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Abstract. We show that quantile regression is better than ordinary-least-squares (OLS) regression in 
forecasting profitability for a range of profitability measures following the conventional setup of the 
accounting literature, including the mean absolute forecast error (MAFE) evaluation criterion. 
Moreover, we perform both a simulated-data and an archival-data analysis to examine how the 
forecasting performance of quantile regression against OLS changes with the shape of the profitability 
distribution. Considering the MAFE and mean squared forecast error (MSFE) criteria together, quantile 
regression is more accurate relative to OLS when the profitability to be forecast has a heavier-tailed 
distribution. In addition, the asymmetry of the profitability distribution has either a U-shape or an 
inverted-U-shape effect on the forecasting accuracy of quantile regression. An application of the 
distributional shape analysis framework to cash flows forecasting demonstrates the usefulness of the 
framework beyond profitability forecasting, providing additional empirical evidence on the positive 
effect of tail-heaviness and supporting the notion of an inverted-U-shape effect of asymmetry. (JEL 
L25, G17, M21, M41, C53) 
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1. Introduction 

It is in the interest of different parties, including investors, analysts, and companies themselves, to 

obtain more accurate profitability forecasts. Companies have experienced extreme profits and losses 

more often in recent decades.1 This is likely to impact the distributional shape of profitability, increasing 

the difficulty in forecasting profitability accurately.  

To formulate forecasts as accurately as possible, sophisticated market participants are likely to 

resort to statistical methods. Ordinary-least-squares (OLS) regression is a very popular choice, if not 

the prevalent choice. The least squares method has a very long history dating back to 1795 (Courgeau 

2012). In contrast, quantile regression (QR), an alternative approach based on the least absolute 

deviation (LAD) method, was developed only four decades ago by Koenker and Bassett (1978). Unlike 

the least squares method, the LAD method is not sensitive to outliers (Chen et al. 2008). Despite this 

advantage, quantile regression applications in finance and accounting remain not popular.2 However, 

quantile regression has long been considered an attractive method in areas such as medicine, survival 

analysis, and economics (Yu et al. 2003). 

In this study, we conduct a series of analyses to examine whether the quantile regression approach 

to profitability forecasting can be more accurate than the OLS approach, and if so, under what 

distributional shape of profitability, quantile regression is likely to have higher forecasting accuracy 

relative to OLS. The findings of this study will help investors, analysts, and other market participants 

to make better decisions on adopting statistical methods to forecast profitability and guide investment.  

Our first analysis, a forecasting analysis, uses archival data to show that quantile regression 

profitability forecasts are more accurate than OLS forecasts. We follow the conventional setup of the 

accounting literature, including the mean absolute forecast error (MAFE) evaluation criterion (Fairfield 

et al. 2009; Schröder and Yim 2018). We consider four new profitability measures in this analysis. They 

are the gross profitability (GP) defined by Novy-Marx (2013), operating profitability (OP) defined by 

                                                 
1 List of largest corporate profits and losses, 2019. Wikipedia. URL https://en.wikipedia.org/wiki/List_of_largest_corporate_ 
profits_and_losses (accessed 10.8.19).  
2 The applications in finance that we are aware of include return forecasting, portfolio analysis, and risk measurement (Pohlman 
and Ma 2010; Bassett Jr and Chen 2001; Lauridsen, 2000). Recent applications in accounting include forecasting risk in 
earnings (Konstantinidi and Pope 2016). 
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Ball et al. (2015) and two versions of cash-based operating profitability (CbOP) defined by Ball et al. 

(2016).  

Besides the new profitability measures above, we also include the return on equity (ROE) and return 

on net operating assets (RNOA) in our comparison. Prior research on profitability forecasting examines 

these traditional measures of profitability because they are the inputs to accounting-based valuation 

models (Fairfield et al. 2009; Schröder and Yim 2018). Their inclusion here facilitates the comparison 

of our results with prior research findings. It is also interesting to include ROE in its own right. This is 

the profitability measure used in the Hou et al. (2015) q-factor asset pricing model, whose performance 

is comparable to and sometimes even better than that of the Fama and French (1993) three-factor model 

and the Carhart (1997) four-factor model.  

Next, we conduct a large number of simulated experiments (500 for each set of distribution types 

and parameter combinations) to understand why quantile regression forecasts are more accurate and to 

what extent this continues to hold under the mean squared forecast error (MSFE) evaluation criterion, 

as opposed to the conventional MAFE criterion. Using the simulated data, we perform a regression 

analysis to examine how the accuracy of quantile regression forecasts relative to OLS forecasts varies 

with the shape of the profitability distribution. In line with the statistics literature, we focus on the tails 

and the asymmetry of the distribution in characterizing its shape. To ensure the robustness of our results, 

we consider altogether three tail-heaviness measures and five asymmetry measures (including the 

widely used kurtosis and skewness coefficients). The results are highly similar across the measures. In 

the interest of space, we report only two of the tail-heaviness measures and three of the asymmetry 

measures. 

A key finding of our simulated-data distributional shape analysis is that the accuracy of quantile 

regression forecasts relative to OLS forecasts increases as the sampling distribution’s tails become 

heavier. This finding is very consistent across the 16 × 16 parameter combinations (varying from light 

to heavy tails or from low to high asymmetry, holding constant the other aspect) and the four distribution 

types examined and the different tail-heaviness measures considered, controlling for the asymmetry of 

the sampling distribution, as well as its dispersion (in terms of standard deviation). The finding is also 
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robust to whether the Wilcoxon (signed-rank) test or the t test is based on to determine the prevalence 

of a forecasting approach under a given evaluation criterion.  

We also find that the accuracy of quantile regression forecasts varies with different measures of 

asymmetry, however, in a less consistent manner. Note that we allow for positive and negative 

asymmetry, which is like positive and negative skewness that represent a right tail longer than the left 

and the other way around, respectively. The simulated-data analysis shows that according to one of our 

forecasting accuracy measures, asymmetry always has a U-shape effect on the forecasting performance 

of quantile regression, i.e., becoming more accurate relative to OLS when the profitability distribution 

is more asymmetric (in either direction). However, under a second forecasting accuracy measure, the 

effect has an inverted-U shape if the prevalence is determined by the t test but again a U shape if the 

Wilcoxon test is used. This is in sharp contrast to the very consistent effect of tail-heaviness.       

The robust effect of tail-heaviness is in line with a wisdom, from the statistics literature, that is often 

forgotten: The inclusion of even a few extreme observations can increase the sampling variance of the 

mean much more than the median’s. Thus, moving away from normality toward a distribution with 

heavy tails, the sample median can be more efficient than the sample mean as an estimator of the 

population mean (Myers et al. 2010; Wilcox and Rousselet 2018). In light of this, it becomes clear why 

the median forecasts from quantile regression can be more accurate than the mean forecasts from OLS 

when the profitability distribution in concern has heavy tails.    

The robust effect of tail-heaviness is also consistent with a key insight from the machine learning 

literature. Regularization is an important step in machine learning used to prevent overfitting a 

forecasting model. Overfitting occurs when the estimation method works too hard to find patterns in 

the training data and mistakes those patterns due to random chance as though they were highly 

representative features of the underlying true model (James et al. 2013). When this happens, the forecast 

error on the hold-out sample will be quite large because the learned patterns caused by random chance 

are unlikely to reappear.  

Comparing quantile regression to OLS in the forecasting context, the former is likely to mitigate 

overfitting better when the profitability distribution has heavy tails. Extreme values of such distributions 
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are observed more often than those of the Gaussian. Yet, extreme-value observations still occur quite 

rarely and are unrepresentative of other observations much closer to the center. The OLS forecasting 

approach will work hard to adjust its in-sample coefficient estimates to reduce the quadratic loss of 

deviating from the extreme-value observations. In contrast, the absolute loss of quantile regression 

forecasting is less affected by such observations and hence likely to give more accurate forecasts when 

assessed based on out-of-sample data. Thus, the robust nature of quantile regression may be viewed as 

a kind of regularization built into its design.  

To summarize, quantile regression’s advantage in constructing firm-specific forecasts based on 

samples pooled across firms lies in the ability to mitigate the influence of extreme-value observations. 

The advantage is not on forecasting these extreme-value observations but on forecasting the non-

extreme-value observations, which constitute the vast majority of a sample.  

To corroborate the insight from the simulated experiments, we run the same regression relating the 

accuracy of quantile regression to tail-heaviness and asymmetry using archival data. The data used 

comes from the sample we use for the out-of-sample testing in the forecasting analysis. Unlike the 

simulated experiments, where it is straightforward to compute distributional shape measures based on 

many draws of simulated profitability, archival data does not allow this luxury. Even when some firms 

have sufficiently long time series to give reliable estimates, the data requirement would induce a severe 

survivorship bias. Therefore, we estimate the tail-heaviness and asymmetry measures based on the 

profitability distribution across different firms of each industry-year. This is consistent with the cross-

sectional approach to forecasting, which assumes that there is enough similarity across different firms 

to warrant pooling them together for forecasting,  

The above is not the only difference between the simulated and archival data. There are several. 

For example, in the archival data, the individual firms’ absolute and squared forecast errors used for 

computing the forecasting accuracy measures are based on a full model consistent with Fairfield et al. 

(2009), instead of the simple first-order autoregressive model assumed in the simulated experiments. 

Moreover, the archival data comes from an in-sample estimation step using a rolling window of data 

available in the previous ten years, whereas the corresponding step in the simulated experiments uses 
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only one prior period of simulated data.  

Given such differences, it is not obvious that the insights from the simulated experiments would be 

robust enough to hold also in the archival data. We, however, find a varying degree of support for the 

insights. In both the unweighted and the weighted regressions pooling all profitability measures together, 

the effect of tail-heaviness on the accuracy of quantile regression forecasts relative to OLS is 

significantly positive across all the tail-heaviness measures controlling for any one of the asymmetry 

measures. There is also clear support for a positive effect of tail-heaviness from the individual-

profitability regressions for CbOP (cash-flow approach) and ROE and moderate support from those for 

OP, CbOP (balance-sheet approach), and RNOA.     

Considering the differences between the simulated and archival data, we view the above finding 

from the archival data as generally corroborating the simulation results of the tail-heaviness effect. 

Similarly, in the archival-data analysis, the pooled regression and the ROE results show strong support 

for an inverted-U-shape effect of asymmetry, whereas three of the six profitability measures provide 

strong to moderate support for a U-shape effect, with the remaining two having no significant effect 

whatsoever. These results echo the not-so-consistent effect of asymmetry found in the simulated-data 

analysis.  

To demonstrate the usefulness of the distributional shape analysis framework beyond profitability 

forecasting, we apply the framework to examine the out-of-sample forecasting of cash flows from 1990 

to 2015 studied by Nallareddy et al. (2020). We show that the tail-heaviness, measured by the kurtosis, 

of the yearly cash flows distribution across all firms has a positive effect on the incremental forecasting 

accuracy of quantile regression while the asymmetry, measured by the skewness coefficient, has an 

inverted-U-shape effect. We also analyze various subsamples that exclude firms likely to have 

contributed to the tail-heaviness and asymmetry of the cash flows distribution. By confining to these 

subsamples, we expect to see a somewhat weaker relation between the incremental forecasting accuracy 

and the distributional properties. The subsample findings are largely consistent with our expectation. 

All in all, the results of the cash flows distributional shape analysis for the full sample and the various 

subsamples are in line with the earlier findings for profitability forecasting. 
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To our knowledge, we are the first to provide large-sample evidence of the effects of the 

profitability distributional shape on the accuracy of quantile regression forecasts relative to OLS using 

both simulated and archival data. Related prior simulation studies were done twenty to thirty years ago. 

They primarily focus on the least absolute deviation (LAD) estimators, rather than out-of-sample 

forecasts, or otherwise on the small-sample forecasting performance or use a simulation setup that has 

a maximum of 1,000 draws repeated for only 20 times (Mitra 1987; Dielman 1986; Dielman and Rose 

1994). In contrast, our setup has 2,500 draws repeated for 500 times for each set of the distribution 

types and parameter combinations. Most importantly, none of the prior studies has considered 

asymmetry jointly with tail-heaviness. We examine both aspects of the distributional shape using two 

four-parameter distribution families that allow controlling not only the location and scale but also the 

tail and skewness properties separately. These families are the stable and the inverse hyperbolic sine 

(IHS) distributions (Nolan 2013; Nolan 2019; McDonald and Turley 2011).  

In making the contribution above, we develop a framework of conducting simulated-data and 

archival-data analysis of the profitability distributional shape and its relation to forecasting accuracy 

under both the MAFE and MSFE criteria. This includes the use of various new measures, such as the 

incremental and relative forecasting accuracy measures (both the simulated- and archival-data versions) 

and the Mean%Extremes and Tails Asymmetry measures of tail-heaviness and asymmetry, respectively 

(see section 4 for details). To our knowledge, the use of stable and IHS distributions for analysis is also 

new in the accounting literature.   

We are also the first to document the higher accuracy of quantile regression forecasts, compared to 

OLS forecasts, across four new profitability measures and two traditional measures (including ROE). 

In contrast, a recent paper by Evans et al. (2017) focuses on comparing model-based forecasts of ROE 

(both LAD and OLS) to analysts’ explicit forecasts of ROE. They do not at the same time examine the 

profitability distributional shape’s effects on the accuracy of quantile regression forecasts nor consider 

both the MAFE and MSFE criteria.  

This study also adds to the debate on the reasons behind analyst forecast bias (Gu and Wu 2003; 

Basu and Markov 2004) by clarifying the roles of earnings skewness and the assumption of an absolute 
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loss function (or MAFE minimization objective) for analysts. An MAFE minimization objective is very 

plausible, and the distributions of profitability (as a kind of scaled earnings) indeed are often skewed.3 

However, neither of these is necessary to explain why analysts are likely to have formulated their 

forecasts based on a median rather than a mean forecast (estimated with quantile and OLS regressions, 

respectively). Even when analysts have a quadratic loss function and the objective is to minimize MSFE, 

they can still find it gainful to use a quantile regression forecasting approach under the circumstances 

of heavy-tailed distributions, even without skewness. 

2. Related Literature 

2.1. Firm profitability forecasts 

Profitability is a key indicator of company performance and widely used as an input for valuation. 

Traditional measures of profitability include ROE and RNOA. Freeman et al. (1982) show that there is 

regression toward the mean in ROE and establish that extreme ROEs are more transitory than moderate 

ones. Fama and French (2000) provide evidence that mean reversion in firm profitability is a robust 

phenomenon and suggest that changes in profitability and earnings are to some degree predictable. In a 

simple partially adjusted model using US data, they find an estimated rate of mean reversion around 

38% p.a.. Similar results are documented by Allen and Salim (2005) who report a mean reversion rate 

of 25% p.a. in the UK market. We follow Fairfield et al. (2009) in using a forecasting model that 

captures the mean-reversion pattern of profitability conditional on the deviation of a firm’s profitability 

from the median profitability benchmark (Fama and French 2000; Freeman et al. 1982).   

Besides ROE and RNOA, we consider several alternative measures of profitability: GP, OP, and 

CbOP. They are the gross profit, operating profit, and cash-based operating profit, deflated by the total 

assets lagged by one year. Gross profit is the sales minus the cost of goods sold. Operating profit is 

defined as the gross profit minus the selling, general, and administrative expenses reported (i.e., the 

Compustat-adjusted selling, general, and administrative expenses with the expenditures on research and 

development subtracted in order to undo this adjustment by Compustat). Two versions of Cash-based 

                                                 
3 Forecasting earnings in practice is often equivalent to forecasting profitability (e.g., Li 2011; Chang et al. 2016). Data samples 
used to forecast earnings typically include firms of different sizes. Deflation is a technique to control for the size differences. 
Deflating an earnings measure by certain size variable, such as book value of equity, net operating assets, or total assets, gives 
a profitability measure (Li et al. 2014; Schröder and Yim 2018).  
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operating profit are obtained by purging accruals from the operating profit, with the accruals 

constructed using the cash-flow approach or the Sloan (1996) balance-sheet approach (see Ball et al. 

2016, p. 44). Panel A of table 1 summarizes the definitions of the profitability measures examined in 

this study, which are consistent with prior literature (Novy-Marx, 2013; Ball et al. 2015, 2016; Fairfield 

et al. 2009).  

The GP, OP, and CbOP have received considerable attention because of their predictive power in 

explaining the cross section of stock returns (Novy-Marx 2013; Ball et al. 2015, 2016; Fama and French 

2015, 2016, 2017; Akbas et al. 2017). Novy-Marx (2013) find that GP can explain most earnings related 

cross-sectional anomalies in stock returns. Ball et al. (2015), however, show that OP has a much 

stronger link with stock returns than GP. The usefulness of OP in explaining the cross section of stock 

returns has led to its inclusion as a new factor in the latest five-factor asset pricing model (Fama and 

French 2015; 2016; 2017). Adding to the success of OP, Ball et al. (2016) show that CbOP outperforms 

OP in predicting the cross section of stock returns, explaining two anomalies related to accruals and 

profitability measures that include accruals. 

The literature above relates the current profitability to the stock return of the following year. Our 

interest in the profitability measures comes from their potential for valuation. Because valuation is 

forward-looking in nature, this study focuses on the forecasts of the measures, rather than their realized 

current levels.  

2.2. Quantile regression versus OLS  

We propose constructing point forecasts of profitability using quantile regression, as opposed to the 

common practice of using OLS regression.4 Specifically, we focus on the quantile regression for τ = 0.5 

(i.e., the 50th percentile), which is also referred to as the median regression. This special case of quantile 

regression uses the absolute error loss criterion, as opposed to the squared error loss criterion upon 

which OLS regression is based. Median regression has the advantage of being more robust to outliers 

than OLS regression (Cameron and Trivedi 2005).  

                                                 
4 We focus on point forecasts in this study. Despite the availability of methods to produce interval and density forecasts, point 
forecasts remain the most commonly used in practice. They are often easier to understand and act upon and are less costly to 
produce (Diebold 2015). 
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Similarly, quantile regression is a more robust alternative for accommodating dependent variables 

with skewed distributions (Olsen et al. 2012). It is well-documented that firm earnings are skewed (Basu 

1997; Givoly and Hayn 2000; Konstantinidi and Pope 2016). This makes the mean estimation by OLS 

regression less appropriate for capturing the central tendency of the earnings distribution.  

Our analyses show that while both tail-heaviness (reflecting outliers in a sample) and asymmetry 

(as what skewness tries to measure) have effects on the accuracy of quantile regression profitability 

forecasts, the former’s effect is much more consistent than the latter across the different settings 

examined.  

3. Forecasting Analysis 

3.1. Research Design  

Consistent with prior studies such as Fairfield et al. (2009) and Li and Mohanram (2014), we 

construct the profitability forecast for each firm-year in two steps. First, we estimate in-sample a 

forecasting model on a rolling basis using the data of all the firms available in the previous ten years. 

For example, to forecast the profitability of a firm for year T, we first estimate the coefficients of a 

forecasting model using the data of all the firms available from year T−10 to year T−1. Next, we apply 

the estimated coefficients from the in-sample regression to the current-year data of a firm to obtain the 

one-year-ahead profitability forecast of the firm.  

The first forecasting approach considered by us uses the following forecasting model based on the 

economy-wide OLS regression specification studied in Fairfield et al. (2009):  

 𝑥௜,௧ = 𝛼் + 𝛽்𝑥௜,௧ିଵ + 𝛾்𝐷௜,௧ ∗ 𝑥௜,௧ିଵ + 𝜆்𝑃𝑅𝐸𝐷𝐺𝑆𝐿௜,௧ + 𝑢௜,௧,  (1) 

where t = T−10, …, T−1. The dependent variable 𝑥௜,௧, indexed by firm i and year t, stands for one of the 

profitability measures considered: GP, OP, balance-sheet approach CbOP, cash-flow approach CbOP, 

RNOA, and ROE. 𝐷௜,௧ is a dummy variable equal to one if in year t−1, the profitability of firm i is below 

the threshold set at the median profitability of all observations available in the ten years for the in-

sample estimation and equal to zero otherwise. 𝑃𝑅𝐸𝐷𝐺𝑆𝐿௜,௧ is the predicted growth in sales, which is 

found to be useful for profitability forecasting (Fairfield et al. 2009). 𝑢௜,௧ is the error term. The model 
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parameters 𝛼், 𝛽், 𝛾், and 𝜆் are indexed by year T to highlight that they are estimated for each year 

T using data available in the previous ten years.     

To construct PREDGSL, we use the following simple first-order autoregressive model estimated by 

OLS regression on an industry-specific basis: 

 𝑔௜,௧ = 𝜇௝,் + 𝜐௝,்𝑔௜,௧ିଵ + 𝜖௜,௧,  (2) 

where 𝑔௜,௧ is the growth in sales of firm i  in year t,  𝜖௜,௧ is the error term, and t = T−10, …, T−1. The 

model parameters 𝜇௝,் and 𝜐௝,் are indexed by industry j and year T to highlight that the estimation is 

done on an industry-specific basis and for each year T using the previous ten years of data. The 

𝑃𝑅𝐸𝐷𝐺𝑆𝐿௜,் for each firm-year (i,T) is set to the predicted value 𝑚௝,் + 𝑛௝,்𝑔௜,்ିଵ, where 𝑚௝,் and 𝑛௝,் 

are the estimated coefficients of the model parameters 𝜇௝,் and 𝜐௝,். We construct PREDGSL by OLS 

regression on an industry-specific basis since Fairfield et al. (2009) find that sales growth forecasts are 

more accurate when constructed this way, rather than on an economy-wide basis. 5  We classify 

industries based on the first-digit SIC. Schröder and Yim (2018) find that a broad industry classification 

like this better balance the bias from model misspecification and the sample size for industry-specific 

estimation. 

Our second forecasting approach, economy-wide quantile regression, uses the same model as 

specified in equation 1 except that the parameters (𝛼், 𝛽், 𝛾், 𝜆்) are estimated by quantile regression 

for τ = 0.5 (i.e., by median regression). In general, quantile regression estimates are obtained by 

minimizing the loss function 𝜌ఛ(𝑢) on the error term u as illustrated in Figure 1 in the online appendix. 

For τ = 0.5, the loss function becomes symmetric and equals |𝑢|. The quantile regression estimates for 

this case are conditional median estimates. In our context, the estimated coefficients are given by  

 argmin
(ఈ೅, ఉ೅, ఊ೅ , ఒ೅) 

∑ ห𝑥௜,௧ − (𝛼் + 𝛽்𝑥௜,௧ିଵ + 𝛾்𝐷௜,௧ ∗ 𝑥௜,௧ିଵ + 𝜆்𝑃𝑅𝐸𝐷𝐺𝑆𝐿௜,௧)ห.௜,௧    (3) 

Following prior research such as Li et al. (2014) and Fairfield et al. (2009), we use the absolute 

forecast error (AFE) to measure the accuracy of a forecasting approach. Specifically, the AFE of 

                                                 
5 We verify that this also holds for our sample. We discuss the robustness of our results to alternative ways to construct 
PREDGSL in appendix A in the online appendix.  
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forecasting approach A for a firm-year (i,T) is defined as the absolute difference between the actual 

profitability xi,T and the profitability forecast EA[xi,T] constructed with forecasting approach A:   

 AFEA(i,T) = | xi,T – EA[xi,T] |.  (5) 

For example, the profitability forecast constructed with the first approach (i.e., economy-wide OLS) is  

 Eew_OLS[xi,T] = 𝑎் + 𝑏்𝑥௜,்ିଵ + 𝑐்𝐷௜,் ∗ 𝑥௜,்ିଵ + 𝑙்𝑃𝑅𝐸𝐷𝐺𝑆𝐿௜,்,  (6) 

where (𝑎், 𝑏், 𝑐், 𝑙்) are the economy-wide OLS estimates of the model parameters (𝛼், 𝛽், 𝛾், 𝜆்). 

Because the actual profitability is not part of the data used to construct the profitability forecast, the 

assessment by the AFE is said to be out-of-sample.  

Like prior research, we compute the forecast improvement (FI) of an approach (say, A) over another 

(say, B) for a firm-year (i,T) to compare the accuracy of the two forecasting approaches. This is defined 

as the difference in the AFE between the forecasts from the two approaches:   

 FIA,B(i,T) = AFEB(i,T) − AFEA(i,T). (7) 

The FI would be positive if approach A has a lower AFE than approach B. To conclude on which 

of the two approaches is more accurate, we perform tests on the mean as well as the median FI over all 

firm-years. Consistent with the framework of comparing predictive accuracy in Diebold and Mariano 

(1995), the test on the mean FI is a regression-based t-test using robust standard errors controlling for 

two-way clustering by firm and year. The test on the median FI is the Wilcoxon signed-rank test.  

3.2. Sample selection 

Profitability forecasts for the forecasting analysis are constructed for the period from 1989 to 2018 

because some measures require data from the cash flow statements available only from 1987 onwards. 

We use data available in the previous ten years to construct the profitability forecasts for a year. As the 

PREDGSL variable in the forecasting models requires ten earlier years of data to construct, the 

profitability forecasts for 1989 are constructed with data as far back as in 1969.6  

We obtain accounting data of US firms from the Compustat North America annual fundamentals 

                                                 
6 We use up to twenty earlier years of data to construct the first year of profitability forecasts in 1989. For the cash-flow 
approach CbOP, this first year of forecast uses only the previous two years of cash flow data because the source of the data 
(i.e., cash flow statements) is available only from 1987 onward. The estimated coefficients for constructing the 1989 forecasts 
of the cash-flow approach CbOP come from an in-sample regression that uses the 1988 PREDGSL variable, which requires 
sales data of the previous ten years to construct. For this profitability measure, the 1989 forecasts are constructed with data as 
far back as in 1978, whereas for the other profitability measures, as far back as in 1969. 
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file on Wharton Research Data Services (WRDS). Only observations with identifiable SIC codes and 

data available for computing the profitability measures are retained.7 We exclude financial and utility 

firms (SIC from 6000 to 6799, or from 4900 to 4949) because they are highly regulated. In addition, 

the U.S. Postal Service (SIC 4311) and public administration (SIC 9000 or above) are excluded because 

of their special nature.8 

Like Fairfield et al. (2009) and Schröder and Yim (2018), we apply a number of filters. To reduce 

the influence of outliers, we exclude observations with the profitability measure exceeding 1 in absolute 

value from the analysis of that measure. To mitigate the effect of a small denominator on the 

profitability or sales growth measure, observations with lagged total assets, average net operating assets, 

or lagged sales below USD 10 million or average book value of equity below USD 1 million are 

excluded from the analysis of the measure in concern. To further mitigate the effect of mergers and 

acquisitions on the relation between current-year and lagged variables, we exclude observations with 

growth in total assets, net operating assets, sales, or book value of equity exceeding 100%.  

For the in-sample estimation of the forecasting models, we trim all continuous-value dependent and 

predictor variables to the 1st and 99th percentiles. To avoid any bias in assessing the forecast accuracy 

out-of-sample, there is no such trimming in the data upon which the estimated coefficients are applied 

to obtain the forecasts. Given the limited data availability in the early years of our sample period, we 

require at least 100 firm-year observations in the in-sample estimation step to avoid unreliable 

estimation. 

Panel A of table 2 summarizes the sample selection procedure for the forecasting analysis. The 

forecasting models are estimated annually on a rolling basis using data available in the previous ten 

years. The actual number of observations used in each round of in-sample estimation can vary 

depending on the data availability.    

                                                 
7 A firm-year observation’s SIC code is identifiable if its value is not missing or otherwise may be imputed based on the non-
missing SIC code of the firm in the nearest future year.  
8 The U.S. Postal Service category comprises all establishments of the U.S. Postal Service as an agency of the executive branch 
of the U.S. Federal government responsible for providing postal service in the United States. The public administration 
category contains the executive, legislative, judicial, administrative and regulatory activities of Federal, State, local, and 
international governments.  
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Panel B of the table presents the descriptive statistics of the profitability and sales growth measures 

and the main variables required for constructing the measures. On average, the OP and the two versions 

of CbOP are in the range of 12.4% to 14.7%, in contrast to the smaller RNOA and ROE (12.6% and 

2.9%, respectively). As GP only has the cost of goods sold deducted, its average value is much higher 

at 35.6%. The mean growth in sales is 9.2%.  

A value above three in the Kurtosis column indicates that a measure is leptokurtic, i.e., having tails 

heavier than the Gaussian distribution (Westfall 2014). All of the profitability measures are leptokurtic.. 

The Skewness Coefficient column reports the adjusted Fisher-Pearson standardized moment coefficient 

of skewness. All the earnings and size measures are positively skewed (i.e., skewed to the right – with 

a longer right tail than the left). With the deflation by some size measures, all the profitability measures 

are negatively skewed.  

3.3. Results of the forecasting analysis 

Table 3 presents the forecasting analysis results comparing the alternative approach by economy-

wide quantile regression to the benchmark approach by economy-wide OLS regression. We obtain 

strong evidence showing significantly positive forecast improvements for all the profitability measures. 

This holds not only for the mean forecast improvements but also for the median. The levels of 

significance are consistently high (all at the 1% level).   

We perform a number of additional analyses to ensure that our results are not sensitive to various 

methodological and sample choices and can extend beyond profitability forecasting. The analyses are 

summarized in appendix A in the online appendix. 

4. Distributional Shape Analysis: Research Design 

The purpose of the distributional shape analysis is to examine whether as prior research suggests, 

the accuracy of quantile regression forecasts relative to OLS forecasts is related to the distributional 

shape of profitability characterized by its tail-heaviness and asymmetry. We consider both the MAFE 

and the MSFE criterion in this examination.  

Below, we report the research design of the analysis based on data collected from simulated 

experiments. We introduce two measures of forecasting accuracy for the simulated data and define 
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different measures of tail-heaviness and asymmetry. The simulation procedure is described in appendix 

B in the online appendix. The results of this simulated-data analysis and the verification of the key 

findings using archival data are reported in the next section.  

4.1. Forecasting accuracy measures 

Because profitability with a more asymmetric distribution or heavier tails is likely to be harder to 

forecast, we do not expect quantile regression forecasts to become more accurate in those situations in 

an absolute sense. Instead, we focus on assessing whether quantile regression forecasts are relatively 

more accurate than OLS forecasts as the tail-heaviness and asymmetry change, considering both the 

MAFE and MSFE criteria. To do so, we consider measures that benchmark the forecasting performance 

of quantile regression under the MAFE criterion against that of OLS under MSFE.  

To see why we consider such measures, first note that when confining to predictions within the 

training sample, the OLS’s mean forecast is by design optimal under the MSFE criterion; similarly, the 

quantile regression’s median forecast is by design optimal under the MAFE criterion. For a hold-out 

test sample, quantile regression forecasts can be more accurate than OLS forecasts even under the 

MSFE criterion, and the other way around under the MAFE criterion. Nonetheless, due to the ways 

these forecasts are designed, in out-of-sample testing we expect them to have a tendency to prevail 

under the criteria they are optimal for in-sample prediction. Suppose that a forecasting approach 

performs very competitively even under the criterion unfavorable to it and also has expectedly superior 

performance under the criterion favorable to it. However, the other forecasting approach cannot 

analogously achieve similarly strong performance under the two criteria. Then it is reasonable to 

consider the former forecasting approach to be relatively more accurate.  

More precisely, we look at the statistical test result on the FIs in each simulated experiment. Then, 

out of the 500 experiments for each set of the distribution type and parameter combination, we count 

the percentage of the times a forecasting approach prevails under the criterion favorable to it. To 

determine whether quantile regression prevails in an experiment under the MAFE criterion, we compute 

the FIs for the 2,500 draws of next-period profitability in the experiment like what we do in the 

forecasting analysis reported in table 3. Then we perform a statistical test to see if the mean FI is positive 
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at the 0.01 significance level using the t test.9 Similarly, we do this to see whether OLS prevails in an 

experiment under the MSFE criterion with the FIs redefined as the SFE of the quantile regression 

forecast minus that of the OLS. Counting the results over the 500 experiments, we obtain the following 

measures for each set of the distribution type and parameter combination:  

pct.QR.Prevail = Percentage of the times where quantile regression prevails under the MAFE 

criterion; 

pct.OLS.Prevail = Percentage of the times where OLS prevails under the MSFE criterion. 

We also consider the counterparts of these measures by replacing the t test with the Wilcoxon 

signed-rank test. This is a test on the median FI. Thus, the counterpart measures are better described as 

under the median AFE (MdAFE) and median SFE (MdSFE) criteria, respectively. Figure 2 in the online 

appendix illustrates the empirical cumulative distributions of the p-value of the Wilcoxon (signed-rank) 

test and the t test from the 500 experiments for a moderately heavy-tailed, highly skewed stable 

distribution.  

We consider two forecasting accuracy measures that benchmark the performance of quantile 

regression under the MAFE criterion against that of OLS under MSFE. The incremental forecasting 

accuracy of quantile regression is   

IncrAccur = pct.QR.Prevail − pct.OLS.Prevail 

Because pct.OLS.Prevail represents the prevalence of OLS over quantile regression under the MSFE 

criterion, the lower this measure, the more competitive the forecasting performance of quantile 

regression under this criterion unfavorable to it. If quantile regression and OLS do similarly well under 

the criteria favorable to them respectively, IncrAccur should be close to zero. If IncrAccur increases 

above zero for experiments where profitability has heavier tails, this means quantile regression performs 

better in forecasting profitability of that nature relative to OLS.  

Besides IncrAccur, we also consider the relative forecasting accuracy of quantile regression with 

a similar interpretation:10 

                                                 
9 We have considered also the 0.05 significance level, and the findings are highly similar.  

10 To be precise, in defining RelAccur, we set pct.QR.Prevail and pct.OLS.Prevail to 0.5/500 = 0.001 whenever they have a 
zero value. Note that for any given setup of M experiments (M = 500 in our case), the lowest nonzero value of pct.QR.Prevail 
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RelAccur = log(pct.QR.Prevail) – log(pct.OLS.Prevail) 

This is simply the log ratio of the likelihood that quantile regression prevails under MAFE to the 

likelihood that OLS prevails under MSFE.  

4.2. Tail-heaviness and asymmetry measures 

Skewness is a measure of distributional asymmetry (Arnold and Groeneveld 1992). Kurtosis is a 

measure of tail extremity, i.e., either existing outliers in a sample or the propensity of a probability 

distribution to produce outliers (Westfall 2014). Skewness and kurtosis are often defined as the third 

and the fourth standardized central moment. There are variations in the exact formulas to use for their 

sample measures (Cox 2010). We use the following sample measures of skewness and kurtosis, which 

are the b1 and g1 + 3 discussed in Joanes and Gill (1998): 

Skewness coefficient = ∑ [𝑥௜ − mean(𝑥)]ଷ/𝑛sd(𝑥)ଷ
௜   

Kurtosis = ∑ [𝑥௜ − mean(𝑥)]ସ/𝑛sd(𝑥)ସ
௜  

where n is the number of observations in the sample and sd(x) is the sample standard deviation. Though 

commonly used, these moment-based statistics are not the only measures of the asymmetry and tails of 

a distribution (Holgersson 2010; Groeneveld 1998). We therefore consider various alternatives to 

ensure that our results are robust to multiple measures.  

Our second asymmetry measure is the Pearson 2nd skewness coefficient (Doane and Seward 2011):  

Mean-less-median = 3[mean(x) – median(x)]/sd(x). 

This is similar to Gu and Wu’s (2003) MNMD measure but theirs is deflated by the lagged stock price.  

Tails asymmetry is our third asymmetry measure. It is a simple indicator of the difference in the 

relative frequencies in the “tails” of the sample in concern: 

Tails Asymmetry = [1 − F(TailR)] − F(TailL), 

where F is the cumulative relative frequency distribution of the sample in concern, and TailL = median(x) 

− 2.136 sd(x) and TailR = median(x) + 2.136 sd(x) are where the left and right “tails” begin. The literature 

does not have a universally accepted definition of the tails of a distribution. We use Taleb’s definition 

                                                 
and pct.OLS.Prevail is 1/M. So the adjustment above avoids any undefined/infinite value due to the log transformation while 
maintaining the intended ranking of the RelAccur measure. 
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for its simplicity (Taleb 2018; Taleb n.d.).11 Considering the skewed and heavy-tailed distributions in 

our analysis, we replace the sample mean by the sample median as a robust estimate of the central 

tendency, which is likely to have lower sampling variability in this context (Myers et al. 2010; Wilcox 

and Rousselet 2018).   

Our second tail-heaviness measure is the mean percentage in extremes:  

Mean%Extremes = 100 × [F(ExtremeL) + 1 − F(ExtremeR)]/2 

where ExtremeL = median(x) – 4.5 sd(x) and ExtremeR = median(x) + 4.5 sd(x). The measure, in 

percentage points, calculates the mean percentage of the sample falling in the two extreme regions, 

defined as the regions outside the median minus and plus four and a half standard deviations. In our 

simulated-data and archival-data regression analysis, an asymmetry measure is always included as a 

control variable. Therefore, the coefficient of Mean%Extremes captures the effect of heavy tails over 

and above what could have been driven by the long left or right tail of a skewed distribution. We have 

also considered the range of four to five standard deviations in defining the extreme regions, all with 

very similar results in our simulated-data regression analysis. Therefore, we only report the results based 

on four and a half standard deviations.12  

Panel B of table 1 summarizes the variable definitions of the forecasting accuracy and distributional 

property measures. Panel A of table 4 provides the descriptive statistics of these measures for the 

simulated data used in the distributional shape analysis. The forecasting accuracy measures in the panel 

are computed based on the Wilcoxon-test or t-test based forecasting performance of the quantile 

regression and OLS approaches in every 500 simulated experiments of the 4 × 256 sets of the 

distribution type and parameter combination. The measures of the distributional properties are 

computed based on the 2,500 draws of the simulated next-period firm profitability to be forecast in each 

experiment. Presented in the panel are these measures mean- or median-aggregated to the distribution 

type-parameter combination level. 

                                                 
11 Nassim N. Taleb, Distinguished Professor of Risk Engineering at the New York University Tandon School of Engineering 
and the author of the best seller The Black Swan: The Impact of the Highly Improbable, defines the fat tails of a perturbed 
Gaussian distribution to start from the mean minus and plus approximately 2.136 times of the standard deviation. 
12 We also have considered two additional asymmetry measures and one additional tail-heaviness measure explained in 
appendix C in the online appendix. The inclusion of these measures does not change the highly consistent findings of the tail-
heaviness effect. In the interest of space, we omit these measures from the reported tables. 
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It is worth a note that based on the nonparametric Wilcoxon signed-rank test, OLS prevails under 

the MSFE criterion (at the 0.01 significance level) for only 10.2% of the times at maximum. This does 

not necessarily mean that quantile regression prevails more often under this criterion. It can simply be 

that under the robust nonparametric test, it is often hard to tell whether one approach clearly prevails. 

Because the design of the simulated experiments is to examine the impact of asymmetric and heavy-

tailed profitability distributions on the forecasting performance, most of the parameter combinations 

yield distributions that OLS is unlikely to handle well. Therefore, the statistics reported in the panel 

should not be confused with OLS’s typical performance for profitability distributions close to the 

Gaussian.   

 The statistics based on the parametric t test are quite different: The percentage of the times OLS 

prevails under the MSFE criterion can be as high as 61.2%. This sharp difference explains why we 

consider both tests in this analysis in order to see the full picture. 

The mean- and median-aggregated distributional properties are very similar. In either case, the 

mean or median Kurtosis in log scale is above the Gaussian benchmark 1.099, which is consistent with 

the profitability distributions in the simulated experiments typically having heavier tails than the 

Gaussian. In the simulated experiments, the minimum Kurtosis in log scale at 1.102 is attained when 

the tail parameter is close to a level giving the Gaussian as a limiting case of the simulated distribution. 

Nearly all the asymmetry measures have a nonzero mean and median. This reflects the average 

outcome of the randomized samples simulated from population distributions that are heavy-tailed and 

skewed. By design, the parameter combinations used for negatively skewed distribution types are the 

mirror image of those for positively skewed distribution types. But it is still hard to achieve symmetric 

realized sample outcomes when the sampling variability is high owing to population distributions that 

have a high or even infinite variance (e.g., the stable distribution with the α parameter in a range strictly 

below 2; see appendix B in the online appendix for further details).  

5. Distributional Shape Analysis: Regression Results 

5.1. Regression analysis of simulated data 

We use the following regression model to relate the distributional shape of profitability to the 
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forecasting accuracy of quantile regression:  

DepVar = α0 + α1 Heavy + α2 Asymmetric + α3 Asymmetric2 + α4 sd(Profit.)  

+ Distribution type fixed effects + ε,  (11) 

where  

DepVar = IncrAccur or RelAccur;  

Heavy = Mean%Extremes or Kurtosis;  

Asymmetric = Tails asymmetry, Mean-less-median, or Skewness coefficient;  

sd(Profit.) = Standard deviation of the sample distribution of profitability;  

Distribution type fixed effects = Effects of whether the distribution is positively or negatively  

   skewed stable or IHS; 

ε = Error term.  

Driven by goodness-of-fit consideration, the log values of Kurtosis and sd(Profit.) and the cube-

root values of the Asymmetric measures are used in the regression. The cube-root transformation works 

much like the log transformation but accepts and maintains negative values (Cox 2011). We control for 

the sd(Profit.) because not all the measures involve the deflation by the sample standard deviation and 

even when some do, deflation alone is not likely to remove the influence completely.  

Table 5 show the results of the simulated-data regression analysis at the mean-aggregated level for 

the pooled regressions. Without an exception, the effect of tail-heaviness on the incremental forecasting 

accuracy of quantile regression is significantly positive across all the combinations of Heavy and 

Asymmetric measures and for both the Wilcoxon-test and t-test based definitions of IncrAccur.  

For asymmetry, we focus on the shape of its effect on the incremental forecasting accuracy of 

quantile regression. The effect has a U shape with the minimum around −α2/2α3 if the coefficient α3 of 

the Asymmetric2 term is significantly positive (an inverted-U shape if significantly negative). The results 

in the table show that the shape of the asymmetry effect is consistently a U shape throughout.  

The shape of the asymmetry effect is not as consistent throughout table 6, where the results for the 

relative forecasting accuracy of quantile regression for the pooled regressions are presented. However, 

it is still highly consistent when confining to only the Wilcoxon-test or only the t-test based results. The 
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asymmetry effect has a U shape in the former but an inverted-U in the latter. This mixed result is in 

sharp contrast to the highly consistent significantly positive effect of tail-heaviness in table 6.  

The individual-distribution regression results are presented in tables A1 and A2 in the online 

appendix. Regardless of the distributions (stable or IHS) and measures (IncrAccur or RelAccur), the 

results are highly consistent with the corresponding pooled-regression results. In an untabulated 

analysis, we have examined also the median-aggregated versions of the pooled and individual-

distribution regressions, and the results are very similar. 

The findings above continue to hold in the regression analysis at the experimental level where the 

IncrAccur or RelAccur is regressed on the experimental-level profitability distributional properties with 

robust standard errors adjusted for clustering by distribution type-parameter combination. The effect of 

tail-heaviness continues to be significantly positive without an exception. The shape of the asymmetry 

effect again is typically opposite for the Wilcoxon-test versus the t-test defined RelAccur. In the interest 

of space, we do not tabulate these highly similar results.  

In table A3 (in the online appendix), we report the regression results of the building blocks, 

pct.QR.Prevail and pct.OLS.Prevail, of the incremental and relative forecasting accuracy measures 

defined based on the Wilcoxon (signed-rank) test. Panel A of the table shows the findings for the pooled 

sample of the stable and the IHS distributions. The breakdown of IncrAccur or RelAccur into its building 

blocks reveals that pct.OLS.Prevail (i.e., the percentage of the times where OLS prevails under the 

MSFE criterion) always decreases with the tail-heaviness measures. By contrast, pct.QR.Prevail (i.e., 

the percentage of the times where quantile regression prevails under the MAFE criterion) always 

increases with the tail-heaviness measures. This supports the notion that heavy-tailed profitability 

distributions are driving the superior forecasting performance of quantile regression under the MAFE 

criterion reported in table 3.  

Table A4 (in the online appendix) presents the regression results of pct.QR.Prevail and 

pct.OLS.Prevail defined based on the t test. Panel A of the table again shows that pct.QR.Prevail 

increases with the tail-heaviness measures, whereas pct.OLS.Prevail decreases with the measures 

(except for the insignificant findings when Asymmetric is Tails Asymmetry). Therefore, the effect of 
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tail-heaviness on the building blocks of the incremental and relative forecasting accuracy measures is 

highly consistent, regardless of the statistical test used to define the measures.  

The finding of a U-shape effect of asymmetry on pct.QR.Prevail is also highly consistent among 

the regression results of the Wilcoxon-test or the t-test based measure. However, the shape of the 

asymmetry effect on pct.OLS.Prevail is opposite between the regression results reported in panels A of 

tables A3 and A4 (inverted-U in the former and U-shape in the latter). The difference again explains 

why we need both tests to see the not-so-robust effect of asymmetry and the highly robust effect of tail-

heaviness. 

Panels B and C of tables A3 and A4 show the findings for the stable and the IHS distribution 

separately, which are very similar to those for the pooled sample discussed above.  

5.2. Regression analysis of archival data 

In the archival data used for the distributional shape analysis, distributional properties are estimated 

for each profitability measure using all firms in each industry-year. The industry classification is based 

on two-digit SIC. The firm-year observations used to construct the industry-year observations come 

from the sample for out-of-sample testing reported in table 3. A minimum of 20 firms in each industry-

year is required to avoid unreliable estimates of the distributional properties.  

The regression model is  

DepVar = α0 + α1 Heavy + α2 Asymmetric + α3 Asymmetric2 + α4 sd(Profit.)  

+ Profitability fixed effects (only for the pooled all-profitability regression)  

+ First-digit SIC industry fixed effects + Year fixed effects + ε,  (12) 

where the Heavy and Asymmetric measures are the same set as in the simulated-data analysis. The two 

forecasting measures for DepVar are still referred to as IncrAccur and RelAccur. However, they are 

redefined as follows for the archival-data analysis:   

IncrAccur = fir.QR.Prevail − fir.OLS.Prevail 

RelAccur = log(fir.QR.Prevail) – log(fir.OLS.Prevail), 

where fir.QR.Prevail = mean(AFEOLS)/mean(AFEQR) is the forecast improvement ratio (FIR) of quantile 

regression under the MAFE criterion, and fir.OLS.Prevail = [mean(SFEQR)/mean(SFEOLS)]½ is the 
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forecast improvement ratio of OLS under the root mean squared forecast error (RMSFE) criterion. The 

mean(∙) operation in the forecast improvement ratios is taken over all firms in an industry-year. We use 

the RMSFE criteria, which has the same ranking as MSFE, to define fir.OLS.Prevail so that its scale is 

comparable to fir.QR.Prevail and hence the meaning of IncrAccur as their difference is more intuitive.  

Industry and year fixed effects are included in the regression. Robust standard errors adjusted for 

clustering by profitability-industry-year are reported in parentheses in the result tables. Because the 

observations for each profitability measure are at the industry-year level with the industry classification 

based on two-digit SIC, we use the broader first-digit SIC to define the industry for the industry fixed 

effects and robust standard errors.  

Panel B of table 4 provides the descriptive statistics of the archival data used for the distributional 

shape analysis. The mean and median sizes of each industry-year are 82.7 and 50 firms, respectively. 

This variable provides the weights for the size-weighted regressions reported in table 7, in addition to 

the unweighted regressions.  

RMSFE should be an evaluation criterion more favorable to OLS. However, the mean 

fir.OLS.Prevail is below one (0.996), whereas the mean fir.QR.Prevail is above one (1.027). This 

necessarily results in a positive mean IncrAccur, suggesting that on average the forecasting accuracy of 

quantile regression is higher relative to OLS, just like in the simulated data.  

The mean and median of the asymmetry measures are nonzero, also like in the simulated data. Note 

that the Kurtosis reported in the panel and used in the regressions are in log scale. Therefore, its median 

at 1.521 is equivalent to a value of 4.577 in the original scale. This suggests that over half of the 

industry-years have profitability distributions with tails heavier than the Gaussian. However, with a 

minimum at 0.274 for Kurtosis in log scale, there should be cases with tails lighter than the Gaussian, 

which do not exist at all in the simulated data. This could be a reason for expecting results somewhat 

different from the simulated-data analysis.  

Table 7 shows the results of the archival-data analysis at the industry-year level for IncrAccur as 

the dependent variable. In panel A where the results for the pooled all-profitability regressions are 

reported, the effect of tail-heaviness on the incremental forecasting accuracy of quantile regression is 
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significantly positive across all the combinations of Heavy and Asymmetric measures, as well as for 

both the unweighted and size-weighted regressions. This highly consistent result also appears in panel 

E for the individual-profitability regressions for CbOP_CF (except for the Mean%Extremes-Skewness 

coefficient combination) and more or less so in panel G for ROE (with nine of the twelve estimated 

coefficients being significantly positive). There is also moderate support for this tail-heaviness effect 

from the regressions for OP, CbOP_BS, and RNOA in panels C, D, and F, respectively (with five to 

seven of the estimated coefficients being significantly positive). Across all the regressions, whenever 

the estimated coefficients for the tail-heaviness effect are significant, they have a positive sign (except 

for the Kurtosis-Skewness coefficient combination in the unweighted and size-weighted regressions for 

GP). Considering the differences between the simulated and archival data, we view the tail-heaviness 

effect found here as generally corroborating the simulation results of the tail-heaviness effect.  

In table A5 (provided in the online appendix), we report the regression results of the building blocks 

of the archival-data incremental and relative forecasting accuracy measures. The results show that 

without an exception, fir.OLS.Prevail = [mean(SFEQR)/mean(SFEOLS)]½ decreases with the tail-

heaviness measures, whereas fir.QR.Prevail = mean(AFEOLS)/mean(AFEQR) increases with the 

measures. This finding confirms that the heavy tails of profitability distribution are a driver behind the 

superior forecasting performance of quantile regression under the MAFE criterion reported in table 3. 

Figures 3a to 3c in the online appendix depict the archival-data based finding of the tail-heaviness effect 

(illustrated in terms of Kurtosis) on the incremental forecasting accuracy IncrAccur of quantile 

regression and its components fir.QR.Prevail and fir.OLS.Prevail.  

The pooled regressions in panel A of table 7 support the notion of an inverted-U-shape asymmetry 

effect (with ten of the twelve estimated coefficients of the Asymmetric2 term being significantly 

negative). However, this finding appears to be driven by the result for ROE in panel G. Across all the 

regressions for the other profitability measures, either there is no significant asymmetry effect (for 

CbOP_BS and CbOP_CF in panels D and E) or any significant finding is consistent with a U-shape 

asymmetry effect (for GP, OP, and RNOA in panels B, C, and F).     

The untabulated results for RelAccur as the dependent variable are very similar. Nearly all of the 
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regressions for GP and RNOA and half of those for OP have a significantly positive coefficient of the 

Asymmetric2 term while the regressions for CbOP_BS and CbOP_CF show no significant effect of 

asymmetry. As in table 7, the inverted-U-shape asymmetry effect found in the pooled regressions 

appears to be driven by the regression results for ROE. Additionally, the pooled and individual 

regressions for the profitability measures show consistent support for a positive tail-heaviness effect. 

Overall, the evidence from the archival-data analysis confirms the key insight about the tail-heaviness 

effect from the simulated-data analysis and highlights again the mostly significant but not entirely 

consistent effect of asymmetry (i.e., can be U-shape or inverted-U-shape).  

6. Application to Cash Flows Forecasting 

To demonstrate the usefulness of our analysis framework beyond profitability forecasting, we apply 

the framework to examine the out-of-sample forecasting of cash flows studied by Nallareddy et al. 

(2020). They find that under the MSFE criterion and using the OLS approach, the first-order 

autoregressive model (i.e., using lagged cash flows to forecast cash flows) is more accurate than the 

forecasting-by-lagged-earnings model (i.e., using lagged earnings to forecast cash flows).  

Following Nallareddy et al. (2020), we examine the out-of-sample forecasts of cash flows for the 

period from 1990 to 2015. We are interested to relate together the annual time series of the cash flows 

distributional properties and the incremental forecasting accuracy of the quantile regression approach 

against OLS. Prior research mentions that the cash flows distribution has changed significantly over 

time (Gassen 2018). In an untabulated analysis, we find a moderate upward trend in the yearly variation 

in the tail-heaviness of the cash flows distribution across all firms: An OLS regression of the tail-

heaviness, measured as Kurtosis in log scale, on the year gives a slope coefficient of 0.027 (with a p-

value of 0.053).  

We compare the quantile regression approach to estimating the first-order autoregressive cash flows 

forecasting model against the OLS approach. Note that the forecasting-by-lagged-earnings model does 

not fit into the simple/extended first-order autoregressive structure upon which our analysis framework 

was developed. Therefore, we do not expect that the quantile regression approach would prevail for this 

second model or that the (perhaps non-positive) incremental forecasting accuracy would be associated 
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with the distributional properties of cash flows. Nonetheless, we are interested to know whether to some 

extent the key insights of our framework might hold after controlling for the cross-sectional variability 

of the lagged earnings in the distributional shape analysis. Controlling for the variability of this only 

predictor variable of the second model is important because the variability is likely to adversely impact 

the forecasting accuracy of both the quantile regression and the OLS approach perhaps unevenly.     

We obtain the data of US firms from the Compustat North America annual fundamentals file on 

WRDS. Consistent with Nallareddy et al. (2020), cash flows (CF) are measured as cash flows from 

operations adjusted for extraordinary items and discontinued operations (derived from cash flow 

statements). Earnings (EARN) are defined as income before extraordinary items and discontinued 

operations. Both variables are deflated by average total assets. Following them, we exclude observations 

meeting any of the following criteria: (i) sales of less than $10M;  (ii) share price of less than $1; (iii) 

SIC code in the range of 6000-6999 (i.e., in the financial services sector).13 This would yield a sample 

of 110,597 firm-year observations if we also followed them to winsorize all continuous independent 

variables of the full sample at the 1 percent and 99 percent levels. Instead, we mitigate the effects of 

outliers only at the in-sample estimation stage to finalize the sample used for the regression with a given 

rolling window of data (e.g., the most recent two years of available data as in Nallareddy et al. 2020). 

This alternative approach avoids a look-ahead bias. We truncate the top and the bottom one percent of 

all continuous variables used in the in-sample regression, rather than winsorize them, to be consistent 

with the literature our profitability forecasting analysis builds upon. This prevents the clustering of 

observations around the 1 percent and 99 percent levels. To avoid a look-ahead bias, there is no 

truncation on the sample of the prior-year data for constructing the out-of-sample forecasts and on the 

sample of the forecasts constructed.  

Figure 4 in the online appendix depicts the annual time series of the incremental forecasting 

accuracy, its forecast improvement ratio components, and the distributional properties of cash flows. 

The temporal variation of the incremental forecasting accuracy (IncrAccur) of the quantile regression 

approach (against OLS) for the first-order autoregressive cash flows model is shown in the first chart 

                                                 
13 If the SIC code of a firm-year observation is missing, we impute the value based on the non-missing SIC code of the firm 
in the nearest future year. 

Electronic copy available at: https://ssrn.com/abstract=3008666



 
26 

 

of the figure. The components of IncrAccur, namely the forecast improvement ratio of quantile 

regression under the MAFE criterion (fir.QR.Prevail) and the forecast improvement ratio of OLS under 

the RMSFE criterion (fir.OLS.Prevail), are depicted in the second and the third chart of the figure, 

respectively. Note that fir.QR.Prevail is above one nearly for all the years, whereas fir.OLS.Prevail is 

more evenly spread above and below one. In other words, the quantile regression approach clearly 

prevails under the MAFE criterion but the OLS approach on average cannot prevail even under the 

RMSFE criterion more favorable to it. Consequently, IncrAccur is positive for most of the years.   

The fourth chart in the figure depicts the Kurtosis of the cash flows distribution, which shows a 

moderate upward trend. The Skewness coefficient of the distribution depicted in the fifth chart indicates 

that except for a few years, the cash flows distribution is negatively skewed. The last chart shows the 

temporal variation of the standard deviation of the cash flows distribution. The standard deviation 

measures the cross-sectional variability of the cash flows in a year. This is likely to affect the forecasting 

accuracy of both the quantile regression and the OLS approach. It is included in the distributional shape 

analysis regression to help identify the incremental effects of the tail-heaviness and the asymmetry, 

measured by the Kurtosis and the Skewness coefficient, respectively.  

The first two columns in panel A of table 8 present the results of the distributional shape analysis 

for the first-order autoregressive cash flows model. They are based on in-sample estimation with a two-

year rolling window as in Nallareddy et al. (2020). The dependent variable is IncrAccur. The first 

column in the panel shows a positive mean IncrAccur at the 5% significance level. The second column 

shows that this positive incremental forecasting accuracy of the quantile regression approach is partly 

driven by the tail-heaviness of the cash flows distribution (a positive coefficient for Heavy at the 5% 

significance level). The significantly negative coefficient of the Asymmetric2 term means that the 

asymmetry has an inverted-U-shape effect on the incremental forecasting accuracy. These findings are 

consistent with the pooled regression archival-data results of our analysis for profitability forecasting. 

To assess the robustness of these findings, we also perform the analysis for different in-sample 
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estimation windows up to ten years of available data as in our analysis for profitability forecasting.14 

The results are similar to those for the two-year window case. For brevity, we only tabulate the results 

for the four-year, seven-year, and ten-year cases in columns 4 to 5 and 7 to 10 in the panel.  

Column 3 in the panel presents the two-year window result for the forecasting-by-lagged-earnings 

model. The (untabulated) corresponding mean IncrAccur is −0.009 (at the 10% significance level), 

which becomes insignificantly different from zero for any longer window up to ten years. Column 3 

shows that controlling for the standard deviation of the lagged earnings distribution, the incremental 

forecasting accuracy of the quantile regression approach is less negative when the cash flows 

distribution has heavier tails. The asymmetry of the cash flows distribution has an inverted-U-shape 

effect on the IncrAccur even for this model not having a first-order autoregressive structure. These 

findings are robust to widening the in-sample estimation window to three or four years. For brevity, we 

tabulate only the four-year case in column 6 of the panel. 

We also analyze various subsamples that exclude firms likely to have contributed to the tail-

heaviness and asymmetry of the cash flows distribution. By confining to these subsamples, we expect 

to see a somewhat weaker relation between the incremental forecasting accuracy and the distributional 

properties. Intangible-intensive firms are excluded from the first subsample we consider. Gassen (2018) 

points out that “new firms from intangible intensive industries, in particular from the health sector, 

appear to have extremely left skewed cash flow” (Gassen 2018, p. 19). He also notices that from 2005 

to 2014, a sizable fraction of the negative cash flow firms are based in the health sector. Many of them 

tend to be “relatively small, and invest heavily in in-process research and development” (p. 13). 

Following him, we define intangible-intensive firms as the firms in the Health, Business Equipment, 

Telecommunication, and Chemical sectors of the Fama-French 12-industry classification.15   

The second subsample we examine excludes loss firms (i.e., EARN < 0) because they are likely to 

be associated with negative cash flows, contributing to the negative skewness of the cash flows 

                                                 
14 This means that for the ten-year window case, only three years of available cash flows data (i.e., from 1987 to 1989) are 
used in the in-sample estimation for constructing the 1990 forecasts; only four years of available data (i.e., from 1987 to 1990) 
are used for constructing the 1991 forecasts; so and so forth. See also the explanation in footnote 6. 
15  We downloaded the definition of the Fama-French 12-industry classification on 31 March 2020 from 
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_12_ind_port.html. 
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distribution. Smaller firms might also contribute to the cash flows distribution’s negative skewness. 

They are excluded from the third subsample. It seems reasonable to expect that the firms in the tails of 

the cash flows distribution overlap somewhat with the firms in the tails of the firm size distribution. 

Excluding these firms might lighten the tails of the cash flows distribution. We investigate this case in 

the fourth subsample. Measuring firm size by total assets, we define smaller firms as those below the 

first quartile of the firm size distribution and define “size-tails” firms as those outside the 12.5th and the 

87.5th percentile of the distribution.   

Panel B of table 8 shows the subsample findings based on the first-order autoregressive cash flows 

model with a two-year in-sample estimation window. Compared to the full-sample result (columns 1 

and 2 of panel A), the magnitude or statistical significance of the mean IncrAccur and of the estimated 

coefficients of the Heavy and the Asymmetric2 term is generally lower. The few exceptions are the 

statistically more significant mean IncrAccur of the same magnitude in column 7 and the statistically 

more significant coefficients of the Heavy and the Asymmetric2 term in column 8 (but both coefficients 

are lower in magnitude). 

All in all, we conclude that the results of the distributional shape analysis for the cash flows 

forecasting models and for the various subsamples are in line with our earlier findings for profitability 

forecasting.  

7. Conclusion 

We document that quantile regression performs better than OLS in forecasting profitability for a 

range of profitability measures under the MAFE criterion. Considering the MAFE and the MSFE 

(RMSFE) criteria together, we also examine how quantile regression’s forecasting performance, 

benchmarked against OLS’s, changes with the shape of the profitability distribution. Specifically, we 

perform a distributional shape analysis to relate the forecasting accuracy of quantile regression against 

OLS to the tail-heaviness and asymmetry of profitability distribution. In the simulated-data analysis of 

this analysis, we find a robust positive effect of tail-heaviness on the accuracy of quantile regression 

relative to OLS. The finding is strongly to moderately supported by the archival-data results of the 

pooled and individual profitability (unweighted and size-weighted) regressions.  
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In the simulated-data analysis, we also find that asymmetry has either a U- or inverted-U-shape 

effect on the accuracy of quantile regression forecasts. Which of these holds depends on (i) whether 

Wilcoxon- or t-test based evidence is relied upon to determine the prevalence of a forecasting approach 

under a given evaluation criterion (MAFE or MSFE) and (ii) whether the accuracy measure is the 

incremental or the relative forecasting accuracy. The archival-data analysis also shows mixed evidence: 

The effect of asymmetry is mostly significant but not entirely consistent (i.e., can be U-shape or 

inverted-U-shape).   

Applying the distributional shape analysis framework to cash flows forecasting, we demonstrate 

the usefulness of the framework beyond profitability forecasting. The empirical results support the 

notion of an inverted-U-shape effect of asymmetry and provide additional evidence on the positive 

effect of tail-heaviness. 

In this study, we have only scratched the surface of quantile regression’s usefulness by focusing on 

the median regression as its special case. Quantile regression in general can produce optimal 

estimates/forecasts for asymmetric loss functions (when τ ≠ 0.5). Prior research has argued that financial 

analysts have an asymmetric loss function (Clatworthy et al. 2011). If they do, would they find 

formulating their forecasts based on quantile regression with τ ≠ 0.5 more aligned with their forecasting 

objective? What is the implied τ that can be inferred from analyst earnings forecasts? Are the implied 

τ’s similar across different types of analyst forecasts (cash flow forecasts, revenue forecasts, etc)? These 

are interesting questions left for future research to answer.   
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TABLE 1   
Variable definitions 

 

Panel A: Forecasting analysis   

Variable Description Computation / WRDS mnemonic 

(USD million)     

OPINC Operating income after depreciation  OIADP 

NI Income before extraordinary items - 
available for common equity 

IBCOM 

TA Total assets AT 

NOA†  Net operating assets Common stock (CEQ) + Preferred stock (PSTK) + Long-term debt (DLTT) + Debt in current liabilities (DLC) + 
Minority interest (MIB) – Cash and short-term investments (CHE) 

BV Common/Ordinary shareholder’s equity CEQ 

SALES Sales/Turnover (net) SALE 

GP Gross profitability [Sales (SALE) - Cost of goods sold (COGS)] scaled by Total assets (AT) lagged by one year 

OP†  Operating profitability [Gross profit (SALE - COGS) - Selling, general, and administrative expenses reported (XSGA - XRD)] scaled by 
Total assets (AT) lagged by one year 

CbOP_BS†  Cash-based operating profitability       
(balance-sheet approach) 

[Operating profit (SALE - COGS - (XSGA -XRD)) - △(Accounts receivable (RECT)) - △(Inventory (INVT)) - 
△(Prepaid expenses (XPP)) + △(Deferred revenue (DRC+DRLT)) + △(Trade accounts payable (AP)) + △(Accrued 
expenses (XACC))] scaled by Total assets (AT) lagged by one year 

CbOP_CF†  Cash-based operating profitability        
(cash-flow approach) 

[Operating profit (SALE - COGS - (XSGA -XRD)) + Decrease in accounts receivable (RECCH) + Decrease in 
inventroy (INVCH) + Increase in accounts payable and accrued liabilities (APALCH)] scaled by Total assets (AT) 
lagged by one year 

RNOA Return on net operating assets OPINCt/(0.5*(NOAt + NOAt–1)) 

ROE Return on equity NIt/(0.5*(BVt + BVt–1)) 

GSL Growth in sales (SALESt - SALESt–1)/ SALESt–1 

   
† If the data items from balance sheet accounts and the data items for preferred stock, long-term debt, debt in current liabilities, minority interest, cash and short-term investments, 
selling, general, and administrative expenses, research and development expenses, decrease in accounts receivable, decrease in inventroy, and increase in accounts payable and accrued 
liabilities are not available, they are assumed to equal zero. 
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TABLE 1 (continued)  
Variable definitions     

Panel B: Simulated-data and achival-data distributional shape analyses   

Variable Description Computation 
   

sd(Profit.)† Standard deviation of the sample distribution of profitability 

Mean%Extremes Mean percentage in extremes (in percentage points) = 100 × [F(ExtremeL) + 1 − F(ExtremeR)]/2 
where F is the cumulative relative frequency distribution of the sample profitability 
distribution in concern, ExtremeL = median(x) – 4.5 sd(x), and ExtremeR = median(x) + 
4.5 sd(x) 

Kurtosis† Moment coefficient of kurtosis 
 

Tails Asymmetry‡ Tails asymmetry  = [1 − F(TailR)] − F(TailL), 
where TailL = median(x) − 2.136 sd(x) and TailR = median(x) + 2.136 sd(x) are where the 
left and right “tails” begin (Taleb 2018; Taleb n.d.)  

Mean-less-median‡ Pearson 2nd skewness coefficient  = 3[mean(x) – median(x)]/sd(x) 

Skewness Coeff.‡ Adjusted Fisher-Pearson standardized moment coefficient of 
skewness 

 

Simulated-data analysis: 
 

pct.QR.Prevail Percentage of the times where QR prevails under MAFE  To determine whether QR prevails in an experiment under  MAFE, compute the FIs for 
the 2,500 draws of next-period profitability in the experiment like in the forecasting 
analysis reported in table 3. Then perform a statistical test to see if the mean FI (median 
FI) is positive at the 0.01 significance level using the t test (Wilcoxon signed rank test). 
Count the results over the 500 experiments of a given set of distribution type and 
parameter combination to obtain the measure.  

pct.OLS.Prevail Percentage of the times where OLS prevails under MSFE  Similar to the above but the FIs are redefined as the difference from the SFE of the QR 
forecast minus that of the OLS  

IncrAccur Incremental forecasting accuracy (simulated-data version) = pct.QR.Prevail − pct.OLS.Prevail 

RelAccur  Relative forecasting accuracy (simulated-data version) = log(pct.QR.Prevail) – log(pct.OLS.Prevail),  
where pct.QR.Prevail and pct.OLS.Prevail are set to 0.001 whenever they have a zero 
value  

Archival-data analysis: 
 

fir.QR.Prevail Forecast improvement ratio of QR under MAFE  = mean(AFEOLS)/mean(AFEQR) 

fir.OLS.Prevail Forecast improvement ratio of OLS under RMSFE  = [mean(SFEQR)/mean(SFEOLS)]½   

IncrAccur Incremental forecasting accuracy (archival-data version) = fir.QR.Prevail – fir.OLS.Prevail  

RelAccur  Relative forecasting accuracy (archival-data version) = log(fir.QR.Prevail) – log(fir.OLS.Prevail)  

† In log value when used in regression analysis; ‡ In cube-root value when used in regression analysis.   

= ∑ [𝑥𝑖 − mean(𝑥)]4/𝑛sd(𝑥)4
𝑖  

= ∑ [𝑥𝑖 − mean(𝑥)]3/𝑛sd(𝑥)3
𝑖
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TABLE 2  
Sample selection and descriptive statistics   

Panel A: Sample selection   

Observations with identifiable SIC codes and data available for computing the profitability measures 288,318 

Less financial and utility firms, U.S. postal service, and public administration  62,787 

Less observations with profitability larger than 1 in absolute value 3,792 

Less observations with small denominators  18,024 

Less observations with growth exceeding 100%  8,621 

Observations available for the in-sample estimation step of the forecasting analysis 195,094 

Observations available for the in-sample estimation step for each profitability measure:  
GP 163,704 

OP 171,528 

CbOP_BS 171,493 

CbOP_CF 137,026 

RNOA 144,829 

ROE 169,832 

This panel summarizes the procedure for selecting the firm-year observations available for use in the in-sample estimation step where the estimated coefficients are obtained to construct 
the forecast improvements for the period from 1989 to 2018. The in-sample estimation step is done for each year in the period on a rolling basis using data available in the previous ten 
years. The step requires the use of the predictor variable PREDGSL (i.e., the forecast of growth in sales), which needs another ten earlier years of data to construct. Thus, the data used in 
the in-sample estimation step can go as far back as from 1969. Depending on the data availability, the actual number of observations used in each round of in-sample estimation can vary. 
A firm-year observation’s SIC code is identifiable if its value is not missing or otherwise may be imputed based on the non-missing SIC code of the firm in the nearest future year. See 
table 1 for the definitions of the profitability measures.  

  

Electronic copy available at: https://ssrn.com/abstract=3008666



36 

TABLE 2 (continued)         
Sample selection and descriptive statistics                 

Panel B: Descriptive statistics                

Variable Obs. Mean Std. Dev. Min. Median Max. Kurtosis 
Skewness 

Coefficient 

Gross profit  163,704 833.6 3,785.7 -21,536 66.2 137,106 217.33 12.01 

Operating profit  171,528 472.6 2,391.6 -21,913 26.4 95,801 228.94 12.61 

Cash-based operating profit (balance-sheet approach) 171,493 468.6 2,471.5 -40,099 23.8 177,172 415.10 14.89 

Cash-based operating profit (cash-flow approach) 137,026 534.1 2,582.8 -21,874 28.6 92,472 198.80 11.71 

OPINC 144,829 293.7 1,518.5 -19,095 18.3 71,230 369.10 14.92 

NI 169,832 134.6 1,016.6 -44,574 3.3 59,531 564.51 16.11 

TA (lagged) 171,744 2,941.2 14,721.7 10.0 193.0 507,560 259.84 13.64 

NOA (average) 144,829 2,000.1 9,575.2 10.0 165.9 314,139 265.07 13.78 

BV (average) 169,832 1,109.9 6,067.6 1.0 75.1 280,051 389.91 16.50 

SALES (lagged) 168,846 2,501.5 12,352.4 10.0 207.6 496,785 424.29 16.65 

GP 163,704 35.6% 25.7% -100.0% 33.3% 100.0% 4.53 -0.21 

OP 171,528 14.7% 16.2% -99.9% 14.6% 100.0% 7.83 -0.41 

CbOP_BS 171,493 13.6% 16.5% -99.8% 13.9% 100.0% 7.68 -0.46 

CbOP_CF 137,026 12.4% 16.8% -99.8% 12.9% 100.0% 7.74 -0.57 

RNOA 144,829 12.6% 22.0% -99.9% 12.7% 100.0% 7.54 -0.62 

ROE 169,832 2.9% 25.5% -100.0% 8.6% 99.8% 6.10 -1.37 

GSL 168,846 9.2% 24.6% -100.0% 7.9% 100.0% 5.48 0.08 
         

This panel gives an overview of the full sample of firm-year observations available for use in the in-sample estimation step where the estimated coefficients are obtained to construct the 
forecast improvements for the period from 1989 to 2018. The observations actually used in the in-sample estimation regression for each rolling 10-year window are subject to a further 
top and bottom 1% trimming. Except for the profitability and growth in sales measures, the descriptive statistics reported are in USD million. See table 1 for the variable definitions. The 
Kurtosis column reports the sample measure of the moment coefficient of kurtosis, which is nonnegative and has a value of 3 for the Gaussian distribution. The Skewness Coefficient 
column reports the sample measure of the adjusted Fisher-Pearson standardized moment coefficient of skewness, with negative and positive values representing negative and positive 
skewness, respectively.  
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TABLE 3         
Profitability forecast improvements of economy-wide quantile regression over economy-wide OLS regression         
         

            Value   p-Value 
GP         
Mean      0.138% *** 0.000 
Median           0.121% *** 0.000 
OP         
Mean      0.063% *** 0.000 
Median           0.096% *** 0.000 
CbOP_BS         
Mean      0.068% *** 0.000 
Median           0.061% *** 0.000 
CbOP_CF         
Mean      0.071% *** 0.000 
Median           0.070% *** 0.000 
RNOA         
Mean      0.120% *** 0.000 
Median           0.193% *** 0.000 
ROE         
Mean      0.415% *** 0.000 
Median           1.492% *** 0.000 

         
This table reports the profitability forecast improvements of economy-wide quantile regression (the alternative approach) over economy-wide OLS regression (the benchmark approach). 
The forecast improvement (FI) is measured through a matched-pair comparison of the absolute forecast errors (AFE) from the two competing approaches. A positive FI means the AFE 
from the benchmark approach is larger than that from the alternative approach. Both forecasting approaches use the same set of predictor variables like those in Fairfield et al. (2009). 
Regardless of the forecasting approaches, the underlying predictor variable PREDGSL (i.e., the predicted growth in sales) is constructed in the same way by industry-specific OLS 
regression. Industries are defined using the first-digit Standard Industry Classification (SIC). Firm-specific forecasts are obtained in two steps. First, the coefficients of a forecasting 
model are estimated for each year from 1989 to 2018 on a rolling basis using data available in the previous ten years. Next, the estimated coefficients are applied on a firm's data of the 
previous year to obtain a firm-specific forecast for the current year. The mean and median FIs of all firm-years in the sample are reported for different profitability measures (see table 1 
for the definitions of the measures). The test on the mean FI is a regression-based t-test using robust standard errors controlling for two-way clustering by firm and year. The test on the 
median FI is the Wilcoxon signed rank test. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
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TABLE 4      
Descriptive statistics of the simulated and archival data for the distributional shape analysis       

Panel A: Simulated data           

Variable Mean Std. Dev. Min. Median Max. 

Forecasting accuracy (Wilcoxon-test based):       
pct.QR.Prevail 0.319 0.313 0.012 0.185 0.972 
pct.OLS.Prevail 0.033 0.026 0.000 0.026 0.102 
IncrAccur  0.286 0.334 -0.074 0.154 0.972 
RelAccur  2.148 2.333 -1.792 2.001 6.879       

Forecasting accuracy (t-test based):       
pct.QR.Prevail 0.338 0.323 0.014 0.198 0.982 
pct.OLS.Prevail 0.175 0.139 0.000 0.124 0.612 
IncrAccur  0.164 0.251 -0.106 0.057 0.924 
RelAccur  0.518 1.566 -1.792 0.342 6.820       

Distributional properties (mean-aggregated):       
Mean%Extremes 0.136 0.102 0.000 0.137 0.319 
Kurtosis† 3.884 1.897 1.104 4.294 7.247 
Tails Asymmetry‡ -0.002 0.193 -0.279 -0.046 0.278 
Mean-less-median‡ -0.006 0.464 -0.684 -0.114 0.683 
Skewness Coeff.‡ -0.097 1.253 -2.451 -0.315 2.275 
sd(Profit.)† 0.798 1.325 0.224 0.264 8.127       

Distributional properties (median-aggregated):       
Mean%Extremes 0.135 0.104 0.000 0.140 0.320 
Kurtosis† 3.092 1.635 1.102 3.142 7.204 
Tails Asymmetry‡ -0.003 0.194 -0.279 0.000 0.278 
Mean-less-median‡ -0.009 0.467 -0.685 -0.143 0.686 
Skewness Coeff.‡ -0.110 1.107 -2.320 -0.313 2.162 
sd(Profit.)† 0.530 0.719 0.198 0.242 4.702 

            

This panel gives an overview of the 1,024 observations used in the simulated-data distributional shape analysis based on data from 512,000 simulated experiments (500 experiments for 
each set of the distribution type and parameter combination over 4 distribution types and 256 parameter combinations). The forecasting accuracy measures are computed based on the 
Wilcoxon-test or t-test based forecasting performance of the quantile regression and OLS approaches in each 500 simulated experiments of the 4 ×  256 sets of the distribution type and 
parameter combination. The measures of the distributional properties are computed based on the 2,500 draws of the simulated next-period firm profitability to be forecast in each 
simulated experiement. Presented in this panel are these measures mean- or median-aggregrated to the distribution type-parameter combination level.  See panel B of table 1 for the 
definitions of the forecasting accuracy and distributional property measures. † indicates measures in log value and ‡ in cube-root value.  
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TABLE 4 (continued)      
Descriptive statistics of the simulated and archival data for the distributional shape analysis       

Panel B: Archival data           

Variable Mean Std. Dev. Min. Median Max. 
      

Size of indusry-year 82.2 82.7 20 50 631 
      

Forecasting accuracy:       
fir.QR.Prevail 1.027 0.067 0.817 1.016 2.130 

fir.OLS.Prevail 0.996 0.043 0.571 1.000 1.246 

IncrAccur  0.031 0.104 -0.422 0.018 1.559 

RelAccur  0.298 1.003 -4.137 0.181 13.167 
      

Distributional properties:      
Mean%Extremes 0.076 0.236 0.000 0.000 2.174 

Kurtosis† 1.552 0.475 0.274 1.521 3.583 

Tails Asymmetry‡ 0.011 0.302 -0.523 0.000 0.497 

Mean-less-median‡ 0.064 0.671 -1.142 0.378 1.129 

Skewness Coeff.‡ -0.034 0.896 -1.741 -0.126 1.568 

sd(Profit.)† -1.978 0.386 -3.238 -1.964 -0.824 
            

This panel gives an overview of the 6,751 observations of profitability-industry-years used in the archival-data distributional shape analysis. The sample is constructed from the firm-year 
observations used in the out-of-sample tests reported in table 3. A minimum of 20 firms in each industry-year is required to avoid unreliable estimates of the profitability distributional 
properties. The industry classification is based on two-digit SIC. The forecasting accuracy measures are computed for each profitability measure using the forecasting performance of the 
quantile regression and OLS approaches for each firm aggregated across all firms in an industry-year based on the mean absolute forecast error (MAFE) and root mean squared forecast 
error (RMSFE) criteria, respectively. The measures of the distributional properties are computed for each profitability measure based on all firms in an industry-year. See panel B of table 
1 for details of the variable definitions. † indicates variables in log value and ‡ in cube-root value.  
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TABLE 5                  
Incremental forecasting accuracy and profitability distributional shape: simulated-data analysis at the mean-aggregrated level (pooled sample of both stable and IHS distributions)       
                  

IncrAccur = Wilcoxon-test based 
 

    t-test based     
                  

Asymmetric = Taleb's Tails Asym.‡ 
 

Mean-less-median‡ 
 

Skewness Coeff.‡ 
 

Taleb's Tails Asym.‡ 
 

Mean-less-median‡ 
 

Skewness Coeff.‡ 
                  

Heavy = Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis† 
                  
 (1) (2)  (1) (2)  (1) (2)  (1) (2)  (1) (2)  (1) (2)              

Heavy 1.814*** 0.170***  1.233*** 0.114***  1.554*** 0.143***  1.676*** 0.159***  1.521*** 0.142***  1.566*** 0.148***  
(0.038) (0.004) 

 
(0.035) (0.003) 

 
(0.045) (0.005) 

 
(0.024) (0.002) 

 
(0.026) (0.003) 

 
(0.025) (0.003) 

 t = 47.330 t = 44.716  t = 34.963 t = 33.000  t = 34.545 t = 31.211  t = 70.898 t = 66.436  t = 57.674 t = 54.490  t = 61.825 t = 57.012                   
Asymmetric -0.071 -0.049  -0.013 -0.006  -0.003 0.001  -0.053 -0.033  -0.003 0.006  0.004 0.009**  

(0.058) (0.060) 
 

(0.016) (0.017) 
 

(0.007) (0.007) 
 

(0.036) (0.038) 
 

(0.012) (0.013) 
 

(0.004) (0.004) 

 t = -1.226 t = -0.814  t = -0.773 t = -0.335  t = -0.461 t = 0.133  t = -1.482 t = -0.872  t = -0.215 t = 0.491  t = 1.139 t = 2.176                   
Asymmetric2 7.348*** 7.682***  1.449*** 1.497***  0.145*** 0.151***  1.225*** 1.507***  0.309*** 0.359***  0.034*** 0.037***  

(0.206) (0.212) 
 

(0.028) (0.028) 
 

(0.004) (0.005) 
 

(0.127) (0.132) 
 

(0.021) (0.021) 
 

(0.003) (0.003) 

 t = 35.639 t = 36.294  t = 52.260 t = 53.521  t = 32.447 t = 32.095  t = 9.638 t = 11.373  t = 14.925 t = 16.965  t = 13.680 t = 13.914                   
sd(Profit.)† 0.143*** 0.089***  0.137*** 0.101***  0.072*** 0.025***  0.128*** 0.077***  0.128*** 0.082***  0.114*** 0.066***  

(0.003) (0.004) 
 

(0.002) (0.003) 
 

(0.004) (0.004) 
 

(0.002) (0.002) 
 

(0.002) (0.002) 
 

(0.002) (0.002) 

 t = 47.912 t = 25.068  t = 59.618 t = 36.058  t = 19.113 t = 6.366  t = 69.188 t = 34.614  t = 74.381 t = 38.917  t = 53.717 t = 29.158                   
Intercept -0.453*** -1.047***  -0.416*** -0.811***  -0.437*** -0.929***  -0.303*** -0.856***  -0.298*** -0.793***  -0.301*** -0.812***  

(0.015) (0.021) 
 

(0.010) (0.016) 
 

(0.014) (0.022) 
 

(0.009) (0.013) 
 

(0.008) (0.012) 
 

(0.008) (0.012) 

                                    
Profitability FE? Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Observations 1,024 1,024  1,024 1,024  1,024 1,024  1,024 1,024  1,024 1,024  1,024 1,024 
Adjusted R2 0.893 0.885  0.935 0.931  0.883 0.870  0.928 0.920  0.936 0.930  0.934 0.925 
                                    

This table is based on observations from 512,000 simulated experiments mean-aggregated to the distribution type-parameter combination level. In each experiment, 2,500 draws of next-period firm profitability are 
simulated by applying the intercept and slope parameters and 2,500 independent draws of the error term of a first-order autoregressive model on 2,500 draws of current-period firm profitability, which were 
simulated from iterative applications of the model on a simulated firm profitability seed. The draws of the error term at different stages and the draw of the seed are independent draws from a stable or IHS 
distribution with their tail and skewness parameters set to different values. 500 experiments are run for each of the 256 parameter combinations and 4 distribution types  (i.e., a positively or negatively skewed stable 
or IHS distribution). Sample distributional properties of profitability are measured using the 2,500 draws of the simulated next-period firm profitability to be forecast in each experiment. See appendix B in the 
online appendix for further details of the simulated experiments. The regression model in this table is IncrAccur = α0 + α1 Heavy + α2 Asymmetric + α3 Asymmetric2 + α4 sd(Profit.) + Distribution type fixed effects + 
ε, where the following experiment-level explanatory variables are mean-aggregated to the distribution type-parameter combination level: Heavy = Mean%Extremes or Kurtosis†; Asymmetric = Tails asymmetry‡, 
Mean-less-median‡, or Skewness coefficient‡; sd(Profit.)† = Standard deviation of the sample distribution of profitability. See panel B of table 1 for further details of the variable definitions. For brevity, the 
coefficient of the distribution type fixed effect is omitted from all the panels and the coefficients of the intercept and sd(Profit.) are omitted from the panels for individual distributions. Standard errors are reported 
in parentheses. † indicates variables in log value and ‡ in cube-root value; ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.  
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TABLE 6                  
Relative forecasting accuracy and profitability distributional shape: simulated-data analysis at the mean-aggregrated level (pooled sample of both stable and IHS distributions)       
                  

RelAccur = Wilcoxon-test based 
 

    t-test based     
 

  
 

  
 

  
 

  
 

  
 

  
Asymmetric = Taleb's Tails Asym.‡ 

 
Mean-less-median‡ 

 
Skewness Coeff.‡ 

 
Taleb's Tails Asym.‡ 

 
Mean-less-median‡ 

 
Skewness Coeff.‡ 

                  
Heavy = Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis† 

                  
 (1) (2)  (1) (2)  (1) (2)  (1) (2)  (1) (2)  (1) (2)              

Heavy 13.615*** 1.296***  10.253*** 0.967***  12.035*** 1.128***  9.193*** 0.873***  11.151*** 1.042***  10.649*** 1.024***  
(0.166) (0.016) 

 
(0.158) (0.015) 

 
(0.227) (0.023) 

 
(0.205) (0.020) 

 
(0.213) (0.021) 

 
(0.206) (0.020) 

 t = 82.170 t = 78.990  t = 65.073 t = 63.457  t = 53.102 t = 48.115  t = 44.932 t = 43.895  t = 52.400 t = 49.795  t = 51.815 t = 51.322                   

Asymmetric -0.988*** -0.826***  -0.357*** -0.296***  -0.117*** -0.083**  -0.092 0.019  -0.068 -0.003  -0.002 0.030  
(0.251) (0.260) 

 
(0.074) (0.075) 

 
(0.034) (0.037) 

 
(0.310) (0.315) 

 
(0.099) (0.103) 

 
(0.031) (0.032) 

 t = -3.938 t = -3.181  t = -4.852 t = -3.931  t = -3.388 t = -2.237  t = -0.295 t = 0.059  t = -0.688 t = -0.026  t = -0.070 t = 0.958 
                  

Asymmetric2 51.131*** 53.219***  9.269*** 9.560***  0.974*** 1.002***  -17.614*** -16.148***  -4.149*** -3.781***  -0.482*** -0.473***  
(0.891) (0.911) 

 
(0.124) (0.124) 

 
(0.023) (0.024) 

 
(1.100) (1.104) 

 
(0.167) (0.170) 

 
(0.020) (0.020) 

 t = 57.376 t = 58.418  t = 74.850 t = 77.324  t = 43.222 t = 41.598  t = -16.008 t = -14.627  t = -24.805 t = -22.274  t = -23.575 t = -23.088 
                  

sd(Profit.)† 1.002*** 0.588***  0.941*** 0.631***  0.493*** 0.127***  0.859*** 0.581***  0.861*** 0.529***  1.064*** 0.735***  
(0.013) (0.015) 

 
(0.010) (0.012) 

 
(0.019) (0.021) 

 
(0.016) (0.019) 

 
(0.014) (0.017) 

 
(0.017) (0.017) 

 t = 77.527 t = 38.402  t = 91.682 t = 51.048  t = 25.903 t = 6.186  t = 53.822 t = 31.285  t = 62.139 t = 31.146  t = 61.604 t = 42.077                   

Intercept -2.913*** -7.439***  -2.582*** -5.949***  -2.779*** -6.671***  -1.203*** -4.250***  -1.209*** -4.836***  -1.030*** -4.561***  
(0.064) (0.092) 

 
(0.047) (0.073) 

 
(0.072) (0.111) 

 
(0.079) (0.112) 

 
(0.063) (0.100) 

 
(0.065) (0.095) 

                                    
Profitability FE? Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Observations 1,024 1,024  1,024 1,024  1,024 1,024  1,024 1,024  1,024 1,024  1,024 1,024 

Adjusted R2 0.959 0.956  0.973 0.972  0.939 0.930  0.862 0.857  0.892 0.884  0.889 0.887 
                                    

This table is based on observations from 512,000 simulated experiments mean-aggregated to the distribution type-parameter combination level. In each experiment, 2,500 draws of next-period firm profitability are 
simulated by applying the intercept and slope parameters and 2,500 independent draws of the error term of a first-order autoregressive model on 2,500 draws of current-period firm profitability, which were 
simulated from iterative applications of the model on a simulated firm profitability seed. The draws of the error term at different stages and the draw of the seed are independent draws from a stable or IHS 
distribution with their tail and skewness parameters set to different values. 500 experiments are run for each of the 256 parameter combinations and 4 distribution types (i.e., a positively or negatively skewed stable 
or IHS distribution). Sample distributional properties of profitability are measured using the 2,500 draws of the simulated next-period firm profitability to be forecast in each experiment. See appendix B in the 
online appendix for further details of the simulated experiments. The regression model in this table is RelAccur = α0 + α1 Heavy + α2 Asymmetric + α3 Asymmetric2 + α4 sd(Profit.) + Distribution type fixed effects + 
ε, where the following experiment-level explanatory variables are mean-aggregated to the distribution type-parameter combination level: Heavy = Mean%Extremes or Kurtosis†; Asymmetric = Tails asymmetry‡, 
Mean-less-median‡, or Skewness coefficient‡; sd(Profit.)† = Standard deviation of the sample distribution of profitability. See panel B of table 1 for further details of the variable definitions. For brevity, the 
coefficient of the distribution type fixed effect is omitted from all the panels and the coefficients of the intercept and sd(Profit.) are omitted from the panels for individual distributions. Standard errors are reported 
in parentheses. † indicates variables in log value and ‡ in cube-root value; ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.  

  

Electronic copy available at: https://ssrn.com/abstract=3008666



42 

TABLE 7                  
Incremental forecasting accuracy and profitability distributional shape: Achival-data analysis at the mean-aggregrated industry-year level with industry-year distributional properties 
  
Panel A: Pooled sample of all profitability measures                                  

    Unweighted     
 

    Size-weighted     
                  

Asymmetric = Taleb's Tails Asym.‡ 
 

Mean-less-median‡ 
 

Skewness Coeff.‡ 
 

Taleb's Tails Asym.‡ 
 

Mean-less-median‡ 
 

Skewness Coeff.‡ 
                  

Heavy = Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis†   Mean%Extrem Kurtosis† 
                  
 -1 -2  -1 -2  -1 -2  -1 -2  -1 -2  -1 -2              

Heavy 0.025*** 0.021***  0.026*** 0.021***  0.022*** 0.028***  0.026*** 0.021***  0.028*** 0.021***  0.027*** 0.028***  
(0.01) (0.00) 

 
(0.01) (0.00) 

 
(0.01) (0.00) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.01) (0.00) 

 t = 4.953 t = 7.698  t = 5.175 t = 7.571  t = 3.695 t = 7.152  t = 5.954 t = 8.533  t = 6.409 t = 8.544  t = 5.394 t = 8.870                   

Asymmetric 0.019*** 0.019***  0.008*** 0.008***  0.003** 0.004***  0.017*** 0.017***  0.008*** 0.008***  0.002* 0.003***  
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 t = 4.161 t = 4.148  t = 3.862 t = 3.720  t = 2.229 t = 2.622  t = 4.424 t = 4.586  t = 4.762 t = 4.746  t = 1.918 t = 2.708                   

Asymmetric2 -0.063*** -0.062***  -0.019*** -0.016***  0.005* -0.008**  -0.094*** -0.087***  -0.023*** -0.020***  0.001 -0.008***  
(0.02) (0.02) 

 
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.02) (0.02) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 t = -2.867 t = -2.827  t = -3.605 t = -3.007  t = 1.673 t = -2.024  t = -4.704 t = -4.397  t = -5.365 t = -4.639  t = 0.360 t = -2.831                   

sd(Profit.)† -0.013*** -0.019***  -0.014*** -0.020***  -0.015*** -0.020***  0.006* 0.002  0.005 0.001  0.005 0.000  
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 t = -3.210 t = -4.528  t = -3.533 t = -4.819  t = -3.575 t = -4.853  t = 1.819 t = 0.593  t = 1.469 t = 0.230  t = 1.484 t = -0.020                   

Intercept -0.069*** -0.112***  -0.069*** -0.112***  -0.082*** -0.125***  -0.024** -0.065***  -0.024** -0.065***  -0.034*** -0.082***  
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

                                    
Profitability FE? Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 

Observations 6,751 6,751  6,751 6,751  6,751 6,751  6,751 6,751  6,751 6,751  6,751 6,751 

Adjusted R2 0.136 0.141  0.136 0.140  0.134 0.139  0.169 0.173  0.170 0.174  0.164 0.170 
                                    

The industry-year observations used in this table are constructed from the firm-year observations used in the out-of-sample tests reported in table 3. A minimum of 20 firms in each industry-year is required to avoid 
unreliable estimates of the profitability distributional properties. The industry classification is based two-digit SIC. The regression model is IncrAccur = α0 + α1 Heavy + α2 Asymmetric + α3 Asymmetric2 + α4 
sd(Profit.) + Profitability fixed effects (only for the pooled all-profitability regression) + First-digit SIC Industry fixed effects + Year fixed effects + ε, where IncrAccur is redefined as the forecast improvement ratio 
of quantile regression (QR) under the mean absolute forecast error (MAFE) criterion minus the forecast improvement ratio of OLS under the root mean squared forecast error (RMSFE); Heavy = Mean%Extrem or 
Kurtosis†; Asymmetric = Tails Asymmetry‡, Mean-less-median‡, or Skewness coefficient‡; sd(Profit.)† = Standard deviation of the profitability distribution in an industry-year. See table 1 for the details of the 
variable definitions. For brevity, the coefficients of the profitability, industry, and year fixed effects are omitted from all the panels and the coefficients of the intercept and sd(Profit.) are omitted from the panels for 
individual profitability measures. Robust standard errors adjusted for clustering by profitability-industry-year are reported in parentheses. The industry classification for the robust standard errors is based on the 
first-digit SIC. The Size-weighted columns are the results of weighted regressions with the size of each industry-year as the weight. The number of observations in the individual-profitability regressions ranges from 
1,081 to 1,153.  † indicates variables in log value and ‡ in cube-root value; ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.  
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TABLE 7 (continued)                 
Incremental forecasting accuracy and profitability distributional shape: Achival-data analysis at the mean-aggregrated industry-year level with industry-year distributional properties 
  
                   

    Unweighted     
 

    Size-weighted                       
Asymmetric = Taleb's Tails Asym.‡ 

 
Mean-less-median‡ 

 
Skewness Coeff.‡ 

 
Taleb's Tails Asym.‡ 

 
Mean-less-median‡ 

 
Skewness Coeff.‡                   

Heavy = Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 

Panel B: GP                                   
Heavy 0.040 0.012  0.045* 0.015  -0.015 -0.047***  0.033 0.012  0.042* 0.020**  -0.023 -0.043***  

(0.03) (0.01) 
 

(0.03) (0.01) 
 

(0.03) (0.02) 
 

(0.02) (0.01) 
 

(0.02) (0.01) 
 

(0.02) (0.01) 

Asymmetric -0.065*** -0.065***  -0.017** -0.019**  -0.032*** -0.037***  -0.089*** -0.087***  -0.027*** -0.027***  -0.036*** -0.042***  
(0.02) (0.02) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

                  
Asymmetric2 0.136* 0.112  0.037** 0.037**  0.049*** 0.087***  0.142** 0.117*  0.027* 0.027*  0.050*** 0.079***  

(0.07) (0.08) 
 

(0.02) (0.02) 
 

(0.01) (0.02) 
 

(0.07) (0.07) 
 

(0.01) (0.01) 
 

(0.01) (0.01) 
                                    

 No No  No No  No No  No No  No No  No No 
Adjusted R2 0.201 0.201  0.196 0.195  0.214 0.220  0.242 0.242  0.223 0.224  0.257 0.264 
                                    

Panel C: OP                                   
Heavy 0.018* 0.012**  0.014 0.012**  -0.004 -0.002  0.014 0.010**  0.012 0.010**  -0.003 0.000  

(0.01) (0.01) 
 

(0.01) (0.01) 
 

(0.01) (0.01) 
 

(0.01) (0.01) 
 

(0.01) (0.01) 
 

(0.01) (0.01) 

Asymmetric -0.006 -0.007  -0.013*** -0.013***  -0.006** -0.006**  -0.003 -0.003  -0.008** -0.008**  -0.004 -0.004  
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

Asymmetric2 0.045 0.044  0.019* 0.020*  0.018*** 0.018**  0.001 0.006  0.014 0.015  0.013** 0.012**  
(0.05) (0.05) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.04) (0.04) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

                                    
FE? No No  No No  No No  No No  No No  No No 
Adjusted R2 0.148 0.150  0.156 0.159  0.156 0.156  0.249 0.250  0.253 0.255  0.254 0.254 
                                    

Panel D: CbOP_BS                                 
Heavy 0.016** 0.003  0.015** 0.003  0.021** 0.006  0.014** 0.006  0.014** 0.005  0.021*** 0.010**  

(0.01) (0.00) 
 

(0.01) (0.00) 
 

(0.01) (0.01) 
 

(0.01) (0.00) 
 

(0.01) (0.00) 
 

(0.01) (0.00) 

Asymmetric 0.003 0.003  -0.004 -0.004  0.001 0.001  0.005 0.005  -0.001 -0.001  0.002 0.002  
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

Asymmetric2 -0.001 -0.001  0.003 0.004  -0.005 -0.003  -0.022 -0.020  -0.001 0.000  -0.005 -0.005  
(0.03) (0.03) 

 
(0.01) (0.01) 

 
(0.00) (0.01) 

 
(0.03) (0.03) 

 
(0.01) (0.01) 

 
(0.00) (0.00) 

                  
                                    
FE? No No  No No  No No  No No  No No  No No 
Adjusted R2 0.137 0.134  0.139 0.136  0.139 0.134  0.263 0.261  0.262 0.260  0.264 0.262 
                                    

See the note under panel A for variable descriptions and other details.         
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TABLE 7 (continued)                 
Incremental forecasting accuracy and profitability distributional shape: Achival-data analysis at the mean-aggregrated industry-year level with industry-year distributional properties       
                   

    Unweighted     
 

    Size-weighted     
                  

Asymmetric = Taleb's Tails Asym.‡ 
 

Mean-less-median‡ 
 

Skewness Coeff.‡ 
 

Taleb's Tails Asym.‡ 
 

Mean-less-median‡ 
 

Skewness Coeff.‡ 
                  

Heavy = Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 
 

Mean%Extrem Kurtosis† 

Panel E: CbOP_CF                                 

Heavy 0.017** 0.014***  0.016* 0.015***  0.009 0.013**  0.019** 0.013***  0.019** 0.013***  0.020** 0.016***  
(0.01) (0.00) 

 
(0.01) (0.00) 

 
(0.01) (0.01) 

 
(0.01) (0.00) 

 
(0.01) (0.00) 

 
(0.01) (0.01) 

Asymmetric 0.003 0.003  -0.001 -0.001  -0.001 -0.001  0.006 0.006  -0.001 -0.001  0.000 0.001  
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

Asymmetric2 -0.004 -0.004  0.009 0.012  0.007 0.001  -0.026 -0.021  0.002 0.004  -0.001 -0.005  
(0.04) (0.04) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.03) (0.03) 

 
(0.01) (0.01) 

 
(0.00) (0.01) 

                                    
Profitability No No  No No  No No  No No  No No  No No 
Adjusted R2 0.156 0.161  0.157 0.162  0.158 0.161  0.265 0.268  0.264 0.267  0.264 0.268 
                                    
Panel F: RNOA                                 

Heavy 0.005 0.016***  0.001 0.014**  -0.018 0.003  0.015* 0.017***  0.012 0.015***  -0.004 0.004  
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

Asymmetric 0.017* 0.018**  0.002 0.002  0.005 0.005*  0.020*** 0.022***  0.007** 0.008**  0.004 0.004*  
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

 
(0.01) (0.01) 

 
(0.00) (0.00) 

 
(0.00) (0.00) 

Asymmetric2 0.149*** 0.170***  0.031*** 0.035***  0.020*** 0.013*  0.120*** 0.140***  0.017* 0.021**  0.018*** 0.014**  
(0.05) (0.05) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.04) (0.04) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

                                    
Profitability No No  No No  No No  No No  No No  No No 
Adjusted R2 0.200 0.206  0.195 0.199  0.198 0.196  0.270 0.275  0.265 0.269  0.267 0.267 
                                    
Panel G: ROE                                 

Heavy 0.015 0.021**  0.018 0.020**  0.024* 0.047***  0.016 0.029***  0.021* 0.028***  0.026** 0.059***  
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

Asymmetric 0.118*** 0.120***  0.047*** 0.048***  0.041*** 0.039***  0.112*** 0.118***  0.048*** 0.049***  0.038*** 0.037***  
(0.02) (0.02) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

 
(0.02) (0.02) 

 
(0.01) (0.01) 

 
(0.01) (0.01) 

Asymmetric2 -0.041 -0.014  -0.048*** -0.044**  0.010 -0.014  -0.111 -0.053  -0.053*** -0.043***  0.011 -0.016  
(0.08) (0.08) 

 
(0.02) (0.02) 

 
(0.01) (0.01) 

 
(0.08) (0.08) 

 
(0.02) (0.02) 

 
(0.01) (0.01) 

                                    
Profitability No No  No No  No No  No No  No No  No No 
Adjusted R2 0.375 0.377  0.382 0.383  0.370 0.376  0.412 0.416  0.421 0.424  0.399 0.411 
                                    

See the note under panel A for variable descriptions and other details.         
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Table 8            
Incremental forecasting accuracy and cash flows distributional shape: Quantile regression forecasting versus OLS  
Panel A: Lagged cash flows or lagged earnings as the predictor variable, with short to long in-sample estimation windows             
Window (years) = 2  4  7  10               
Predictor = CFt-1 CFt-1 EARNt-1  CFt-1 CFt-1 EARNt-1  CFt-1 CFt-1  CFt-1 CFt-1               
 (1) (2) (3)  (4) (5) (6)  (7) (8)  (9) (10) 
                                          
Intercept 0.009** -0.088** -0.164***  0.011* -0.100* -0.161***  0.014** -0.066  0.016*** -0.053 

 (0.004) (0.038) (0.041)  (0.006) (0.049) (0.048)  (0.006) (0.048)  (0.005) (0.041)               
Heavy  0.016** 0.007**  

 0.022*** 0.011**  
 0.011***  

 0.006* 
  (0.006) (0.003)  

 (0.005) (0.004)  
 (0.003)  

 (0.003)               
Asymmetric  -0.001 0.008***  

 -0.006 0.002  
 -0.005  

 -0.004 
  (0.006) (0.002)  

 (0.006) (0.004)  
 (0.005)  

 (0.005)               
Asymmetric2  -0.027** -0.013**  

 -0.026*** -0.013**  
 -0.011**  

 -0.003 
  (0.011) (0.006)  

 (0.006) (0.005)  
 (0.005)  

 (0.006)               
sd(CF)  0.677** 1.715***  

 0.62 1.618***  
 0.465  

 0.444 
  (0.297) (0.418)  

 (0.407) (0.479)  
 (0.422)  

 (0.357)               
sd(EARNt-1)   -0.315***  

  -0.343***  
  

 
  

   (0.028)  
  (0.030)  

  
 

  

                                          
Observations 26 26 26  26 26 26  26 26  26 26 
Adjusted R2 0 0.232 0.743  0 0.23 0.821  0 0.063  0 0.076 
                            

This panel presents the results of the cash flows distributional shape analysis for the full sample of US firms based on out-of-sample forecasts from 1990 to 2015 (with in-sample 
estimation data as far back as in 1987). The yearly observations used in this table are constructed from the firm-year observations used for forecasting cash flows out-of-sample with a 
rolling window of in-sample estimation. Each yearly observation is based on the distributional properties of cash flows, or lagged earnings, for the cross section of firms in a given 
year and the incremental forecasting accuracy of the quantile regression approach (versus OLS) to forecasting cash flows for this cross section. The forecasting model used for 
comparing the quantile regression approach to OLS has the lagged cash flows or the lagged earnings as the only predictor variable (see Nallareddy et al. 2020). The dependent 
variable of the distributional shape analysis in this table is the incremental forecasting accuracy IncrAccur computed yearly for a given forecasting model. IncrAccur is defined as the 
forecast improvement ratio of quantile regression under the mean absolute forecast error (MAFE) criterion minus the forecast improvement ratio of OLS under the root mean squared 
forecast error (RMSFE) criterion. The independent variables in this table are: Heavy = Kurtosis† of the cash flows distribution of a year; Asymmetric = Skewness coefficient‡ of the 
cash flows distribution of a year; sd(CF) = Standard deviation of the cash flows distribution of a year; sd(EARNt-1) = Standard deviation of the lagged earnings distribution of a year. 
Cash flows (CF) are defined as net cash flow from operating activities less cash flow from extraordinary items and discontinued operations (Compustat: OANCF – XIDOC). Earnings 
(EARN) are defined as income before extraordinary items and discontinued operations (Compustat: IB). Both variables are deflated by total assets (Compustat: AT) averaged over the 
current and the prior year. See table 1 for the details of the definitions of IncrAccur, kurtosis, and skewness coefficient. Newey-West robust standard errors are reported in parentheses 
(Newey and West 1994).  † indicates variable in log value and ‡ in cube-root value; ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.  
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Table 8 (continued)            
Incremental forecasting accuracy and cash flows distributional shape: Quantile regression forecasting versus OLS  
Panel B: Subsamples for various exclusion criteria (lagged cash flows as the predictor variable and two-year in-sample estimation window) 

            
Subsample excluding Intangible-intensive firms  Loss firms  Smaller firms  Size-tails firms 

             (1) (2)  (3) (4)  (5) (6)  (7) (8) 
            
            

Intercept 0.005** -0.055  0.001 -0.196***  0.008** -0.098***  0.009*** -0.047* 
 (0.002) (0.040)  (0.002) (0.055)  (0.003) (0.031)  (0.003) (0.023) 
            

Heavy  0.018   0.004   0.010**   0.011*** 
  (0.012)   (0.014)   (0.004)   (0.003) 
            

Asymmetric  0.003   0.012**   0.008*   0.0002 
  (0.007)   (0.005)   (0.004)   (0.005) 
            

Asymmetric2  -0.0005   -0.002   -0.020*   -0.017*** 
  (0.010)   (0.020)   (0.011)   (0.005) 
            

sd(CF)  0.162   1.906***   0.908***   0.345* 
  (0.395)   (0.604)   (0.267)   (0.191) 
            
            Observations 26 26  26 26  26 26  26 26 

Adjusted R2 0 0.036  0 0.114  0 0.429  0 0.117 
            

This panel presents the results of the cash flows distributional shape analysis for the subsamples excluding the following firms one at a time: intangible-intensive firms defined as 
the firms in the Health, Business Equipment, Telecommunication, and Chemical sectors of the Fama-French 12-industry classification, loss firms defined as those with negative 
earnings (EARN < 0), smaller firms defined as those below the first quartile of the firm size distribution (where firm size is measured by total assets), and size-tails firms defined as 
those outside the 12.5th and the 87.5th percentile of the firm size distribution. The dependent variable in this table is the incremental forecasting accuracy IncrAccur computed yearly 
for the forecasting model with the lagged cash flows as the only predictor variable. See the note below panel A for other details.  
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Appendix A. Summary of Additional Analyses 

A.1. Industry-specific quantile and OLS regressions 

In an untabulated analysis, we have also compared the alternative approach by industry-specific 

quantile regression to the benchmark approach by economy-wide quantile regression.1 Again, the mean 

and median forecast improvements for all the profitability measures are significantly positive. It is 

worth noting that the magnitudes of the forecast improvements in this comparison are much smaller 

than those in table 3 (only one-third to even less than one-tenth). This suggests that replacing economy-

wide OLS by its quantile regression counterpart is more critical than additionally using the industry-

specific version in achieving forecast improvements.  

We should also note that in an untabulated analysis, we find strong evidence showing that forecasts 

by industry-specific quantile regression are more accurate than their OLS counterparts. Without 

exception, the mean and median forecast improvements for all the profitability measures are positive 

and highly significant. Therefore, quantile regression is more accurate than OLS in forecasting 

profitability, whether on an industry-specific or economy-wide basis.  

A.2. Forecasting growth in sales 

Prior research has investigated the forecasting of the growth in sales in addition to profitability 

(Fairfield et al. 2009).  In an untabulated analysis, we examine whether the higher accuracy of quantile 

regression profitability forecasts also extends to sales growth forecasts.  We confirm that the mean and 

median forecast improvements for growth in sales are positive and highly significant for all the three 

pairwise comparisons. So industry-specific quantile regression is also the most accurate approach to 

forecasting sales growth. 

A.3. Alternative way to construct PREDGSL 

In an untabulated analysis, we re-run the profitability forecasting analysis using the PREDGSL 

variable constructed by industry-specific quantile regression, rather than industry-specific OLS 

                                                 
1  For this comparison, the same sample is used to construct the forecasts by the economy-wide and industry-specific 
approaches to ensure an equal-footing comparison, consistent with Fairfield et al. (2009) and Schröder and Yim (2018). We 
first determine the sample used for the industry-specific approaches. This is the more restricted sample because whenever 
estimation is done on an industry-specific basis, we include only the industries with at least 100 firm-year observations in the 
rolling sample period of the previous ten years to avoid unreliable estimation. 
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regression. The results are generally consistent.  

A.4. Alternative forecasting model specification 

Schröder and Yim (2018) find that the parsimonious first-order autoregressive model (i.e., without 

the below-median-profitability dummy variable and the PREDGSL variable) can forecast better out-of-

sample, even though the Fairfield et al. (2009) specification has a better in-sample estimation fit. In an 

untabulated analysis, we re-run the profitability forecasting analysis using the parsimonious 

specification. The results are generally consistent.  

A.5. Alternative industry classifications 

In an untabulated analysis, we re-run the profitability forecasting analysis using alternative industry 

classifications, such as Fama-French 12-industry and two-digit SIC. Fama-French 12-industry is a broad 

industry classification similar to the first-digit SIC. The results for this industry classification are 

generally consistent and sometimes even stronger. 2  Because the two-digit SIC is a narrower 

classification, the results are weaker though qualitatively similar. This is in line with the insight of prior 

research (Schröder and Yim 2018).  

A.6. Sample period before the financial crisis 

In an untabulated analysis, we re-run the profitability forecasting analysis for the reduced sample 

up to 2006 (i.e., before the financial crisis). The results are very similar, though occasionally weaker. 

This is likely to be driven by the sharp reduction in the sample size, compared to the full sample from 

1989 to 2018.  

 

  

                                                 
2 In unreported analysis, we consider the industry classification by SIC Division (A to I) with Manufacturing firms and Services 
firms each under one division and Mining, Construction, Wholesale Trade, and Retail Trade in separate divisions. Although 
this classification improves the homogeneity of some divisions, it is achieved at the cost of their smaller sizes. Additionally, 
the classification is likely to worsen the homogeneity of some others by defining them overly broadly. The results based on 
this industry classification are weaker as expected, consistent with the insight of Schröder and Yim (2018).  
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Appendix B. Simulation Procedure, Distribution Types, and Parameter Combinations  

We run a total of 512,000 simulated experiments. In each experiment, 2,500 draws of simulated 

next-period firm profitability are obtained. This is done by applying the parameters of a first-order 

autoregressive forecasting model, together with the 2,500 independent draws of the error term, on 2,500 

draws of simulated current-period firm profitability. We assume the model has an intercept parameter 

a = 0.04 and a slope parameter b = 0.6, which are comparable to the ranges of the parameters estimated 

from our archival data. 

Each draw of the simulated current-period firm profitability is obtained from an earlier round of 

applying the forecasting model, with an independent draw of the error term, on a common simulated 

prior-period firm profitability. This profitability itself is obtained from a simulated firm profitability 

seed after 20 rounds of burn-in with the model. We have considered up to 500 rounds of burn-in but 

there is no crucial impact on the findings. The draws of the error term at different stages and the draw 

of the seed are independent draws from a stable (Nolan, 2013; Nolan, 2019) or IHS distribution (Hansen 

et al. 2010; McDonald and Turley 2011). These are four-parameter distribution families that allow 

controlling separately the tail and skewness properties in addition to the location and scale.  

For each of the four distribution types (i.e., the positively and negatively skewed versions of the 

stable and the IHS distribution), we vary the tail and skewness parameters across 16 × 16 combinations 

(from light to heavy tails or from low to high skewness, holding constant the other aspect). 500 

experiments are run for each of the 256 parameter combinations. Altogether, there are 4 × 256 × 500 

simulated experiments, each giving a different set of tail-heaviness and asymmetry measure values 

based on the sample distribution of the 2,500 draws of the simulated next-period profitability to be 

forecast. 

We select parameter combinations to explore a wide range of pct.QR.Prevail (from a low level of 

about 1% to a high level of about 98%). Because the IncrAccur or RelAccur does not respond evenly to 

the change in the tail or skewness parameter, we set the 16 levels of the parameter unevenly to sample 

more over the range where the forecasting accuracy measures are more responsive. The specific 

parameter values used for the simulations are provided following the descriptions of the distribution 
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types below.  

The inverse hyperbolic sine (IHS) distribution (Hansen et al. 2010; McDonald and Turley 2011) 

has four parameters, a, b, λ, and k, controlling the mean (μ), standard deviation (σ), skewness, and 

kurtosis. More specifically, a and b are related to the others as follows:    

𝑎 ൌ 𝜇 െ
𝑏
2

൭൫𝑒ఒ െ 𝑒ିఒ൯𝑒
ଵ

ଶ௞మ൱ 

𝑏 ൌ
2𝜎

ට൫𝑒ଶఒା௞షమ ൅ 𝑒ିଶఒା௞షమ ൅ 2൯ሺ𝑒௞ିଶ െ 1ሻ
 

Positive and negative skewness are determined by positive and negative values of λ respectively, with 

zero corresponding to symmetry. Smaller values of k give heavier-tailed distributions, with λ = 0 

together with k approaching infinity corresponding to the limiting case of Gaussian.  

In the simulation analysis, we set μ = 0 and σ = 1. The different levels of k and λ (or its negative 

when considering the negatively skewed IHS distribution) used are as follows:  

  k   λ 

1 0.750 1 0.010 
2 0.751  2 0.039 
3 0.757  3 0.066 
4 0.780  4 0.092 
5 0.831  5 0.118 
6 0.926  6 0.142 
7 1.084  7 0.165 
8 1.323  8 0.187 
9 1.664  9 0.208 

10 2.130  10 0.227 
11 2.746  11 0.244 
12 3.536  12 0.260 
13 4.528  13 0.274 
14 5.750  14 0.286 
15 7.230  15 0.295 
16 9.000  16 0.300 

 

The stable distribution (Nolan, 2013; Nolan, 2019) also has four parameters, α, β, γ, and δ, 

controlling the stability, skewness, scale, and location. Positive and negative skewness are determined 

by positive and negative values of β respectively, with zero corresponding to symmetry. Smaller values 
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of α give heavier-tailed distributions. This family of distribution includes the following limiting cases: 

(i) Gaussian (α = 2, β = 0); (ii) Cauchy (α = 1, β = 0).   

The above is referred to as the S0 parametrization, which is one of several used in the literature (see 

e.g. Nolan 1998). We use Lambert and Lindsey’s (1999) parametrization, where they refer to the 

alternatively parametrized skew and scale parameter as βʹ and γʹ.2 Their parametrization has the same 

location (δ) and stability (α) parameters.   

In the simulation analysis, we set δ = 0 and γʹ = 1/√2 ~ 0.707. The different levels of α and βʹ (or 

its negative) used are as follows:  

   α       βʹ 

1 1.020  1 0.010 
2 1.558  2 0.103 
3 1.633  3 0.192 
4 1.684  4 0.277 
5 1.724  5 0.357 
6 1.757  6 0.432 
7 1.786  7 0.501 
8 1.813 8 0.564 
9 1.838 9 0.621 

10 1.861  10 0.670 
11 1.882  11 0.712 
12 1.903  12 0.746 
13 1.923  13 0.772 
14 1.943  14 0.789 
15 1.962  15 0.798 
16 1.980  16 0.800 

 

  

                                                 
2 Confusingly, they denote the S0 parametrization’s scale and location parameters as δ and γ, respectively, which is the reverse 
of the notations used by Nolan (1998) and us. In their article, the alternatively parametrized scale parameter is denoted as δʹ 
(see their p. 415).   
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Appendix C. Additional Tail-heaviness and Asymmetry Measures 

We have in unreported analysis considered also the 1-99 percentile range as another measure of 

tail-heaviness:  

One99PR = quantile(x, 0.99) − quantile(x, 0.01), 

where quantile(∙, r) denotes the rth quantile, i.e., quantile(x, 0.01) and quantile(x, 0.99) are the 1st and 

99th percentiles. Heavy tails can be due to long tails (Wicklin 2014). We expect this measure to have a 

larger value when the tails are longer. In the simulated-data regression analysis, the sd(x) in log scale is 

always included as a control variable. Therefore, the coefficient of One99PR captures the long-tail 

effect over and above what could have been driven by a very dispersed distribution.   

Additionally, we have considered Bowley skewness (Staudte 2014), aka. Yule skewness (Benjamini 

and Krieger 1996), as another asymmetry measure because it represents a well-studied class of 

skewness measures in the statistics literature (Groeneveld and Meeden 1984; Groeneveld 1998):  

Bowley = [quantile(x, 0.75) + quantile(x, 0.25) – 2 median(x)]/[quantile(x, 0.75) − quantile(x, 0.25)],  

where quantile(x, 0.25) and quantile(x, 0.75) are the 1st and 3rd quartiles.  

The (right-less-left) CoR difference is yet another asymmetry measure we have considered. It is 

based on a modified version of Ingram’s (2015) coefficient of riskiness (CoR):  

CoRL−R = CoRR − CoRL,  

where CoRR = [quantile(x, 0.99) − median(x)]/sd(x) and CoRL = [median(x) − quantile(x, 0.01)]/sd(x). 

The original CoR is defined only for the right tail and uses the mean as a benchmark to contrast with 

the 99th percentile. We apply the idea to both tails and compare the 1st and 99th percentiles to the median 

to ensure that the modified left and right CoRs are never negative. Our measure turns out to be similar 

to a special case of the rth coefficient of skewness introduced by Hinkley (1975) and Parzen (1979), 

except that theirs is scaled by the rth interquantile range to adjust for the dispersion.  

The use of these alternative asymmetry measures as control variables or One99PR as an alternative 

tail-heaviness measure does not change the highly consistent findings of the tail-heaviness effect.  
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Appendix D. Figures and Additional Result Tables  

See the following pages.  

Electronic copy available at: https://ssrn.com/abstract=3008666



 

Figure 1. Quantile Regression ρ function 
 

 

This figure illustrates the piecewise linear function 𝜌ఛሺ𝑢ሻ  with which the 𝜏 th quantile estimate is obtained by 
minimizing the sum of the loss based on this function. When 𝜏 = 0.5, 𝜌ఛሺ𝑢ሻ is symmetric and identical to the 
absolute loss function. Source: Koenker (2015). 
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Figure 2. Empirical Cumulative Distributions of p-Value of Forecast Improvement Test

This figure illustrates the empirical cumulative distributions of the p-value of the Wilcoxon (signed rank) test and the t test from the 500 experiments for a moderately heavy-
tailed, highly skewed stable distribution (α = 1.838, βʹ = 0.8). See appendix A for details on the ranges of parameter levels. For ease of exposition, the figure assumes the tests 
are based on the 0.05 statistical significance level. In the simulated experiments, the 0.01 significance level is used.  
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TABLE A1
Incremental forecasting accuracy and profitability distributional shape: simulated-data analysis at the mean-aggregrated level (stable and IHS distributions)

IncrAccur  =

Asymmetric  =

Heavy  = Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis†

Panel A: Stable
Heavy 1.567*** 0.123*** 0.491*** 0.026*** 0.549*** 0.034*** 1.177*** 0.096*** 0.736*** 0.053*** 0.753*** 0.056***

(0.110) (0.011) (0.094) (0.009) (0.083) (0.008) (0.063) (0.006) (0.063) (0.006) (0.059) (0.006)

Asymmetric 0.009 0.060 0.004 0.008 0.015*** 0.016*** 0.117** 0.155*** 0.060*** 0.068*** 0.021*** 0.023***
(0.088) (0.093) (0.023) (0.024) (0.006) (0.006) (0.050) (0.054) (0.016) (0.016) (0.004) (0.004)

Asymmetric 2 7.096*** 7.594*** 1.482*** 1.555*** 0.142*** 0.148*** 1.815*** 2.129*** 0.489*** 0.552*** 0.047*** 0.052***
(0.381) (0.402) (0.045) (0.044) (0.004) (0.004) (0.217) (0.234) (0.030) (0.030) (0.003) (0.003)

Observations 512 512 512 512 512 512 512 512 512 512 512 512
Adjusted R2 0.846 0.828 0.919 0.916 0.932 0.929 0.925 0.913 0.946 0.940 0.949 0.944

Panel B: IHS
Heavy 1.335*** 0.139*** 0.892*** 0.093*** 0.588*** 0.060*** 1.488*** 0.159*** 1.366*** 0.146*** 1.249*** 0.135***

(0.058) (0.006) (0.047) (0.005) (0.038) (0.004) (0.038) (0.004) (0.039) (0.004) (0.038) (0.004)

Asymmetric -0.395*** -0.344*** -0.091*** -0.068*** 0.033*** 0.042*** -0.354*** -0.284*** -0.131*** -0.091*** -0.037*** -0.014**
(0.071) (0.073) (0.020) (0.020) (0.006) (0.007) (0.046) (0.045) (0.017) (0.017) (0.006) (0.006)

Asymmetric 2 7.983*** 8.282*** 1.612*** 1.652*** 0.499*** 0.508*** 1.339*** 1.638*** 0.289*** 0.342*** 0.107*** 0.120***
(0.208) (0.206) (0.029) (0.028) (0.007) (0.007) (0.134) (0.128) (0.024) (0.023) (0.007) (0.006)

Observations 512 512 512 512 512 512 512 512 512 512 512 512

Adjusted R2 0.943 0.942 0.970 0.969 0.982 0.981 0.952 0.954 0.956 0.958 0.963 0.965

See the note to table 5 for variable descriptions and other details. 

Mean-less-median‡ Skewness Coeff.‡ Taleb's Tails Asym.‡

Wilcoxon-test based t-test based

Mean-less-median‡ Skewness Coeff.‡Taleb's Tails Asym.‡
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TABLE A2
Relative forecasting accuracy and profitability distributional shape: simulated-data analysis at the mean-aggregrated level (stable and IHS distributions)

RelAccur  =

Asymmetric  =

Heavy  = Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis†

Panel A: Stable
Heavy 14.980*** 1.311*** 9.322*** 0.807*** 10.077*** 0.882*** 7.681*** 0.753*** 10.589*** 0.981*** 10.421*** 0.961***

(0.477) (0.050) (0.431) (0.041) (0.407) (0.039) (0.328) (0.029) (0.301) (0.026) (0.282) (0.025)

Asymmetric -0.705* -0.245 -0.351*** -0.236** -0.042 -0.003 0.634** 0.850*** 0.245*** 0.384*** -0.030 0.012
(0.381) (0.424) (0.107) (0.112) (0.028) (0.029) (0.262) (0.247) (0.075) (0.071) (0.019) (0.019)

Asymmetric 2 55.789*** 57.929*** 9.763*** 10.099*** 0.916*** 0.945*** -17.231*** -17.723*** -3.801*** -3.639*** -0.359*** -0.344***
(1.651) (1.832) (0.205) (0.208) (0.019) (0.019) (1.137) (1.070) (0.143) (0.132) (0.013) (0.012)

Observations 512 512 512 512 512 512 512 512 512 512 512 512
Adjusted R2 0.946 0.933 0.968 0.965 0.970 0.967 0.957 0.962 0.974 0.976 0.975 0.977

Panel B: IHS
Heavy 11.936*** 1.267*** 9.750*** 1.039*** 9.190*** 0.970*** 12.361*** 1.313*** 14.044*** 1.487*** 16.600*** 1.776***

(0.242) (0.025) (0.259) (0.027) (0.399) (0.043) (0.478) (0.050) (0.474) (0.050) (0.378) (0.041)

Asymmetric -2.282*** -1.740*** -0.581*** -0.306*** 0.166** 0.316*** 0.648 1.213** 0.167 0.548*** -0.040 0.245***
(0.295) (0.292) (0.110) (0.111) (0.067) (0.070) (0.581) (0.584) (0.201) (0.206) (0.063) (0.066)

Asymmetric 2 47.425*** 49.885*** 8.920*** 9.310*** 2.430*** 2.547*** -18.114*** -15.580*** -4.535*** -3.952*** -1.854*** -1.660***
(0.864) (0.830) (0.159) (0.153) (0.070) (0.068) (1.702) (1.658) (0.291) (0.284) (0.066) (0.064)

Observations 512 512 512 512 512 512 512 512 512 512 512 512
Adjusted R2 0.978 0.979 0.979 0.980 0.956 0.955 0.724 0.728 0.772 0.771 0.871 0.870

See the note to table 6 for variable descriptions and other details. 

Mean-less-median‡ Skewness Coeff.‡ Taleb's Tails Asym.‡

Wilcoxon-test based t-test based

Mean-less-median‡ Skewness Coeff.‡Taleb's Tails Asym.‡
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TABLE A3
Forecasting accuracy measure components (Wilcoxon-test based) and profitability distributional shape: simulated-data analysis at the mean-aggregrated level

Panel A: Pooled sample of both distributions

DepVar  =

Asymmetric  =
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Heavy  = Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis†
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Heavy 1.644*** 0.154*** 1.083*** 0.100*** 1.382*** 0.127*** -0.170*** -0.016*** -0.150*** -0.014*** -0.172*** -0.016***
(0.04) (0.00) (0.04) (0.00) (0.05) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Asymmetric -0.06 -0.04 -0.01 0.00 0.00 0.00 0.016*** 0.014*** 0.005*** 0.004** 0.001* 0.00
(0.06) (0.06) (0.02) (0.02) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Asymmetric 2 6.871*** 7.178*** 1.377*** 1.420*** 0.139*** 0.144*** -0.477*** -0.504*** -0.072*** -0.078*** -0.006*** -0.007***
(0.21) (0.22) (0.03) (0.03) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

sd(Profit. )† 0.136*** 0.087*** 0.130*** 0.099*** 0.069*** 0.027*** -0.007*** -0.002*** -0.007*** -0.002*** -0.003*** 0.002***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Intercept -0.374*** -0.912*** -0.342*** -0.689*** -0.364*** -0.800*** 0.079*** 0.135*** 0.074*** 0.122*** 0.073*** 0.129***
(0.02) (0.02) (0.01) (0.02) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Observations 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024
Adjusted R2 0.87 0.86 0.92 0.92 0.87 0.86 0.93 0.92 0.90 0.90 0.87 0.86

This table is based on observations from 512,000 simulated experiments mean-aggregated to the distribution type-parameter combination level. In each experiment, 2,500 draws of next-
period firm profitability are simulated by applying the intercept and slope parameters and 2,500 independent draws of the error term of a first-order autoregressive model on 2,500 draws of 
current-period firm profitability, which were simulated from iterative applications of the model on a simulated firm profitability seed. The draws of the error term at different stages and the 
draw of the seed are independent draws from a stable or IHS distribution with their tail and skewness parameters set to different values. 500 experiments are run for each of the 256 parameter 
combinations and 4 distribution types  (i.e., a positively or negatively skewed stable or IHS distribution). Sample distributional properties of profitability are measured using the 2,500 draws 
of the simulated next-period firm profitability to be forecast in each experiment. See appendix B in the online appendix for further details of the simulated experiments. The regression model 

in this table is DepVar  = α 0 + α 1 Heavy  + α 2 Asymmetric  + α 3 Asymmetric 2 + α 4 sd(Profit. ) + Distribution type fixed effects + ε , where DepVar = pct.QR.Prevail  or pct.OLS.Prevail  and 

the following experiment-level explanatory variables are mean-aggregated to the distribution type-parameter combination level: Heavy  = Mean%Extremes or Kurtosis†; Asymmetric  = Tails 
asymmetry‡, Mean-less-median‡, or Skewness coefficient‡; sd(Profit. )† = Standard deviation of the sample distribution of profitability. See panel B of table 1 for further details of the 
variable definitions. For brevity, the coefficient of the distribution type fixed effect is omitted from all the panels and the coefficients of the intercept and sd(Profit. ) are omitted from the 
panels for individual distributions. Standard errors are reported in parentheses. † indicates variables in log value and ‡ in cube-root value; ***, **, and * indicate statistical significance at the 
1%, 5%, and 10% levels, respectively. 

Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡ Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡

pct.QR.Prevail pct.OLS.Prevail
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TABLE A3 (continued)
Forecasting accuracy measure components (Wilcoxon-test based) and profitability distributional shape: simulated-data analysis at the mean-aggregrated level

DepVar  =

Asymmetric  =
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Heavy  = Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis†

Panel B: Stable
Heavy 1.363*** 0.104*** 0.309*** 0.01 0.355*** 0.016** -0.204*** -0.019*** -0.181*** -0.017*** -0.194*** -0.018***

(0.11) (0.01) (0.10) (0.01) (0.09) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00)

Asymmetric 0.02 0.07 0.01 0.01 0.016*** 0.017*** 0.014*** 0.008* 0.004** 0.00 0.001** 0.00
(0.09) (0.09) (0.02) (0.02) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Asymmetric 2 6.623*** 7.110*** 1.417*** 1.486*** 0.136*** 0.142*** -0.473*** -0.485*** -0.065*** -0.069*** -0.006*** -0.006***
(0.39) (0.40) (0.05) (0.05) (0.00) (0.00) (0.02) (0.02) (0.00) (0.00) (0.00) (0.00)

Observations 512 512 512 512 512 512 512 512 512 512 512 512
Adjusted R2 0.82 0.81 0.90 0.90 0.92 0.92 0.94 0.93 0.91 0.91 0.90 0.90

Panel C: IHS
Heavy 1.145*** 0.119*** 0.710*** 0.074*** 0.387*** 0.038*** -0.190*** -0.020*** -0.181*** -0.019*** -0.201*** -0.021***

(0.06) (0.01) (0.05) (0.01) (0.04) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00)

Asymmetric -0.387*** -0.343*** -0.094*** -0.076*** 0.026*** 0.031*** 0.01 0.00 0.00 -0.008*** -0.007*** -0.011***
(0.08) (0.08) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

Asymmetric 2 7.543*** 7.802*** 1.540*** 1.571*** 0.484*** 0.491*** -0.440*** -0.481*** -0.073*** -0.081*** -0.015*** -0.017***
(0.22) (0.22) (0.03) (0.03) (0.01) (0.01) (0.02) (0.02) (0.00) (0.00) (0.00) (0.00)

Observations 512 512 512 512 512 512 512 512 512 512 512 512

Adjusted R2 0.93 0.93 0.96 0.96 0.98 0.98 0.92 0.92 0.91 0.90 0.87 0.87

See the note under panel A for variable descriptions and other details. 

Mean-less-median‡ Skewness Coeff.‡ Taleb's Tails Asym.‡

pct.QR.Prevail pct.OLS.Prevail

Mean-less-median‡ Skewness Coeff.‡Taleb's Tails Asym.‡
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TABLE A4
Forecasting accuracy measure components (t-test based) and profitability distributional shape: simulated-data analysis at the mean-aggregrated level

Panel A: Pooled sample of both distributions

DepVar  =

Asymmetric  =
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Heavy  = Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis†
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Heavy 1.712*** 0.160*** 1.130*** 0.103*** 1.444*** 0.131*** 0.04 0.00 -0.391*** -0.039*** -0.123*** -0.017***
(0.04) (0.00) (0.04) (0.00) (0.04) (0.01) (0.02) (0.00) (0.02) (0.00) (0.03) (0.00)

Asymmetric -0.06 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 -0.01
(0.06) (0.06) (0.02) (0.02) (0.01) (0.01) (0.04) (0.04) (0.01) (0.01) (0.01) (0.01)

Asymmetric 2 7.344*** 7.676*** 1.451*** 1.500*** 0.146*** 0.152*** 6.119*** 6.169*** 1.141*** 1.141*** 0.112*** 0.115***
(0.21) (0.21) (0.03) (0.03) (0.00) (0.01) (0.13) (0.13) (0.02) (0.02) (0.00) (0.00)

sd(Profit. )† 0.138*** 0.087*** 0.132*** 0.099*** 0.067*** 0.024*** 0.010*** 0.010*** 0.004*** 0.017*** -0.047*** -0.043***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Intercept -0.383*** -0.941*** -0.346*** -0.705*** -0.369*** -0.822*** -0.080*** -0.085*** -0.048*** 0.087*** -0.068*** -0.01
(0.02) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

Observations 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024
Adjusted R2 0.89 0.88 0.93 0.93 0.88 0.87 0.75 0.75 0.85 0.85 0.64 0.64

Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡ Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡

pct.QR.Prevail pct.OLS.Prevail

This table is based on observations from 512,000 simulated experiments mean-aggregated to the distribution type-parameter combination level. In each experiment, 2,500 draws of next-
period firm profitability are simulated by applying the intercept and slope parameters and 2,500 independent draws of the error term of a first-order autoregressive model on 2,500 draws of 
current-period firm profitability, which were simulated from iterative applications of the model on a simulated firm profitability seed. The draws of the error term at different stages and the 
draw of the seed are independent draws from a stable or IHS distribution with their tail and skewness parameters set to different values. 500 experiments are run for each of the 256 parameter 
combinations and 4 distribution types  (i.e., a positively or negatively skewed stable or IHS distribution). Sample distributional properties of profitability are measured using the 2,500 draws 
of the simulated next-period firm profitability to be forecast in each experiment. See appendix B in the online appendix for further details of the simulated experiments. The regression model 

in this table is DepVar  = α 0 + α 1 Heavy  + α 2 Asymmetric  + α 3 Asymmetric 2 + α 4 sd(Profit. ) + Distribution type fixed effects + ε , where DepVar = pct.QR.Prevail  or pct.OLS.Prevail  and 

the following experiment-level explanatory variables are mean-aggregated to the distribution type-parameter combination level: Heavy  = Mean%Extremes or Kurtosis†; Asymmetric  = Tails 
asymmetry‡, Mean-less-median‡, or Skewness coefficient‡; sd(Profit. )† = Standard deviation of the sample distribution of profitability. See panel B of table 1 for further details of the 
variable definitions. For brevity, the coefficient of the distribution type fixed effect is omitted from all the panels and the coefficients of the intercept and sd(Profit. ) are omitted from the 
panels for individual distributions. Standard errors are reported in parentheses. † indicates variables in log value and ‡ in cube-root value; ***, **, and * indicate statistical significance at the 
1%, 5%, and 10% levels, respectively. 
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TABLE A4 (continued)
Forecasting accuracy measure components (t-test based) and profitability distributional shape: simulated-data analysis at the mean-aggregrated level

DepVar  =

Asymmetric  =
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Heavy  = Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis†

Panel B: Stable
Heavy 1.524*** 0.117*** 0.432*** 0.019** 0.495*** 0.027*** 0.347*** 0.022*** -0.304*** -0.034*** -0.258*** -0.029***

(0.11) (0.01) (0.10) (0.01) (0.08) (0.01) (0.06) (0.01) (0.05) (0.00) (0.04) (0.00)

Asymmetric 0.01 0.06 0.01 0.01 0.016*** 0.017*** -0.104** -0.091* -0.055*** -0.060*** -0.005* -0.006**
(0.09) (0.09) (0.02) (0.02) (0.01) (0.01) (0.05) (0.05) (0.01) (0.01) (0.00) (0.00)

Asymmetric 2 7.148*** 7.682*** 1.498*** 1.577*** 0.143*** 0.150*** 5.332*** 5.553*** 1.009*** 1.025*** 0.097*** 0.098***
(0.39) (0.41) (0.05) (0.04) (0.00) (0.00) (0.20) (0.20) (0.02) (0.02) (0.00) (0.00)

Observations 512 512 512 512 512 512 512 512 512 512 512 512
Adjusted R2 0.83 0.81 0.91 0.91 0.93 0.92 0.72 0.71 0.87 0.87 0.90 0.90

Panel C: IHS
Heavy 1.293*** 0.134*** 0.868*** 0.090*** 0.581*** 0.058*** -0.194*** -0.024*** -0.497*** -0.056*** -0.667*** -0.077***

(0.06) (0.01) (0.05) (0.01) (0.04) (0.01) (0.05) (0.01) (0.04) (0.01) (0.05) (0.01)

Asymmetric -0.337*** -0.289*** -0.064*** -0.043** 0.042*** 0.050*** 0.02 -0.01 0.067*** 0.048** 0.079*** 0.065***
(0.07) (0.07) (0.02) (0.02) (0.01) (0.01) (0.06) (0.06) (0.02) (0.02) (0.01) (0.01)

Asymmetric 2 7.856*** 8.152*** 1.584*** 1.623*** 0.487*** 0.497*** 6.518*** 6.514*** 1.295*** 1.281*** 0.380*** 0.376***
(0.21) (0.21) (0.03) (0.03) (0.01) (0.01) (0.17) (0.17) (0.03) (0.03) (0.01) (0.01)

Observations 512 512 512 512 512 512 512 512 512 512 512 512

Adjusted R2 0.94 0.94 0.97 0.97 0.98 0.98 0.78 0.78 0.85 0.85 0.81 0.82

See the note under panel A for variable descriptions and other details. 

Mean-less-median‡ Skewness Coeff.‡Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡ Taleb's Tails Asym.‡

pct.QR.Prevail pct.OLS.Prevail
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TABLE A5
Forecasting accuracy measure components and profitability distributional shape: Achival-data analysis at the mean-aggregrated industry-year level with industry-year distributional properties

Panel A: Unweighted regressions using pooled sample of all profitability measures

DepVar  =

Asymmetric  =
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Heavy  = Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis†
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Heavy 0.013*** 0.011*** 0.014*** 0.010*** 0.014*** 0.016*** -0.012*** -0.011*** -0.012*** -0.011*** -0.008*** -0.012***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Asymmetric 0.011*** 0.011*** 0.005*** 0.005*** 0.002** 0.002** -0.007*** -0.007*** -0.003*** -0.003*** -0.001** -0.002**
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Asymmetric 2 -0.045*** -0.044*** -0.014*** -0.012*** 0.00 -0.007*** 0.018** 0.018* 0.005** 0.00 -0.005*** 0.00
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

sd(Profit. )† -0.017*** -0.020*** -0.018*** -0.021*** -0.018*** -0.021*** -0.004** 0.00 -0.003** 0.00 -0.003* 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Intercept 0.941*** 0.920*** 0.942*** 0.920*** 0.935*** 0.910*** 1.010*** 1.032*** 1.010*** 1.032*** 1.017*** 1.035***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Observations 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751
Adjusted R2 0.19 0.19 0.19 0.19 0.18 0.19 0.10 0.11 0.10 0.11 0.10 0.11

fir.QR.Prevail fir.OLS.Prevail

Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡ Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡

The industry-year observations used in this table are constructed from the firm-year observations used in the out-of-sample tests reported in table 3. A minimum of 20 firms in each industry-
year is required to avoid unreliable estimates of the profitability distributional properties. The industry classification is based on two-digit SIC. The regression model is DepVar  = α 0 + α 1 

Heavy  + α 2 Asymmetric  + α 3 Asymmetric 2 + α 4 sd(Profit. ) + Profitability fixed effects (only for the pooled all-profitability regression) + First-digit SIC Industry fixed effects + Year fixed 

effects + ε , where  DepVar  = fir.QR.Prevail  or fir.OLS.Prevail ; Heavy  = Mean%Extremes or Kurtosis†; Asymmetric  = Tails Asymmetry‡, Mean-less-median‡, or Skewness coefficient‡; 
sd(Profit. )† = Standard deviation of the profitability distribution in an industry-year. See table 1 for the details of the variable definitions. For brevity, the coefficients of the profitability, 
industry, and year fixed effects are omitted from all the panels and the coefficients of the intercept and sd(Profit. ) are omitted from the panels for individual profitability measures. Robust 
standard errors adjusted for clustering by profitability-industry-year are reported in parentheses. The industry classification for the robust standard errors is based on the first-digit SIC. Panel 
A reports the results of unweighted regressions. Panel B reports the results of weighted regressions with the size of each industry-year as the weight. † indicates variables in log value and ‡ in 
cube-root value; ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
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TABLE A5 (continued)
Forecasting accuracy measure components and profitability distributional shape: Achival-data analysis at the mean-aggregrated industry-year level with industry-year distributional properties

Panel B: Size-weighted regressions using pooled sample of all profitability measures

DepVar  =

Asymmetric  =
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Heavy  = Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis† Mean%Extrem Kurtosis†
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Heavy 0.013*** 0.010*** 0.014*** 0.010*** 0.016*** 0.015*** -0.013*** -0.011*** -0.014*** -0.011*** -0.011*** -0.013***
0.00 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Asymmetric 0.011*** 0.011*** 0.006*** 0.005*** 0.002** 0.002*** -0.006*** -0.006*** -0.003*** -0.003*** 0.00 -0.001*
0.00 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Asymmetric 2 -0.064*** -0.061*** -0.017*** -0.015*** 0.00 -0.007*** 0.030*** 0.026*** 0.007*** 0.005*** -0.003*** 0.00
0.00 (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00)

sd(Profit. )† -0.004* -0.006** -0.005** -0.007*** -0.004* -0.007*** -0.010*** -0.008*** -0.010*** -0.007*** -0.010*** -0.007***
0.00 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Intercept 0.973*** 0.954*** 0.973*** 0.954*** 0.968*** 0.941*** 0.996*** 1.018*** 0.997*** 1.019*** 1.002*** 1.023***
0.00 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.00) (0.01)

Observations 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751 6,751
Adjusted R2 0.21 0.21 0.21 0.21 0.20 0.21 0.16 0.17 0.16 0.17 0.16 0.160.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

See the note under panel A for variable descriptions and other details. 

fir.QR.Prevail fir.OLS.Prevail

Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡ Taleb's Tails Asym.‡ Mean-less-median‡ Skewness Coeff.‡

E
lectronic copy available at: https://ssrn.com

/abstract=
3008666




