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Abstract: An essential input of annuity pricing is the future retiree mortality. From observed
age-specific mortality data, modeling and forecasting can take place in two routes. On the one
hand, we can first truncate the available data to retiree ages and then produce mortality forecasts
based on a partial age-range model. On the other hand, with all available data, we can first apply a
full age-range model to produce forecasts and then truncate the mortality forecasts to retiree ages.
We investigate the difference in modeling the logarithmic transformation of the central mortality
rates between a partial age-range and a full age-range model, using data from mainly developed
countries in the Human Mortality Database (2020). By evaluating and comparing the short-term
point and interval forecast accuracies, we recommend the first strategy by truncating all available
data to retiree ages and then produce mortality forecasts. However, when considering the long-term
forecasts, it is unclear which strategy is better since it is more difficult to find a model and parameters
that are optimal. This is a disadvantage of using methods based on time-series extrapolation for
long-term forecasting. Instead, an expectation approach, in which experts set a future target, could be
considered, noting that this method has also had limited success in the past.

Keywords: age-period-cohort; Lee-Carter model with Poisson error; Lee-Carter model with Gaussian
error; Plat model

1. Introduction

Improving human survival probability contributes greatly to an aging population. To guarantee
one individual’s financial income in retirement, a policyholder may purchase a fixed-term or lifetime
annuity. A fixed-term or lifetime annuity is a contract offered by insurers guaranteeing regular payments
in exchange for an initial premium. Since an annuity depends on survival probabilities and interest
rates, pension funds and insurance companies are more likely to face a risk of longevity. Longevity
risk is a potential systematic risk attached to the increasing life expectancy of policyholders, which can
eventually result in a higher payout ratio than expected (Crawford et al. 2008). The concerns about
longevity risk have led to a surge of interest in modeling and forecasting age-specific mortality rates.

Many models for forecasting age-specific mortality indicators have been proposed in demographic
literature (see Booth and Tickle 2008, for reviews). Of these, Lee and Carter (1992) implemented a principal
component method to model the logarithm of age-specific mortality rates (11, ;) and extracted a single
time-varying index representing the trend in the level of mortality, from which the forecasts are obtained
by a random walk with drift. Since then, the Lee—Carter (LC) method has been extended and modified
(see Booth and Tickle 2008; Pitacco et al. 2009; Shang and Haberman 2018; Shang et al. 2011, for reviews).
The LC method has been applied to many countries, including Belgium (Brouhns et al. 2002), Austria
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(Carter and Prkawetz 2001), England and Wales (Renshaw and Haberman 2003), and Spain (Debén et al.
2008; Guillen and Vidiella-i-Anguera 2005).

Many statistical models focus on time-series extrapolation of past trends exhibited in age-specific
mortality rates (see, e.g., Booth and Tickle 2008). We consider two modeling strategies: On the one
hand, we can first truncate all available data to retiree ages and then produce mortality forecasts
(see, e.g., Cairns et al. 2006 2009). On the other hand, we can first use the available data to produce
forecasts and then truncate the mortality forecasts to retiree ages (see, e.g., Shang and Haberman 2017).
In this paper, our contribution is to investigate the difference in modeling the logarithmic
transformation of the central mortality rates between a partial age-range and a full age-range model,
using data from mainly developed countries in the Human Mortality Database (2020). By evaluating
and comparing the short-term point and interval forecast accuracies, we recommend the first strategy
by truncating all available data to retiree ages and then produce mortality forecasts. However, when we
consider the long-term forecasts, it is unclear which strategy is better since it is more difficult to find a
model and parameters that are optimal. This is a disadvantage of using methods based on time-series
extrapolation for long-term forecasting. Instead, an expectation approach, in which experts set a
future target, could be considered, noting that this method has also had limited success in the past
(Booth and Tickle 2008). Our recommendations could be useful to actuaries for choosing a better
modeling strategy and more accurately pricing a range of annuity products.

The article is organized as follows: In Section 2, we describe the mortality data sets of 19 mainly
developed countries. We revisit five time-series extrapolation models for forecasting age-specific
mortality rates, which have been shown in the literature to work well across the full age range for
some data sets (for more details, consult Shang 2012; Shang and Haberman 2018). Using these models
as a testbed, we compare point and interval forecast accuracies between the two modeling strategies
and provide our recommendations in Section 3. Conclusions are presented in Section 4.

2. Data Sets

The data sets used in this study were taken from the Human Mortality Database (2020). For each
sex in a given calendar year, the mortality rates obtained by the ratio between “number of deaths”
and “exposure to risk”are arranged in a matrix for age and calendar year. Nineteen countries,
mainly developed countries, were selected, and thus 38 sub-populations of age- and sex-specific
mortality rates were obtained for all analyses. The 19 countries selected all have reliable data series
commencing at/before 1950. Due to possible structural breaks (i.e., two world wars), we truncate all data
series from 1950 onwards. The omission of Germany is because the Human Mortality Database (2020)
for a reunited Germany only dates back to 1990. The selected countries and their abbreviations are
shown in Table 1, along with their last year of available data (recorded in April 2019). To avoid
fluctuations at older ages, we consider ages from 0 to 99 in a single year of age and the last age group is
from 100 onwards. Should we consider all ages from 0 to 110+, and we may encounter the missing-value
issue and observe mortality rates outside the range of [0, 1] for some years.

Table 1. The 19 countries with the initial year of 1950 and their ending year listed below.

Country Abbreviation Last Year Country Abbreviation Last Year
Australia AUS 2014 Norway NOR 2014
Belgium BEL 2015 Portugal PRT 2015
Canada CAN 2011 Spain SPA 2016
Denmark DEN 2016 Sweden SWE 2016
Finland FIN 2015 Switzerland SWI 2016
France FRA 2016 Scotland SCO 2016
Italy ITA 2014 England & Wales EW 2016
Japan JPN 2016 Ireland IRE 2014
Netherland NET 2016 United States of America USA 2016

New Zealand NZ 2013
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3. Results

3.1. Forecast Evaluation

We present 19 countries that begin in 1950 and end in the last year listed in Table 1. We keep
the last 30 observations for forecasting evaluation, while the remaining observations are treated as
initial fitting observations, from which we produce the one-step-ahead to 30-step-ahead forecasts.
Via an expanding window approach (see also Zivot and Wang 2006), we re-estimate the parameter
in the time-series forecasting models by increasing the fitted observations by one year and produce
the one-step-ahead to 29-step-ahead forecasts. We iterate this process by increasing the sample size
by one year until the end of the data period. The process produces 30 one-step-ahead forecasts,
29 two-step-ahead forecasts, ..., one 30-step-ahead forecast. We compare these forecasts with the
holdout samples to determine the out-of-sample forecast accuracy.

3.2. Forecast Error Criteria

To evaluate the point forecast accuracy, we consider the mean absolute percentage error (MAPE)
and root mean squared percentage error (RMSPE). The MAPE and RMSPE criteria measure how close
the forecasts compare with the actual values of the variable being forecast, regardless of the error sign.
The MAPE and RMSPE criteria can be expressed as:

1 (31=h) p My j %]
MAPE;, = & Z 1 x 100, x=1,...,p,
p X (31 — h) j=1 xgl x,j P
31-h ~ 2
RMSPE;, = ;( )Z Mxj = ™Mi ) 100
px(31—h) frr o My j

where m, ; represents the actual holdout sample for age x in the forecasting year j, p denotes the total
number of ages, and 71, ; represents the forecasts for the holdout sample.

To evaluate the pointwise interval forecast accuracy, we consider the interval score criterion of
Gneiting and Raftery (2007). We consider the common case of the symmetric 100(1 — &)% prediction
intervals, with lower and upper bounds that were predictive quantiles at & /2 and 1 — « /2, denoted by
il and n??l; As defined by Gneiting and Raftery (2007), a scoring rule for evaluating the pointwise

X,j
interval forecast accuracy at time point j is

~lb ub. _(sub_ b\ 2 (= ~Ib
Sa (mx,j, iy 5; mx,]) = (m}‘,j - mx’j) +& (mx,]- - mx,]-) 1 {mx,]- < mx,]}
2
z . jpub .~ 7ub
a (mx,] mx,]) 1 {mx,] > mx,]} ,
where 1{-} denotes the binary indicator function. The optimal interval score is achieved when 1, ;
lies between n?ﬂ”j and n?‘;';, with the distance between the upper and lower bounds being minimal.
To obtain summary statistics of the interval score, we take the mean interval score across different
ages and forecasting years. The mean interval score can be expressed as:

S = o & o5 (T )

3.3. Comparison of Point and Interval Forecast Errors

Modeling and forecasting mortality can be taken place in two routes. On the one hand, we can
first truncate the available data to certain ages, such as from 60 to 99 in a single year of age and 100+ as
the last age, and then produce mortality forecasts for these retiree ages. On the other hand, we can first
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use the available data, i.e., age-specific mortality from 0 to 99 in a single year of age and 100+ as the
last age, to produce forecasts for these 101 ages and then truncate the mortality forecasts to certain
ages, such as 60 to 99 in a single year of age and 100+ as the last age.

We study five time-series extrapolation models for forecasting age-specific mortality, which have
been shown in the literature to work well across the full age range for some data sets. Please note that the
Cairns-Blake-Dowd suite of models are not included in this paper, because they are designed just for ages
55 and over. The models that we have considered are subjective and far from extensive, but they suffice
to serve as a testbed for comparing the forecast accuracy. These five models are: the Lee—Carter model
with Poisson errors (see, e.g., Brouhns et al. 2002; Renshaw and Haberman 2003 2006), the Lee-Carter
model with Gaussian errors (see, e.g., Booth et al. 2002; Koissi et al. 2006; Renshaw and Haberman 2003),
age-period-cohort model (see, e.g., Renshaw and Haberman 2006) and the Plat model (Plat 2009).

For the short-term forecast horizon (i.e., the one-step-ahead forecast horizon), we compute the
mean of the MAPEs and RMSPEs to evaluate the point forecast accuracy. From Table 2, there is
an advantage of directly modeling and forecasting the truncated series for the female mortality.
For modeling the male mortality, the advantage of directly modeling and forecasting the truncated
series intensifies. By comparing the mean errors of the 19 countries, Table 2 shows that the most
accurate forecasting method is the Plat model for providing best estimates of the female and male
mortality forecasts. The Lee—Carter model with Poisson errors produces smaller MAPEs and RMSPEs
than the Lee—Carter model with Gaussian errors. With the Lee—Carter model with Gaussian errors,
it is advantageous to consider two components rather than only the first component.

Table 2. For the one-step-ahead forecast horizon i = 1, we compute the MAPE and RMSPE for each
country and each model. The most accurate model for each country is highlighted in bold. For each
model, we consider modeling the data with either a partial age range (termed as Partial) or a full age
range (termed as Full).

LC (Poisson) LC (Gaussian) LC, (Gaussian) APC Plat

Error Country Full Partial Full Partial Full Partial Full Partial Full Partial

MAPE Female

AUS 4.45 438 6.01 497 4.69 4.42 7.32 6.38 4.83 4.66
BEL 4.92 490  6.08 501 5.84 504 7.85 624 4.44 4.74
CAN 3.29 322 394 357 374 3.03 498 429 3.20 2.73
DEN 7.05 7.15 8.25 690 7.74 6.36 7.58 715 531 4.79
FIN 6.43 6.13 11.56 6.80 8.26 6.80 931 794 5.63 5.73
FRA 428 447 497 447 396 3.80 7.67 6.16 422 3.65
ITA 3.25 3.15 8.36 371 3.12 317 649 556 3.68 3.43
JPN 5.99 6.02 23.08 703 3.84 3.23 6.00 502 4.04 3.31
NET 3.62 3.61 458 3.67 439 3.65 7.53 629 4.19 3.78
Nz 7.70 7.75 8.65 790 833 7.85 10.02 938 7.75 7.74
NOR 5.25 528  6.92 554 641 5.41 8.18 758 5.66 5.56
PRT 6.06 542 11.68 584 7.82 5.78 8.75 730 6.13 6.58
SPA 515 504 1299 573 6.03 4.19 792 624 480 521
SWE 4.03 4.03 431 409 455 411 8.19 700 491 431
SWI 4.69 472 599 4.65 5.89 484 894 739 528 5.03
SCO 6.79 6.83 878 6.55 7.62 6.49 721 6.97 548 5.15
EW 4.79 472  6.27 449 520 3.51 6.32 580 3.92 3.15
IRE 8.45 733 15.01 827 9.87 8.01 9.52 9.52  9.02 9.19
USA 3.33 322 384 320 381 237 450 428 343 2.13

Mean 524 512 849 539 585 4.85 7.59 6.66 5.05 4.78
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Table 2. Cont.
Error Country LC (Poisson) LC (Gaussian) LC, (Gaussian) APC Plat

Full Partial Full Partial Full Partial Full Partial Full Partial
Male
AUS 5.39 4.84 7.85 5.39 5.74 5.58 7.71 5.98 5.15 5.27
BEL 7.86 6.11 10.53 9.74 8.43 7.43 6.29 5.44 5.31 4.86
CAN 5.54 4.28 7.58 5.05 5.85 4.76 5.19 4.25 4.12 3.31
DEN 8.19 6.67 10.29 10.51 7.77 8.33 7.77 6.53 5.78 5.52
FIN 8.12 749 11.84 8.57 10.02 8.43 8.11 7.10 6.61 6.59
FRA 3.71 317 442 3.96 411 3.66 7.54 6.02 4.16 3.32
ITA 5.85 421 11.29 5.96 4.63 3.73 5.16 4.96 3.74 2.87
JPN 3.95 3.76 9.58 4.31 3.78 413 4.92 4.61 3.59 3.27
NET 8.02 5.58 12.65 7.75 7.23 5.37 5.83 4.79 5.24 4.03
NZ 9.21 8.17 12.63 10.86 9.87 10.90 9.78 8.79 8.12 8.38
NOR 8.66 6.37 13.61 6.84 7.21 6.85 7.42 6.59 6.07 6.02
PRT 6.12 5.57 8.70 7.26 8.46 6.30 7.44 6.90 5.85 5.88
SPA 4.39 3.88 8.48 5.44 7.10 4.38 6.52 5.80 4.11 4.29
SWE 5.05 4,51 9.82 5.38 6.01 5.28 8.07 6.02 4.53 4.08
SWI 5.62 5.37 6.51 5.76 6.86 5.99 7.71 6.55 5.27 5.30
SCO 7.06 6.20 10.63 8.56 8.42 7.51 7.51 6.71 6.29 5.80
EW 4.78 4.04 8.52 5.15 5.99 4.28 6.73 493 3.49 3.43
IRE 13.24 934 17.28 1243 12.59 10.55 10.07 9.84 9.86 9.71
USA 4.65 3.75 5.90 4.33 5.62 3.31 5.79 4.26 3.71 2.42
Mean 6.60 5.44 9.90 7.01 7.14 6.14 7.14 6.11 5.26 4.97

RMSPE Female

AUS 5.84 5.77 7.62 6.49 6.11 5.82 8.86 7.87 6.20 6.19
BEL 6.40 6.43 7.55 6.39 7.37 6.47 9.46 7.64 5.74 6.30
CAN 4.17 4.11 4.96 4.59 4.74 3.98 6.06 5.31 3.96 3.50
DEN 9.36 9.70 10.05 9.23 9.55 8.41 9.32 8.83 6.67 6.10
FIN 8.51 8.32 1454 8.85 10.88 9.14 11.69 10.12 7.46 8.05
FRA 5.57 5.87 6.22 5.51 5.03 4.85 9.15 7.53 5.33 494
ITA 414 4.01 9.80 4.62 4.05 4.19 7.90 6.92 4.75 4.59
JPN 7.13 754 25.03 8.26 4.78 4.07 7.32 6.30 5.00 451
NET 4.62 4.60 5.74 4.73 5.50 4.68 8.86 7.55 5.23 4.88
NZ 10.41 10.44 11.48 1055 11.16 10.67 12.75 12.13  10.29 10.49
NOR 6.85 6.92 8.63 7.20 8.13 7.13 10.15 9.43 7.23 7.35
PRT 7.85 7.03 13.55 7.47 9.85 7.51 10.93 9.16 8.28 8.71
SPA 6.53 6.51 14.70 7.18 7.85 5.26 9.59 7.60 6.22 6.86
SWE 5.27 5.26 5.54 5.31 5.95 5.38 9.75 8.48 6.13 5.56
SWI 5.99 6.03 7.55 5.91 7.48 6.12 10.63 8.98 6.63 6.54
SCO 8.96 899 11.57 8.58 9.86 8.56 9.07 8.89 7.11 6.77
EW 6.33 6.25 8.29 5.94 6.74 4.42 7.69 7.15 4.86 3.96
IRE 11.10 9.63 18.75 10.82 12.88 1058 12.22 1243 11.76 12.26
USA 4.19 413 4.79 413 4.73 3.27 5.91 5.65 4.29 2.77
Mean 6.80 6.71 10.34 6.94 7.51 6.34 9.33 8.31 6.48 6.33
Male
AUS 7.21 6.78 9.72 7.29 7.42 7.24 9.67 7.83 7.12 7.48
BEL 9.98 847 13.14 13.50 10.48 10.02 8.86 7.83 7.39 7.19
CAN 6.80 5.48 9.35 6.22 7.37 6.02 6.77 5.67 5.19 4.42
DEN 11.05 9.23 13.50 14.33 10.49 11.59 10.20 8.75 7.97 7.86
FIN 13.16 13.07 1527 12.49 1545 13.39 11.84 10.88 10.56 11.04
FRA 4.72 411 5.60 5.01 5.12 4.75 9.21 7.68 5.41 4.45
ITA 7.17 535 13.72 7.28 6.31 4.84 6.83 6.50 4.88 4.04
JPN 491 478 10.98 5.45 4.77 5.17 6.20 5.93 4.45 4.38
NET 9.68 7.05 1547 9.82 8.96 6.80 7.61 6.36 5.60 5.54
NZ 13.36 12.08 16.86 15.04 13.59 14.72 1294 11.90 11.72 12.27
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Table 2. Cont.

Error Country LC (Poisson) LC (Gaussian) LC, (Gaussian) APC Plat

Full Partial Full Partial Full Partial Full Partial Full Partial
NOR 11.32 898 17.02 9.45 9.82 9.73 9.89 8.98 8.42 8.62
PRT 8.11 7.59 10.55 9.59 10.56 8.60 9.72 9.07 8.06 8.46
SPA 5.70 5.31 9.97 7.01 9.17 5.73 8.23 7.71 5.47 5.64
SWE 6.56 6.04 11.71 6.99 7.75 7.04 9.72 7.66 5.89 5.60
SWI 7.56 7.30 8.50 7.77 9.24 8.19 10.02 8.60 7.16 7.34
SCO 9.21 843 1298 10.73 11.10 10.28 10.04 9.05 8.50 7.97
EW 5.93 5.16 10.38 6.34 7.42 5.41 8.39 6.37  4.50 4.59
IRE 19.05 14.78 23.17 1745 18.24 1544 1549 1490 15.19 15.23
USA 5.59 4.82 6.95 5.30 6.66 4.08 7.87 6.14 4.78 3.26
Mean 8.79 7.62 1236 9.32 9.47 8.37 9.45 8.31 7.28 7.13

For the short-term forecast horizon (i.e., the one-step-ahead forecast horizon), we compute the
Sa—02 to evaluate the interval forecast accuracy. From Table 3, there is an advantage of directly
modeling and forecasting the truncated series for both female and male mortality. By comparing the
mean errors of the 19 countries, Table 3 shows that the most accurate forecasting method is the Plat

model for providing the interval forecasts of both female and male mortality rates.

Table 3. For the one-step-ahead forecast horizon i = 1, we compute the mean interval score (x100) for
each country and each model.

Country  LC (Poisson) LC (Gaussian) LC; (Gaussian) APC Plat

Full Partial Full Partial Full Partial Full Partial Full Partial
Female
AUS 3.51 344 270 2.68 259 2.78 6.60 526 270 2.53
BEL 3.58 328 334 3.11 3.28 3.19 6.09 4.68 2.61 2.64
CAN 291 261 207 1.89 1.85 1.85 5.17 412 158 1.28
DEN 3.81 3.69 4.62 427 4.68 4.54 8.46 747 341 2.60
FIN 5.02 493  6.17 5.37 5.70 6.19 8.73 784 378 3.42
FRA 2.07 1.85 1.99 193 1.86 1.87 4.90 3.84 2.02 1.75
ITA 2.33 1.89 321 2.04 1.99 2.24 4.38 395 210 2.14
JPN 3.22 213 724 274 1.82 1.70 2.96 3.02 1.56 1.40
NET 3.20 3.08 276 243 271 2.52 7.58 599 249 2.22
NZ 5.87 575 4.86 4.68 4.90 5.63 9.18 8.19 5.01 4.63
NOR 4.36 429 338 320 348 3.23 6.92 6.19 3.23 2.94
PRT 5.34 433 554 421 458 4.20 5.57 469 424 3.92
SPA 4.00 332 3.85 259 2091 211 4.24 339 262 2.69
SWE 3.00 293 283 276 294 3.18 8.19 644 246 2.14
SWI 3.09 3.02 430 414 434 4.57 7.12 511 2.62 2.64
SCO 4.79 462 401 3.80 4.12 445 7.67 751 412 3.40
EW 2.52 235 196 1.84 1.86 1.79 6.49 5.85 214 1.80
IRE 6.57 574 654 493 532 5.28 6.54 642 572 5.55
USA 3.18 292 203 1.78 191 1.27 5.89 551 2.67 1.19
Mean 3.81 348 3.86 3.18 3.31 3.29 6.46 5.55 3.00 2.68
Male
AUS 5.90 5,53 4.75 444 435 457 11.27 7.63 4.60 4.57
BEL 8.79 771 773 824 6.87 7.81 9.87 8.85 599 5.49
CAN 5.31 478 3.86 339 3.62 3.31 8.68 642 3.55 2.65
DEN 8.23 704 748 8.33 7.08 797 11.80 9.96 6.37 5.49
FIN 10.36 995 9.13 8.63  9.65 9.15 13.67 12.30 5.20 7.39

FRA 3.04 266 291 285 299 3.05 10.62 820 332 2.73
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Table 3. Cont.

Country  LC (Poisson) LC (Gaussian) LC; (Gaussian) APC Plat

Full Partial Full Partial Full  Partial Full Partial Full Partial
ITA 4.75 345 416 344  3.05 333  6.68 635 315 3.04
JPN 3.32 252 497 3.62 3.31 385 4.72 476 238 222
NET 7.46 6.26  5.85 512 525 435 830 6.69  5.20 3.79
NZ 10.51 945 953 911 847 9.39 14.37 1224  8.62 7.90
NOR 8.36 757 695 582 592 6.16 10.21 911  6.39 5.88
PRT 7.45 6.40  7.32 6.97  7.56 754 9.24 916  5.87 5.76
SPA 5.35 432 454 3.80 440 345  7.62 721 348 3.37
SWE 5.36 505 521 444 4383 462 1201 9.02 411 3.65
SWI 6.23 6.00 6.76 6.63 7.01 7.00 11.77 896 515 4.68
SCO 8.06 735 796 737  8.05 814 11.02 10.03  6.73 5.33
EW 429 371  4.03 326  3.63 319 9.37 6.86  2.81 2.79
IRE 15.37 1227 11.78 10.10 1043 10.13  13.84 13.32  11.78 11.12
USA 5.26 475  3.25 298 313 191 11.19 833 412 1.85
Mean 7.02 615 6.22 571 577 573 10.33 871  5.20 4.72

For the long-term forecast horizon (i.e., the 30-step-ahead forecast horizon), we also compute
the mean of the MAPEs and RMSPEs to evaluate the point forecast accuracy. From Table 4, it is
unclear from the comparison of the point forecast errors if there is an advantage of modeling and
forecasting the truncated series for the female mortality. In contrast, there is an advantage of modeling

and forecasting the male mortality and forecasting the whole series and then truncating the mortality
forecasts. By comparing the mean errors of the 19 countries, Table 4 shows that the most accurate
forecasting method is the Lee—Carter model with Poisson errors for providing best estimates of the

female mortality forecasts. The most accurate forecasting method is the APC model for providing the

best estimates of the male mortality forecasts. The Lee—Carter model with Poisson errors produces
smaller MAPEs and RMSPEs than the Lee—Carter model with Gaussian errors.

Table 4. For the 30-step-ahead forecast horizon /1 = 30, we compute the MAPE and RMSPE for each
country and each model. The most accurate model for each country is highlighted in bold. For each

model, we consider modeling the data with either a partial age range (termed as Partial) or a full age

range (termed as Full).

Error Country LC (Poisson) LC (Gaussian) LC; (Gaussian) APC Plat
Full Partial Full Partial Full Partial Full Partial Full Partial
MAPE Female

AUS 18.78 20.05 19.09 2046 18.62 21.58 15.20 26.11 20.53 26.99
BEL 15.19 1550 17.02 1599 20.22 16.61 15.77 21.65 26.27 29.78
CAN 13.21 12.72  12.56 9.93 9.07 10.68 17.96 1629 22.76 10.32
DEN 11.91 12.36  11.44 10.71 14.64 1141 2359 22.03 34.15 19.92
FIN 16.35 18.28 16.79 18.37 21.59 20.92 23.38 27.27  26.10 29.23
FRA 16.81 17.35 16.74 17.30  20.00 18.23 13.80 1851 19.02 30.02
ITA 18.55 21.17  26.00 2422 2416 2290 15.06 3254 2341 48.43
JPN 22.83 23.89 40.71 2740 24.65 23.03 5248 19.82 5296 30.09
NET 15.04 1442 20.25 1441 11.70 12.82 1491 16.98 31.19 15.17
NZ 34.61 3591 38.23 40.11 38.56 36.21 28.84 4159 35.94 44.18
NOR 10.17 9.52 1232 11.39 1044 1044 14.22 19.68 35.73 12.53
PRT 41.89 3461 53.01 40.15 5241 45.16 17.40 46.54 47.46 54.60
SPA 25.09 2433 52.66 27.03 27.00 28.85 35.96 27.82  35.92 40.34
SWE 14.54 13.73 1585 1250 13.50 12.55 16.02 16.26  24.55 12.05
SWI 11.27 10.93 10.99 10.83 12.25 1230 17.56 19.76  37.25 18.94
SCO 16.91 1829 1755 19.72  19.75 20.56 10.77 25.86 31.53 20.71
EW 17.24 19.41 55.25 19.25 17.46 20.11 9.57 34.12 25.03 34.45
IRE 38.93 38.09 68.20 43.59 45.58 41.77  19.47 44.09 38.19 41.49
USA 8.90 751 11.13 5.98 7.75 555 16.65 1324 1256 7.83
Mean 19.38 19.37 27.15 2049 21.54 20.62 19.93 25.80 30.56 27.74
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Table 4. Cont.
Error Country LC (Poisson) LC (Gaussian) LC, (Gaussian) APC Plat

Full Partial Full Partial Full Partial Full Partial Full Partial
Male
AUS 50.13 5247  56.68 55.41 49.33 55.95 38.21 5254  53.81 72.66
BEL 58.34 54.88 65.69 9247  58.83 85.97 31.63 46.42 87.24 46.11
CAN 45.46 4226  47.85 4446  47.80 44.78 33.70 43.26 79.94 49.49
DEN 63.45 63.01 63.36 67.67  66.87 67.44  66.01 57.71 73.57 56.30
FIN 43.39 48.11 44.34 96.58  47.78 51.77  20.85 31.29 75.96 52.26
FRA 32.81 33.83 35.81 34.77  37.00 35.36  39.09 35.86 60.49 39.45
ITA 64.41 62.35 70.38 67.22  53.63 62.03 32.11 61.05 81.64 60.60
JPN 12.30 12.68 2098 12.79 12.91 12.82  39.53 2094 3212 15.61
NET 79.68 76.14  78.67 79.29 65.19 71.08 45.62 51.89 79.88 47.61
Nz 99.32 82.86 112.42 117.61 104.32 114.28 63.10 76.39 92.05 94.38
NOR 87.50 7397  88.62 71.43 65.64 67.35 45.09 66.85 70.00 60.19
PRT 42.79 38.11 49.01 83.79  58.24 49.59 18.01 3529 3226 47.62
SPA 2543 23.13 5845 29.85  27.15 30.84 15.21 25.02  26.29 28.47
SWE 51.89 4757  55.01 57.89  53.05 5191 4546 43.28 76.65 42.27
SWI 36.00 3746  41.73 4227  39.01 4548 30.64 4642  50.82 55.93
SCO 52.66 55.63  55.86 92.86 61.36 86.41 38.51 57.02 65.63 54.61
EW 52.44 55.96  52.81 60.03  50.06 55.52 35.42 48.16  47.26 54.41
IRE 110.20 91.02 11271 111.84 111.82 104.52 43.10 97.26 63.07 93.34
USA 24.07 2499  26.07 26.81 26.12 28.13  21.56 23.20 70.21 31.07
Mean 54.33 51.39  59.81 65.53  54.53 59.01 36.99 48.41 64.15 52.76

RMSPE Female

AUS 21.74 23.11 22.17 23.51 21.82 24.60 19.09 2834 2441 30.76
BEL 18.25 18.92  20.82 19.44 2470 20.38 18.67 2489 3154 35.64
CAN 15.37 14.95 14.53 12.18 11.31 13.01 22.76 21.38  28.37 14.13
DEN 14.08 1444  13.33 13.46 16.62 13.50 25.58 25.11 40.84 23.08
FIN 19.82 2237  20.14 22,67  26.18 25.80 27.37 30.78  33.02 35.66
FRA 19.01 19.60 19.27 20.17 2347 21.18 17.97 21.60  24.55 34.67
ITA 21.18 2345  28.25 2636 2644 25.17 18.28 36.15  28.19 57.57
JPN 25.73 26.91 47.72 30.06 27.27 25.71 53.75 2737  55.50 33.61
NET 16.33 15.77  21.13 15.67  13.93 14.43  20.15 21.32 3743 17.97
NZ 44.37 45.84  46.55 49.71 46.68 45.70 33.10 48.79  42.29 50.98
NOR 12.65 12.45 14.53 13.90 12.80 1313 1794 22.61 41.08 14.97
PRT 48.09 40.40 61.17 46.28 60.66 52.06 20.96 54.09  52.80 62.86
SPA 30.73 29.51 59.17 3396  33.89 36.16 38.24 30.74  42.10 45.40
SWE 16.23 15.50 17.54 14.61 17.18 14.73  22.05 2221 31.04 13.67
SWI 13.97 13.52 13.60 13.42 15.17 17.27 2351 24.38 42.62 21.26
SCO 22.00 24.51 20.56 2595 2219 26.98 14.05 2929  35.82 24.81
EW 21.84 24.08 61.19 23.89  21.62 2444 11.78 38.79  29.59 39.16
IRE 44.06 43.59 73.27 4892  50.75 47.72  24.33 57.14  42.55 47.34
USA 10.10 8.70 12.13 7.02 9.11 6.77 18.45 16.32 15.29 8.77
Mean 22.92 23.03  30.90 2427 2536 24.67 23.58 30.60 35.74 32.23
Male
AUS 58.82 61.48 66.43 64.80 57.73 66.12  45.92 64.35 64.19 82.67
BEL 72.35 63.85 78.04  103.40 71.52 95.86 37.45 5436  90.56 53.55
CAN 57.57 5242 6140 55.54 60.60 55.81 40.51 52.40 84.49 57.41
DEN 81.11 80.89 78.71 7538 8253 82.03 77.00 66.75  91.52 68.67
FIN 51.71 5752 5222 11149 5540 61.78 23.39 36.30 78.51 60.90
FRA 38.15 38.84  41.53 40.38  40.58 4091 43.68 40.64  68.48 44.68
ITA 80.70 7732  87.79 84.15 67.36 78.15 36.01 71.62 85.65 75.05
JPN 15.46 16.48 25.77 15.25 16.66 1591 40.62 26.82  37.06 18.33
NET 102.58 9523 100.24 102.76  81.69 89.74 53.64 60.81 87.97 64.18
Nz 112.83 9895 128.69 13649 117.87 132.75 74.82 91.95 10296 107.61
NOR 108.62 85.81 110.96 8225  80.62 79.43  50.60 77.04  79.85 76.25
PRT 49.93 44.03 56.63 95.17  64.89 55.57 20.40 4152  38.67 55.07
SPA 32.82 30.04 63.13 33.14 3215 3460 19.17 27.51 30.23 33.06
SWE 62.19 56.65 66.37 68.98 62.41 62.39 52.86 51.01 84.63 50.20
SWI 43.71 4527  48.84 50.17  45.93 53.22 36.91 55.66 61.52 60.67
SCO 64.25 66.37 6829  105.02 72.18 9790 44.12 67.61 71.81 66.18
EW 62.45 65.98 63.72 71.74  58.80 65.56 42.07 58.11 56.89 63.73
IRE 122.60 104.66 12527 128.85 124.03 118.34 49.25 116.02 80.35 105.59
USA 28.44 29.33 30.26 31.41 30.41 32.05 25.85 26.09 72.70 34.40
Mean 65.59 61.64 71.28 76.65 64.39 69.37 42.86 57.19 72.00 62.01
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For the long-term forecast horizon (i.e., the 30-step-ahead forecast horizon), we also compute the
Su—02 to evaluate the interval forecast accuracy. From Table 5, there is a slight advantage of directly
modeling and forecasting the truncated series for the female mortality. For modeling the male mortality,
there is an advantage of modeling and forecasting the whole series and then truncating the mortality
forecasts. By comparing the mean errors of the 19 countries, Table 5 shows that the most accurate
forecasting method is the Lee—Carter model with Poisson errors for providing the interval forecasts
of the female mortality rates. The most accurate forecasting method is the APC model for providing
the interval forecasts of the male mortality rates. The Lee—Carter model with Poisson errors produces
smaller MAPEs than the Lee-Carter model with Gaussian errors.

Table 5. For the 30-step-ahead forecast horizon i = 30, we compute the mean interval score (x100) for
each country and each model.

Country LC (Poisson) LC (Gaussian) LC, (Gaussian) APC Plat

Full Partial Full Partial Full Partial Full Partial Full Partial
Female
AUS 8.25 7.20 9.30 8.94 7.75 8.80 13.42 1046 1231 9.29
BEL 5.99 4.99 6.85 6.18 7.83 10.10 8.24 11.80 19.53 12.75
CAN 12.64 10.76 7.54 8.09 5.11 7.09 23.15 2193 2371 4.47
DEN 4.81 5.23 5.37 5.07 6.35 18.66 9.72 8.85 2891 8.85
FIN 12.80 9.57 9.23 9.29 12.38 162.23 25.85 20.57 27.49 16.37
FRA 5.39 4.51 5.49 7.33 5.45 5.69 11.37 11.82 14.18 9.99
ITA 8.81 454 12.62 10.21 6.16 8.46 6.16 7.09 7.25 13.39
JPN 6.73 430 1247 10.43 5.40 6.06 27.24 2042 39.63 7.77
NET 9.94 9.09 10.61 9.66 6.96 8.11 22.06 2359 4229 8.94
NZ 8.75 8.81 9.61 10.39 16.15 82.21 7.78 8.99 9.13 13.52
NOR 6.81 7.82 5.39 6.41 5.21 7.68 1447 1355 44.89 7.80
PRT 20.63 10.59 26.58 13.21 23.64 18.53 8.51 8.49 53.85 22.47
SPA 16.70 13.35 18.08 16.12 12.87 9.29 15.95 12.68 32.88 8.74
SWE 9.66 8.88 947 7.85 6.16 13.71 2597 26.32 35.74 6.55
SWI 3.67 3.39 5.30 5.08 6.58 42.74 2261 18.84 31.94 14.23
SCO 8.36 6.08 9.65 7.65 10.37 30.24 7.13 6.64 26.02 11.29
EW 3.84 4.04 1142 4.45 4.81 6.20 5.09 744 1397 8.55
IRE 17.25 12.39  20.57 16.64 18.89 21.43 8.06 9.81 15.26 20.33
USA 4.11 2.50 3.11 1.80 2.52 2.70 15.66 13.93 4.47 4.05
Mean 9.22 7.27 1046 8.67 8.98 24.73  14.65 13.85 2545 11.02
Male
AUS 15.97 12.78 1891 15.69 13.62 23.85 10.15 10.18 16.51 21.01
BEL 22.28 18.18 29.43 47.28 197.68 274.40 9.25 12.30 39.35 17.42
CAN 12.99 1143 1253 11.80 12.94 13.63 13.50 13.63 35.64 14.97
DEN 19.74 19.28 21.72 30.66 441.92 463.81 22.09 16.40 23.17 15.61
FIN 16.45 1698 1554 33.36 26.11 43.94 8.54 8.80 34.82 23.53
FRA 10.58 820 12.85 12.74 14.71 1493 10.69 9.38 16.70 14.70
ITA 17.34 16.24 19.64 17.47 12.56 17.47 7.89 1592 27.76 17.58
JPN 3.58 3.69 8.70 4.73 7.27 23.37 30.41 25.32  38.02 10.07
NET 23.74 21.63 24.04 20.78 18.91 2343 14.96 1042 28.78 15.71
NZ 45.00 26.13  54.39 41.50 52.59 95.29 18.23 16.61 28.10 42.92
NOR 26.45 25.79 25.86 27.40 16.89 23.49 14.77 13.63 2220 16.68
PRT 19.87 13.68 24.01 37.26 30.92 118.32 8.50 12.32 1226 22.79
SPA 27.44 14.80 35.05 19.88 15.81 14.26 8.92 10.80 11.09 10.42
SWE 17.71 13.46 1853 17.60 19.87 20.01 14.96 11.34 25.19 10.65
SWI 9.37 9.05 14.48 13.32 28.57 28.63 9.04 11.19 14.00 22.49
SCO 20.85 19.01 21.61 43.03 84.51 96.68 10.22 12.77  25.07 18.27
EW 15.24 1420 16.68 21.06 17.35 17.39 7.48 11.17 14.08 17.50
IRE 70.26 3726 73.40 48.79 69.77 109.01 12.71 2521 28.22 36.51
USA 10.95 9.65 10.60 9.26 10.47 10.34 12.59 11.09 42.64 11.69

Mean 21.36 16.39 24.10 2493  57.50 7538 12.89 13.60 2545 18.97

4. Conclusions

We consider forecasting retiree mortality using two modeling strategies. On the one hand, we can
first truncate the available data to retiree ages and then produce mortality forecasts. On the other
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hand, we can first use the available data to produce forecasts and then truncate the mortality forecasts
to retiree ages. Using the empirical data from Human Mortality Database (2020), we investigate the
short-term and long-term point and interval forecast accuracies. Between the two model strategies,
we recommend the first strategy by truncating all available data to retiree ages and then produce
short-term mortality forecasts. Our recommendations could be useful to actuaries for choosing a better
modeling strategy and more accurately pricing a range of annuity products.

For the long-term mortality forecasts, we recommend the first strategy for modeling female
mortality but the second strategy for modeling male mortality. It is difficult to recommend a strategy
when the model and its parameters may not be optimal for the long-term forecasts. This is a
disadvantage of using methods based on time-series extrapolation for long-term forecasting. Instead,
an expectation approach, in which experts set a future target, could be considered, noting that this
method has also had limited success in the past (Booth and Tickle 2008).

There are several ways in which the present study can be further extended, and we briefly mention
two: (1) We could consider some machine learning methods to model mortality forecasts (see, e.g.,
Perla et al. 2020; Richman and Wiithrich 2020). (2) The results depend on the age range considered as
well as the selected countries. The R code for reproducing the results can be provided upon request
from the corresponding author.
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