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ABSTRACT 

This research looks into the damage response and energy absorption behaviour of unidirectional 

carbon fibre-reinforced polymer (CFRP) composite panels subjected to low-velocity impact events. 

The response of CFRP composite materials with thermoset (TS) resin and thermoplastic (TP) PEEK 

polymer matrix are investigated. Evolution of impact force and absorbed energy with time during 

impact are presented for each TS and TP panel. Comparisons are provided between damage area 

obtained optically and using C-scanning technique. The investigations are based on the scanned 

images along with the characteristic force and absorbed energy curves for two material systems with 

TS and TP polymers, having similar stacking sequences, carbon volume fraction and thickness.  

 

1. INTRODUCTION 

The use of composite materials in critical aerospace structures is still limited by their relatively 

weak mechanical response to impact events. In addition, composite laminates subjected to low-

velocity impact such as dropped tools or vehicle impact, exhibit significant internal damage and 

delamination, with little indication on the impact surface that such damage has occurred, generally 

refered to in the industry as barely visable impact damage (BVID). This has been observed by C-

scanning after low-velocity drop-weight tests according to ASTM D7136 [1] carried out in several  

studies [2-4] which were supported by finite element simulations for uncovering the underlying 

damage mechanisms. Though detailed simulations have been presented by various researchers for 

damage response of dynamically loaded composite structures [5-10], quick accurate predictions of 

impact damage  is still a high priority. Especially for methods that can predict the response for 

industrial applications, such as the ASTM standard for low-velocity impact [1] and the NASA 

approach for the estimation of energy dissipation during impact [11, 12].  

The current study focuses on the force- and energy-time behaviour of carbon fibre-reinforced 

polymer (CFRP) composite panels with two aerospace grade polymer systems, a toughened thermoset 

(TS) resin and thermoplastic (TP) PEEK. The results of the CFRP with TS resin were taken from our 

previous research in [4]. All panels were impacted by low-velocity drop-weight 4.2kg impactor 

released from different heights representative of different impact energies. The panels were then C-

scanned and damage area was captured. The force and energy data and their evolution with time were 

then compared and correlated to the size of damage introduced by the impactor.  

It is well-known that the impact strength of TS CFRP composites  can be increased by modifying 

the matrix with TP inclusions [13, 14]. The research in [13] suggests that the presence of TP plies in 

TS laminates can prevent the formation of micro-cracks possibly due to enhancement in interface 

properties. In this study, the low-velocity impact response of two aerospace grade CFRP material 

systems are investigated, one with a TP (PEEK) matrix and one with a toughened TS matrix. 
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The paper is divided into following main sections: Manufacturing procedure of each composite 

panel is briefly described in section 2, providing the geometry and the stacking configuration of the 

panels. Section 3 presents the basic material properties of each CFRP composite material obtained 

from the characterisation phase of the research. Section 4 briefly describes the impact experiments and 

C-scan measurement technique. Section 5 provides the existing analytical expressions used to derive 

absorbed energy data. The results are presented in section 6. 

 

2. SPECIMENS MANUFACTURING AND GEOMETRY 

The unidirectional CFRP composite laminates with TS and TP polymers were manufactured 

according to the stacking sequence provided in Table 1. The TS laminates were manufactured using 

unidirectional CFRP pre-pregs made of high toughness resin reinforced by carbon fibres. For laying up 

the TP laminates, automated tow placement (ATP) technique was used. The ATP machine is shown in 

Figure 1. The ATP unit uses a laser to heat the plies and consolidates them together with the aid of a 

roller. This unit is capable of in-situ consolidation of the TP material. Research is ongoing on the 

effect of ATP processing parameters on the quality and integrity of the final laminate [15, 16]. 

However, for this study, the ATP unit was simply used to lay-up the pre-preg in the desired stacking 

sequence and it was subsequently consolidated in an autoclave, according to supplier specifications 

shown in Figure 2. 

For the case of TS laminates, each cured ply has the thickness of approximately 0.125 mm (cured 

using autoclave according to the specifications of the supplier). Further information for these panels is 

provided in [4]. Each laminate has a rectangular shape with width of 100 mm and length of 150 mm. 

Layup Stacking sequence 
No. 

of plies 

Resin  

type 

Thick. 

(mm) 

C +45/90/-45/03/-45/0/90/0/+45/03/-45/90/+45 17 TS, TP 2.125 

E 
+45/90/-45/03/+45/-45/03/+45/90/-45/03/-

45/+45/03/-45/90/+45 
25 TS, TP 3.125 

Table 1: Panel lay-ups and corresponding stacking sequences 

In terms of stacking sequence, two layups were manufactured from each composite material: Layup 

C (relatively thin laminate) which was assessed by two impact energy levels of 10J and 20J, and 

Layup E (relatively thick) assessed by three impact energy levels of 10J, 20J and 40J. 
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Figure 1: ATP machine installed at the University of Limerick for laying up CFRP composites 

 

 

Figure 2: TP laminates’ curing cycle after ATP process 

 

3. MATERIAL CHARACTERISATION  

The material characterisation was carried out for the both TS and TP laminates. Table 2 shows the 

linear elastic material constants of the composite plies. An obvious difference between the TS and TP 

material systems used in this study is the longitudinal (fibre-direction) tensile modulus which is higher 

for the TS system, as is tensile strength, this is primarily due to the different grade of carbon fibre used 

in both systems.. However, the shear strength of the TP material system is greater, as is its transverse 

modulus, which contributes to the out-of-plane impact behaviour of the panel. 
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Engineering constant Unit 

carbon fibre epoxy 

(TS) 

Prepreg/autoclaved 

Carbon fibre 

PEEK (TP) 

ATP/autoclaved 

Longitudinal tensile modulus, E11 GPa 170 135 

Transverse modulus, E22 GPa 8.7 9.99 

Shear modulus, G12 GPa 6.37 5.17 

Tensile strength, S11 MPa 2722 1907 

Transverse strength, S22 MPa 67 59 

Shear strength, S12 MPa 68 75 

Longitudinal elongation, e11 % 1.58 1.33 

Transverse elongation, e22 % 0.76 0.61 

Table 2: Comparison of material properties of carbon fibre-reinforced TS and TP composite 

material systems investigated in this study 

4. IMPACT TESTING AND C-SCAN MEASUREMENT 

The impact tests were carried out using a drop-weight impactor test tower. The size of the samples 

were 100 mm × 150 mm according to [1]. The impact tester is instrumented with a load cell capable of 

measuring compressive forces up to 22 kN. The actual velocity at impact,   , was determined by 

measuring the time the impactor took to pass between two laser sensors, spaced 60 mm apart 

immediately before impact. The panel is clamped onto a rigid base using four toggle clamps with 

rubber tips. In the machine, the 4.2 kg impactor is raised to the desired drop height using an electric 

winch motor. The drop height, , is initially estimated by          , where      is the impact 

energy,   is the mass of the impactor and   = 9.81 m/s
2
. A pneumatic arm is employed to prevent the 

impactor from re-striking the test specimen if rebound occurs. Impact force as a function of time is 

recorded by the load cell for each impact test. The bearing and guideline friction effect was neglected 

in calculations. 

All samples were transversely impacted out-of-plane at the centre. The C layups (17 plies) were 

impacted in 10J and 20J energies, and the E layups in 10J, 20J and 40J. C-scans technique was then 

used to capture the internal damage images of the post-impact laminates. A manual C-scanner was 

used, composed of a roller (GE Rotoarray) and a screen (GE Phasor XS).  

 

5. CALCULATION OF DISSIPATION ENERGY 

The energy dissipated by deformation mechanisms and damage during impact can simply be 

calculated by the kinematic equation according to Newton’s second law of motion, provided by [1] 

 ( )        ∫
 ( )

 
  

 

 

 (1) 

where   is the current time during impact (    at the impact moment).  ( ) is the out-of-plane 

impact force introduced from the contact interaction between the impactor and the laminate, and is 

measured via the machine’s load-cell, and  ( ) is the corresponding velocity of the impactor during 

impact.   , impactor velocity, can be obtained from the initial height of the impactor as described in 

section ‎4 or from the impact (kinetic) energy,     , 

     
 

 
   

  (2) 

Friction between the impactor and the guidelines along with the machine misalignment tolerances 

may introduce tangential and normal forces on the impactor, which may affect the theoretical value of 
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   obtained from Eq. (2). To verify this value,    was measured experimentally using the laser sensors. 

The passing times at each sensor were recorded as    and   . Considering        , the actual 

velocity was simply calculated from Eq. (1) with     (before impact). Comparisons between the 

actual and the theoretical value from Eq. (2) at different impact energies showed a negligible 

difference (about 0.1% overestimation by Eq. (2)). 

Displacement during impact,  , was not measured experimentally, and was obtained from  

 ( )  ∫  ( )   
 

 

       
   

 
 ∫ (∫

 ( )

 

 

 

  )   
 

 

 (3) 

with      as the initial displacement. Equation (3) was also found to provide a reasonable trend of 

deformation during two phases of ‘impact’ and ‘rebound’, meaning that the maximum  , is attained at 

the point where the velocity becomes zero. Dissipated energy is then obtained from the conservation 

of energy principle, and is given by 

  ( )  
 (  

   ( ) )

 
    ( ) (4) 

Terms ∫
 ( )

 
  

 

 
 and ∫ (∫

 ( )

 

 

 
  )   

 

 
 are numerically calculated as accumulative terms between 

the current and subsequent time steps. It is known that the total energy is absorbed when velocity 

becomes zero, and the deformation and damage mechanisms dissipate the initial kinetic energy 

introduced to the panel at the impact moment, i.e.   
        , at    . 

Equation (4) is used to obtain the evolution of dissipated energy during impact for each laminate 

and energy system, from the force data obtained experimentally. The results will be discussed in 

section  6.  

 

6.  RESULTS AND DISCUSSION 

6.1. EVOLUTION OF IMPACT FORCE AND ABSORBED ENERGY 

Figure 3 shows the force-time data and energy absorption behaviour of TS and TP C-layups 

(relatively thin laminates) under the 10J impact energy. Three panels from each case were tested and 

showed consistent values and trends. Thus, only one curve is presented from each case. Both curves 

follow a same trend until an almost identical peak force is reached, 5100N (Figure 3(a)). The TP C-

layup shows slightly higher force-time slope than the TS one. This attributes to higher transverse 

properties of the TP matrix prior damage initiation (see Table 2). A sudden drop then occurs in the 

force level of the TP C-layup that reduces the load capacity of the panel by 27%. The sudden drop 

attributes to the instantaneously occurring delamination damage, mostly occurring within the bottom 

plies. This phenomenon has been observed in other studies carried out on the TS panels (see e.g. [2] or 

[4]), and is believed to be the same for the TP panel examined here. This sudden drop mainly 

contributes to the level of absorbed energy of the TP panel after impact (so-called residual absorbed 

energy) as seen in Figure 3(b). This is almost zero for the TS panel with no sudden drop exhibited.  

The energy is calculated based on the displacement and velocity of the impactor (Eqs. (1) to (4)) 

over the time increments which depend on the resolution of the data acquisition system. The effect of 

accumulative numerical calculation of double integrals in the above equations on the accuracy of 

energy estimation was primarily investigated and found negligible by changing the resolution system 

up to 10kHz. For example, for the case of 40J with shorter impact duration and a number of sudden 

drops, this effect was found more significant. 
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Figure 3: Comparison of TP and TS C-layups’ response to 10J lateral impact energy; (a) evolution 

of impact force with time, and (b) absorbed energy with time 

   

Figure 4: Comparison of TP and TS E-layups’ response to 10J lateral impact energy; (a) evolution 

of impact force with time, and (b) absorbed energy with time 

Figure 4 shows the results for the E-layups (relatively thick panel). For the TP E-layup the slope is 

slightly greater than the TS panel, similar to the C-layup results. The peak force reaches a higher level 

for the TP panel (17%). No apparent sudden drop is seen, except a slight drop at 8 milliseconds in the 

TP panel, which is a sign of insignificant delamination as the dominant mechanism for this 

phenomenon. However, this is hardly observed for the TS C- and E-layup panels which may highlight 

the stronger interfacial properties in the TS panel. This issue is under investigation. The residual 

absorbed energy of the TP and TS panels is zero (Figure 4b). 

Figure 5 shows the E-layups subjected to the 20J impact energy (the results for the 20J C-layup 

case were not shown as they repeat the conclusions mentioned above). The sudden drop in the TP 

panel occurs at the peak force of 8300N, and reduces the load capacity of the panel by 22%. The intact 

remnant of the panel then takes up the load with a rapid rise reaching to the level of 7600N. This was 

C-layup 

10J 

C-layup 

10J 

E-layup 

10J 

E-layup 

10J 

(a) (b) 

Sudden 

drop 

Slight 

drop 

(b) (a) 
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not obzserved in the TP C-layup case (e.g. see Figure 3). Most probably for the C-layup, the number 

of delaminated interfaces was sufficiently high that the remaining interfaces were not able to take up 

the load after the sudden drop. The TS panel with higher peak force and no apparent sudden drop 

exhibits a stronger response compared to the TP panel. However, the value of the residual energy of 

the TS panel is almost identical to the one for the TP panel. This is unexpected since the damage is 

less severe in the TS panel. A larger deformation is expected in the TP panel which contributes to the 

calculation of residual energy from Eq. (4). For the TS panel with semi-brittle behaviour with 

relatively small deformation/deflection, damage grows progressively with the impactor penetrating the 

panel at each time increment. Assuming this behaviour, damage size at each time increment is 

proportional to the displacement the impactor penetrates in. Therefore, damage growth can be 

correlated to the displacement of the impactor during the penetration phase, and therefore to the 

absorbed energy according to Eq. (4). However, for the TP panel exhibiting higher plasticity, the 

relation between these two may not simply be made through that equation. This may lead to the 

conclusion that Eq. (4) is only valid for the laminate-impactor systems with semi-brittle linear elastic 

behaviour, and becomes invalid when large deformation/plasticity is involved. Further investigation is 

required to clarify this.  

Study of force and energy does not solely lead to a proper conclusion. C-scan technique was used 

to measure the introduced damage area in the panels due to impact, summarised in the following 

section along with the optical images. 

 

Figure 5: Comparison of TP and TS E-layups’ response to 20J lateral impact energy; (a) evolution 

of impact force with time, and (b) absorbed energy with time 

6.2. DAMAGE AREA 

The optical images from the TS and TP E-layup panels are shown in Figure 6. For all cases, 

damage occurs more significantly at the bottom side. No significant damage was observed at the top 

(impacting) side except the deformation left after the penetration (Figure 7).  

 

 

 

 

E-layup 

20J 

E-layup 

20J 

Sudden 

drop 
Rapid 

rise 

(a) (b) 
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E-layup 

resin system 
10J 20J 40J 

TS 

   

TP 

   

Figure 6: Evolution of damage at the bottom of E-layups (100mm × 150mm) with impact energy 

(10J, 20J and 40J) 

E-layup 

resin system 
20J 40J 

TS 

  

TP 

  

Figure 7: Evolution of damage at the top of E-layups (100mm × 150mm) with impact energy (20J 

and 40J) 

Figure 7 shows a comparison between the impacting sides of the TS and TP panels at 20J and 40J. 

The impactor penetration is relatively large for the TP case due to the plastic behaviour of the 
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thermoplastic matrix. This is believed the reason for the absorbed energy in the TP panel to reach the 

same level as the TS one as shown in Figure 5.  

Damage increases with increasing impact energy as seen in Figure 6 and Figure 7. However, the TS 

panel exhibits a greater damage resistance than the TP panel. The damage area at the bottom surface of 

the TS panel is not as extensive as that in the TP panel except for the 40J case. 

The images from C-scan are presented in Figure 8 showing internal damage. As seen for all cases, 

the size of damage in the TP panel is larger than that in the TS panel. Damage in TP panel grows 

radially with the increasing energy keeping a semi-elliptical shape from the impact centre while in the 

TS panel it grows inclined with 0° and 45° angles.  

It may be noted that the C-scan images show a combination of in-plane damage and delamination, 

and thus separating interply delamination from in-plane damage is not simple. Our previous research 

has shown that the energy is predominantly absorbed by delamination mechanisms in the TS panel 

(larger than 60% of the total energy) [4]. However, as discussed in section  6.1 on the results of Figure 

5, the dominant mechanism in terms of energy absorption behaviour might be different in TP panels (if 

Eq. (4) is assumed reliable). Further investigations are required along with the numerical analysis for 

understanding the underlying mechanisms involved in the impact damage response of the TP CFRP 

laminates. 

E-layup 

resin 

system 

10J 20J 40J 

TS 

 
 

 

TP 

 
 

 

Figure 8: Evolution of damage in E-layups (100mm × 150mm) with impact energy (10J, 20J and 

40J) measured by C-scanning technique 

7. CONCLUSIONS 

The low-velocity impact response of CFRP composite laminates with two polymer systems 

(thermoset toughened epoxy and thermoplastic PEEK) were studied in this research. The focus was 
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mainly on the comparison of the impact characteristic curves obtained from drop-weight impact tests 

and C-scans to visualise impact damage within the panels. The study showed that the toughened TS 

epoxy material system performed slightly better than the TP PEEK material system. The peak force 

was almost identical for the both panels. However, significant sudden drop in the load capacity of the 

TP panels was seen. This phenomenon was recovered with a rapid rise in load carrying level in the 

thick panel (E-layup). The extent and shape of damage were also studied. It was seen that in the TS 

panels, damage is essentially trapped and allowed to extend mostly in 0° and 45° directions with slight 

radial growth as opposed to the extensive damage growth in the TP panels. The estimation of absorbed 

energy via Eq. (4) was found inaccurate for the TP panels and thus further investigation is suggested. 

The study shows that new toughened fibre-reinforced TS epoxy systems perform as well, if not better, 

under out of plane impact loading as fibre-reinforced PEEK material systems. 
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