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Abstract

The quality of a dataset used for evaluating data linking methods, techniques, and tools depends

on the availability of a set of mappings, called reference alignment, that is known to be correct.

In particular, it is crucial that mappings effectively represent relations between pairs of entities

that are indeed similar due to the fact that they denote the same object. Since the reliability of

mappings is decisive in order to perform a fair evaluation of automatic linking methods an tools,

we call this property of mappings as mapping fairness. In this article, we propose a crowd-based

approach, called Crowd Quality (CQ), for assessing the quality of data linking datasets by measuring

the fairness of the mappings in the reference alignment. Moreover, we present a real experiment,

where we evaluate two state of the art data linking tools before and after the refinement of the

reference alignment based on the CQ approach, in order to present the benefits deriving from the

crowd-assessment of mapping fairness.

1 Introduction

Data linking is the activity of joining different sources of data by interrelating the datum

therein. This involves automatically determining references to the same objects and relations

between related objects, usually by comparing their data descriptions in the different sources.

The Semantic Web has been one of the main research areas where this problem has been studied.

Ontology matching is the activity of discovering relations, called mappings, between entities

in an ontology (Euzenat et al., 2007). Often, the term is reserved to the the matching of concepts

and properties in the schema (or Tbox) of an ontological description, whereas instance matching

is used to refer to the matching of individuals described at the instance level (or Abox). Data

linking of linked data relies heavily on instance matching, and the two terms are often used

interchangeably. In particular, we focus our work mainly on instance matching deduplication

tasks, where links between entities are represented by owl:sameAs relations.1

Several approaches and tools for ontology matching have been proposed along the last 20

years (Euzenat and Shvaiko, 2013; Algergawy et al., 2018), and the field received significant

1Throughout this article, we use ontology matching or simply matching to denote the matching of either
Tbox concepts/properties or the matching of Abox individuals, and ontology to denote either the Tbox
or the Abox. We use instance matching when referring specifically to the matching of Abox individuals.
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attention since 2004 thanks also to the Ontology Alignment Evaluation Initiative (OAEI)2.

In order to compare tools, appropriate methods and techniques are needed to evaluate their

performance in terms of their capability of effectively detecting the correct mappings between

two ontology descriptions and/or two ontology instances.

The conventional approach to evaluation is based on the comparison of the mappings

automatically retrieved by a tool against a set of correct mappings, called reference alignment,

which is manually defined by experts of the domain at hand in order to ensure a ground truth

for the evaluation. However, the increasing size of the data to be compared as well as the lack of

a gold standard, especially when dealing with instances, makes it difficult and time consuming

to manually define such a reference alignment. For this reason, it is becoming quite common

to rely on methods and tools for synthetic dataset generation where the reference alignment is

obtained by systematically applying a set of transformations to an initial dataset (source), in

order to create a transformed set of data to be matched against the initial one (target). The idea

is that tools will have to discover correspondences (mappings) between source and target entities

that have been derived through transformations (Ferrara et al., 2011; Euzenat et al., 2013; Saveta

et al., 2015; Röder et al., 2017). On one hand, these methods have the advantage of being scalable

with respect to the number of entities in the source dataset and they usually provide parameters

that can be used to generate controlled transformations in order to design the reference alignment

in a disciplined manner. On the other hand, it is quite difficult to set up the correct values of

the configuration parameters in order to achieve realistic and fair transformations. Moreover,

it is difficult to understand how much a specific transformation will impact the performance of

matching tools and if these tools’ results will be affected by a transformation the same way as

the human judgment would be.

In the context of ontology matching evaluation, the notion of mapping correctness is related to

the human judgment about the similarity between the entities. Thus, it is clear that, if the goal

of data transformation approaches is to provide a fair evaluation of matching tools in alternative

to manually curated reference alignments, then the crucial issue is to determine whether the

transformations result in mappings that would be considered correct by human standards. If the

transformations lead to unrecognizable property values to such an extent that it is no longer

plausible for a human to consider that the entities with those values denote the same object,

then matching tools should not be penalized for missing them. On the contrary, they should

be rewarded for it, as finding such extreme transformations could very well lead to finding false

positives in real matching scenarios. As such, transformations that are too extreme do not provide

a fair benchmark for evaluating ontology matching tools.

In this paper, we introduce the notion of mapping fairness to denote how much a mapping

generated through the application of data transformations can be considered a “plausible

mapping” to be recognized by a matching tool. To this end, we propose a crowd-based approach,

called Crowd Quality (CQ) to determine the degree of fairness of a mapping by relying on the human

judgement. The ultimate goal is to assess the quality of a data linking dataset by measuring the

fairness of the mappings in the reference alignment. The idea is that the fairness of the evaluation

of ontology matching tools depends on the number of fair mappings that are available in the

reference alignment (Carmines and Zeller, 1979). In particular, if a mapping is fair, it is also

fair to require a matching tool to discover it. On the opposite, it is unfair to expect a matching

tool to discover a mapping which is itself unfair. Borrowing the idea presented in Cheatham

and Hitzler (2014), we argue that crowdsourcing techniques can be successfully employed for

evaluating the degree of mapping fairness in a given reference alignment, with a specific focus on

alignments automatically generated by transformations. In particular, we agree with Cheatham

and Hitzler (2014) that the human interpretation still remains the crucial capability to capture

the meaning of a mapping and to properly rate the quality of a link between two similar items.

On this point, we present crowdsourcing techniques characterized by the combined use of range

2http://oaei.ontologymatching.org.
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tasks and consensus mechanisms for enforcing a fine-evaluation of mapping fairness that really

express the human-perceived judgement. On top of the fairness evaluation, we aim at supporting

new evaluation measures, beyond those based on Precision and Recall (see Section 2), capable

of taking into account the mapping fairness in the evaluation of ontology and instance matching

tools in order to make the evaluation more fair. Our work is focused on instance matching but

the CQ approach can be easily extended to cope with schema-level ontology matching.

The paper is organized as follows. In Section 2, we discuss our motivations and we provide the

main background definitions used in this work. In Section 3 and 4, we present the CQ approach and

the techniques exploited for the evaluation of mappings using crowdsourcing, respectively. Lessons

learned in a real experiment using two state of the art instance matching tools and the crowd

are discussed in Section 5. In Section 6, we provide an overview of the recent literature on data

linking evaluation and crowdsourcing techniques for mapping validation. Finally, in Section 7, we

give our concluding remarks.

2 Motivations and background

A dataset for the evaluation of ontology matching tools is typically characterized by a source

ontology O, a target ontology O′, and a reference alignment E that is a set of mappings m(i, j)

between an entity i ∈O and an entity j ∈O′. During the evaluation, an ontology matching tool

is used to systematically compare entities of O against entities of O′ with the aim to retrieve an

alignment R. In this context, the reference alignment E contains the mappings that are expected

to be retrieved and it serves as ground truth to exploit for quality evaluation of the alignment R.

In particular, given E and R, each mapping m(i, j) is classified as in Table 1. When a mapping

m(i, j) ∈R m(i, j) 6∈ R
m(i, j) ∈ E TP FN

m(i, j) 6∈ E FP TN
Table 1 Classification of mappings with respect to R and E

is retrieved and expected, it is said to be a true positive (TP) result. False negatives (FN) are

mappings that are expected but not retrieved, while false positive (FP) are mappings retrieved but

not expected. Finally, true negatives (TN) are mappings that were not expected and have not been

retrieved. Of course, a perfect ontology matching tool should retrieve what is expected (TP) and

should not retrieve what is not expected (TN). However, since the set of true negatives is usually

large and completely well-defined by the other options (i.e., (O ×O′)− TN≡ TP ∪ FP ∪ FN≡
R ∪ E), the evaluation of ontology matching tools does not use TN and it is typically based on

the measures of Precision and Recall, defined as follows:

Precision=
TP

TP + FP
, Recall =

TP

TP + FN

The classical Precision and Recall are conceived to work with boolean mappings, which state

that a correspondence between two entities i and j can be just true or false; however, this is not

how the majority of ontology matching tools work. The result is usually a mapping of the form

m(i, j, σ), where σ ∈ [0, 1] is a measure of similarity between i and j. When evaluating this kind

of mappings, it is common to exploit the following two strategies. On one side, a threshold over

σ is used to decide which mappings should be included in the retrieved results. On the other

side, the measure σ is used to define a ranking of the retrieved results, from the most similar

mappings to the less similar ones. In such a way, we can observe the Precision of the tool at

different levels of Recall. In particular, when we scan the ranking from the top to the bottom,

the Recall increases and we can measure the corresponding degree of Precision by calculating the

Interpolated Precision Ip(r) at the level r of recall as Ip(r) = maxr′≥r p(r
′), that is the highest

Precision found for any recall r′ ≥ r. This technique provides an evaluation which takes into
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account the level of similarity calculated for each mapping by the matching tools and makes it

possible to describe the performance of each tool by studying how the Precision changes with

respect to Recall.

2.1 Mapping fairness

Both classical Precision/Recall evaluation and ranked evaluation share the idea that all the

mappings in the reference alignment E are equally fair. In this paper, we propose an approach

called CQ to annotate each mapping of the reference alignment with a measure of its fairness,

that is defined as follows.

Definition 2.1 Mapping fairness. Given a mapping m(i, j), its fairness ρ(m(i, j))→ [0, 1]

is a measure that estimates how supported the mapping is by the information in the ontologies,

from a human perspective. A fairness of 0 means that no human could plausibly agree that the

mapping is correct, given the available information, whereas a fairness of 1 means that no human

would doubt the correctness of the mapping.

While the concept of mapping fairness can be applied to traditional reference alignments

produced by human experts, as in the work of Cheatham and Hitzler (2014), it is especially

relevant for synthetically generated datasets, where the reference alignment is defined by applying

a set of transformations to entities of the source ontology in order to obtain their matching

counterpart in the target ontology. The following is the general definition of transformation.

Definition 2.2 Transformation. Let s be a source entity and S the set of ontology

axioms/assertions of the form 〈s, p, o〉, where s is the subject, p denotes a property and o is

the object. A transformation τ(S, p, w)→ T is a function that maps s on a target counterpart

s′ (i.e., m(s, s′)) and transforms S in a new set T of axioms/assertions by applying a specific

transformation with strength w to each assertion/axiom having p as a property.

Example. Consider the following two transformations3. Let game001 be an individual in the

source ontology that describes a board game. The set S of source ontology assertions describing

game001 is the following:

S (source ontology assertions about game001)
game001 rdf:type Boardgame
game001 dc:title “Civilization: the new world”
game001 dc:date 2012

In our example, we define two transformations, namely char mod and property del. Given a property

p and a transformation strength w, the char mod transformation changes the string literal object

o of each assertion on the property p by randomly substituting a number of characters equal to

dw · len(o)e. The property del transformation instead deletes each assertion on p with probability

w. Now, we generate two different matching counterparts for game001, with two different

corresponding reference mappings, namely m(game001, game002) and m(game001, game003). The

two mappings m(game001, game002) and m(game001, game003) are generated as follows:

m(game001, game002) ← char mod(S, dc:title, 0.1)

m(game001, game003) ← property del(char mod(S, dc:title, 0.8), dc:date, 1.0)

In m(game001, game002) we just modify the game title by randomly substituting 2 characters.

Instead, m(game001, game003) is generated by first changing 21 characters in the game title and

then, on top of the char mod transformation, by deleting the date with probability 1.0. The two

resulting individual descriptions T ′ and T ′′ are the following:

3The running example is based on an ontology Abox describing about 1 600 Boardgames. Data have
been retrieved from the BoardGameGeek (BGG) website (https://boardgamegeek.com).
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T ′ (target ontology assertions about game002)
game002 rdf:type Boardgame
game002 dc:title “CivilizaDion:

ghe new world”
game002 dc:date 2012

T ′′ (target ontology assertions about game003)
game003 rdf:type Boardgame
game003 dc:title “bbvolizatioQ7

tkVuMewIuorl5”

The example shows how a different application of transformations may produce mappings with

a different fairness. In the first case (i.e., m(game001, game002)) retrieving the mapping means

to compare two entity descriptions which share the same type and date (i.e., Boardgame and

2012) and a title that is only slightly different from the original. Thus, m(game001, game002)

can be considered a highly reliable mapping which is “fair” to expect in the results of an

ontology matching tool. On the contrary, in m(game001, game003), the two entity descriptions

share only generic information (i.e., the type) but not a date nor a title in that the title

has been heavily changed and it is remarkably different from the original one. Thus, this last

mapping is not reliable and it is “unfair” to pretend that a matching tool will be able to retrieve it.

The impact of a transformation on the target ontology and, as a consequence, on the difficulty

of the matching tasks may be measured by introducing the notion of quantity of transformation.

Measuring how much the source ontology is changed during the transformation process is

important in this context because the number of data values, properties, and logical values that

are changed has a direct influence on how much it is potentially difficult for a matching tool

to find a mapping between the source entity and its transformed counterpart. The quantity of

transformation is defined as follows.

Definition 2.3 Quantity of transformation. The quantity of transformation TQ
i affecting

a source ontology entity i is a vector where each value is a score associated with a feature describing

the process of mapping production. In case of transformations, a feature can represent each

individual transformation or the set of transformations grouped by property or by axiom/assertion.

The scores are intended to represent how easy it will be for a matching tool to detect the

correspondence at the property or the axiom/assertion value, with high scores denoting easy

matching tasks and low scores denoting difficult matching tasks.

TQ
i scores may be set up manually, by enforcing a heuristic approach that associates a given

score to each kind of transformation or that just evaluates the relevance of each property in the

matching process in case of manually defined mappings. As an alternative, scores may be defined

automatically according to the strength w associated with each transformation.

Example. Assume to have an individual s in the source ontology and three data property

assertions of the form 〈s, p1, o1〉, 〈s, p1, o2〉, and 〈s, p2, o3〉. If the quantity of transformation is

assessed by grouping transformations by property, we will have a vector TQ
s over two dimensions,

each one reporting the score associated with the transformations applied to p1 and p2, respectively.

Thus, in case of a transformation which involves both the first and the second assertion, the score

TQ
s [0] represents the cumulative effect of applying the transformation to both the assertions

involving the property p1.

3 Proposed approach

The CQ approach (see Figure 1) is based on the use of crowdsourcing techniques for fairness

assessment of a given ontology alignment, which can either be a manually-defined alignment

or a synthetic alignment created by a set of transformations operated on the source ontology

(Figure 1 (A)).

The first step in the CQ approach is to assess the quantity of transformation TQ
i associated

with each mapping mi in the reference alignment E (Figure 1 (B)). In the second step of CQ
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Figure 1 The CQ approach for fairness assessment of ontology alignment

(Figure 1 (C)), we configure the crowdsourcing framework for supporting the fairness evaluation

of the mappings in E . In particular, crowd workers are involved in the execution of a set of

tasks T = T E ∪ T F composed by tasks T E taken from the reference alignment E , and tasks T F
that are generated as a gold standard control set to check the quality of the crowd work (see

Section 4). The tasks T are submitted to the crowd for evaluation. On one side, we expect that

the workers assign high degrees of fairness to the tasks T E ⊆ T associated with correct mappings,

thus confirming that the descriptions i and j of a mapping m(i, j) actually refer to the same real

entity. On the other side, we expect that the crowd workers associate low degrees of fairness to

the mapping T F ⊆ T . Independently from the quality of the transformation process, we expect

such behavior of crowd workers since a fake mapping for the control set is established between a

pair of different, separate entity descriptions. In order to make fake mappings more challenging

so that they cannot be trivially evaluated as unfair, we map entities in the source ontology with

other transformed entities in the target ontology by exploiting the following criterion: 1) given

an entity i in the source ontology, we take the set S of all the entities in the source ontology that

are either siblings of i or instances of the same classes of i, according to the fact that i is a class

or an individual, respectively. Then, we randomly pick up a transformed entity j′ from the set of

all the transformations derived from entities in S and we create a task for the mapping m(i, j′).

An example of this procedure in shown in Figure 2.

In the example, a transformation applied to three individuals (i.e., I1, I2, I3) in a source Abox

produces three transformed individuals (i.e., I
′

1, I
′

2, I
′

3) and the corresponding set of mappings

M1, M2, and M3 in the reference alignment E . In order to create a gold standard for crowd

evaluation, we need to define not only a task for each of the (true) mappings but also the control

set T F based on “fake mappings”, that are mappings between unrelated individuals (i.e., the

target individual was not produced by transforming the source individual). To ensure that fake

mappings are plausible and not trivial to detect as incorrect, we only generate such mappings

between instances of the same class. Instances of different classes are likely to have very different

properties in their axioms and thus be trivial to identify. Thus, to generate fake mappings, we
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Figure 2 Example of the building process of the tasks T

randomly select from the gold standard the target individual to be mapped on I1 among those that

are matching counterparts of the individuals that are instance of the same class than I1. In the

example, this means that we select I
′

2, because we have m(I2, I
′

2), A(I2) and A(I1). By applying

this criterion to I1 and I2, we produce two new mappings F1 =m(I1, I
′

2) and F2 =m(I2, I
′

1).

Finally, for each mapping Mi either in the reference alignment or in the set of fake mappings, we

define a task T (Mi) in the final task set T = T E ∪ T F .

The third step in CQ (Figure 1 (D)) is based on the crowdsourcing execution of the tasks T .

It is important to consider that a basic principle of crowdsourcing is about rewarding workers for

their effort in task execution. For this reason, the number of tasks T submitted to the crowd can

be different from the number of mappings in the reference alignment E due to budget constraints.

Moreover, each task is assigned to a work force composed of multiple independent workers, thus

it is possible that a final result is not collected for all the tasks T due to insufficient crowd

participation. As a result, it may happen that a crowd-based fairness evaluation is available only

for a subset of the mappings in the reference alignment E ⊆ E . In this case, a learning step is

enforced (Figure 1 (E)) in order to predict the crowd fairness evaluation for the missing mappings.

This learning step relies on the features and the quantity of transformation TQ that has been

applied to a mapping task for which a crowd result has been collected. In particular, we use the

subset of tasks that have been executed by the crowd as a training set for regression with the

goal of predicting the fairness values given the mappings and the quantity of transformation.

Finally, the refinement of the reference alignment E is performed in CQ (Figure 1 (F)). The

refinement step is first based on annotating each mapping mi ∈ E with the fairness degree ρ(mi)

provided by the crowd. This new alignment ER provides a representation of the mapping fairness

in a continuous space. In order to transform fairness in a categorical judgment over the mappings

validity, we specify a threshold th over the crowd fairness degrees4 such that the refined alignment

is defined as E ′ = E − {mi | ρ(mi)< th}. Given the annotated reference alignment ER and the

fairness degrees FR provided by the crowd for the fake tasks T F , we define the following crowd-

error function Ce(r)→ [0, 1].

Ce(r) =
| {mi ∈ ER : ρ(mi)< r} |+ | {fi ∈ FR : ρ(fi)> r} |

| ER |+ | FR |
, (1)

where r denotes a fairness degree value. The value of Ce(r) is inversely proportional to the number

of mappings with high fairness values that are correct (i.e., included in the reference alignment)

4The setting of the refinement threshold th is a parameter that is expected to be set up by the designer
of the evaluation process. The idea is that higher values of th produce a simpler challenge for matching
tools in that only highly fair mappings are preserved. In this paper, we run an extensive experimental
evaluation of the impact of different levels of th on the evaluation process (see Section 5).
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and with the number of tasks with low fairness values that are actually fake, which states the error

of the crowd in its fairness judgment. The threshold for determining the class of fair mappings is

thus the value of r which minimizes Ce(r).

4 Crowdsourcing techniques

The term crowdsourcing has been firstly introduced in Howe (2006) and it is defined as a type

of participatory online activity in which an individual or an institution proposes to a group

of individuals of varying knowledge, heterogeneity, and number, via a flexible open call, the

voluntary undertaking of a task (Arolas and de Guevara, 2012).

In CQ, crowdsourcing techniques are employed for human-assessment of mapping fairness.

Given a mapping, a corresponding crowdsourcing task is assigned to multiple crowd-workers for

evaluation. This kind of task is usually known as collective task and the final task result (i.e., the

evaluation of mapping fairness) depends on the personal knowledge, perception, and expertise of

the human workers involved in task execution. Since many different answers are collected from

crowd workers on a given task, a consensus mechanism is enforced to determine the final task

evaluation/result on the basis of the different obtained opinions. In other words, CQ relies on

the so-called “wisdom of the crowd”, in which the fairness of a task result (i.e., the fairness of a

mapping) is determined by its credibility: the higher the consensus among workers on an answer,

the more fair the task is (Castano et al., 2016).

Conventional crowdsourcing solutions for execution of collective tasks are based on choice

questions where the possible task answers are predefined and the worker executes the task by

choosing the preferred option among those available (Sarasua et al., 2012; Cruz et al., 2014;

Cheatham and Hitzler, 2014). In this context, a widely-adopted consensus-evaluation mechanism

is based on majority voting, meaning that the most-selected option becomes the final task

answer (Castano et al., 2015).

In CQ, we address crowdsourcing tasks by adopting the notion of range task (Bozzon et al.,

2013). In a range task, the set of answers is not predefined and the worker executes the task by

specifying a value belonging to a continuous interval of numbers. A well-known example of range

task is described in Noronha et al. (2011) where crowdsourcing is proposed for estimating the

amount of calories in a meal. In Noronha et al. (2011), a task is characterized by a picture of a dish

and a worker receiving a task to execute is asked to insert a numeric value corresponding to her/his

calorie estimation based on the given picture (min-max boundaries are provided to limit the range

of possible values). On range tasks, majority voting mechanisms are ineffective since the worker

answers can be distributed on a potentially-infinite range of values. An intuitive and popular

solution for range task resolution is to employ a mean-based approach in which the arithmetic

mean of the whole set of collected worker answers is provided as final result (Malone et al.,

2010). However, in the literature, the use of a median-based approach to consensus evaluation in

range tasks is considered as a preferable solution with respect to the mean-based ones (Galton,

1907). The adoption of a median-based approach is especially recommended when inaccurate or

so-called “crank” workers (see Galton (1907)) can join the crowsourcing activities, which is a

common situation in real crowdsourcing platforms.

A design choice of the proposed CQ approach is to rely on range tasks so that a crowdsourcing

worker can express her/his mapping evaluations along the whole interval of values on which

fairness is defined. The range tasks of CQ are characterized by i) the use of the interval [0, 1]

for enabling a worker to evaluate the fairness of a given mapping, and ii) the use of the

median-on-agreement (ma) techniques for consensus evaluation on the collected task answers

provided by crowdsourcing workers. The proposed ma mechanism aims to enforce a consensus

mechanism where the answers of crank workers (i.e., workers with an outlier position) are not

taken into account in determining the final task result.
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Crowdsourcing techniques adopted in CQ are distinguished into preparation and execution

techniques as described in the following.

4.1 Preparation techniques

Preparation techniques focus on the activity of a requester, namely the administrator of a

crowdsourcing campaign, who has to configure the task setup before execution. Consider a set

of tasks T to crowd-execute, where each task T ∈ T is a range task and it is associated with a

corresponding mapping m(i, j) to evaluate. A range task of CQ is defined as T = 〈q, m, r, W, A, ā〉
characterized by:

• a task question q providing a textual description submitted to workers for describing the

activity to perform when executing the assigned task. For evaluation of mapping fairness,

the adopted task question is “evaluate the similarity of the following entity descriptions”.

• an entity mapping m(i, j) providing a textual description of the entities i and j to consider

linked through m;

• a value range r = [min, max] denoting the range of min−max numeric values that can be

specified by crowd workers as task answer. For evaluation of mapping fairness, the adopted

value range is [0, 1];

• a work force W = {w1, . . . , wk} denoting the set of crowd workers involved in the execution

of the task;

• an answer set A= {a1, . . . , ak} denoting the set of answers provided by the workers of W

as result of task execution;

• a final result ā denoting the final task result (i.e., the mapping fairness) determined

according to the obtained answer set A.

The q, m, and r components are specified by the requester at design time, before crowdsourcing

execution. In particular, each task T ∈ T is associated with a mapping and the m(i, j) component

is populated according to the features of the entities i and j. For the W component, the requester

defines the size of the work force at design time (i.e., the parameter k =|W |). The size of

the work force is fixed and stable for all the tasks T to execute. Then, the W component is

progressively populated by the crowdsourcing platform at execution time. Each time a worker

w asks for a task to execute, w is inserted into the work force of an available task (i.e., a task

where the number of workers in W is less than the k parameter) and the task is assigned to

w for execution5. When the worker wi ∈W executes the task, the corresponding answer ai is

collected and it is inserted into the answer set A. When all the expected answers are inserted in

A, meaning that the work force W is complete and all the workers in W provided their answers,

a consensus evaluation mechanism is employed to determine the final task result ā according to

A (see Section 4.2).

Example. In Figure 3, we provide an example of range task T of CQ as it is shown to a worker

wi for execution. After the task question q, the entity mapping m is shown and it consists of a

side-by-side presentation of the two instance descriptions linked by the mapping m. A slider is

provided for enabling the worker to specify her/his own answer in the value range r = [0, 1]6. In

the example, the worker wi provides the answer ai = 7. The button “Send the answer” is selected

by the worker for insertion of ai in the answer set A. The button “Reject the task” represents

5The criteria used for assigning tasks to workers are out of the scope of this work, and it depends on the
specific task routing policies enforced by the crowdsourcing platform where the campaign is hosted.
6For the sake of clarity of crowd workers, the slider allows to specify an answer in the range [0, 10] which
is eventually shifted to the range [0, 1] when the answer is inserted in A.
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Figure 3 Example of range task of CQ shown to a worker wi for execution

a possible worker option to skip the task execution when she/he is not confident to be able to

provide a reliable answer. In this case, the task is assigned to another worker and the answer set

A is not modified.

4.2 Execution techniques

Consider a range task T assigned to a group of workers W = {w1, . . . , wk} that provide a set

of answers A= {a1, . . . , ak}. In CQ, we rely on the median-on-agreement (ma) techniques to

determine the final task result ā (Genta et al., 2017). In a range task, each worker can provide

a different answer value in the interval r, thus a fair solution to determine the task result is to

calculate a “middlemost position” that represents a synthesis of the whole set of answers A. To this

end, the ma techniques are characterized by i) the use of the median value to determine such a

central position, and ii) the use of a consensus evaluation mechanism based on the coefficient

of variation to distinguish the worker answers of A that express an agreement, from those

that represent a discordant/outlier position. We call WC ⊆W the consensus group, namely the

subgroup of workers in W whose task answer in A has been recognized to express an agreement.

We call AC ⊆A the consensus answers, namely the set of task answers provided by the workers

in WC . Range task resolution according to the ma techniques is articulated in two main steps:

identification of the consensus group and definition of the task result described as follows.

Identification of the consensus group. Consider the median value mA calculated over the

whole set of worker answers A. The consensus group WC (and the specular set AC of consensus

answers) is built by iteratively considering the possible insertion of a worker wi according to the

distance from mA of the related answer ai, starting from the closest up to the most distant one.

A worker wi is inserted in WC if the corresponding ai value is “close enough” to the consensus

answers already inserted in AC . In other words, the consensus group is created by including

workers that provided a similar answer, meaning that the answers of these workers denote a

sort of agreement on the fairness to associate with the considered mapping. The coefficient of

variation cv is exploited to decide whether a worker answer ai is close enough, so that the worker

wi can be included in WC . A threshold value thcv is set by the requester at design time to decide

whether the ai value can be considered as similar to those previously inserted in AC .

The identification of the consensus group is defined as follows (see Algorithm 1):
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Data: Set of workers W and corresponding answers A, coefficient-of-variation threshold

thcv
Result: The task result ā

; // Compute the median mA

mA←median(A);

; // Identification of WC

WC ←∅;
AC ←∅;
cv← 0;

a∗← minaj∈A(| aj −mA |);
w∗← the worker that provided the answer a∗;

AC =AC ∪ a∗;
WC =WC ∪ w∗;
A=A \ a∗;
W =W \ w∗;
while cv(AC)≤ thcv and A 6= ∅ do

a∗← minaj∈A(| aj −mA |);
w∗← the worker that provided the answer a∗;

AC =AC ∪ a∗;
WC =WC ∪ w∗;
A=A \ a∗;
W =W \ w∗;

end

AC =AC \ a∗;
WC =WC \ w∗;
A=A ∪ a∗;
W =W ∪ w∗;
; // Definition of ā

if |WC |>|W | then

ā←mAC
;

end

else

ā← null;

end

return ā;

Algorithm 1: Algorithm for range task resolution according to ma

1. Compute the median mA over the whole set of worker answers A and define WC = ∅,
AC = ∅.

2. Select the worker answer a∗ ∈A which is closest to mA (a∗ =minaj∈A(| aj −mA |)). Insert

a∗ in AC and insert the worker w∗ in WC . Remove a∗ from A.

3. Repeat the step 2 and evaluate if the last-inserted value a∗ is similar to those previously

inserted in AC and it contributes to the formation of a consensus. To this end, calculate

the coefficient of variation cv over the set of answers in AC :

cv(AC) =

√
1
|AC |

∑|AC |
i=1 (ai − µAC

)
2

µAC

where |AC | is the number of answers in AC , ai represents the ith worker answer in AC , and

µAC
is the arithmetic mean of the answers in AC .
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Figure 4 Example of task-result calculation according to the ma techniques

4. The threshold value thcv is exploited to decide whether i) the last-inserted value a∗ is

confirmed in AC (cv(AC)≤ thcv), or ii) it is removed from AC (cv(AC)> thcv). In the

latter case, the procedure for the construction of the consensus group is terminated.

Definition of the task result. A task is committed when the consensus group WC contains

the majority of workers of W , meaning that a valid consensus has been determined and the task

evaluation is successfully completed. The final task result ā is defined as the median value of

the answers provided by the workers in the consensus group calculated over the set AC , namely

ā=mAC
. ā represents the fairness assessment of crowd workers for the considered task T and

the associated mapping m. Otherwise, the task is uncommitted, meaning that the answers of the

workers in W do not allow to recognize a consensus. In this case, the task result is unset, and

the task can be scheduled for re-execution with a different work force. The maximum number of

possible task re-executions due to uncommitted results is a parameter defined by the requester

at design time of the crowdsourcing campaign. The higher is the number of possible task re-

executions, the higher is the allowed crowdsourcing effort to reach a committed task result. When

the maximum number of task re-executions has been reached and the result is still uncommitted,

the task is terminated, meaning that the crowd cannot successfully determine the fairness of the

mapping associated with the task.

Example. Consider the range task T of Figure 3. The task has been assigned to a work force

composed of k = 6 crowd workers and the obtained answer set is A= {0.6, 0.0, 0.5, 0.6, 1.0, 0.7}.
The median value over the whole set of worker answers is mA = 0.6. The threshold for the

coefficient of variation is set to thcv = 0.15. By applying the Algorithm 1, we build the consensus

group WC{w1, w3, w4, w5, w6} shown in Figure 4. WC represents a group of workers that agree

on the fairness of the considered mapping, while the worker w2 and the corresponding answer

a2 = 0.0 represents a disagreement with respect to the other workers of W and it is considered

as an outlier position to discard. Since the majority of workers of W belong to WC , the task is

committed and the median value of the answers provided by workers in the consensus group is

returned as final result of the task T: ā=mAC
= 0.6.

4.3 Learning from the crowd

After the crowd execution, a set of mappings E ⊆ E is associated with a crowd-generated fairness

degree. In particular, given mi ∈ E , we call fairness degree ρ(mi) the final crowd result a for

the task Ti associated with mi. It is possible that the set U = E − E is not empty, meaning

that mappings exist which are not associated with any fairness degree. In order to calculate the

fairness degree of mappings in U , we exploit the annotated alignment ER in order to train a

statistical model for predicting the crowd fairness degree for the mappings in U . In particular,
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given the t× f matrix TQ, where t is the size of the reference alignment E and f is the number

of features used for assessing the quantity of transformation (see Section 3), we select the k

rows corresponding to the mappings in E as the training set for the learning model having the

crowd fairness degrees ER as target. Learning is performed trough regression analysis to the

goal of estimating the relationship between the quantity of transformation which generated the

mappings and the crowd judgment. The model is then applied to U with the goal of automatically

generating an estimated fairness degree for the mappings that have not been evaluated by the

crowd.

5 Experimental results

For evaluation of the proposed CQ approach, we consider the mapgame case-study based on a

dataset of entity mappings automatically generated through the SWING framework (Ferrara

et al., 2011). A summary of the source ontology (Tbox and Abox) submitted to transformation

is reported in Table 2, together with the summary of the target ontology resulting from the

transformation.

Table 2 Summary of the source and the target ontologies used for producing the mapgame case-study

Summary of the source ontology

Classes Object properties Data properties Individuals DL expressivity

94 4 12 3,731 AL(D)

Class assertions Object property assertions Data property assertions Boardgames Videogames

9,749 2,937 18,510 2,031 1,037

Summary of the target ontology

Classes Object properties Data properties Individuals DL expressivity

94 4 12 7,008 AL(D)

Class assertions Object property assertions Data property assertions Boardgames Videogames

4,269 3,875 15,754 1,342 545

The case-study consists of a set of 3 731 mappings involving different levels and types of

transformations on 16 properties used for describing individuals representing board- and video-

games. The quantity of transformation TQ
i for each mapping mi has been assessed according

to the following scheme. Since there are multiple transformations per property, and several

transformations can be applied simultaneously per instance, analyzing the transformations

independently would yield misleading results. To account for this, we grouped transformations

by property, and used a simple system to score the quantity of transformation TQ:

• 1 - if no transformation was applied to the property for that instance

• 0.3 - if the value of the property was split or the property was reified and there was no

value change, under the rationale that the value of the property is still present, but much

harder to find

• 0 - if the property was deleted or the value for the property was edited

While it may seem unintuitive that we did not distinguish between cases of deletion and edition,

we observed that changing even 5% of a string randomly is sufficient to make it unrecognizable,

and any change to a numeric value has the same effect. Thus, edition is arguably even worse than

deletion for a matching system, as it not only impedes correct matching, but can also lead to

false positives.
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Table 3 Evaluation of the results of AML and LogMap based on the reference alignment derived from
the transformation process.

System TP FP FN Precision Recall F-measure

AML 1,407 408 2,324 77.5% 37.7% 50.7%

LogMap 1,438 694 2,293 67.4% 38.5% 49.0%

intersection 1,300 99 2,431 92.9% 34.8% 50.7%

union 1,545 1,003 2,186 60.6% 41.4% 49.2%

Given the mappings for mapgame and its associated quantity of transformation TQ, the

evaluation has been performed in five steps: i) we initially executed two state of the art matching

tools, namely LogMap (Jiménez-Ruiz and Cuenca Grau, 2011; Jiménez-Ruiz et al., 2012a) and

AgreementMakerLight (AML) (Faria et al., 2013), in order to evaluate their results before the

mapping fairness evaluation; ii) then, we enforced a crowdsourcing campaign to measure the

fairness of each mapping; iii) we assessed the quality of the mappings in terms of fairness by

also setting up a threshold for mapping refinement; iv) we applied linear regression to extend

the crowd evaluation to all the mappings in the reference alignment of mapgame; v) finally, we

studied how the refinement of the reference mappings will change the performances of the tools

in terms of Precision and Recall.

5.1 Matching Systems

LogMap (Jiménez-Ruiz and Cuenca Grau, 2011; Jiménez-Ruiz et al., 2012a) and AgreementMak-

erLight (AML) (Faria et al., 2013) are state-of-the-art ontology matching systems with a long

track record of performance in the Ontology Alignment Evaluation Initiative. Both systems are

highly versatile and scalable, handling a wide range of ontology and instance-matching problems,

with tens (or even hundreds) of thousands of entities to match. Both also feature logical repair

algorithms, which differ in that LogMap attempts to minimize violations of the consistency and

locality principles (Jiménez-Ruiz et al., 2011) whereas AML is only concerned with the former.

Both LogMap and AML are primarily lexical-based systems, relying mainly on the similarity

between the vocabularies of the input ontologies (i.e., the annotations and/or data property

values) to match entities. They differ slightly in that LogMap uses all lexical information together,

whereas AML separates annotations and given names (i.e., values of data properties such as “title”

or “name”) from other data property values, and does not use the former in its default instance

matching pipeline.

There are several other instance matching/data linking systems (e.g. Legato (Achichi et al.,

2016), SILK (Volz et al., 2009), and LIMES (Ngomo and Auer, 2011)). However, AML and

LogMap were chosen for their good performance in instance matching tracks at the OAEI, code

availability and also familiarity to the authors.

5.2 Results

Table 3 shows the results for LogMap and AML, as well as the intersection and union of their

alignments. As expected given the nature of the transformations, the two systems have a relatively

poor performance, with an F-measure of only around 50%. AML has a higher precision but lower

recall than LogMap, which is at least partially due to the fact that it does not use the titles to

perform matching. The intersection and union results show that the two systems agree on most

of the mappings they predict right and disagree on most of those they predict wrong, having a

Jaccard index of 84% for the true positives but only 10% for the false positives (see also Figure 5).

In an effort to understand the effect of the different types of transformations on the matching

ability of the two systems, we wanted to correlate transformations with mapping status (i.e.,
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Figure 5 Confusion matrix of the AML and LogMap results

whether the system was able to find the mapping). Following this scoring TQ presented above,

we computed Pearson’s correlation coefficient between mapping status and property integrity for

LogMap, AML, and their union and intersection. The results, shown in Table 4 reveal that there

is not a single property highly correlated with the mapping status, but rather a number of weak

correlation relations between properties and mappings. On one side, this suggests that matching

tools produce the decision on a mapping by combining information coming from different property

values in combination. On the other side, however, we note some differences among properties and

their correlation with mappings. In particular, “description” is the property more correlated with

the ability of the systems to find the transformation. “Title” also has a somewhat meaningful

correlation for LogMap, but not AML, as the latter is not using this property to perform matching.

The remaining properties have very low correlation coefficients.

We complemented this analysis by doing a linear regression between mapping status and

property integrity for the union of LogMap and AML. These results, shown in Table 5 confirm that

“description” is the property that most affects matchability, followed by “title” and “publisher”.

No other property has a statistically significant linear coefficient. The pattern behind these

results is quite evident: “description”, “title” and “publisher” are all string-valued properties,

with extensive coverage (they are the three textual properties with the greatest coverage, at over

60% of the individuals each) and great variety in values (title is unique per game individual,

description is unique at least per family of games, and publisher is quite diverse including some

unique values). Thus, these three properties are the best sources of information to use in matching

individuals. The reason why “description” has a higher impact on matchability than “title” even

for LogMap is likely due to the fact that there are very few transformations with preserved “title”

(84) while a fair number have preserved “description” (557).

A manual analysis of the matching results of the two systems showed that both systems failed

to find the correct mapping in presence of the “description” only when the description was not

unique, but shared among several games in a family (e.g., the several “Monopoly” games).
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Table 4 Correlation between property integrity and ability of the matching systems to find match the
transformation for AML, LogMap, and their intersection and union.

Property AML LogMap Intersection Union

Description 0.34 0.27 0.29 0.32

Title -0.02 0.11 -0.01 0.10

Playing Time 0.03 0.05 0.03 0.05

Publisher 0.03 0.01 0.01 0.02

Market 0.01 0.02 0.01 0.02

Min Players 0.01 0.03 0.02 0.02

Made For 0.01 0.03 0.03 0.01

Device 0.01 0.01 0.01 0.01

Date 0.00 0.00 0.00 0.01

Type 0.02 0.00 0.01 0.01

Rated 0.00 -0.01 -0.01 0.00

Source -0.01 0.00 -0.01 0.00

Price -0.02 -0.01 -0.02 0.00

Vote 0.00 0.00 0.00 -0.01

Vendor -0.01 -0.01 -0.01 -0.01

Max Players -0.02 -0.02 -0.02 -0.02

Table 5 Coefficients and respective p-values for the linear regression between mapping status in the
union of LogMap and AML and property integrity for all properties.

Property Coefficients p-value

Description 0.44 0.00

Title 0.32 0.00

Publisher 0.11 0.00

Price -0.03 0.16

Type 0.03 0.17

Rated 0.02 0.22

Playing Time 0.02 0.35

Date 0.01 0.40

Source -0.01 0.65

Device 0.01 0.73

Max Players -0.01 0.73

Min Players 0.01 0.83

Vote 0.00 0.88

Market 0.00 0.90

Vendor 0.00 0.91

Made For 0.00 0.97

5.3 Crowd-evaluation of mapping fairness

A crowdsourcing campaign has been enforced to crowd-evaluate the fairness of mapgame mappings

according to the ma techniques presented in Section 4. For task execution in the campaign, we

employed the Argo crowdsourcing system where the ma techniques have been implemented.7

Each mapping in mapgame corresponds to a task in the crowdsourcing campaign. Moreover,

7Further details about Argo and related crowdsourcing techniques for consensus evaluation are provided
in Castano et al. (2016).
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according to the procedure described in Section 3, a set of 697 “fake mappings” tasks has been

added to the tasks of the crowdsourcing campaign. The crowdsourcing activities of the mapgame

case-study were performed from November 10th, 2018 to December 10th, 2018 by relying on a

crowd of 163 workers selected from a class of master-degree students (average worker age is 21

years old). For task resolution, we asked the workers to rely on their personal knowledge and

we set the available time to perform a task to a maximum of 15 minutes. Crowdsourcing tasks

have been configured with a work force of 6 different crowd workers randomly selected from the

available pool of workers. A threshold thcv = 0.15 was specified in Argo for identification of the

consensus group and consensus evaluation of range-task results according to the ma techniques.8

The number of committed tasks was 2,155 of which 1,458 mappings are taken from the reference

alignment. The crowd judgment on reference and fake mappings is shown in Figure 6, as well as

the crowd-error function derived from the mapgame experiment.

By analyzing the distribution of the fairness degrees assigned to the mappings, we observe that

the crowd workers are generally capable of recognizing high fairness degrees to the mappings from

the reference alignment, and low fairness degrees to the fake mappings. However, by focusing on

the mappings from the reference alignment, we note that the fairness degree spans from 0.6 to 0.9,

meaning that some transformations produced mappings that are less fair than others according

to the crowd judgement. To determine the most appropriate threshold value for categorically

deciding which mappings are actually fair, we analyze the crowd-error function that measures

the error of the crowd in relation with different fairness degrees. As a result, a threshold th= 0.4

is chosen which corresponds to the minimum value of the error function (error value around 0.2).

As a final observation on the crowd results, we compared the quantity of transformation applied

to the mappings in the reference alignment against the fairness results provided by the crowd

and we trained a linear regression model to predict the fairness judgments for the mappings that

the workers did not evaluate during the crowdsourcing activities (see Figure 7).

In order to analytically compare the quantity of transformation with the fairness provided by

the crowd, we exploited the TQ matrix where rows represent mappings that have been evaluated

by the crowd and columns represent the quantity of transformation grouped by the 16 properties

associated with the source ontology individuals. We recall that the values of TQ are inversely

proportional to the quantity of transformation, with the value 1 representing the fact that the

assertions for a specific property are identical in the source and the target ontology. Thus, we

synthetically represent the quantity of transformation by a measure of the inverse cumulative

quantity of transformation iqti for each mapping vector ~qi of length Nq in TQ. The measure iqti

8The value of the threshold thcv has been determined on the basis of experimental observations to
maximize the trade-off between the number of committed tasks (i.e., tasks with successful consensus
evaluation) and the number of worker answers to consider in the consensus group (see the discussion on
the ma techniques provided in Section 4.2).
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Figure 7 Regression analysis on crowd fairness judgments

is defined as:

iqti = log

 Nq

Nq∑
j=1

qi[j]


Figure 7 shows how the crowd provided high values of fairness for mappings affected by low

levels of iqt (iqt lower than 1.0), as expected. However, there is also a number of mappings

with high values of iqt that have been judged as fair (fairness higher than the threshold 0.4).

This confirms the idea that when transformations are not applied to specific properties that are

crucial for identifying entities (i.e., Description and Title in our experiment) the crowd is still

capable of recognizing the entity correspondence. In order to learn a predictive model for the

crowd judgment, we enforce linear regression using the 1,458 mappings evaluated by the crowd

as the training set, where their quality of information vectors represent the features and the

crowd judgment the target variable. We run also tests using other regression models, including

polynomial models, but we obtained the best results with linear regression, which has a mean

squared error equal to 0.03.

In Figure 7, we compare the fairness values predicted by the model with the true fairness

values provided by the crowd. In general, the model overestimates fairness for mappings with

a low crowd fairness, due to the peculiar distribution of crowd fairness judgments where the

mappings with fairness lower than 0.4 are few. For fair mappings instead, the model performs

well in predicting the crowd judgment.

Evaluation of the ma techniques. As a further experiment on the crowdsourcing results, we

analyzed the reliability of the ma techniques as a mechanism for consensus evaluation of range

tasks. We compared the fairness values obtained through the median-on-agreement techniques

against a conventional majority-based mechanism applied to the task answers provided by crowd

workers. The majority-based mechanism is based on the use of boolean tasks where crowd workers

can provide only a true/false answer. In particular, for a task T and corresponding mapping

m(i, j) to evaluate, the possible answers of a worker wk can be i) ak = 1, meaning that wk

considers m(i, j) as a fair mapping (according to the worker wk, it is true that the mapping is

fair), or ii) ak = 0, meaning that wk considers m(i, j) as an unfair mapping (according to the

worker wk, it is false that the mapping is fair). According to the majority-based mechanism, the
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mapping m(i, j) of a task T is fair when the number of collected true answers is higher than

the number of collected false answers within the work force W involved in the task execution.

Otherwise, m(i, j) is evaluated as an unfair mapping. To enforce our experiment, we converted the

answers provided by crowd workers to range tasks into boolean answers. We call amk ∈ [0, 1] the

answer provided by a worker wk to a range task in the crowdsourcing campaign. We call abk ∈ {0, 1}
the corresponding boolean answer obtained from amk according to the following function:

abk =

{
1, if amk ≥ 0.5

0, otherwise

Given a task T , the majority-boolean task result āmb is determined by calculating the majority of

true/false answers ab within the set of worker answers to the task T . According to the boolean

model, the fairness of a mapping m(i, j) associated with a task T can be āmb = 1 (m(i, j) is

evaluated as a fair mapping) or āmb = 0 (m(i, j) is evaluated as an unfair mapping). Consider

the range task result ā determined though the ma techniques presented in Section 4. For the sake

of our experiment, we convert the range task result ā into a converted-boolean task result ācb.

Then, for each task T , we compare the converted-boolean task result ācb against the majority-

boolean task result āmb. As a result, we observe that the two approaches to consensus evaluation

provide equivalent results and they differ in just 0.3% of task evaluations. Such a result is not

surprising since informed and motivated workers have been selected for participation to the

crowdsourcing activities. The benefit of adopting ma with respect to conventional consensus

evaluation mechanisms becomes evident when outlier positions due to inaccurate workers need

to be managed. To this end, we enriched the “pure” crowdsourcing answers with additional

“crank” answers with the aim to simulate the presence of inaccurate workers in crowdsourcing

participants. These additional answers are around 30% of crowdsourcing answers and they are

uniformly distributed over the tasks. The answer value is set to represent an outlier worker

position (i.e., distant from the committed task answer ā). In presence of crank workers with

corresponding outlier positions, for each task T , the comparison of converted-boolean task result

ācb against the majority-boolean task result āmb shows that the two approaches differ in around

3.5% of task evaluations. This is a confirmation that differences in the two consensus evaluation

approaches increase as long as crank answers appear. We also analyzed the task results of each

consensus evaluation approach when “pure” answer and “pure + crank” answers are considered.

In converted-boolean task results, which are based on ma, the introduction of crank answers

causes the change of ācb result in around 1.4% of tasks. This means that the final task result is

actually affected by the crank answers in around 1.4% of tasks. In majority-boolean task results,

the introduction of crank answers causes the change of āmb result in around 4.1% of tasks. As

a result, we confirm that the ma techniques provide more reliable results than majority-based

approach in consensus evaluation, and this is especially true when a certain number of crank

workers participate in the crowdsourcing activities.

5.4 Mapping and evaluation refinement

Given the crowd results, the final step of our experiment was devoted to refine the initial reference

alignment E in order to evaluate the matching tools by taking into account the mapping fairness.

As a first step, we exploit the predictive model to extend the crowd judgment to all the mappings

in E , including those that have not been evaluated by the crowd. All the 3,731 mappings in E are

now associated with a fairness degree, but the mappings retrieved by the tools that are not part of

E (i.e., false positives) are not associated with a measure of fairness. Thus, instead of performing

a new evaluation of the tools based on Precision and Recall, we take into account only E and

we perform and evaluation of sensitivity by comparing the set TP t ⊆ E of reference mappings

retrieved by a tool t (i.e., true positives) with the set E = E − TP t of reference mappings that

have not been retrieved by t (i.e., false negatives). In particular, we define three measures of
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Table 6 Sensitivity after the refinement of reference mappings

Tool σ σw σr

AML 0.38 0.41 0.39

LogMap 0.39 0.42 0.40

Intersection 0.35 0.38 0.36

Union 0.41 0.45 0.43
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Figure 8 Refined sensitivity at different levels of fairness

sensitivity, namely baseline sensitivity σ, weighted sensitivity σw, and refined sensitivity σr as

follows:

σ =
| TP t |
| E |

, σw =

|TP t|∑
i=1

ri

|E|∑
j=1

rj

, σr =
| {mi ∈ TP t : ri > th} |
| {mj ∈ E : rj > th} |

The baseline sensitivity σ is a measure of the instance matching sensitivity before the mapping

refinement. The weighted sensitivity σw measures sensitivity by taking into account the

fairness degrees provided by the crowd. Finally, the refined sensitivity σr exploits a categorical

classification of mappings by taking into account only the mappings that are considered highly

relevant according to the crowd, that are those having a fairness higher then the threshold of 0.4.

The results of evaluation refinement according to sensitivity is reported in Table 6.

The refinement of reference alignment mappings improves the sensitivity performances of the

tools, including the intersection of union of their results, in all the cases. This is relevant in

the evaluation process in that we aim at achieving a “fair evaluation”. The notion of evaluation

fairness is based on the idea that a matching tool should be able to reproduce the human judgment

about the similarity between different ontological descriptions of the same objects. The activity

of evaluating this capability is fair when the mappings to be retrieved are actually detectable

for a human expert. On the contrary, when we ask a tool to retrieve a mapping that is not

detectable neither for a human expert, we are actually asking the tool to perform a task that is

not achievable, which is unfair. With CQ, the mapping refinement takes into account only the

tools results that are considered fair from the crowd. Thus, the interesting point in the new values

of sensitivity is not that they are higher, but rather that they are more fair because they are

calculated on mappings for which the transformations do not impede manual detection.
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Figure 9 Tools and crowd evaluation

Figure 8 describes the behavior of refined sensitivity at different levels of fairness, which is

similar for AML and LogMap. In particular, we note that when we choose a value greater than

0.7 of fairness, the sensitivity of the tools increases remarkably. This suggest that 0.7 is a critical

value for detecting those mappings that are very simple to detect. We have already seen that

mappings under 0.4 of fairness should be pruned from the reference alignment. Thus, the critical

range for evaluation in our experiment was between 0.4 and 0.7, where we find mappings quite

fair according to the crowd but not retrieved as matching by the tools, while the number of

mappings classified as correct by the tools but not by the crowd is very limited (see Figure 9).

6 Related work

Ontology alignment systems are typically evaluated using a dataset composed by two ontologies,

source and target, and a reference alignment between them. The alignment produced by the

system is compared to the reference, and Precision and Recall are computed. Ideally, reference

alignments would be produced by a group of domain experts that would reach a consensus on how

to align the two ontologies. However, given the cost of producing reference alignments manually,

there have been a number of automated approaches proposed in the last years.

In 2009, the Ontology Alignment Evaluation Initiative (OAEI) introduced the Instance Match-

ing track which used an automatically generated benchmark dataset, IIMB.9 The benchmark

applies transformations to a source ontology to produce a target ontology. This benchmark was

also used in the subsequent years. In 2013, the OAEI IM track employed the RDTF tool to

generate a benchmark that includes controlled transformations over the source data, namely

value, structural and translations (Grau et al., 2013). The following year, the sub-task of identity

recognition also employed datasets based on automated modifications over the source. In 2015,

the OAEI introduced SPIMBENCH (Saveta et al., 2015), which is applicable to RDF data with

an associated schema. SPIMBENCH also employs transformations, but in addition it provides

9http://islab.di.unimi.it/iimb/
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a scalable data generator, a reference alignment, and evaluation metrics. In 2016, in addition to

SPIMBENCH, the OAEI also introduced a new dataset generated using UOBM and transformed

using LANCE (Achichi et al., 2016). In 2018, IIMB was once again part of the OAEI. For IIMB,

each IM task has been created by systematically applying a set of transformations to the source

ontology. The TBox is unchanged, while the ABox is altered in several ways by transformation

operations, namely data value transformation, data structure transformation, and data semantics

transformation.

One of the challenges automated benchmark generation encounters is scalability. The HOBBIT

platform (Röder et al., 2017) aims at benchmarking Big Linked Data systems. It can handle

benchmarks that use single consecutive requests, but also benchmarks that have a high workload

through parallel requests. Automated generation of benchmarks through transformations over

a source ontology is the most common technique showcased by successive IM tracks at OAEI.

There are also other techniques that can be employed, for instance adapting external resources

that have mappings to the source and target ontologies (Jiménez-Ruiz et al., 2012b).

In recent years, crowdsourcing has become popular within the Semantic Web community for

a variety of tasks. For instance, the use of crowdsourcing has been proposed for supporting the

ontology engineering process where the crowd can be effectively employed to enforce ontology

verification. In Mortensen (2013), crowdsourcing is exploited to detect extralogical errors (i.e.,

non-logical errors than can only be detected through human interpretation) as part of a

comprehensive framework for Quality Assurance of ontologies at scale. As a further example,

the specification of both system and methods for integrating the use of crowdsourcing in a

platform for fuzzy concept mapping is described in Van Dusen et al. (2016). About ontology

matching, a natural context where crowdsourcing can be employed is in interactive ontology

matching tools. In Paulheim et al. (2013), the proposed framework is based on the idea to involve

users in the evaluation of the ontology mappings generated by matching tools. The idea is to

rely on user expertise to address the resolution of complex mappings. In this respect, the user

collaboration contributes to provide feedback about the tool performances and it is useful to

detect conflicts and to enforce decision support in controversial situations. However, this example

of interactive matching process is more similar to a collaboration-oriented framework rather than

to a crowdsourcing-oriented platform since the basic crowdsourcing features, such as for example

the worker independence, the massive involvement of a crowd without any qualified expertise,

and the presence of a rewarding mechanism, are not considered/supported.

Mostly, the role of crowdsourcing in ontology matching is related to mapping validation. In this

direction, a discussion regarding user alignment validation is provided in Dragisic et al. (2016) and

Li et al. (2019). The authors stress the importance of involving a group of informed users to enforce

mapping validation, so that they are familiar with ontologies and related formal representations,

which is in contrast with the basic crowdsourcing principles. The comparison of an expert-based

mapping validation against a crowd-based one is provided in Acosta et al. (2013) with a case-

study in context of the linked data cloud. The goal of Acosta et al. (2013) is to understand the

possible contributions of experts and crowdsourcing in the resolution of ontology matching issues,

respectively. A similar experiment is discussed in Noy et al. (2013). A case-study in the context

of ontology engineering is presented to compare the quality of results provided by crowdsourcing

workers in the Amazon Mechanical Turk platform (AMT) and undergraduate students recruited

according to expertise-based criteria. The authors claim that comparable results are provided by

the crowd and the students, thus confirming the idea that a positive contribution can be provided

by crowdsourcing, especially on the large scale.

In Sarasua et al. (2012), the CrowdMap model is presented where real crowdsourcing models

and techniques are employed in validation of mappings discovered by automatic tools. A similar

solution is proposed in Cruz et al. (2014) where mapping validation is enforced through a pay-

as-you-go approach characterized by the use of crowd feedback. A propagation mechanism is also

presented in Cruz et al. (2014) to reduce the number of mappings to validate by applying the
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feedback-based result obtained on a specific mapping to other similar mappings. In both Sarasua

et al. (2012) and Cruz et al. (2014), multiple user feedbacks are collected for a task and a consensus

needs to be reached to validate or to reject a given mapping. On this point, it is important to

note that a boolean task model is employed in both the proposed solutions. This means that,

receiving a mapping to validate, the user/worker can only answer with a boolean reply where

she/he evaluates if the mapping is “correct” or “incorrect”. The opportunity to rate the degree

of correctness or incorrectness is not provided.

The possible role of crowdsourcing in the creation of ontology matching benchmarks is

introduced in Cheatham and Hitzler (2014). In particular, the authors stress the impossibility to

rely on experts for fully validating the contents of a (large) automatically-generated benchmark.

At the same time, the authors present an alternative approach based on AMT and crowdsourcing

for successfully scaling on large mapping benchmark validations. Again, a boolean task model

is adopted and workers are asked to evaluate mappings by distinguishing correct and incorrect

ones. In Thaler et al. (2011), a game for ontology alignment is presented called SpotTheLink.

The authors argue that ontology matching requires a human input for improving the quality of

results provided by automated tools. Such an input can be harvested as a side-product of an

entertaining collaborative online game. The game is articulated into a series of challenges, where

a challenge (i.e., a task) is a mapping to validate/confirm. A player/worker is asked to choose the

most appropriate mapping for a given entity by selecting her/his answer among a set of possible

alternatives. The challenge is successfully completed only if a majority of the involved workers

provide the same answer. The outcomes of a challenge execution are twice. On one side, a

successfully completed challenge represents a confirmed/validated mapping on which a consensus

has been reached. On the other side, the players are rewarded with an increasing score when

they participate in the consensus. As a side-effect, the top-score players are also the top-rated

ontology validators. In Thaler et al. (2011), a game challenge represents a crowdsourcing task

based on a choice answer. The use of a choice-task model can be considered as an improvement

of the boolean-task model adopted in Sarasua et al. (2012) and Cruz et al. (2014). However, the

opportunity to rate the quality of a mapping is still not supported.

Original contribution. With respect to the literature solutions discussed above, a first

contribution of the proposed CQ approach is the capability to trace the relation between the

effect of a transformation on a mapping and its impact on the possibility of a human to provide

a correct interpretation of that mapping. Mappings are boolean relationships, so transformation

processes need to define a boundary between transformation effects that still lead to a valid

mapping and those that do not. In CQ, we propose to rely on human judgements to bridge this

gap and we present crowdsourcing techniques based on range tasks and consensus mechanisms to

extend the conventional boolean/choice model adopted in the literature. Related work approaches

(e.g., Sarasua et al. (2012); Cruz et al. (2014); Cheatham and Hitzler (2014)) involve crowd

workers in tasks where only “valid” or “non-valid” options are available as possible answers. The

crowdsourcing techniques of CQ are characterized by the use of range tasks to enable a crowd

worker to really rate/evaluate the quality of an automatically-generated mapping by associating

a measure of fairness in a continuous range of possible values, thus allowing a more fine-grained

evaluation than the boolean one. For enforcing a robust crowdsourcing evaluation that effectively

expresses the human judgement of the mapping fairness, consensus-based techniques are employed

to measure the agreement of workers that execute the same task. This is particularly challenging

in range tasks, since different workers can provide different ratings in a continuous range of

values for the same mapping. On this point, the contribution of CQ is the use of the ma

(median-on-agreement) techniques for extending conventional crowdsourcing solutions suited for

boolean/choice tasks. In particular, we propose the adoption of a majority-based mechanism

specifically conceived to deal with range tasks that is capable of distinguishing the worker answers

that express an agreement, from those that represent a discordant/outlier position.
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Finally, we note that scalability issues are usually mentioned as a limitation in manual, expert-

based approaches to mapping evaluation of automatically-generated benchmarks. As described

in Cheatham and Hitzler (2014), crowdsourcing can help to mitigate the impact of such kind

of issues. However, budget constraints are not considered and it is possible that the size of the

generated benchmark is greater than the available budget to use for rewarding the crowd of

workers to involve in mapping evaluation. A further contribution of CQ is the use of a supervised

learning model so that the results of crowd-assessments on a budget-compatible number of

mappings are propagated to the whole dataset of mappings to evaluate by exploiting the kind

and the degree of transformations applied during the benchmark generation.

7 Concluding remarks

Reference alignments are crucial to support the evaluation of data linking methods, but their

manual creation is very time-consuming and typically relies on domain expert knowledge.

Synthetic approaches to produce reference alignments based on transformations of a source

dataset have been applied to overcome this issue, however, the automated application of

transformations can produce unfair mappings, i.e., mappings for which the transformation to

produce the target entity was disruptive enough to render a mapping too hard to find, and thus

unfair to be used in evaluation. We have proposed a crowd-based approach to assess mappings

fairness, which is applied to the refinement of synthetic reference alignments to make them more

useful and fair. Our approach is based on the agreement of crowd workers over the fairness of

a mapping and can be applied to larger datasets through supervised learning. By being able to

separate mappings with lower fairness from those with a higher fairness, the evaluation of systems

becomes more fair, since the reference alignment is only composed of detectable mappings, i.e.,

mappings for which the transformations do not impede their manual detection.

We have run experiments on an instance matching task, and assessed the impact of using the

refined reference alignments on the evaluation of two state of the art instance matching systems.

Our experiments show that there is a range of fairness for which crowd workers are able to detect

correct mappings, but where automated systems struggle. These more challenging mappings are

crucial for system evaluation, and represent the current blind spots of systems, and can thus be

helpful in driving systems innovation and development.

Possible extensions of the CQ approach are about the adoption of customization techniques for

dynamically selecting the most appropriate work force of a given crowdsourcing task according to

the complexity of the mapping to evaluate based on the number of rejected assignments and on

the answer quality provided in previously-executed tasks. Moreover, we aim at running further

experiments with different datasets. In particular, we plan to enforce machine learning techniques

to generalize the notion of fairness from the crowd and check how much mapping fairness depends

on the specific dataset used for evaluation.
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