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Abstract  
Age has a major effect on brain volume. However, the normative studies available are 

constrained by small sample sizes, restricted age coverage and significant methodological 

variability. These limitations introduce inconsistencies and may obscure or distort the 

lifespan trajectories of brain morphometry. In response, we capitalised on the resources of 

the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to 

examine the age-related morphometric trajectories of the ventricles, the basal ganglia 

(caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and 

amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-

90 years. All subcortical structure volumes were at their maximum early in life; the volume of 

the basal ganglia showed a gradual monotonic decline thereafter while the volumes of the 

thalamus, amygdala and the hippocampus remained largely stable (with some degree of 

decline in thalamus) until the sixth decade of life followed by a steep decline thereafter. The 

lateral ventricles showed a trajectory of continuous enlargement throughout the lifespan. 

Significant age-related increase in inter-individual variability was found for the hippocampus 

and amygdala and the lateral ventricles. These results were robust to potential confounders 

and could be used to derive risk predictions for the early identification of diverse clinical 

phenotypes. 
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Introduction 

Over the last 20 years, studies using structural magnetic resonance imaging (MRI) have 

confirmed that brain morphometric measures changes with age. In general, whole brain, 

global and regional gray matter volumes increase during development and decrease with 

aging (Brain Development Cooperative Group, 2012; Driscoll et al. 2009; Fotenos et al. 

2005; Good et al. 2001; Pfefferbaum et al. 2013; Pomponio et al., 2019; Raz et al. 2005; 

Raznahan et al. 2014; Resnick et al. 2003; Walhovd et al. 2011). However, most published 

studies are constrained by small sample sizes, restricted age coverage and methodological 

variability. These limitations introduce inconsistencies and may obscure or distort the 

lifespan trajectories of brain structures. To address these limitations, we formed the Lifespan 

Working group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) 

Consortium (Thompson et al. 2014, 2017) to perform large-scale analyses of brain 

morphometric data extracted from MRI images using standardized protocols and unified 

quality control procedures, harmonized and validated across all participating sites.  

Here we focus on ventricular, striatal (caudate, putamen, nucleus accumbens), pallidal, 

thalamic, hippocampal and amygdala volumes. Subcortical structures are crucial for normal 

cognitive and emotional adaptation (Grossberg, 2009). The striatum and pallidum (together 

referred to as basal ganglia) are best known for their role in action selection and movement 

coordination (Calabresi et al. 2014) but they are also involved in other aspects of cognition 

particularly memory, inhibitory control, reward and salience processing (Chudasama and 

Robbins 2006; Richard et al. 2013; Scimeca and Badre 2012; Tremblay et al. 2015). The 

role of the hippocampus has been most clearly defined in connection to declarative memory 

(Eichenbaum, 2004; Shohamy and Turk-Browne 2013) while the amygdala has been 

historically linked to affect processing (Kober et al. 2008). The thalamus is centrally located 

in the brain and acts as a key hub for the integration of motor and sensory information with 

higher-order functions (Sherman 2005; Zhang et al. 2010). The role of subcortical structures 

extends beyond normal cognition because changes in the volume of these regions have 

been reliably identified in developmental (Ecker et al. 2015; Krain and Castellanos 2006), 

psychiatric (Kempton et al. 2011; Hibar et al. 2016; Schmaal et al. 2016; van Erp et al. 2016) 

and degenerative disorders (Risacher et al. 2009).  

Using data from 18,605 individuals aged 3-90 years from the ENIGMA Lifespan working 

group we delineated the age-related trajectories of subcortical volumes from early to late life 

in order to (a) identify periods of volume change or stability, (b) provide normative, age-

adjusted centile curves of subcortical volumes and (c) quantify inter-individual variability in 
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subcortical volumes which is considered a major source of inter-study differences in age-

related trajectories derived from smaller samples (Dickie et al. 2013; Raz et al. 2010).  

 

Materials and Methods 

Study Samples 

The study data comes from 88 samples and comprising 18,605 healthy participants, aged 3-

90 years, with near equal representation of men and women (48% and 52%) (Table 1, 

Figure 1). At the time of scanning, participating individuals were screened to exclude the 

presence of mental disorders, cognitive impairment or significant medical morbidity. Details 

of the screening process and eligibility criteria for each research group are shown in Table 

S1). 

Neuroimaging  

Detailed information on scanner vendor, magnet strength and acquisition parameters for 

each sample are presented in Table S1. For each sample, the intracranial volume (ICV) and 

the volume of the basal ganglia (caudate, putamen, pallidum, nucleus accumbens), 

thalamus, hippocampus, amygdala and lateral ventricles were extracted using FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu) from high-resolution T1-weighted MRI brain scans (Fischl 

et al. 2002, 2012). Prior to data pooling, images were visually inspected at each site to 

exclude participants whose scans were improperly segmented. After merging the samples, 

outliers were identified and excluded using Mahalanobis distances. In each sample, the 

intracranial volume (Figure S1) was used to adjust the subcortical volumes via a formula 

based on the analysis of the covariance approach: 'adjusted volume = raw volume – b x (ICV 

– mean ICV)', where b is the slope of regression of a region of interest volume on ICV (Raz 

et al. 2005). The values of the subcortical volumes were then harmonized between sites 

using the ComBat method in R (Fortin, et al. 2017; 2018; Radua et al., 2019 this issue). 

Originally developed to adjust for batch effect in genetic studies, ComBat uses an empirical 

Bayes to adjust for inter-site variability in the data, while preserving variability related to the 

variables of interest.  

Fractional polynomial regression analyses  

The effect of age on each ICV- and site-adjusted subcortical volume was modelled using 

high order fractional polynomial regression (Royston and Altman 1994; Sauerbrei et al. 

2006) in each hemisphere. Because the effect of site (and thus scanner and Freesurfer 

version) were adjusted using ComBat, we only included sex as a covariate in the regression 

models. Fractional polynomial regression is currently considered the most advantageous 
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modelling strategy for continuous variables (Moore et al. 2011) as it allows testing for a wider 

range of trajectory shapes than conventional lower-order polynomials (e.g., linear or 

quadratic) and for multiple turning points (Royston and Altman 1994; Royston et al. 1999). 

For each subcortical structure, the best model was obtained by comparing competing 

models of up to three power combinations. The powers used to identify the best fitting model 

were -2, -1, -0.5, 0.5, 1, 2, 3 and the natural logarithm (ln) function. The optimal model 

describing the association between age and each of the volumes was selected as the lowest 

degree model based on the partial F-test (if linear) or the likelihood-ratio test. To avoid over-

fitting at ages with more data points, we used the stricter 0.01 level of significance as the 

cut-off for each respective likelihood-ratio tests, rather than adding powers, until the 0.05 

level was reached. For ease of interpretation we centred the volume of each structure so 

that the intercept of a fractional polynomial was represented as the effect at zero for sex. 

Fractional polynomial regression models were fitted using Stata/IC software v.13.1 (Stata 

Corp., College Station, TX). Standard errors were also adjusted for the effect of site in the 

FP regression.  

 

We conducted two supplemental analyses: (a) we specified additional FP models separately 

for males and females and, (b) we calculated Pearson’s correlation coefficient between 

subcortical volumes and age in the early (6-29 years), middle (30-59 years), and late-life (60-

90 years) age-group. The results of these analyses have been included in the supplemental 

material.  

 

Inter-individual variability 

Inter-individual variability was assessed using two complimentary approaches. First, for each 

subcortical structure we compared the early (6-29 years), middle (30-59 years) and late-life 

(60-90 years) age-groups in terms of their mean inter-individual variability; these groups 

were defined following conventional notions regarding periods of development, midlife and 

aging. The variance of each structure in each age-group was calculated as  

ln

⎝

⎛
∑'𝑒)*

𝑛,
⎠

⎞	 

where e represents the residual variance of each individual (i) around the non-linear best 

fitting regression line, and n the number of observations in each age-group (t). The residuals 

(ei) were normally distributed suggesting good fit of the model without having over- or under-

fitted the data. Upon calculating the square root of the squared residuals we used the natural 

logarithm to account for the positive skewness of the new distribution. Then the mean inter-
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individual variability between early (6-29 years), middle (30-59 years) and late-life (60-90 

years) age-groups was compared using between-groups omnibus tests for the residual 

variance around the identified best-fitting non-linear fractional polynomial model of each 

structure. The critical alpha value was set at 0.003 following Bonferroni correction for 

multiple comparisons.  

The second approach entailed the quantification of the mean individual variability of each 

subcortical structure through a meta-analysis of the standard deviation of the adjusted 

volumes according to the method proposed by Senior et al. 2016. 

 

Centile Curves 

Reference curves for each structure by sex and hemisphere were produced from ICV- and 

site-adjusted volumes as normalized growth centiles using the parametric Lambda (λ), Mu 

(μ), Sigma (σ) (LMS) method (Cole and Green, 1992) implemented using the Generalised 

Additive Models for Location, Scale and Shape (GAMLSS) in R (http://cran.r-

project.org/web/packages/gamlss/index.html)(Rigby and Stasinopoulos, 2005; 2007). LMS 

allows for the estimation of the distribution at each covariate value after a suitable 

transformation and is summarized using three smoothing parameters, the Box-Cox power λ, 

the mean μ and the coefficient of variation σ. GAMLSS uses an iterative maximum 

(penalized) likelihood estimation method to estimate λ, μ and σ as well as distribution 

dependent smoothing parameters and provides optimal values for effective degrees of 

freedom (edf) for every parameter (Indrayan, 2014). This procedure minimizes the 

Generalized Akaike Information Criterion (GAIC) goodness of fit index; smaller GAIC values 

indicate better fit of the model to the data. GAMLSS is a flexible way to derive normalized 

centile curves as it allows each curve to have its own number of edf while overcoming 

biased estimates resulting from skewed data.  

 

Results 

Fractional polynomial regression analyses  

The volume of the caudate, putamen, globus pallidus and nucleus accumbens peaked early 

during the first decade of life and showed a linear decline immediately thereafter (Figure 2, 

Figures S2-S4). The age-related trajectories of the thalamic, hippocampal and amygdala 

volumes followed a flattened, inverted U-curve (Figure 3, Figures S5-S6). Specifically, the 

volumes of these structures were largest during the first 2-3 decades of life, remained largely 

stable until the 6th decade and declined gradually thereafter (Table S2). The volume of the 

lateral ventricles bilaterally increased steadily with age (Figure S7). The smallest proportion 
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of variance explained by age and its FP derivatives was noted in the right amygdala (7%) 

and the largest in the lateral ventricles bilaterally (38%) (Table S2). 

Striatal volumes correlated negatively with age throughout the lifespan with the largest 

coefficients observed in the middle-life age-group (r=-0.39 to -0.20) and the lowest (|r|<0.05) 

in the late-life age-group, particularly in the caudate. The volumes of the thalamus, the 

hippocampus and the amygdala showed small positive correlations with age (r≈0.16) in the 

early-life age-group. In the middle-life age-group, the correlation between age and 

subcortical volumes became more negative (r=-0.30 to -0.27) for the thalamus but remained 

largely unchanged for the amygdala and the hippocampus. In the late-life age-group, the 

largest negative correlation coefficients between age and volume were observed for the 

hippocampus bilaterally (r=-0.44 to -0.39). The correlation between age and lateral 

ventricular volumes bilaterally increased throughout the lifespan from r=0.19 to 0.20 in early-

life age-group to r= 0.40 to 0.45 in the late-life age-group (Table S3). No effect of sex was 

noted for any pattern of correlation between subcortical volumes and age in any age-group.  

 

Inter-individual variability: For each structure, the mean inter-individual variability in volume 

in each age-group is shown in Table S5. Inter-individual variance was significantly higher for 

the hippocampus, thalamus amygdala and lateral ventricles bilaterally in the late-life age-

group compared to both the early- and middle-life group. These findings were recapitulated 

when data were analysed using a meta-analytic approach (Figure 4 and Figure S8).  

Normative Centile Curves: Centile normative values for each subcortical structure stratified 

by sex and hemisphere are shown in Tables S6-S8.  

 

Discussion 

We analysed subcortical volumes from 18,605 healthy individuals from multiple cross-

sectional cohorts to infer age-related trajectories between the ages of 3 to 90 years. Our 

lifespan perspective and our large sample size complement and enrich previous literature on 

age-related changes in subcortical volumes.  

We found three distinct age-related trajectories. The volume of the lateral ventricles 

increased monotonically with age. Striatal and pallidal volumes peaked in childhood and 

declined thereafter. The volumes of the thalamus, hippocampuus and amygdala peaked 

later and showed a prolonged period of stability lasting till the 6th decade of life, before they 

also started to decline. The trajectories defined here represent a close approximation to a 
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normative reference dataset and are in line with findings from Pomponio et al (2019) who 

also used harmonised multi-site MRI data from 10,323 individuals aged 3-96 years. Similar 

findings were reported by Douaud and colleagues (2014) who analysed volumetric data from 

484 healthy participants aged 8 to 85 years; they also noted the similarity in the age-related 

trajectories of the thalamus, hippocampus and the amygdala. Our results also underscore 

the acceleration in age-related decline from the 6th decade of life onwards. This effect 

seemed relatively more pronounced for the hippocampus, compared to the other subcortical 

regions, as observed in other studies (Jernigan et al. 2001; Pomponio et al. 2019; Raz et al. 

2010).  

The trajectories of subcortical volumes are shaped by genetic and non-genetic exposures, 

biological or otherwise (Eyler et al. 2011; Somel et al. 2010; Wardlaw et al. 2011). Our 

findings of high age-related inter-individual variability in the volumes of the thalamus, 

hippocampus and amygdala suggest that these structures may be more susceptible to 

person-specific exposures, or late-acting genes, particularly from the 6th decade onwards.  

In medicine, biological measures from each individual are typically categorised as normal or 

otherwise in reference to a population derived normative range. This approach is yet to be 

applied to neuroimaging data, despite the widespread use of structural MRI for clinical 

purposes and the obvious benefit of a reference range from the early identification of 

deviance (Dickie et al. 2013; Pomponio et al. 2019). Alzheimer's disease provides an 

informative example as the degree of baseline reduction in medial temporal regions, and 

particularly the hippocampus, is one of the most significant predictors of conversion from 

mild cognitive impairment to Alzheimer’s disease (Risacher et al. 2009). The data presented 

here demonstrate the power of international collaborations within ENIGMA for analyzing very 

large-scale datasets that could eventually lead to normative range for brain volumes for well-

defined reference populations. The unique strengths of this study are the availability of age-

overlapping cross-sectional data from healthy individuals, lifespan coverage and the use of 

standardized protocols for volumetric data extraction across all samples. Study participants 

in each site were screened to ensure mental and physical wellbeing at the time of scanning 

using procedures considered as standard in designating study participants as healthy 

controls. Although health is not a permanent attribute, it is extremely unlikely given the size 

of our sample that our results could have been systematically biased by incipient disease. 

A similar longitudinal design would be near infeasible in terms of recruitment and retention 

both of participants and investigators. Although multisite studies have to account for 

differences in scanner type and acquisition, lengthy longitudinal designs encounter similar 

issues due to inevitable changes in scanner type and strength and acquisition parameters 
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over time. In this study, the use of age-overlapping samples from multiple different countries 

has the theoretical advantage of diminishing systematic biases reflecting cohort and period 

effects (Glenn, 2003; Keyes et al. 2010) that are likely to operate in single site studies.  

In conclusion, we used existing data to derive age-related trajectories of regional subcortical 

volumes. The size and age-coverage of the analysis sample has the potential to 

disambiguate uncertainties regarding developmental and aging changes in subcortical 

volumes while the normative centile values could be further developed to derive clinically 

meaningful predictors of risk of adverse health outcomes.  
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Table 1. ENIGMA samples 
Sample Age, Mean  

(Years) 
Age, SD  
(Years) 

Age Range 
(Years) 

Sample 
Size 
(N) 

Male 
(N) Female  

(N) 
ADHD NF 13.4 0.9 12-15 12 6 6 

AMC 23 3.4 17-32 94 60 34 

Barcelona 1.5T 15 1.8 11-17 25 12 13 

Barcelona 3T 14.5 2.2 11-17 37 18 19 

Betula  62.5 12.8 26-81 263 123 140 

BIG  28.4 14.3 13-82 1311 651 660 

BIG  24.1 8.1 18-71 1275 537 738 

BIL&GIN  26.7 7.7 18-57 451 219 232 

CAMH 43.6 19.3 18-86 141 72 69 

Cardiff  25.2 7.1 18-58 290 78 212 

CEG  15.6 1.7 13-19 32 32 0 

CIAM 26.1 4.8 19-40 27 13 14 

CLiNG 25.2 5.3 18-58 316 130 186 

CODE 39.7 13.3 20-64 72 31 41 

ENIGMA-HIV  24.7 4.5 19-33 30 15 15 

ENIGMA-OCD (1) 14.9 2 12-17 6 2 4 

ENIGMA-OCD (2) 34.5 12.7 18-61 23 11 12 

ENIGMA-OCD (3) 38.9 10.9 26-63 20 8 12 

ENIGMA-OCD (4) 39.5 12.4 26-63 17 3 14 

ENIGMA-OCD (5) 33.9 9.3 24-53 19 6 13 

ENIGMA-OCD (6) 39.7 8.2 24-53 17 8 9 

ENIGMA-OCD (7) 31.5 10.9 20-56 22 8 14 

FBIRN 37.6 11.3 19-60 173 123 50 

FIDMAG 37.5 10.1 19-64 123 54 69 

GSP 27.2 16.5 18-90 1996 882 1114 

HMS  39.6 12.2 19-64 55 21 34 

HUBIN 42 8.8 19-56 102 69 33 

IMH 31.9 10.1 20-59 78 49 29 

Indiana 1.5T 62.5 11.7 37-84 49 9 40 

Indiana 3T 27.7 20.1 6-87 199 95 104 

KaSP  27.5 5.7 20-43 31 14 17 
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Table 1. ENIGMA samples 
Sample Age, Mean  

(Years) 
Age, SD  
(Years) 

Age Range 
(Years) 

Sample 
Size 
(N) 

Male 
(N) Female  

(N) 
MAS 78.4 4.7 70-90 528 240 288 

MCIC 32.5 12.1 18-60 91 61 30 

Melbourne 19.9 2.9 15-26 79 46 33 

METHCT 26.5 6.8 18-53 59 45 14 

NESDA 40.3 9.7 21-56 65 23 42 

NeuroIMAGE 16.7 3.6 8-28 345 155 190 

Neuroventure 13.7 0.6 12-15 130 55 75 

NU 32.8 14.8 14-68 79 46 33 

NUIG 36.1 11.6 18-58 92 53 39 

NYU 31.1 8.7 19-52 49 29 20 

Olin 36 13.1 21-87 590 236 354 

Oxford  16.2 1.4 14-19 38 18 20 

QTIM 22.6 3.4 16-30 306 92 214 

Sao Paolo (3) 30.5 8.4 18-50 76 42 34 

SCORE  25.5 4.3 19-39 44 17 27 

SHIP-2 54.4 12 32-81 190 99 91 

SHIP TREND 50 13.5 22-79 425 229 196 

StagedDep 46.9 8.4 27-58 19 4 15 

Stanford  37 10.6 19-61 40 13 27 

STROKEMRI 45.2 22.1 18-78 52 19 33 

Sydney 39.1 22.1 12-84 157 65 92 

TOP 35.4 9.9 18-73 303 159 144 

TS-Eurotrain 10.9 1.1 9-13 45 29 16 

Tuebingen 40.5 11.9 24-61 50 22 28 

UMCU  39.7 14.5 19-65 66 26 40 

UNIBA 27.4 9.1 18-63 128 64 64 

UPENN 36.3 14 16-85 176 77 99 

Yale  14.2 2.3 10-18 22 11 11 

Total 32.9 18.3 6-90 11550 5334 6216 
N=number; SD= standard deviation; Abbreviations of sample names: ADHD-NF=Attention 
Deficit Hyperactivity Disorder- Neurofeedback Study; AMC=Amsterdam Medisch Centrum; 
Barcelona=University of Barcelona; Betula=Swedish longitudinal study on aging, memory, 
and dementia; BIG=Brain Imaging Genetics; BIL&GIN=a multimodal multidimensional 
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database for investigating hemispheric specialization; CAMH=Centre for Addiction and 
Mental Health; Cardiff=Cardiff University; CEG=Cognitive-experimental and Genetic study 
of ADHD and Control Sibling Pairs; CIAM=Cortical Inhibition and Attentional Modulation 
study; CLiNG=Clinical Neuroscience Göttingen; CODE=formerly Cognitive Behavioral 
Analysis System of Psychotherapy (CBASP) study; ENIGMA-HIV=Enhancing 
NeuroImaging Genetics through Meta-Analysis-Human Immunodeficiency Virus Working 
Group; ENIGMA-OCD=Enhancing NeuroImaging Genetics through Meta-Analysis-
Obsessive Compulsive Disorder Working Group; FBIRN=Function Biomedical Informatics 
Research Network; FIDMAG=Fundación para la Investigación y Docencia Maria Angustias 
Giménez; GSP=Brain Genomics Superstruct Project; HMS=Homburg Multidiagnosis Study; 
HUBIN=Human Brain Informatics; IMH=Institute of Mental Health, Singapore; 
Indiana=Indiana University School of Medicine; KaSP=The Karolinska Schizophrenia 
Project;MAS=Memory and Ageing Study; MCIC=MIND Clinical Imaging Consortium formed 
by the Mental Illness and Neuroscience Discovery (MIND) Institute now the Mind Research 
Network; Melbourne=University of Melbourne; Meth-CT=methamphetamine use, University 
of Cape Town; NESDA=The Netherlands Study of Depression and Anxiety; 
NeuroIMAGE=Dutch part of the International Multicenter ADHD Genetics (IMAGE) study; 
Neuroventure: the imaging part of the Co-Venture Trial funded by the Canadian Institutes of 
Health Research (CIHR); NU=Northwestern University; NUIG=National University of Ireland 
Galway; NYU=New York University; Olin=Olin Neuropsychiatric Research Center; 
Oxford=Oxford University; QTIM=Queensland Twin Imaging; Sao Paulo=University of Sao 
Paulo; SCORE: University of Basel Study; SHIP-2 and SHIP TREND=Study of Health in 
Pomerania; Staged-Dep= Stages of Depression Study; Stanford=Stanford University; 
StrokeMRI=Stroke Magnetic Resonance Imaging; Sydney=University of Sydney; 
TOP=Tematisk Område Psykoser (Thematically Organized Psychosis Research); TS-
EUROTRAIN=European-Wide Investigation and Training Network on the Etiology and 
Pathophysiology of Gilles de la Tourette Syndrome; Tuebingen=University of Tuebingen; 
UMCU=Universitair Medisch Centrum Utrecht; UNIBA=University of Bari Aldo Moro; 
UPENN=University of Pennsylvania; Yale=Yale University 
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FIGURES 

 
Figure 1. ENIGMA Lifespan Samples 

Details of each sample are provided Table 1 and in the supplemental material. Abbreviations 
are provided in Table 1. 
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Figure 2. Fractional Polynomial Plots for the Volume of the Basal Ganglia  
Fractional Polynomial plots of adjusted volumes (mm3) against age (years) with a fitted 

regression line (solid line) and 95% confidence intervals (shaded area).  

 
Figure 3. Fractional Polynomial Plots for the Volume of the Thalamus, Hippocampus 
and Amygdala 
Fractional Polynomial plots of adjusted volumes (mm3) against age (years) with a fitted 

regression line (solid line) and 95% confidence intervals (shaded area).  
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Figure 4. Mean Inter-individual Variability of Subcortical Volumes 
Mean individual variability for each subcortical structure was estimated by means of a meta-

analysis of the standard deviation of the adjusted volumes in each age-group.  
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