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Abstract. In recent years, convolutional neural networks have demon-
strated promising performance in a variety of medical image segmen-
tation tasks. However, when a trained segmentation model is deployed
into the real clinical world, the model may not perform optimally. A
major challenge is the potential poor-quality segmentations generated
due to degraded image quality or domain shift issues. There is a timely
need to develop an automated quality control method that can detect
poor segmentations and feedback to clinicians. Here we propose a novel
deep generative model-based framework for quality control of cardiac
MRI segmentation. It first learns a manifold of good-quality image-
segmentation pairs using a generative model. The quality of a given
test segmentation is then assessed by evaluating the difference from its
projection onto the good-quality manifold. In particular, the projection
is refined through iterative search in the latent space. The proposed
method achieves high prediction accuracy on two publicly available car-
diac MRI datasets. Moreover, it shows better generalisation ability than
traditional regression-based methods. Our approach provides a real-time
and model-agnostic quality control for cardiac MRI segmentation, which
has the potential to be integrated into clinical image analysis workflows.

Keywords: Cardiac segmentation · Quality control · Generative model.

1 Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally, taking
more than 18 million lives every year [1]. Cardiac magnetic resonance imaging
(MRI) has been widely used in clinical practice for evaluating cardiac struc-
ture and function. To derive quantitative measures from cardiac MRI, accurate
segmentation is of great importance. Over the past few years, various architec-
tures of convolutional neural networks (CNNs) have been developed to deliver
state-of-the-art performance in the task of automated cardiac MRI segmenta-
tion [2,3,4,5]. Although satisfactory performance has been achieved on specific
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datasets, care must be taken when deploying these models into clinical practice.
In fact, it is inevitable for automated segmentation algorithms (not limited to
CNN-based) to generate a number of poor-quality segmentations in real-world
scenarios, due to differences in scanner models and acquisition protocols as well
as potential poor image quality and motion artifacts. Therefore, reliable quality
control (QC) of cardiac MRI segmentation on a per-case basis is highly desired
and of great importance for successful translation into clinical practice.

Related work: Numerous efforts have been devoted into quality control of med-
ical images [6,7,8] and segmentations [9,10]. In this work, we focus on the latter,
i.e. segmentation quality control. Existing literature can be broadly classified
into two categories:

Learning-based quality control: These methods consider quality control as
a regression or classification task where a quality metric is predicted from ex-
tracted features. [11] proposed 42 hand-crafted features based on intensity and
appearance and achieved an accuracy of 85% in detecting segmentation failure.
[12] developed a CNN-based method for real-time regression of the Dice simi-
larity metric from image-segmentation pairs. [13] integrated quality control into
the segmentation network by regressing the Dice metric. Most of these methods
require poor-quality segmentations as negative samples to train the regression
or classification model. This makes quality control specific to the segmentation
model and the type of poor-quality segmentations used for training. [14] used
a variational auto-encoder (VAE) for learning the shape features of segmenta-
tion in an unsupervised manner and proposed to use the evidence lower bound
(ELBO) as a predictor. This model-agnostic structure provides valuable insights
and an elegant theoretical framework for quality control.

Registration-based quality control: These methods perform image registra-
tion between the test image with a set of pre-selected template images with
known segmentations. Then the quality metric can be evaluated by referring to
the warped segmentations of these template images. Following this direction,
[15] proposed the concept of reverse classification accuracy (RCA) to predict
segmentation quality and [9] achieved good performance on a large-scale car-
diac MRI dataset. These methods can be computationally expensive due to the
cost of multiple image registrations, which could potentially be reduced by using
GPU acceleration and learning-based registration tools [16].

Contributions: There are three major contributions of this work. Firstly, we
propose a generic deep generative model-based framework which learns the man-
ifold of good-quality segmentations for quality control on a per-case basis. Sec-
ondly, we implement the framework with a VAE and propose an iterative search
strategy in the latent space. Finally, we compare the performance of our method
with regression-based methods on two different datasets, demonstrating both
the accuracy and generalisation ability of the method.
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2 Methodology

2.1 Problem Formulation

Let F denote an arbitrary type of segmentation model to be deployed. Given
a test image I, the segmentation model provides a predicted segmentation Ŝ =
F (I). The ground-truth quality of Ŝ is defined as q(Sgt, Ŝ) where Sgt is the
ground-truth segmentation and q is a chosen quality metric (e.g. Dice metric).
The aim of quality control is to develop a model Q so that Q(Ŝ; I) ≈ q(Sgt, Ŝ).

2.2 Deep Generative Model-based Quality Control

Quality control would be trivial if the ground-truth segmentation Sgt was avail-
able. Intuitively, the proposed framework aims to find a good-quality segmenta-
tion Ssur as a surrogate for ground truth so that q(Ssur, Ŝ) ≈ q(Sgt, Ŝ). This is
realised through iterative search on the manifold of good-quality segmentations
(Fig.1).

Fig. 1. Overview of the deep generative model-based quality control framework. The
generative model G is trained to learn a mapping G(z) from the low-dimensional latent
space Dz to the good-quality manifold Σ. The input image-segmentation pair (I, Ŝ) is
projected to (Ssur, Isur) on the manifold through iterative search, which is in turn used
as surrogate ground truth for quality prediction. z0 is the initial guess in the latent
space and it converges to zsur.

Good-quality manifold: The core component of this framework is a deep gen-
erative model G which learns how to generate good-quality image-segmentation
pairs. Formally, let X = (I, S) ∈ DI × DS represent an image-segmentation
pair, where DI and DS are the domains of images and possible segmentations.
The key assumption of this framework is that good-quality pairs (I, Sgt) are
distributed on a manifold Σ ⊂ DI ×DS , named as good-quality manifold. The
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generator G learns to construct a low-dimensional latent space Dz ⊆ Rm and a
mapping to the good-quality manifold:

G(z) : Dz 3 z 7→ X = G(z) ∈ DI ×DS (1)

where z denotes the latent variable with dimension m. The mapping G(z) is
usually intractable but can be approximated using generative models such as
generative adversarial networks (GANs) or VAEs.

Iterative search in the latent space: To incorporate the generator into the
quality control framework, we develop an iterative search scheme in the latent
space to find a surrogate segmentation for a given image-segmentation pair as
input. This surrogate segmentation is used for quality prediction. Finding the
closest surrogate segmentation (i.e. projection) on the good-quality manifold is
formulated as an optimisation problem,

zsur = argmin
z∈Dz

L(G(z), (I, Ŝ)) (2)

which minimises the distance metric L between the reconstructed G(z) and the
input image-segmentation pair (I, Ŝ). This problem can be solved using the
gradient descent method as explained in Algorithm 1.

Algorithm 1 Iterative search of surrogate segmentation for quality prediction

Require: A trained generator G : Dz 3 z 7→ G(z) = (I, S) ∈ Σ
Input: Image-segmentation pair (I, Ŝ)
Output: Quality prediction Q(Ŝ; I)
1: Initialization z = z0 ∈ Dz

2: while L not converge do
3: L = L(G(z), (I, Ŝ))
4: grad = ∇zL # calculate gradient through back-propagation
5: z = z − α · grad # gradient descent with learning rate α
6: end while
7: Ssur = G(zsur)
8: Q(Ŝ; I) = q(Ssur, Ŝ) # perform quality control q (e.g. Dice)

2.3 Generative Model using VAE

The proposed framework can be implemented with different generative models
as long as a good-quality segmentation generator with smooth latent space is
available. In this paper, we employ the VAE (Fig 2) which includes an encoder
Eϕ and a decoder Dφ, where ϕ and φ denote the model parameters [17]. The
image-segmentation pair (I, S) is encoded by Eϕ to follow a Gaussian distri-
bution N (µz, σ

2
z) in the latent space, where µz and σ2

z denote the mean and
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Fig. 2. Framework implementation using the variational autoencoder (VAE). In the
training stage, the ground-truth image-segmentation pairs are used. In the application
stage, the VAE decoder is used as the generator for iterative search of the surrogate
segmentation on the good-quality manifold. Initial guess z0 is from the encoder.

variance respectively. A probabilistic reconstruction of the image-segmentation
pair (I ′, S′) is generated from the decoder Dφ.

At the training stage, the ground-truth image-segmentation pairs are used
to train the VAE. The loss function includes a reconstruction loss and a KL
divergence term for regularisation [18]:

LV AE = Lrecon + β ·DKL(N (µz, σ
2
z)||N (0, I)) (3)

Lrecon = BCE(SGT , S
′
GT ) +MSE(I, I ′) (4)

where β is the hyperparameter that balances between reconstruction loss and
regularisation. The reconstruction loss is evaluated using the binary cross-entropy
(BCE) for segmentation and the mean square error (MSE) for image, respec-
tively. The effects of the weight β and the latent space dimension m will be
evaluated in the ablation study.

At the application stage, the VAE decoder Dφ is used as the generator,
reconstructing image-segmentation pairs from the latent space. The initial guess
z0 in the latent space is obtained from the encoder Eϕ. Following Algorithm
1, the surrogate segmentation Ssur can be found via iterative search (Fig. 2b).
Finally, the quality metric is evaluated by q(Ssur, Ŝ), e.g. Dice metric.

3 Experiments

3.1 Datasets

UK Biobank dataset: Short-axis cardiac images at the end-diastolic (ED)
frame of 1,500 subjects were obtained from UK Biobank and split into three
subsets for training (800 cases), validation (200 cases) and test (500 cases). The
in-plane resolution is 1.8x1.8 mm with slice thickness of 8 mm and slice gap
of 2 mm. A short-axis image stack typically consists of 10 to 12 image slices.
Ground-truth good segmentations were generated from a publicly available fully-
convolutional network (FCN) that has demonstrated a high performance [2], with
manual quality control by an experienced cardiologist.
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ACDC dataset: 100 subjects including a normal group and four pathology
groups were obtained from ACDC dataset [4] and resampled to the same spatial
resolution as UK Biobank data. The ground-truth segmentations at the ED
frame were provided by the ACDC challenge organisers.

3.2 Experimental Design

In this study, we evaluate the performance of our proposed method and compare
with two regression-based methods for quality control of cardiac MRI segmen-
tation. Specifically, we focus on the myocardium, which is a challenging cardiac
structure to segment and of high clinical relevance.

VAE implementation and training: The VAE encoder is composed of four
convolutional layers (each was followed by ReLU activation), and one fully con-
nected layer. The decoder has a similar structure with reversed order and the
last layer is followed by Sigmoid function. The latent space dimension m was
set to 8 and the hyperparameter β was set to 0.01 from ablation study results.
The architecture is shown in Appendix Fig. A1. The model was implemented in
PyTorch and trained using the Adam optimiser with learning rate 0.0001 and
batch size 16. It was trained for 100 epochs and an early stopping criterion was
used based on the validation set performance. To improve the computational
efficiency, the VAE was trained on a region of interest (ROI) centered around
the myocardium with the window size of 96x96 pixel, which was heuristically
determined to include the whole cardiac structure. The cropped image intensity
was normalised to the [0, 1] range and stacked with the binary segmentation.

Baseline methods: Two regression-based methods were used as baselines: a)
a support vector regression (SVR) model with 42 hand-crafted features about
shape and appearance [11] and b) a CNN regression network (ResNet-18 back-
bone) with the image-segmentation pair as input [12]. Both baseline methods
use the Dice metric as the regression target.

Experiment 1: UK Biobank Besides the ground-truth segmentations, we gen-
erated poor-quality segmentations by attacking the segmentation model. White
noise with different variance level was added to the original images, resulting
in a dataset of poor-quality segmentations with uniform Dice distribution. The
quality prediction was performed on the test set of the attacked segmentations.

Experiment 2: ACDC We deployed a UK Biobank trained segmentation
model on ACDC dataset without fine-tuning. This reflects a real-world clini-
cal setting, where segmentation failures would occur due to domain shift issues.

Ablation study: We adjusted the dimensionality of the latent space m and
the hyperparameter β and performed a sensitivity analysis on the UK Biobank
validation dataset. The result is reported in the Appendix Table A1.
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4 Results and Discussion

Quality control performance is assessed in terms of Dice metric prediction accu-
racy. Pearson correlation coefficient r and mean absolute error (MAE) between
predicted Dice and real Dice are calculated. Table 1 compares the quantita-
tive performance of the methods and Fig.3 visualises the predictions. On UK
Biobank dataset, the hand-crafted feature method performed the worst. The pro-
posed method achieved a similar performance (r=0.96, MAE=0.07) as the CNN
regression method (r=0.97, MAE=0.06). However, on ACDC dataset, the pro-
posed method (r=0.97, MAE=0.03) outperformed the CNN regression method
(r=0.97, MAE=0.17) with a smaller MAE. As shown in Fig. 3, on ACDC dataset,
the prediction of the proposed method aligns well with the identity line, whereas
the CNN regression method clearly deviates from the line, even though the r
coefficient is still high.

Fig. 3. Comparison of the performance of different quality control methods. The x-axis
is the real Dice of each subject and the y-axis is the predicted Dice by each method. The
dashed line is the y = x, plotted for reference. Top row: UK Biobank data (n = 500).
Bottom row: ACDC data (n = 100), with five subgroups plotted in different colors.

A possible explanation for this is that the proposed generative method works
by learning the good-quality manifold and proposing the surrogate ground truth
for quality assessment. Thus it is agnostic to the types of poor-quality segmenta-
tions. The training of hand-crafted features and CNN-based regression methods
require poor-quality segmentations and may be overfitted to the UK Biobank
data. When they are deployed onto ACDC dataset, there is a shift not only
for image appearance (e.g. difference between 1.5T and 3.0T MRI scanner) but
also for types of segmentation failures. In addition, the ACDC dataset con-
sists of more pathological cases, whereas the UK Biobank comes from a general
healthy population. Due to the domain shift, the performance of regression-based
methods degraded. In contrast, the proposed method maintained a high predic-
tion accuracy against domain shift. This indicates the advantage of a generative
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model-based framework for generalisation. It also can be potentially used as a
system to monitor the performance of deployed segmentation models over time.

Table 1. Quality control performance of three models on two cardiac datasets. The
Pearson correlation coefficient r and the mean absolute error (MAE) between predicted
and true Dice metrics are reported. MAE is reported as mean (standard deviation).
For ACDC dataset, the performance on five subgroups [4] are aslo reported.

Dataset
Hand-crafted features [11] CNN regression [12] Proposed model
r MAE r MAE r MAE

UK Biobank 0.909 0.100(0.100) 0.973 0.061(0.049) 0.958 0.067(0.052)

ACDC 0.728 0.182(0.130) 0.968 0.165(0.044) 0.969 0.033(0.028)

DCM 0.802 0.353(0.123) 0.956 0.186(0.034) 0.964 0.036(0.020)
HCM 0.838 0.131(0.075) 0.836 0.155(0.027) 0.896 0.023(0.015)
MINF 0.815 0.184(0.123) 0.969 0.156(0.051) 0.976 0.033(0.029)
NOR 0.775 0.114(0.065) 0.985 0.158(0.040) 0.985 0.026(0.017)
RV 0.877 0.129(0.073) 0.974 0.169(0.053) 0.960 0.045(0.042)

To gain insights into our proposed method, we visualised several searching
paths within a two-dimensional latent space and corresponding image-segmentation
pairs reconstructed by our generative model (Fig. 4). The poor-quality segmen-
tation could be projected onto the good-quality manifold and refined iteratively
to obtain the surrogate segmentation. The surrogate segmentation on the good-
quality manifold is more plausible and can potentially be used as prior to correct
poor-quality segmentations. It is also expected that the performance could be
improved using advanced generative models and better manifold learning [19].

5 Conclusion

Here we propose a generative-model based framework for cardiac image seg-
mentation quality control. It is model-agnostic, in the sense that it does not
depend on specific segmentation models or types of segmentation failures. It can
be potentially extended for quality control for different anatomical structures.
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Fig. 4. Visualisation of searching path in a two-dimensional latent space. Left: search-
ing paths for five exemplar samples (green point: initial guess from the VAE encoder;
black point: intermediate state during iterative search; red point: convergence point
for surrogate segmentation). Right: the input image and segmentation, reconstructed
segmentations along the searching path and the ground-truth segmentation.
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Appendix

Fig.A1. Network architecture of the VAE.

Table A1. Ablation study of the latent space dimension m and the hyperparameter
beta. The mean absolute error (MAE) between predicted and true Dice metrics on
UKBB validation set are reported. m=8 and β = 0.01 were selected as the optimal
parameters according to the results.

m
β

0 1E-3 1E-2 1E-1

2 0.095 0.094 0.105 0.502

4 0.086 0.092 0.114 0.416

8 0.088 0.072 0.068 0.229

16 0.147 0.141 0.095 0.091
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