(1992) model 𝐵𝐼𝐶 = 52. For the NP condition, N=307, for the quantum model 𝐵𝐼𝐶 = 104, and 

for Hogarth and Einhorn’s (1992) model 𝐵𝐼𝐶 = 122. Scatterplots for observed and fitted 

probabilities are shown in Figures 6a, 6b and 7a, 7b; in these graphs, bubble size is determined 

by number of overlapping points. Indicatively, we note that in Figure 6a the number of 

overlapping points varied from 1 to 91.  



HOW EVALUATIONS BIAS SUBSEQUENT JUDGMENTS 37 

We briefly consider parameter distributions for the quantum model in Figures 8a, 8b, for 

each of the two conditions. The rating angle would be expected to be in the (0,
𝜋

2
) range. In 

many cases, the rating value for the PN condition was in the (0,
𝜋

4
) range and for the NP ones in 

the (
𝜋

4
,

𝜋

2
) range. The distribution for the n values is less well behaved in that, especially in the 

NP condition, many values are larger than what we would expect. Recall that the quantum model 

is based on trigonometric functions. Therefore, there are multiple angles for which the resulting 

probabilities are equivalent. The distribution of fitted parameters for Hogarth and Einhorn’s 

(1992) model is shown in Figures 9a, 9b. It is not immediately obvious whether this 

distributional information can inform the workings of the model, but at the very least we have 

confirmation that optimization respected parameter bounds.  

 

 
Figure 6a. Scatterplot for observed (vertical) 

vs. fitted probabilities for the quantum model, 

for the PN condition. 

 
Figure 6b. Scatterplot for observed (vertical) 

vs. fitted probabilities for the quantum model, 

for the NP condition. 
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Figure 7a. Scatterplot for observed (vertical) 

vs. fitted probabilities for Hogarth and 

Einhorn’s (1992) model, for the PN condition. 

 
Figure 7b. Scatterplot for observed (vertical) 

vs. fitted probabilities for Hogarth and 

Einhorn’s (1992) model, for the NP condition. 

 

 

 
Figure 8a. The distribution of n (blue bars) 

and rating (yellow bars) values for the PN 

condition.  

 
Figure 8b. The distribution of n (blue bars) 

and rating (yellow bars) values for the NP 

condition. 
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Figure 9a. The distribution of 𝑠(𝑥𝑃) (blue 

bars) and S0 (yellow bars) values for the PN 

condition.  

 
Figure 9b. The distribution of 𝑠(𝑥𝑃) (blue 

bars) and S0 (yellow bars) values for the NP 

condition.  

 

The central tenet of both models is that there should be an interrelatedness between the 

FSDR, SSSR, and SSDR values. This can be tested directly by randomizing one set of values 

and re-fitting the models. Is there still an association between empirically observed SSDR values 

and the ones predicted by the models? We randomized the SSSR ratings (uniform distribution in 

the [0,1] range), keeping the FSDR ratings intact. For the quantum model, this means that the 

rating parameters would be as before, but the n parameters would be extracted using randomized 

data. For Hogarth and Einhorn’s (1992) model, both model parameters were fit to the pairs of 

FSDR and SSSR from scratch. For both models, randomizing SSSR ratings produced worse fit. 

For the PN condition, for the quantum model 𝐵𝐼𝐶 = 287 and for Hogarth and Einhorn’s model 

(1992) 𝐵𝐼𝐶 = 291.  For the NP condition, the corresponding values were 𝐵𝐼𝐶 = 478 and 𝐵𝐼𝐶 =

234. Clearly, the exact values from these control simulations will vary from simulation to 

simulation – but in all cases, one observes a healthy increase in fit values, as a result of 

randomizing SSSR ratings.   
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4. Discussion 

It is well-established, and indeed intuitive, that previous judgments can change the mindset or 

perspective for subsequent ones (e.g., Bless & Schwarz, 2010; Schwarz, 2007). Some of the 

relevant effects have substantial practical importance, as in the case of question order effects 

(Bergus et al., 1998; Moore et al., 2002). The more subtle issue is whether judgments can alter 

the mental state in a way that impacts on subsequent information. It might seem that any 

judgment can alter the mental state, simply because of the information-gathering potential of the 

judgment. However, what is at stake is whether the behavioral impact of just processing a piece 

of information vs. of making a corresponding judgment are different. This is hardly a 

straightforward question. The baseline perspective from the predominant framework for 

probabilistic inference, CT, is that judgments reveal preexisting (albeit unknown) information. In 

this sense, there is limited room for putative constructive influences from judgments.  

We know from previous research (e.g. Damasio, 1994; Zajonc, 1980) that people can 

accurately and rapidly form an affective evaluation. However, most studies conclude this because 

after showing the stimulus, the participant is asked to explicitly evaluate it. Perhaps it is the case 

that without asking someone for an explicit rating of the first stimulus, their feelings about it 

remain more ambiguous and they are therefore in a different state when they see a subsequent 

stimulus. There have been some proposals postulating belief changes commensurate with 

judgments (e.g., Festinger, 1957; Gloeckner et al., 2009) and some supporting empirical results 

(e.g., Sharot et al., 2010). Additionally, some researchers have argued that, for example, stating 

preferences does not reflect the ‘reading out’ of pre-formed beliefs, attitudes or values but rather 

is a constructive exercise whereby we improvise and create our evaluation in the moment (e.g. 

Chater, 2018; Dennett, 1993; Slovic, 1995). 
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 In this work we explored two decision models which incorporate constructive influences, 

QT and Hogarth and Einhorn’s (1992) belief-adjustment model. We used data from an extension 

to an empirical paradigm originally proposed to study constructive influences: In White et al.’s 

(2014, 2015) paradigm the main component was pairs of sequentially presented stimuli. With 

controlled stimuli, so that in each pair one stimulus would be positively valenced and the other 

negatively valenced, or vice versa, they showed that a judgment vs. simple observation of the 

first stimulus would entail a more intense evaluation for the second stimulus. The empirical 

objective of the present work was to consider whether this EB that White et al. (2014) reported 

could be observed with realistic stimuli in an applied context fostering more thoughtful 

judgments.  

 We conducted a test of the EB with respondents being managers and professionals 

answering questions about their own organization. Exactly the same two questions in exactly the 

same order were responded to differently by the same participant, depending on whether there 

was an intermediate judgment (a judgment to the first question) or not. The intermediate 

judgment led to a more contrasting judgment for the second question, with this contrast ranging 

from 1.29 units to 1.86 units, which represents, respectively 0.86 to 1.66 standard deviations. We 

draw attention to the fact that this is a substantial amount; the size of the effect further 

undermines a perception of questionnaires as revealing pre-existing attitudes or knowledge in a 

bias-free manner. Our results are in in line with other demonstrations of questionnaire biases, 

involving participants responding to questions relevant to their expertise (e.g., Bergus et al., 

1998) or when there is strong motivation to respond in an objective way (e.g., McKenzie, Lee, & 

Chen, 2002; Pennington & Hastie, 1986).  
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 The investigation of QT was motivated by the fact that a fundamental aspect of QT is the 

way the (mental) state has to change as a result of judgments or measurements. As a result, QT 

cognitive models provide a very constrained notion of how intermediate judgments should 

impact on subsequent ones (Trueblood & Busemeyer, 2011; Wang & Busemeyer, 2013). Such 

models have been applied previously to situations indicating constructive influences (Kvam et 

al., 2015; Yearsley & Pothos, 2016). We think that the EB paradigm enables a more direct test of 

the psychological plausibility of the constructive influences embodied in QT models, because of 

the simplicity of the paradigm. The QT model of the EB is that there is a qualitative difference 

between explicitly rating and not explicitly rating the first stimulus. The former changes the 

cognitive state in a way that is different from the latter and can be considered a constructive 

influence. The QT model we developed is based on simple assumptions regarding the 

representations of the two pieces of information and how the mental state can change.  

 One advantage of the QT model is that a qualitative prediction for the constructive 

influence corresponding to the EB can be made a priori. White et al. (2014) developed the 

original EB paradigm based on a simplified version of Figure 2. Because of the geometric nature 

of QT representations, it is often the case that complex mathematical intuitions can be expressed 

relatively simply. Another advantage of the QT model is that the prediction for the constructive 

influence is specific. The constructive influence has to be of a certain kind and in a certain 

direction. Notably, as a result of a judgment, QT requires the state to identify itself with the 

outcome of the judgment.  

There are some disadvantages of the QT model for the EB paradigm as formulated at 

present. First, the assumed representation assumes a distinction between just positive vs. 

negative evaluations for the organizational statements. By contrast, participants have to rate these 



HOW EVALUATIONS BIAS SUBSEQUENT JUDGMENTS 43 

statements on a multi-point Likert scale. This means that when the first evaluation for the first 

stimulus is too ambiguous, the QT model is forced to predict a constructive influence which is 

too large. A future extension of the model should incorporate representations more closely 

matched to the assumed internal scale of evaluation. We note that this is not a straightforward 

issue. For example, is there a ‘native’ internal evaluation scale? Is it the case that an externally 

imposed evaluation scale is just replicated internally etc.? Second, the projection mechanism in 

QT can allow for ‘error’. In this work we employed the more standard approach for projection, 

involving projection operators. Instead, one could employ Positive Operator Valued Measures 

(POVMs; Yearsley & Busemeyer, 2016). POVMs are just like projection operators, but for which 

projection is not errorless. That is, the answer to a question might be ‘yes’, but there is a 

probability that the state will be projected to the subspace for ‘no’. The use of POVMs in the 

present case is potentially important, because it informs the way a state changes as a result of a 

judgment. Finally, we modeled the influence of introducing the second stimulus on the mental 

state with time independent unitary dynamics. In the two-dimensional, real vector space we 

employed for representations, unitary dynamics can be thought of as simple rotations. For 

example, in introducing a N stimulus, the mental state rotates towards the N ray. The problem is 

that when the rotation is too large, it can overshoot the N ray. The correct dynamics to employ 

would be so-called open system dynamics, which have the advantage that rotation can be set to 

asymptotically converge to a particular state (e.g., Nielsen & Chuang, 2000). However, this is a 

more technically complex approach and corresponding applications are far less common in 

psychology (Asano et al., 2011a, 2011b).  Despite all these possible avenues for extending the 

QT model, we think that it is important that the model we evaluated in the present work was 

close to the original ideas of White et al. (2014).  
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The detailed consideration of Hogarth and Einhorn’s (1992) model for the EB paradigm 

was partly motivated by the fact that this is a very influential model for the study of 

questionnaire biases. Even though most applications of the model concern questionnaire order 

effects, the model’s distinction of evaluation processes into SbS and EoS provides a natural 

framework for examining the EB paradigm as well. Moreover, a key assumption in Hogarth and 

Einhorn’s (1992) model is that the mental state changes at each step of an evaluation process, as 

a result of intermediate judgments; that is, the model incorporates constructive influences. The 

difference between Hogarth and Einhorn’s (1992) model and the QT model is that in the former 

the constructive influence is not set, but rather is allowed to vary as a function of the model’s 

parameters. A disadvantage of Hogarth and Einhorn’s (1992) model is that it has many 

parameters. In order to apply the model to an empirical situation as simple as the EB paradigm, 

several assumptions had to be introduced regarding which parameters can be eliminated and how 

the remaining parameters should be constrained. It would be desirable for Hogarth and Einhorn’s 

(1992) theory to be developed more, so that some of these parameter decisions can be less post 

hoc. It is worth noting that Hogarth and Einhorn’s (1992) model can be formulated for the EB 

paradigm in a way that no constructive influences are predicted at all (White et al., 2014). 

Relatedly, it is hard to anticipate the EB bias from Hogarth and Einhorn’s (1992) model.  

Looking at the QT and Hogarth and Einhorn’s (1992) models together, it is worth 

stressing that the tests for the two models were set up in a strict way. Per triplet of judgments 

{FSDR, SSSR, SSDR}, we employed two of the judgments to fix the model parameters, and 

then let the models make a parameter-free prediction for the third judgment. Both models 

performed reasonably well, considering the predictive challenge. For the PN subset of the data, 

Hogarth and Einhorn’s (1992) model was better than the quantum model and for the NP subset 
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of the data the two models were more equivalent. At face value, this conclusion means that 

constructive influences are more flexible than what is assumed by QT. However, there are two 

qualifying considerations which advise caution regarding the strength of this conclusion. First, 

Hogarth and Einhorn’s (1992) model is a more flexible model. Even though we employed BICs 

for model evaluation, which penalize for model complexity, there are more sophisticated 

techniques for doing so (Lee & Wagenmakers, 2013). Second, there are some fairly clear, albeit 

technically complex, directions for improving the QT model, as discussed above. The present 

analyses are important in helping appreciate the conditions of applicability of some common 

technical assumptions in QT cognitive models.  

Relatively speaking, the reasonable performance of the models indicates that the EB 

paradigm does reveal constructive influences from earlier judgments onto later ones. It might 

seem desirable to augment the model-based explanations from the QT and Hogarth and 

Einhorn’s (1992) models with claims concerning the way constructive influences might go hand 

in hand with changes in memory or attention (cf. Sharot et al., 2010). However, neither model 

currently incorporates any corresponding assumptions. Moreover, the empirical results 

themselves offer limited opportunity for interpretations relating to memory or attention 

processes. A possible exception concerns research suggesting that a prior stimulus can lead to 

differential effects on subsequent judgements, depending on the degree of awareness that the 

participant has regarding the stimulus (e.g. Bless & Schwarz, 2010). Whether a simple judgment 

vs. observation for a stimulus leads to increased awareness for the stimulus in subsequent 

judgements remains an open question. However, note that there is ample evidence that simple 

observation of a stimulus already produces plenty of information (e.g., Damasio, 1994; Zajonc, 

1980).  
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 In conclusion, the present results offer reassurance regarding the reality of constructive 

influences in judgment, even under realistic and (relatively speaking) high-stakes circumstances. 

The application of two formal decision models consistent with constructive influences provides 

some insight into the underlying psychological mechanisms. We highlight the QT model, as the 

more novel approach: QT embodies an inherent constructive influence from measurements, 

judgments, or evaluations and has enabled a priori predictions regarding the direction of the EB. 

However, the study of constructive influences with formal methods is fairly novel, and we 

identified several directions along which the two models can be improved. Regarding the QT 

model, there are more sophisticated tools for the various mechanisms which are required for the 

modelling of the EB; and regarding Hogarth and Einhorn’s (1992) model more work is needed to 

identify ways to restrict its parametric flexibility.  
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Appendix 1. Hogarth and Einhorn’s (1992) belief-adjustment model  

We provide a detailed discussion of how to apply Hogarth and Einhorn’s model (1992) to the 

description of constructive influences and the present data. Small parts of this appendix are 

included in the main text. In Hogarth and Einhorn’s (1992) model, there is a distinction between 

step by step (SbS) and end of sequence (EoS) evaluation processes. In principle, the distinction 

between SbS and EoS fits nicely with the EB paradigm, since SbS can be associated with FSDR 

and then SSDR and EoS with SSSR. However, there are several different approaches to 

formulate Hogarth and Einhorn’s (1992) model for the present situation and some of these 

predict no difference depending on the presence of an intermediate rating or not (White et al., 

2014). We outline a more elaborate formulation here which allows a prediction for an EB.  

We define the following variables: 𝑆𝑘  (0 ≤ 𝑆𝑘 ≤ 1) is the impression of participants after 

considering k statements. 𝑠(𝑥𝑘) is the subjective evaluation of the kth statement. 𝑠(𝑥1, … , 𝑥𝑘) is 

the combined impact of all the statements, statement 1 to k. Because in the present case we are 

employing a unipolar scale, we can assume 0 ≤ 𝑠(𝑥𝑘) ≤ 1 (Hogarth & Einhorn, 1992, p.11). R 

is the reference point against which the impact of the kth statement is assessed. 𝑤𝑘  (0 ≤ 𝑤𝑘 ≤ 1) 

is an adjustment weight in relation to how the kth statement impacts on the belief state.  

The main equation of the model (Equation 1 in Hogarth and Einhorn’s, 1992, paper) is  

𝑆𝑘 = 𝑆𝑘−1 + 𝑤𝑘[𝑠(𝑥𝑘) − 𝑅] 

Hogarth and Einhorn (1992) develop the specification of the SbS process more so than of 

the EoS one. We describe the SbS process first. For an SbS process, depending on what R is 

there are two different forms of the model. According to Hogarth and Einhorn, we have an 

adding version, when R=0 and 𝑆𝑘 = 𝑆𝑘−1 + 𝑤𝑘𝑠(𝑥𝑘), or an averaging version, when 𝑅 = 𝑆𝑘−1 

and 𝑆𝑘 = (1 − 𝑤𝑘)𝑆𝑘−1 + 𝑤𝑘𝑠(𝑥𝑘). Hogarth and Einhorn (1992) suggest that the averaging 
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version applies when we have an estimation task, as opposed to an evaluation one, and when 

unipolar scales are employed, as opposed to bipolar ones. Therefore, according to both criteria, 

the SbS process relevant to the present experiments is 𝑆𝑘 = (1 − 𝑤𝑘)𝑆𝑘−1 + 𝑤𝑘𝑠(𝑥𝑘). Some 

authors adopt the adding vs. the averaging version based on considerations of goodness of fit 

(e.g., Trueblood & Busemeyer, 2012), but we prefer to follow the approach from Hogarth and 

Einhorn’s (1992) theoretical assumptions.  

 The final part of the SbS process concerns the way new information updates the existing 

state. Notably, when 𝑠(𝑥𝑘) ≤ 𝑅, we have that 𝑤𝑘 = 𝑎𝑆𝑘−1 and when 𝑠(𝑥𝑘) > 𝑅, 𝑤𝑘 = 𝛽(1 −

𝑆𝑘−1) (these are equations 6a, 6b in Hogarth and Einhorn’s paper). Recall, since we have an 

estimation process, then 𝑅 = 𝑆𝑘−1. The 𝑎, 𝛽 parameters concern sensitivity to negative vs. 

positive information and their bounds are 0 ≤ {𝑎, 𝛽} ≤ 1. Some authors set them to 1, e.g., 

Trueblood and Busemeyer (2012, Equation 36). Moreover, in the present case, allowing the 

sensitivity parameters to be included in the model as free parameters raises risks of 

overparameterization. Given previous research (Trueblood & Busemeyer, 2012) and such 

practical considerations, we believe it is more appropriate to set the sensitivity parameters to 1. 

Our presentation below retains the sensitivity parameters in some cases, just for completeness of 

exposition. Putting everything together, for SbS processes, belief adjustment is governed by the 

pair of equations:  

𝑆𝑘 = {
(1 − 𝑎𝑆𝑘−1)𝑆𝑘−1 + 𝑎𝑆𝑘−1𝑠(𝑥𝑘), 𝑠(𝑥𝑘) ≤ 𝑆𝑘−1

(1 − 𝛽(1 − 𝑆𝑘−1))𝑆𝑘−1 + 𝛽(1 − 𝑆𝑘−1)𝑠(𝑥𝑘), 𝑠(𝑥𝑘) > 𝑆𝑘−1
 

In order to apply the model to the EB paradigm, we need consider that there are two 

stimuli with either positive or negative valence (or approximately so). We assume that 

participants start from a neutral valence state 𝑆0. The SbS process applies to the double rating 

condition. In the PN condition, we have 𝑆𝑃 = (1 − 𝛽(1 − 𝑆0))𝑆0 + 𝛽(1 − 𝑆0)𝑠(𝑥𝑃). Note, if 
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𝛽 = 1, this would be simplified to 𝑆𝑃 = 𝑆0
2 + (1 − 𝑆0)𝑠(𝑥𝑃). Here we have applied the part of 

the SbS process corresponding to 𝑠(𝑥𝑘) > 𝑆𝑘−1, since we can trivially assume that 𝑠(𝑥𝑃) > 𝑆0, 

that is, in the PN condition, the first judgment will be more positive than the neutral baseline. 

Given that after the first judgment the current state is 𝑆𝑃, the state following the second stimulus 

and judgment should be:  

𝑆𝑃𝑁 = (1 − 𝑎𝑆𝑃)𝑆𝑃 + 𝑎𝑆𝑃𝑠(𝑥𝑁) 

In this case we have applied the part of the SbS process corresponding to 𝑠(𝑥𝑘) ≤ 𝑆𝑘−1, since 

trivially 𝑠(𝑥𝑁) ≤ 𝑆𝑃 . To see the logic of this final result, simplify for 𝑎 = 1 so that 𝑆𝑃𝑁 =

(1 − 𝑆𝑃)𝑆𝑃 + 𝑆𝑃𝑠(𝑥𝑁). Also note that 𝑆𝑃 will be close to 1, therefore the first term for 𝑆𝑃𝑁, that 

is (1 − 𝑆𝑃)𝑆𝑃, will be close to 0. So, 𝑆𝑃𝑁~𝑆𝑃𝑠(𝑥𝑁), that is, it will have a low value, since 𝑠(𝑥𝑁) 

itself is low. Notice that by having 𝑆𝑃 in the second equation (for  𝑆𝑃𝑁), we explicitly assume 

linkage between the first and the second judgment. We could instead have 𝑆0, since for Hogarth 

and Einhorn’s (1992) model linkage between pieces of evidence is assumed because all 

information is combined towards an eventual evaluation. However, we think that having 𝑆0 

instead of 𝑆𝑃 in the equation for 𝑆𝑃𝑁 would prejudice against Hogarth and Einhorn’s model too 

much.  

Applying a similar logic, for the NP condition we have:  

𝑆𝑁 = (1 − 𝑎𝑆0)𝑆0 + 𝑎𝑆0𝑠(𝑥𝑁) 

In this case we have applied the part of the process corresponding to 𝑠(𝑥𝑘) ≤ 𝑆𝑘−1. Given that 

our current state is 𝑆𝑁, the state following the second stimulus and judgment should be 

𝑆𝑁𝑃 = (1 − 𝛽(1 − 𝑆𝑁))𝑆𝑁 + 𝛽(1 − 𝑆𝑁)𝑠(𝑥𝑃) 

Regarding the EoS process, Hogarth and Einhorn offer the nearly identical Equations (5) 

and (6) in their paper, which are, respectively:  
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𝑆𝑘 = 𝑆0 + 𝑤𝑘[𝑠(𝑥1, … , 𝑥𝑘) − 𝑅] 

𝑆𝑘 = 𝑠(𝑥1) + 𝑤𝑘[𝑠(𝑥2, … , 𝑥𝑘) − 𝑅] 

They note (p.12) that “𝑠(𝑥1, … , 𝑥𝑘) is some function, possibly weighted average, of the 

individual subjective evaluations (or scale values) of the items of evidence that follow the 

anchor”. We can adopt the same assumption as for SbS processes, that if the evaluation process 

is an estimation one then 𝑅 = 𝑆𝑘−1. For an EoS process, we would have 𝑅 = 𝑆0. Regarding the 

adjustment weight 𝑤𝑘 , note that the task is not one of integrating information towards a single 

evaluation, rather it is a sequential evaluation task. Therefore, we can safely assume that the 

𝑠(𝑥1, … , 𝑥𝑘) function is largely biased towards the last piece of evidence, so that 𝑠(𝑃𝑁) < 𝑆0 

and 𝑠(𝑁𝑃) > 𝑆0. Based on Hogarth and Einhorn’s (1992) discussion for the SbS process, we can 

suggest that when 𝑠(𝑥1, … , 𝑥𝑘) ≤ 𝑆0, we have 𝑤𝑘 = 𝑎𝑆0 and when 𝑠(𝑥1, … , 𝑥𝑘) > 𝑆0, 𝑤𝑘 =

𝛽(1 − 𝑆0), remembering that in an EoS process we have a single updating step. Overall, for an 

EoS process we have:  

𝑆𝑘 = {
𝑆𝑘 = 𝑆0 + 𝑎𝑆0[𝑠(𝑥1, … , 𝑥𝑘) − 𝑆0], 𝑠(𝑥1, … , 𝑥𝑘) ≤ 𝑆0

𝑆𝑘 = 𝑆0 + 𝛽(1 − 𝑆0)[𝑠(𝑥1, … , 𝑥𝑘) − 𝑆0], 𝑠(𝑥1, … , 𝑥𝑘) > 𝑆0
 

 With the above tools in hand, for the PN condition 𝑠(𝑥𝑃, 𝑥𝑁) ≤ 𝑆0 and so we have 

𝑆𝑃𝑁 = 𝑆0 + 𝑎𝑆0[𝑠(𝑥𝑃, 𝑥𝑁) − 𝑆0] 

For the NP condition, it is also trivial to assume that 𝑠(𝑥𝑁, 𝑥𝑃) > 𝑆0 and so we obtain 

𝑆𝑁𝑃 = 𝑆0 + 𝛽(1 − 𝑆0)[𝑠(𝑥𝑁, 𝑥𝑃) − 𝑆0] 

 

Tables 1A and 1B summarize the equations which are relevant for modeling result from the EB 

paradigm.   

 

Table 1A. Hogarth and Einhorn’s (1992) model for describing results from the EB paradigm.  
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SbS EoS 

𝑆𝑃𝑁 = (1 − 𝑎𝑆𝑃)𝑆𝑃 + 𝑎𝑆𝑃𝑠(𝑥𝑁), 

𝑆𝑃 = (1 − 𝛽(1 − 𝑆0))𝑆0 + 𝛽(1 − 𝑆0)𝑠(𝑥𝑃) 

𝑆𝑃𝑁 = 𝑆0 + 𝑎𝑆0[𝑠(𝑥𝑃, 𝑥𝑁) − 𝑆0] 
 

𝑆𝑁𝑃 = (1 − 𝛽(1 − 𝑆𝑁))𝑆𝑁 + 𝛽(1
− 𝑆𝑁)𝑠(𝑥𝑃), 

𝑆𝑁 = (1 − 𝑎𝑆0)𝑆0 + 𝑎𝑆0𝑠(𝑥𝑁) 

𝑆𝑁𝑃 = 𝑆0 + 𝛽(1 − 𝑆0)[𝑠(𝑥𝑁, 𝑥𝑃) − 𝑆0] 

 

Table 1B. Hogarth and Einhorn’s (1992) model for describing results from the EB paradigm, 

with the simplification of setting the sensitivity parameters to 1.  

SbS EoS 

𝑆𝑃𝑁 = (1 − 𝑆𝑃)𝑆𝑃 + 𝑆𝑃𝑠(𝑥𝑁),  

𝑆𝑃 = 𝑆0
2 + (1 − 𝑆0)𝑠(𝑥𝑃)  

𝑆𝑃𝑁 = 𝑆0 + 𝑆0[𝑠(𝑥𝑃, 𝑥𝑁) − 𝑆0] 
 

𝑆𝑁𝑃 = 𝑆𝑁
2 + (1 − 𝑆𝑁)𝑠(𝑥𝑃),  

𝑆𝑁 = (1 − 𝑆0)𝑆0 + 𝑆0𝑠(𝑥𝑁) 

𝑆𝑁𝑃 = 𝑆0 + (1 − 𝑆0)[𝑠(𝑥𝑁, 𝑥𝑃) − 𝑆0] 

 

We provide an examination of Hogarth and Einhorn’s (1992) model for when the 

sensitivity parameters are set to 1, as an illustration of the capacity of the model to accommodate 

the EB. The EB is the finding that the rating for the second stimulus is more intense (more 

positive or more negative in the double rating condition, compared to the single rating one). So, 

in the PN case, the Evaluation bias is the finding that:  

(1 − 𝑆𝑃)𝑆𝑃 + 𝑆𝑃𝑠(𝑥𝑁) < 𝑆0 + 𝑆0[𝑠(𝑥𝑃 , 𝑥𝑁) − 𝑆0] ⟺ 

(1 − 𝑆𝑃 + 𝑠(𝑥𝑁))𝑆𝑃 < 𝑆0 + 𝑆0[𝑠(𝑥𝑃, 𝑥𝑁) − 𝑆0] 

The above can be rewritten as:  

(1 − 𝑆0
2 − 𝑠(𝑥𝑃) + 𝑆0𝑠(𝑥𝑃) + 𝑠(𝑥𝑁))(𝑆0

2 + (1 − 𝑆0)𝑠(𝑥𝑃)) < 𝑆0 + 𝑆0[𝑠(𝑥𝑃 , 𝑥𝑁) − 𝑆0] 

This function has many parameters, 𝑆0, 𝑠(𝑥𝑃), 𝑠(𝑥𝑁), 𝑠(𝑥𝑃, 𝑥𝑁) and it cannot be 

immediately simplified. As for the fits reported in the main text of this paper, we set 𝑠(𝑥𝑃) =

1 − 𝑠(𝑥𝑁) and 𝑠(𝑥𝑃, 𝑥𝑁) = 𝑠(𝑥𝑁), essentially reducing the free parameters to 𝑠(𝑥𝑃) and 𝑆0. This 

gives a condition for when the EB occurs as:  
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(1 − 𝑆0
2 − 𝑠(𝑥𝑃) + 𝑆0𝑠(𝑥𝑃) + 𝑠(𝑥𝑁))(𝑆0

2 + (1 − 𝑆0)𝑠(𝑥𝑃)) < 𝑆0 + 𝑆0[𝑠(𝑥𝑁) − 𝑆0] 

 We can now explore the above function regarding its capacity to produce the EB. We set 

ranges for the remaining free parameters as follows: 𝑠(𝑥𝑃) ∈ [0.5, 1], since 𝑠(𝑥𝑃) is assumed to 

be positive; 𝑆0 ∈ [0.3, 0.7], since we assume that the initial impression is mostly neutral. Then, it 

is immediately clear that the anchoring and adjustment model can produce the EB, for various 

configurations of its parameters (Figure 1S).  

 

Figure 1S. Illustrating Hogarth and Einhorn’s (1992) model: We plot the EB (vertical axis), 

defined as SSSR-SSDR, where SSDR is the second judgment in an SbS process and SSSR is the 

only judgment in an EoS process, in a PN condition. Positive values correspond to an EB in the 

expected direction. The plane in semi-transparent yellow shows the 0 point.  

 

 

If we ignore the sensitivity parameters, the version of Hogarth and Einhorn’s (1992) 

model we outlined above can be directly fitted to empirical data, in exactly the same way as the 

quantum model. That is, per triplet of judgments (SSSR, FSDR, SSDR), we can use two 
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judgments to determine the two parameters of the model and then examine empirical predictions 

against the output of the third equation. Specifically, for the PN condition we have:  

𝑆𝑆𝑆𝑅 = 𝑆0 + 𝑆0[𝑠(𝑥𝑁) − 𝑆0], from the model equation regarding the EoS process.  

𝐹𝑆𝐷𝑅 = 𝑆0
2 + (1 − 𝑆0)𝑠(𝑥𝑃), which is the first judgment in the SbS process.  

𝑆𝑆𝐷𝑅 = (1 − 𝑆𝑃)𝑆𝑃 + 𝑆𝑃𝑠(𝑥𝑁), which is the second judgment in the SbS process.   

Recall that 𝑠(𝑥𝑃, 𝑥𝑁) = 𝑠(𝑥𝑁); 𝑆𝑃 = 𝐹𝑆𝐷𝑅; 𝑠(𝑥𝑃) = 1 − 𝑠(𝑥𝑁).  

For the NP condition we have:  

𝑆𝑆𝑆𝑅 = 𝑆0 + (1 − 𝑆0)[𝑠(𝑥𝑃) − 𝑆0], from the model equation regarding the EoS process.  

𝐹𝑆𝐷𝑅 = (1 − 𝑆0)𝑆0 + 𝑆0𝑠(𝑥𝑁), which is the first judgment in the SbS process.  

𝑆𝑆𝐷𝑅 = 𝑆𝑁
2 + (1 − 𝑆𝑁)𝑠(𝑥𝑃), which is the second judgment in the SbS process.  

In this case, recall that 𝑠(𝑥𝑃, 𝑥𝑁) = 𝑠(𝑥𝑃).  

 If we include the sensitivity parameters, the equations become, for the PN condition:  

𝑆𝑆𝑆𝑅 = 𝑆0 + 𝑎𝑆0[𝑠(𝑥𝑁) − 𝑆0], from the model equation regarding the EoS process.  

𝐹𝑆𝐷𝑅 = (1 − 𝛽(1 − 𝑆0))𝑆0 + 𝛽(1 − 𝑆0)𝑠(𝑥𝑃), which is the first judgment in the SbS process.  

𝑆𝑆𝐷𝑅 = (1 − 𝑎𝑆𝑃)𝑆𝑃 + 𝑎𝑆𝑃𝑠(𝑥𝑁), which is the second judgment in the SbS process.   

For the NP condition we have:  

𝑆𝑆𝑆𝑅 = 𝑆0 + 𝛽(1 − 𝑆0)[𝑠(𝑥𝑁, 𝑥𝑃) − 𝑆0], from the model equation regarding the EoS process.  

𝐹𝑆𝐷𝑅 = (1 − 𝑎𝑆0)𝑆0 + 𝑎𝑆0𝑠(𝑥𝑁), which is the first judgment in the SbS process.  

𝑆𝑆𝐷𝑅 = (1 − 𝛽(1 − 𝑆𝑁))𝑆𝑁 + 𝛽(1 − 𝑆𝑁)𝑠(𝑥𝑃), which is the second judgment in the SbS 

process.  
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