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Abstract

This thesis considers the problem of supporting traffic with elastic bandwidth re-
quirements and hard end-to-end delay constraints in multi-hop wireless networks,
with focus on source transmission rates and link data rates as the key resource
allocation decisions. Specifically, the research objective is to develop a source
rate control and scheduling strategy that guarantees bounded average end-to-end
queueing delay and maximises the overall utility of all incoming traffic, using net-
work utility maximisation framework. The network utility maximisation based
approaches to support delay-sensitive traffic have been predominantly based on
either reducing link utilisation, or approximation of links as M/D/1 queues. Both
approaches lead to unpredictable transient behaviour of packet delays, and in-
efficient link utilisation under optimal resource allocation. On the contrary, in
this thesis an approach is proposed where instead of hard delay constraints based
on inaccurate M/D/1 delay estimates, traffic end-to-end delay requirements are
guaranteed by proper forms of concave and increasing utility functions of their
transmission rates. Specifically, an alternative formulation is presented where the
delay constraint is omitted and sources’ utility functions are multiplied by a weight
factor. The alternative optimisation problem is solved by a distributed scheduling
algorithm incorporating a duality-based rate control algorithm at its inner layer,
where optimal link prices correlate with their average queueing delays. The pro-
posed approach is then realised by a scheduling algorithm that runs jointly with an
integral controller whereby each source regulates the queueing delay on its paths
at the desired level, using its utility weight coefficient as the control variable. Since
the proposed algorithms are based on solving the alternative concave optimisation
problem, they are simple, distributed and lead to maximal link utilisation. Hence,
they avoid the limitations of the previous approaches. The proposed algorithms
are shown, using both theoretical analysis and simulation, to achieve asymptotic
regulation of end-to-end delay given the step size of the proposed integral controller
is within a specified range.
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Chapter 1

Introduction

1.1 Multi-hop Wireless Networks

A Multi-hop wireless network is composed of a cluster of wireless mobile nodes
that form a network without a fixed infrastructure, using distributed control algo-
rithms. A distinctive feature of such networks is multi-hop routing where any node
can be a relay for the traffic of any other node in order to provide enhanced network
coverage. Moreover, through multi-hop routing, data transmission between source
and destination nodes is carried out via low power communication links between
intermediate relay nodes. This leads to improved power efficiency – due to path
loss exponential increase with distance – as well as overall network capacity – due
to the reduced level of interference – as will be described in Section 1.2.3. Addi-
tionally, communication between sources and destinations can be carried out via
alternative paths which can increase data transmission rates as well as robustness
to the network topology changes (Figure 1.1). However, the lack of infrastructure
in multi-hop wireless networks leads to more design complexities and less efficient
utilisation of network resources, compared to the infrastructure-based wireless net-
works. Infrastructure-based wireless networks consist of stationary base stations
positioned across a geographical area to optimise network coverage. Base stations
are interconnected with high speed communication links, and connected to a back-
bone wired network. Each mobile node communicates directly with typically one

10
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Base Station 

User Node 

Relay Node 

Wireless Link 

High Speed Wired Link 

Traffic Flow 

Figure 1.1: An infrastructure-based wireless network (left) and a multi-hop wireless
network (right)

base station at a time via single-hop routes (Figure 1.1). Base stations provide
access for mobile nodes to the network and perform all networking and control
functions including transmission scheduling, power control, routing and handoff,
in a centralised fashion. As a result, they lead to more efficient utilisation of net-
work resources. Furthermore, as all computationally intensive functions are carried
at base stations, the required computational tasks at mobile nodes are minimal.
Finally, single-hop routes result in lower delay and loss, as well as higher data
rates. In multi-hop wireless networks, however, networking and control functions
are distributed among all wireless nodes, any node can be a relay for other nodes
traffic, and nodes are typically in motion.

Despite its performance limitations, multi-hop wireless networking is the only
viable technology in wireless communication applications where low-cost, rapid
deployment and configuration, and robustness are critical factors. An example
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relevant to the subject of this thesis is providing communication support for dis-
tributed control systems with remote plants, sensors and actuators, in particular,
coordinated control of unmanned mobile units such as unmanned aerial vehicles
(UAVs) and vehicular networks in automated highway systems. Such systems re-
quire that sensor and actuator signals to be delivered to the controller with a
small and short delay, but can adapt to various data rates [16]. Other applica-
tion example is real-time interactive audiovisual communication in disaster relief
or military applications. Similar to the distributed control systems these applica-
tions impose strict limit for maximum packet end-to-end delay. In addition, they
have high but flexible data rate requirements [24, 41, 37]. Supporting applications
with high data rates and bounded delay requirements in multi-hop wireless net-
works is highly challenging due to the performance limitations described earlier
and requires a joint optimisation design approach, as will become evident in the
following sections.

1.2 Multi-hop Wireless Networks Design

The main design issues in multi-hop wireless networks can be best described by
dividing the main network functions into the conventional five-layer architecture
used for modular design of wireless networks, as described in [16] (Figure 1.2).

1.2.1 Physical Layer

The physical layer involves functions that deal with transmitting bits over a point-
to-point wireless link. They include modulation/detection, coding, power control
and multiple input multiple output (MIMO) systems. Digital modulation consists
of mapping the information bits into an analog signal for transmission over the
channel. Detection consists of determining the original bit sequence from the re-
ceived signal. Digital modulation techniques are chosen based on the performance
characteristics including data rate, spectral efficiency, power efficiency and robust-
ness to channel impairments. Coding enables bit errors to be either detected or
corrected by a decoder in the receiver. The resulting performance enhancement,



CHAPTER 1. INTRODUCTION 13

Application 
Compression and Error Concealment 

Transport 
End-to-End Error Recovery, 

Retransmissions, and Flow Control 

Network 
Topology Control and Routing 

Access 
Channel Access, Power Control, 

Error Recovery and Retransmissions 

Physical 
Modulation, Coding, Power Control, 

and MIMO 

Figure 1.2: Five-layer architecture for modular design of wireless networks [16]

however, leads to increased complexity, decreased data rate or increase in signal
bandwidth. Power control adjusts the transmit power of all nodes such that signal
to interference and noise ratio (SINR) at each receiving node does not fall below
its minimum required level for acceptable performance. Power control is also an
access layer functionality and will be described in more detail as part of access
layer function. MIMO refers to systems with multiple antennas at the transmit-
ter and the receiver. Multiple antennas can be used to increase link data rates
through multiplexing, providing diversity to fading to reduce the average bit er-
ror rates (BER), and providing directionality to reduce fading and interference to
other signals.

The design choices at the physical layer impact the other layers in several
ways. For example, they determine the link packet error rate (PER) which affect
the retransmission at the access layer. In addition, multiple antennas increase the
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link data rate and reduce interference to other links which impacts all the protocol
layers. Similarly, the transmission power together with adaptive modulation and
coding for a node determines the collection of nodes it can reach in a single hop
and therefore affects the context in which the higher layers operate.

1.2.2 Access Layer

The access layer controls the allocation the available spectrum to the users and
ensures successful reception of packets over this spectrum. Signalling dimensions
are allocated using either multiple access or random access techniques. In multiple
access signalling dimensions are divided into dedicated channels which are assigned
to different users. This includes orthogonal division along the time axis, as in time
division multiple access (TDMA), orthogonal division along the frequency axis, as
in frequency division multiple access (FDMA), and orthogonal or non-orthogonal
division along the code axis, as in code division multiple access (CDMA). In ran-
dom access channels are allocated to the active users dynamically, as in ALOHA,
CSMA, and scheduling. Multiple access methods are suitable for applications with
continuous data transmissions and delay constraints, while random access methods
are more suitable for users with bursty data transmissions. The access layer also
involves control mechanisms for channel assignment to users and their admission
into the system.

Power control is also a function of the access layer. As mentioned previously,
power control ensures link required SINR levels are satisfied by adjusting the trans-
mission power of all transmitting nodes. Link required SINR levels are determined
by link performance requirements such as connectivity in topology control (a func-
tion of the network layer), and link data rates decisions. Precisely, let L be the
number of links in a multi-hop wireless network. The SINR at link l is then given
by

γl = gllpl
nl + ρ

∑
j 6=l gljpj

where glj > 0 is the channel power gain from the transmitter of the link j to
the receiver of the link l, nl is noise power at receiver on the link l, and ρ is the
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interference reduction due to signal processing. For example, ρ ≈ 1
G

for CDMA
with processing gain G, and ρ = 1 for TDMA. The data rate of link l can be
modelled as function of its SINR, γl, as well as physical layer parameters. For
example, the Shannon capacity of link l for additive white Gaussian noise (AWGN)
channel is given by cl = W log2(1 + γl), where W is the channel bandwidth. Or in
[40], the data rate of link l is assumed to be given by cl = W log2(1 + γl

Γ ), where
Γ is a parameter determined by the physical layer design.

Let γ∗l be the minimum required SINR for link l. The SINR constraints are
then given by (I − F )p ≥ u, where p is the L × 1 vector of transmission powers
with elements pl, u is an L×1 vector with elements γ∗l nl

gll
, and F is an L×L matrix

with elements

F s
lj =


0 l = j,

γlgljρ

gll
l 6= j.

If the eigenvalues of F are strictly inside the unit circle then there exists a power
assignment p that supports the required SINR for all links, and p∗ = (1−F )−1u is
the minimal (Pareto optimal) solution. In [15], a simple distributed power control
algorithm is proposed which converges to the minimal power solution p∗ when
feasible solution exists. This algorithm is extended in [3] to incorporate admission
control. However, it may be inefficient to activate all links concurrently at power
levels p∗, and combining power control and transmission scheduling can improve
power efficiency while satisfying minimum required SINR levels, as discussed in
[12]. For example in [12] an optimal transmission scheduling and power control
strategy is proposed which minimises total average transmission power while en-
suring the minimum required link data rates. Or in [13], a joint scheduling and
power control strategy is proposed which maximises network throughput and re-
duces power consumption.

Retransmission of corrupted packets, which is referred to as ARQ protocol, is
also a function of the access layer. In this protocol, using the error detection code
the receiver determines if there are corrupted bits in the packet that cannot be
corrected. The receiver then discards the corrupted packet and sends a retransmis-
sion request to the transmitter. Alternatively, to improve the network throughput,
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the receiver can save the original packet and use a form of diversity to combine
it with the retransmitted packet, or the incremental redundancy technique can
be used where instead of retransmission of the entire packet, the transmitter just
sends some additional coded bits to provide a stronger error correction capability
for the original corrupted packet.

1.2.3 Network Layer

The role of the network layer is to establish and maintain end-to-end connections
in the network. The associated functions include topology control, routing and
dynamic resource allocation. Topology control constitutes mechanisms for adjust-
ing and coordinating nodes transmission powers in order to generate networks
with the desired properties such as connectivity, while reducing overall power con-
sumption and/or increasing network capacity [33]. Roughly speaking, a network
is connected if for any two nodes in the network there exists a path through which
they can communicate. The transmission power determines the transmission range
of a node within which direct communication with other nodes is possible given
minimum link performance requirements such as link data rates and BER. Thus,
in the process of topology control each node identifies the network nodes that it
can directly communicate with.

The impact of topology control on improving network energy efficiency and
capacity can be demonstrated by means of the example shown in Figures 1.3 and
1.4 [33]. Figure 1.3 shows alternative transmission routes between nodes A and
C, where dij denotes the distance between nodes i and j. It is assumed that both
nodes B and C are within the transmission range of node A. Therefore, there are
two alternative paths between nodes A and C: the multi-hop path A → B → C

using node B as relay, and the direct path A → C. Assuming the free space
propagation model; i.e. Pr ∝ Pt

d2 where Pr and Pt are the received and transmitted
power, respectively, and d is the distance between the transmitter and the receiver;
the power required for successful transmission between two nodes is proportional
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A 

B 

C 

dAB dBC 

dAC 

γ 

Figure 1.3: Transmission using node B as relay requires less power than direct
transmission between nodes A and C

to the square of their distances. From Figure 1.3 it follows that

d2
AC = d2

AB + d2
BC − 2dABdBC cos γ

> d2
AB + d2

BC

Thus, transmission using node B as relay requires less power than direct trans-
mission between nodes A and C.

Similarly, in the network shown in Figure 1.4 there are two alternative trans-
mission strategies between nodes A and C: a direct transmission from A to C, and
a multi-hop transmission using nodes R1 . . . Rk as relays. To compare the impact
of the two alternative transmission strategies on the network capacity, the notion
of interference region based on the protocol interference model introduced in [17]
is used. According to the protocol interference model, the interference region for a
receiving node j is defined as a circle of radius (1 + η)dij centred at node j, where
η > 0 is a constant that depends on the features of the wireless transceiver and dij
is the distance between the transmitting node i and receiving node j. It specifies
the region where no other node can transmit simultaneously in order for transmis-
sion from node i to node j to be successful. The interference region measures the
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A R1 C Rk 

Figure 1.4: Interference region for the transmission via the relay nodes R1 . . . Rk

is less than direct transmission between nodes A and C

amount of wireless medium used by a certain transmission and thus can be used as
a measure of the network capacity. Using the above model, the interference region
for direct communication from node A to node C is given by πd2

AC(1+η)2. On the
other hand, assuming dAR1 = dR1R2 = · · · = dRkC = dAC

k+1 , the interference region
for the transmission via the relay nodes R1 . . . Rk is given by (k+1)π

(
dAC

k+1

)2
(1+η)2

which, by Holder’s inequality, is less than πd2
AC(1 + η)2. This implies that using

multi-hop transmissions can reduce total interference range and thus increase the
overall network capacity.

After performing topology control, the power control algorithms described in
Section 1.2.2 can be activated to achieve link required SINR levels with high power
efficiency. However, in the presence of node mobility, nodes transmission power
as well as physical layer parameters have to be dynamically adjusted to compen-
sate for the variations in link gains and hence maintain connectivity and the link
required SINR levels.

Routing determines how packets are routed through the network from their
source to their destination. Routing protocols for multi-hop wireless networks can
be classified as flooding, proactive (centralised, source-driven, and distributed),
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and reactive. Flooding is based on broadcasting a packet to all neighbouring
nodes which then broadcast the packet to their neighbouring nodes. This pro-
cess repeats until the packet reaches its destination. This approach requires little
communication overhead and thus is suitable for highly mobile networks where
network topology changes rapidly. However, flooding is highly inefficient in terms
of bandwidth utilisation and energy consumption and as a result is only practical
in small networks.

In centralised routing approach, information about network topology and chan-
nel condition are determined by each node and forwarded to a central node, which
then based on an optimisation criterion computes the routing tables for all nodes
and communicates them to the nodes. Centralised approach results in globally
optimal routes, however, it leads to significant communication overhead for ex-
changing routing information and as a result it cannot adapt to the rapid changes
in network topology or channel conditions. For this reason, this approach is only
suitable for small networks. In source-driven routing, each node receives the net-
work topology information and computes optimal routes to its destination. This
method also involves periodic exchange of routing information, which leads to
high communication overhead. In distributed routing, each node communicates
its connectivity information to its neighbouring nodes, and each node determines
its local routing information, i.e. the next hop in the route, using this local in-
formation. This approach requires low communication overhead and as such can
adapt quickly to link and connectivity changes. On the other hand, the computed
routes are suboptimal in general.

Both centralised and distributed approaches are based on maintaining up-to-
date routing information. In reactive (on-demand) routing approaches, however,
routes computation is initiated by a source node that has traffic to send, via a route
discovery process. The process is completed once a route or all possible routes
are discovered. The routes are then maintained by a route maintenance procedure
until they are no longer needed, or destination becomes inaccessible. This approach
leads to globally optimal routes with little overhead, since routes are maintained
when only in use, but involves significant initialisation delay. Examples of reactive
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routing include ad hoc on-demand vector routing (AODV) and dynamic source
routing (DSR).

As will be explained in Section 1.2.6, due to high coupling between the layer
functions, computation of optimal routes has to be carried out in conjunction
with design choices at other layers, in order to optimise overall network perfor-
mance. This calls for maintaining multiple paths between source-destination pairs
which enables splitting the traffic load among multiple paths to optimise network-
wide performance objectives. Multi-path routing can also be used to increase the
probability of packet reception in networks with rapidly changing topologies, by
transmitting duplicates of a packet over multiple paths between the source and
the destination [38]. Multi-path routing in conjunction with network coding has
also been shown to improve multi-hop wireless network throughput, when mul-
tiple multicast sessions are present [25]. Network coding is based on fusion of
data received from multiple routes which can then be decoded by intermediate or
destination nodes, as necessary.

1.2.4 Transport Layer

The transport layer consists of end-to-end functions of error recovery, retransmis-
sion, reordering and flow control. The error recovery and retransmission involve
mechanisms that check for corrupt or lost packets on the end-to-end route and
send a request for retransmission to the source node. The reordering function is
responsible for ordering packets that arrive out of order due to multi-path rout-
ing, delay, congestion, packet loss, or retransmission; before being passed to the
application layer. Flow control allocates the flow associated with the application
layer to different routes, based on an optimisation criterion.

1.2.5 Application Layer

The application layer involves functions that deal with generating the data to be
transmitted, and processing the corresponding data received over the network.
These functions include data compression, error correction and concealment. The
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level of data compression depends on the application’s selected trade-off between
data rate and robustness to the changes in network conditions. High level of
compression reduces the required data rate but increases the data sensitivity to
error since it removes most of the redundancy. Applications such as voice and
video can tolerate some errors without significant degradation in their perceived
quality. In contrast, data applications cannot tolerate any packet loss and as a
result any lost or corrupted packet has to be retransmitted.

The application layer can also perform multiple description coding (MDC)
whereby multiple description of data are generated and the original data can be
reconstructed from any description with some loss. Using multi-path routing,
each description can then be sent over a different path to provide diversity in the
presence of network performance degradation.

Applications typically have performance requirements for end-to-end data rates
and delay, which are referred to as quality of service (QoS). Examples include dis-
tributed control applications [16], which require bounded end-to-end delay but
may be able to tolerate a lower data rate via a coarser quantisation of sensor
data. Similarly, interactive real-time voice and video applications require bounded
end-to-end delay but can adapt to various data rates using various encoding quan-
tisations [24, 41, 37].

1.2.6 Motivations for Cross-Layer Design

The functions within the layered architecture described in the previous sections
are tightly coupled in multi-hop wireless networks, as shown in Figure 1.5. The
network performance characteristics, e.g. end-to-end delay and data transmission
rates, are dependent on the network congestion level, which is determined by rate
of the traffic flow entering the network, the distribution of load across the net-
work links and the network link capacities. The flow rate is regulated by the flow
control function at the transport layer, given the QoS requirements from the ap-
plication layer and current network performance characteristics such as a measure
of congestion level. Distribution of traffic load is performed at the network layer
by the multi-path routing algorithm, based on the optimisation criterion, e.g.
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Figure 1.5: Interdependencies between the functions within the layered architec-
ture in multi-hop wireless networks

minimum network congestion, and current network performance characteristics.
The performance of the multi-path routing algorithm is dependent on the net-
work connectivity which is determined by the topology control algorithm. Given
the current network performance such as link congestions levels, link capacities
(data rates) are updated by the scheduling algorithm based on the optimisation
criterion. Given the physical layer parameters, the updated link data rates can
be attained at certain link SINR thresholds using power control algorithms. The
transmission powers can be jointly optimised with other physical layer parameters,
e.g. modulation and coding, to achieve the required link data rates. Finally, the
current performance characteristics can also be used at the application layer to
determine parameters such as data compression rates, encoding quantisation rate,
or to decide whether to transmit data over multiple paths via MDC mechanism.
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The high level of interdependencies between the functions in the layered archi-
tecture motivates the joint optimisation of the design variables approach to solve
a network design problem. Specifically, in this approach the network design prob-
lem is represented as a network utility maximisation (NUM) problem [8] where
the end-user application preferences are captured as the objective function, design
constraints as the constraint set, and design freedoms as the optimisation variables.
Using the theory of decomposition for non-linear optimisation, the network design
problem can then be systematically decomposed into various functional modules
alternatives that correspond to a layered architecture. Each functional module
can be further decomposed into distributed computation and control over distant
network elements. Moreover, optimal solutions serve as benchmark for heuristic
layered architectures.

This research is based on the following NUM formulation presented in [29]

maxx,c
∑
s∈S

fs(xs)

subject to Rx ≤ c

c ∈ Co(C)

x ≥ 0

The formal definition of the notations are provided in Chapter 2. Briefly, xs
denote data transmission rate for the traffic source s ∈ S, where S is the set
of traffic sources. The utility function fs represent the elastic QoS requirement
for the traffic source s. Here, the utility function is assumed to be a measure
of the optimality of resource allocation efficiency. In other words, it defines the
QoS value a traffic source attributes to a particular transmission rate. The utility
function is typically assumed in the congestion control literature [35, 29] to be
smooth, increasing, and strictly concave function of the transmission rate. This
shape of utility function has been shown to lead to optimal resource allocation
that can achieve various fairness objectives [35, 29]. Furthermore, as discussed in
[34], this shape of utility function is typical (except for very small bandwidths) of
the utility (performance) of rate adaptive real-time applications which can adjust
their transmission rate by applying different encoding levels. With the exception
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of very small bandwidths, the marginal rate of utility (performance) enhancement
is diminishing as bandwidth increases. At high bandwidths the marginal utility
of additional bandwidth is very small since the signal quality is higher than what
human can perceive. Examples of such applications include voice over IP (VoIP)
application as described in [39]. Normally, acceptable voice quality requires a
transmission rate of about 64 kb/s to transmit an 8 kHz 8 bit signal. While it is
possible to cope with a little less quality than this, the utility of transmitting voice
at less than 64 kb/s drops sharply as the transmission rate is decreased. Also, the
quality of voice does not increase much if the transmission rate is increased beyond
64 kb/s, so the utility function remains almost flat above 64 kb/s.

R denotes the routing matrix that defines each source’s available paths to its
destination. It is assumed that routing tables are already computed by a source-
driven routing algorithm, based on network connectivity resulted from a topology
control algorithm (Section 1.2.3). Thus, the key assumption in the above formula-
tion is that variations at the physical layer are such that they can be compensated
at the physical layer without affecting the network topology within the timescale
of the above problem. x denotes path transmission rates. c denotes the link data
rates and assumed to be a function of global power assignments, or any other
resource control decisions such as link activation and inactivation, or retransmis-
sion probability in random access MAC protocols, generally denoted by p. This
implies c = u(p). The function u captures the cross-layer control decisions at
both physical and access layers (Sections 1.2.1 and 1.2.2). Specifically, by choos-
ing appropriate physical layer parameters, e.g. modulation and coding, link data
rates are mapped to link SINR levels and the corresponding power assignments
via u−1. Let Π be the set of feasible power assignments, then C = {u(p),p ∈ Π}
is the set of feasible link data rates, or schedules. Link data rates are constrained
by the convex hull of C denoted by Co(C), which captures the time interleaving
of the feasible schedules. It is assumed that variations in link SINR levels can be
compensated quickly by power control or adjusting other physical layer parameters
without affecting the link data rates within the timescale of the above problem. In
addition to the constraints related to the network structure, per-user inelastic QoS
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constraints can be added to the above formulation. The optimisation variables, or
the design freedoms, in the above NUM problem are the path transmission rates
x, and link data rates c. The utility functions fs, s ∈ S, the routing matrix R, and
the set of feasible schedules C are treated as constants over the problem timescale.

1.3 Research Objectives

The main focus of this research is the problem of supporting traffic with high
data rate requirements and hard end-to-end delay constraints in multi-hop wireless
networks, using source data transmission rates and link data rates as the key
design variables. Before presenting the research objectives, first, different load
control mechanisms for QoS provision are described and the preferred approach is
introduced. The design problem and its underlying assumptions are then described
followed by a summary of the limitations of the current solutions.

1.3.1 Background on QoS-Oriented Load Control

As discussed in [39], based on the type of QoS guarantees that can be provided,
load control mechanisms can be classified into Bandwidth reservation, and best-
effort schemes . Bandwidth reservation based schemes are suitable for supporting
traffic with minimum bandwidth requirements. In these schemes the network is
required to maintain information about each traffic flow and decide whether a traf-
fic flow can be admitted so that all the admitted traffic flows can be guaranteed
their minimum required bandwidth. Inevitably, the rejection of some of the traffic
results in inefficient utilisation of network capacity. More importantly, Bandwidth
reservation based schemes lead to a significant communication overhead in net-
works with dynamic settings and as a result are unsuitable for multi-hop wireless
networks due to their dynamic and distributed characteristics. In contrast, best-
effort schemes are suitable for supporting traffic whose demand for bandwidth is
elastic, but their perceived QoS referred to as their utilities, are generally assumed
to be an increasing and concave function of their transmission rates. As discussed
in Section 3.2.1 and [34], for elastic traffic the overall network QoS is maximised



CHAPTER 1. INTRODUCTION 26

by admitting all traffic flows and allocating network capacity based on the traffics’
perceived QoS. This is the main design principle of best-effort schemes. The key
advantage of the best-effort approach is that it enables QoS optimal allocation of
network resources using simple and distributed algorithms [39], and as a result is
a suitable approach for QoS provision in multi-hop wireless networks. The basic
NUM formulation presented in Section 1.2.6 results in a best-effort solution and
hence forms the basis of this research.

1.3.2 Problem Description and Assumptions

The fundamental assumption in this research is that all incoming traffic have
elastic bandwidth requirements, but their perceived QoS due to bandwidth, i.e.
excluding the effect of end-to-end delay, are increasing and concave functions of
their transmission rates. Furthermore, all or some of the incoming traffic impose
a strict limit on the average end-to-end queueing delay. These requirements are
typical of QoS requirements of delay-sensitive applications such as distributed
control systems and real-time interactive audiovisual communication, as explained
in Section 1.1.

As explained in Section 1.2.6, it is assumed that routing tables are already
computed by a source-driven routing algorithm, and remain unchanged within the
time horizon of the problem. Furthermore, it is assumed the set of feasible link
data rates, or schedules, are known and remain constant over the time horizon of
the problem.

The key design variables are assumed to be the path transmission rates and link
data rates, or schedules. The main research objective is then to develop a path
rate control and scheduling strategy that ensures average end-to-end queueing
delays do not exceed their imposed upper bounds and maximises the aggregate
utility, or the perceived QoS due to bandwidth, of all incoming traffic. Moreover,
the strategy should enable distributed implementation with low communication
overhead in order to be deployable in a multi-hop wireless network setting.
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1.3.3 Limitations of Current Solutions

As will be described in Section 3, the network utility maximisation based ap-
proaches to support delay-sensitive traffic have been predominantly based on ei-
ther reducing link utilisation, or approximation of links as M/D/1 queues. The
former approach normally leads to nearly zero queue lengths in the long term due
to reduced link utilisation, but provides no control over the transient behaviour
of packet delays. The key assumptions behind the latter approach are unrealis-
tic since the traffic at entry points are regulated by the rate controller and are
deterministic; multi-hop networks are composed of mostly disjoint paths which
comprise serial links, and the traffic entering the links can be further regulated to
limit its burstiness. Moreover, the algorithms for rate control and scheduling are
typically implemented as feedback control systems where path rates and link data
rates are regulated based on the current congestion level at links. The delay caused
by the burstiness of the arriving traffic at each link can therefore be assumed to be
negligible and consequently the average delay a packet experiences at equilibrium
is primarily a function of number of packets in the system at equilibrium, which
is determined by the dynamics of the rate control and scheduling algorithms at
their transient state. The other limitation of the M/D/1 approximation is that it
results in under-utilised links under optimal resource allocation.

1.3.4 Research Objectives

Based on the problem description and the shortcomings of the current solutions
described in Sections 1.3.2 and 1.3.3, respectively, the research assumptions and
objectives are summarised as follows:

Assumptions

• network topology remain fixed over the time horizon of the problem,

• routing tables are already computed by each traffic source and remain un-
changed over the time horizon of the problem,
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• the set of feasible link data rates, or schedules, are known and remain con-
stant over the time horizon of the problem,

• all incoming traffic have elastic bandwidth requirements, but their perceived
QoS due to bandwidth are increasing and concave functions of their trans-
mission rates,

• main design freedoms are the path transmission rates and link data rates, or
schedules.

Objectives

• to develop a path rate control and scheduling strategy that

– ensures average end-to-end queueing delays do not exceed their imposed
upper bounds,

– maximises the aggregate utility, or the perceived QoS due to bandwidth,
of all incoming traffic,

– enables distributed implementation with low communication overhead
in order to be deployable in a multi-hop wireless network setting,

– leads to maximal link capacity utilisation,

– has controllable transient behaviour.

1.4 Summary of Contributions

Given the limitations of the conventional modelling of the delay constraints based
on M/D/1 queue approximation of links, an alternative formulation to the orig-
inal optimisation problem is considered where delay constraints is omitted and
the source utility functions are multiplied by weight coefficients. The alternative
optimisation problem is then transformed into a master scheduling problem and
the well-known multi-path rate control with fixed link data rates subproblem.

The multi-path rate control subproblem is solved using a duality-based algo-
rithm, which leads to equilibrium link queueing delays that are proportional to
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the optimal dual variables, or link prices. While in general optimal path rates
are not unique, and path rates in duality-based algorithms do not converge and
continuously oscillate, conditions on the number of disjoint paths are derived that
guarantee unique optimal path rates. The underlying theoretical conditions that
guarantee unique optimal path rates can be further used for future work to de-
sign a multi-path rate control algorithm that converges the unique optimal path
rates, given the conditions on the number of disjoint paths are guaranteed by the
topology control algorithm.

A distributed algorithm for the master scheduling problem is then proposed,
and is shown to converge to the optimal data rates. The proposed algorithm
incorporates the solution of a well-known scheduling problem, for which efficient
and distributed solutions have been developed in several cases.

For the alternative optimisation problem, derived bounds on the sensitivity of
optimal path prices and aggregate source rates to the variations of utility weight
coefficients indicate that optimal path prices for each source increase with the
source’s weight coefficient. Given the correlation between path queueing delays
and path prices in the proposed scheduling algorithms, an alternative approach
is then presented where utility weight coefficients are used as control variables
to regulate end-to-end queueing delays in the scheduling algorithms. Specifically,
an integral controller is incorporated in the scheduling algorithm whereby each
source regulates the queueing delay on its paths at the desired level, using its
weight coefficient as the control variable.

The conditions under which the proposed joint scheduling algorithm and delay
regulator achieve asymptotic regulation of end-to-end delay are examined. The
proposed joint scheduling algorithm and delay regulator meet the objectives stated
in Section 1.3.4 since they regulate end-to-end queueing delay at the desired levels,
can be implemented distributively, and lead to maximal link utilisation. For future
work, linearisation and linear system design methods can further be used to adjust
the delay regulator parameter for the desired transient behaviour.

Simulation experiments show that the presence of feedback error the proposed
scheduling algorithm converges to the optimal solution of the alternative optimisa-
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tion problem. In addition, the proposed joint scheduling algorithm and delay reg-
ulator achieve asymptotic regulation of end-to-end delay. Simulation experiments
further demonstrate the deficiencies of other alternative approaches compared with
the proposed approach.

1.5 Structure of the Thesis

The rest of this thesis is organised as follows. In Chapter 2, the problem is pre-
sented formally as a network utility maximisation problem, and the limitations
of delay models based on approximation of links as M/D/1 queues is discussed.
After describing the assumptions and notations in Section 2.2, in Section 2.3 the
network utility maximisation formulation is presented. The limitations of M/D/1
approximation of links for delay estimation are discussed in Section 2.4.

In Chapter 3 the predominant approaches that aim to address the requirements
of delay-sensitive traffic using the NUM framework, as well as their limitations,
are described. In Section 3.2, the two approaches to model delay-sensitive traffic,
namely, representation as non-concave utility functions and hard constraints spec-
ification, are explained. In Section 3.3, the well-known distributed solutions for
the problem of joint rate control and scheduling for elastic traffic, are presented.
Various approaches that tackle the same problem but for inelastic traffic, includ-
ing minimising delay using virtual data rates, minimising network congestion, and
minimising network distortion for video traffic, are introduced in Section 3.4. Fi-
nally, distributed rate control algorithms for networks with heterogeneous traffic,
for cases where delay-sensitivity is modelled as a concave, as well as a non-concave
function, are discussed in Section 3.5.

Given the limitations of the original optimisation problem discussed in Chapter
2, in Chapter 4 an alternative formulation and its proposed solution is presented, on
which the proposed approach for providing bounded delay will be based. In Section
4.2 the proposed alternative optimisation problem, in which the delay constraints
are omitted and utility functions are multiplied by weight coefficients, is presented
and its properties are examined. In Section 4.3 the scheduling representation of
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the alternative problem is introduced, which is based on vertical decomposition of
the problem into master scheduling problem and the well-known multipath rate
control with fixed link data rates subproblem. After deriving conditions for the
uniqueness of the solutions of the multipath rate control subproblem, the proposed
distributed algorithm for solving the scheduling problem is presented.

In Chapter 5, the proposed solution to the original optimisation problem is de-
veloped, with focus on the performance objectives described in Section 1.3.4. The
proposed solution exploits the properties of the alternative optimisation problem
and its proposed solution described in Chapter 4. In Section 5.2, bounds on the
sensitivity of optimal path prices and aggregate source rates to the variations
of utility weight coefficients in the alternative optimisation problem are derived.
Based on the sensitivity results, in Section 5.3 an algorithm for providing bounded
end-to-end queueing delays as well as other performance objectives is proposed,
which is integrated in the scheduling algorithms developed in Chapter 4.

In Chapter 6, simulation experiments are performed to address three funda-
mental questions. Firstly, to illustrate that the proposed algorithm for solving
the scheduling problem presented in Chapter 4 converge to its optimal solutions,
despite using approximate values of link prices computed by the inner layer rate
control algorithm. Secondly, to illustrate that the proposed joint scheduling algo-
rithm and delay regulator in Chapter 5 can regulate packet end-to-end latency, us-
ing an estimation of end-to-end delay as feedback in the scheduling algorithm, and
to compare their performance against the previously proposed main approaches
to support delay-sensitive traffic. Finally, to assess the dynamic behaviour of
the proposed algorithms when network configuration changes. In Section 6.2, the
simulated network and its mathematical model are described. The SimEvents
implementation of the proposed algorithms in Chapters 4 and 5 for the network
model is described in Section 6.3. The result of the simulation experiments is
presented in Section 6.4. The conclusions are presented in Section 6.5.



Chapter 2

Problem Definition

2.1 Introduction

In this chapter the problem is presented formally as a network utility maximisa-
tion problem, and the limitations of delay models based on approximation of links
as M/D/1 queues is discussed. After describing the assumptions and notations
in Section 2.2, in Section 2.3 the network utility maximisation formulation is pre-
sented. The limitations of M/D/1 approximation of links for delay estimation are
discussed in Section 2.4.

2.2 Assumptions and Notations

Throughout the text, vectors are denoted by boldface lowercase letters, and ma-
trices and sets by capital letters. For simplicity, the same notations are used to
denote the sets and their cardinality.

This thesis considers the problem of rate control and scheduling for simulta-
neous transmissions of multiple delay-sensitive traffic over a multi-hop wireless
network. Let S be the set of sources which generate the delay-sensitive traffic and
L be the set links which constitute the multi-hop wireless network. Each source
s ∈ S has multiple alternative paths to its destination denoted by Is. The set of

32
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links used by each path i ∈ Is are defined by the L× 1 vector Rs
i with elements

Rs
l,i =


1 if path i ∈ Is uses link l,

0 otherwise.

The L×Is routing matrix for source s is subsequently defined by Rs = [Rs
1 . . . R

s
Is

],
and the L × I routing matrix for the network, where I = ∑

s∈S Is, by R =
[R1 . . . RS].

Let pl be the power assignment, or any other resource control decisions such
as activation and inactivation, and retransmission probability in random access
MAC protocols, and cl be the data rate at link l. Based on the NUM formulation
presented in [29], link data rates are assumed to be a function of global power
assignments, i.e. c = u(p). As explained in Section 1.2.6, the function u captures
the cross-layer control decisions at both physical and access layers (Sections 1.2.1
and 1.2.2). Specifically, by choosing appropriate physical layer parameters, e.g.
modulation and coding, link data rates are mapped to link SINR levels and the
corresponding power assignments via u−1. Let Π be the set of feasible power
assignments, then C = {u(p),p ∈ Π} is the set of feasible link data rates, or
schedules. The convex hull of C denoted by Co(C) captures the time interleaving
of the feasible link data rates, and is assumed to be closed and bounded.

Let xsi be the data transmission rate on path i ∈ Is, and xs = ∑
i∈Is

xsi be
the aggregate data transmission rate of source s. It is assumed that each source
s ∈ S gains a utility fs(xs) at rate xs. fs are assumed to be twice continuously
differentiable, strictly concave, and increasing for all s ∈ S. Furthermore f ′′s <

0. As explained in detail in Section 1.2.6, this shape of utility function is the
typical assumption in the congestion control literature since it leads to various
fairness objectives at optimality, and furthermore represents the performance of
rate adaptive real-time applications.

It is assumed that the average delay experienced by a packet at link l is given
by θl(cl, yl), where yl = Rlx is the total traffic rate on link l. Furthermore, θl(cl, yl)
are differentiable, decreasing in cl and increasing in yl, for all l ∈ L. Let θ be the
L × 1 vector with elements θl(cl, yl), for all l ∈ L. The average end-to-end delay
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on path i ∈ Is of source s ∈ S is then given by Rs
i
Tθ, and is assumed to be upper

bounded by ds. Let d be an I × 1 vector with elements dsi = ds, for all i ∈ Is.

2.3 Problem Formulation

The objective is to find data transmission rates x and link data rates c such that

maxx,c
∑
s∈S

fs(xs) (2.1)

subject to Rx ≤ c (2.2)

c ∈ Co(C) (2.3)

RTθ ≤ d (2.4)

x ≥ 0 (2.5)

The optimisation objective (2.1) is to maximise the aggregate utility of all
sources. Constraint (2.2) requires that the traffic rate entering each link not to
exceed its allocated data rate. Constraint (2.3) restricts link data rates to the
convex hull of feasible link data rates. Constraint (2.4) imposes an upper bound
on the average end-to-end delay faced by a packet on individual paths.

2.4 Approximation of Links as M/D/1 Queues
and Its Limitations

As will be discussed in Chapter 3, estimation of the average delay experienced
by a packet at a link, i.e. θl(cl, yl), l ∈ L, has been predominantly based on ap-
proximation of links as independent M/D/1 queues. This approach stems from
the Kleinrock independence approximation [5], which is in principle based on as-
sumptions that the traffic arrives at network entry points according to a Poisson
process, and the network is densely connected. Using this approach the average
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packet delay θl(cl, yl) can be estimated as

θl(cl, yl) = 1
cl

+ yl
2cl(cl − yl)

, ∀l ∈ L

≈ 1
cl

+ 1
2(cl − yl)

, ∀l ∈ L (2.6)

The approximation (2.6) is based on assumption that at optimality yl is close to
cl for all l ∈ L. Given approximation (2.6), the optimisation problem (2.1)-(2.5) is
convex, and can be solved, for example, using primal decomposition [8] as follows

max
c
Ũ(c) subject to (2.3) (2.7)

where

Ũ(c) = max
x

∑
s∈S

fs(xs) subject to (2.2), (2.4) and (2.5) (2.8)

Subproblem (2.8) can be solved using primal or dual algorithms proposed in [24].
Moreover, by standard convex programming results, Ũ is concave (Proposition
3.4.3 in [4]), and therefore the set of optimal Lagrange multipliers associated with
constraints (2.2) and (2.4) in subproblem (2.8) is the subdifferential of Ũ (Section
5.4.4 in [4]). This property can then be used to develop algorithms for solving
(2.7), when duality-based approaches are used to solve (2.8).

However, the M/D/1 queue approximation of links has several flaws. Firstly,
the key assumptions behind theM/D/1 approximation (2.6) do not hold since the
traffic at entry points are regulated by the rate controller and are deterministic,
multi-hop networks are composed of mostly disjoint paths which comprise serial
links, and the traffic entering the links can be further regulated to limit its bursti-
ness [10, 11]. The delay caused by the burstiness of the arriving traffic at each
link can therefore be assumed to be negligible and consequently the average delay
a packet experiences at equilibrium is primarily a function of number of packets in
the system at equilibrium, which is determined by the dynamics of the rate control
and scheduling algorithms at their transient state. Secondly, in the approximation
(2.6), as traffic rates at links approach their capacities, their delays grow exponen-
tially. This implies that at optimality links are not efficiently utilised, in order to
ensure bounded delay.
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2.5 Conclusions

In this chapter the problem is formulated as a network utility maximisation prob-
lem. Furthermore, it is shown that when delay constraints are modelled based on
approximation of links asM/D/1 queues, the problem is convex and can be solved
by appropriate decomposition, and using the previously proposed algorithms in the
literature.

However, the key assumption behind M/D/1 queue delay model, i.e. Poisson
arrival of packets at links, does not hold in the problem under consideration, as
delay is mainly determined by the transient behaviour of the rate control and
scheduling algorithms. As such, the estimated delay in such models is inaccurate.
Moreover, such delay models lead to inefficient utilisation of links at optimality
since their estimated delay grows exponentially as link flow rates approach their
capacities.

In next chapter, it will be shown that the predominant network utility maximi-
sation approaches to support delay sensitive traffic, also have similar limitations.



Chapter 3

Related Work

3.1 Introduction

In this chapter the predominant approaches that aim to address the requirements
of delay-sensitive traffic using the NUM framework, as well as their limitations,
are described. In Section 3.2, the two approaches to model delay-sensitive traffic,
namely, representation as non-concave utility functions and hard constraints spec-
ification, are explained. In Section 3.3, the well-known distributed solutions for
the problem of joint rate control and scheduling for elastic traffic, are presented.
Various approaches that tackle the same problem but for inelastic traffic, includ-
ing minimising delay using virtual data rates, minimising network congestion, and
minimising network distortion for video traffic, are introduced in Section 3.4. Fi-
nally, distributed rate control algorithms for networks with heterogeneous traffic,
for cases where delay-sensitivity is modelled as a concave, as well as a non-concave
function, are discussed in Section 3.5.

37
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3.2 Modelling Delay-Sensitive Traffic

3.2.1 Representation as Non-Concave Utility Functions

In [34] it is argued that network performance should be evaluated on the basis of
the degree to which the network satisfies the service requirements of user’s appli-
cations, rather than in terms of network-centric measures such as link utilisation,
dropped packets and so on. Let the vector si describe the service provided to
the ith application or user, which contains all relevant measures like delay and
throughput. The notion of utility function Ui is then defined as the mapping from
the vector si into the performance of the application. The utility function de-
scribes how the performance of an application depends on the delivered service.
The network design goal is subsequently defined as to maximise the performance
of all applications, or in other words, to maximise the the sum of the utilities, also
referred to as efficacy.

Based on the simplified assumption that the service can be merely described
in terms of bandwidth, the shape of the utility functions for common classes of
applications are described (Figure 3.1). Traditional data applications which are
tolerant of delay have a diminishing marginal rate of performance enhancement
as bandwidth is increased. So the utility function of such applications is strictly
concave everywhere. The network efficacy is always maximised by admitting all
users. Such applications are referred to as elastic applications. Hard real-time
applications, on the other hand, require that data packets data arrive within a
specified delay bound and perform very badly if the packets arrive later than this
bound. The performance remains constant for bandwidths beyond the critical level
needed to meet the required delay bound, but falls shapely for bandwidths below
the critical level. The utility of these application looks like a step function. A
network with such applications requires admission control to ensure the required
bandwidth for these applications.

Delay-adaptive real-time applications like most current audio and video appli-
cations are rather tolerant of occasional delay-bound violations and packet loss.
However, they still have an intrinsic bandwidth requirement as they cannot adapt
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Figure 3.1: Utility functions for common classes of applications [34]

their data generation rate to the network congestion. As such, their performance
degrades severely as soon as the bandwidth drops below the intrinsic rate, although
not as sharply as with the hard real-time applications. The shape of the utility
function is very similar to the utility function of the hard real-time applications,
specially it is convex but not concave in the neighbourhood around zero. This
implies that network can be overloaded with these applications at some point and
hence has to use admission control to maximise its efficacy.

Rate-adaptive real-time applications adjust their transmission rate according
to network congestion. Thus, their performance depends completely on the signal
quality. At high bandwidths the marginal increase in utility as a result of additional
bandwidth is very slight since the signal quality is much better than human need.
Similarly, at very low bandwidths the marginal increase in utility as a result of
additional bandwidth is very slight as the signal quality is very low. Similar to
the utility functions of the delay-adaptive applications, these utility functions are
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convex but not concave in the neighbourhood around zero and so the network can
be overloaded with these applications.

It is finally concluded that for a network supporting only elastic traffic, the
efficacy is maximised by admitting all flows. However, when there are also real-
time traffic then the efficacy is maximised by rejecting some flows.

Rate Control for Elastic Traffic

For a network with only elastic traffic, the rate allocation problem, i.e. the NUM
problem (2.1), (2.2), and (2.5) with fixed link data rates c, becomes a convex
optimisation problem, since all the utility functions are strictly concave. Thus
its optimal solutions are global and the duality gap is zero [6]. This leads to the
canonical distributed price-based rate control algorithm through solving the dual
problem

min
λ≥0

D(λ) (3.1)

where

D(λ) = max
x

L(x,λ) subject to (2.5)

= max
x

∑
s∈S

fs(xs)− λT (Rx− c) subject to (2.5) (3.2)

and λ is the vector of Lagrange multipliers (link prices) associated with constraint
(2.2). The dual function (3.2) can be decomposed into individual source problems
as follows

D(λ) =
∑
s∈S

(
max
xs≥0

fs(xs)− λTRsxs
)

+ λTc

=
∑
s∈S

Ds(λ) + λTc (3.3)

The dual problem (3.1) is convex [6], and can be solved using the following sub-
gradient method [30]

λl(t+ 1) = [λl(t) + β (Rlx(λ(t))− cl)]+ ∀l ∈ L (3.4)

or in continuous-time form [35]

λ̇l = β[Rlx(λ)− cl]+λl
∀l ∈ L (3.5)
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where β > 0, Rl is the lth row of R, and x(λ(t)) is the solution of (3.3) given λ(t),
i.e.

xs(λ) = arg max
(
fs(xs)− λTRsxs

)
∀s ∈ S (3.6)

Furthermore, [·]+ denotes the projection on the set Λ = {λ|λ ≥ 0}, and [g(x)]+x is
defined by

[g(x)]+x =

 g(x) x > 0
max(g(x), 0) x = 0

In (3.4) or (3.5), each link l ∈ L updates its price λl in proportion to the
difference between its aggregate flow rate Rlx(λ(t)) and its data rate cl. In (3.6),
each source s ∈ S adjusts its path rates xs according to its current path prices.
It is shown that with appropriate choice of β, λ(t) converges to the dual optimal
solution λ∗ as t → ∞. Given in the primal problem (2.1), (2.2), and (2.5), fs,
s ∈ S are strictly concave, {xs(λ(t))} converges to the primal optimal {x∗s}. It
then follows that in the case of single-path routing x(λ(t)) also converge to the
primal optimal solution x∗. The link price algorithm (3.4) or (3.5), and rate control
algorithm (3.6) can be performed distributively by individual links and sources,
respectively.

Rate Control for Inelastic Traffic

When the network supports a mixture of elastic and Inelastic traffic, the NUM
problem (2.1), (2.2), and (2.5) with fixed link data rates c, becomes a case of
non-convex optimisation problem, since the utility functions for inelastic traffic
are non-concave or non-smooth. Optimisation of the NUM problem with non-
concave utility functions is generally difficult, as local optimum may not be a
global optimum and the duality gap can be strictly positive. In this case the dual
problem (3.1) is not equivalent to the primal problem anymore, and consequently
the canonical distributed algorithm (3.4)-(3.6) may fail to converge to the primal
optimal solution, or even a feasible rate allocation.

However, it is proved in [9] that for a non-concave NUM problem the canonical
distributed algorithm (3.4)-(3.6) converges to a globally optimal rate allocation
if the price-based rate allocation x∗(λ) is continuous at the optimal prices λ∗.
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Furthermore, continuity of x∗(λ) at at least one of the optimal prices λ∗ is a nec-
essary condition for the canonical distributed algorithm to converge to a globally
optimal rate allocation. Although it is generally difficult to test for continuity
of the price-based rate allocation for non-concave utility maximisation, for many
types of non-concave utility functions (e.g. sigmoidal functions), it is easy to char-
acterise the set of λ at which x∗(λ) is discontinuous. Thus, in [9] a method is
also presented to bound the range of λ∗ which can then be used to verify whether
it excludes the points of discontinuity and hence to ensure the continuity of the
price-based rate allocation.

The alternative approach proposed in [23] considers the particular case where
services are classified into two types based on the shape of the utility function:
traditional data services whose elasticity is modelled by a concave utility func-
tion, and delay and rate sensitive services (e.g. streaming video and audio) whose
elasticity is modelled by a sigmoidal-like utility function. An increasing func-
tion f(x) is called a sigmoidal-like function, if it has one inflection point x0, and
d2f(x)
dx2 > 0, for x < x0, and d2f(x)

dx2 < 0, for x > x0. It is first shown that ap-
proximation of a sigmoidal-like utility function with a concave function and using
algorithms developed for concave utility functions could result in a highly ineffi-
cient solution. Next, it is proved that when there are users with sigmoidal-like
utility functions, the canonical distributed algorithm may cause link congestion
without convergence. To avoid the congestion in the network some users have
to be interrupted, and given that there is no central authority in the internet, a
‘self-regulating’ algorithm is proposed whereby each user ‘self-regulates’ its access
to the network based on the local information. The proposed algorithm is then
shown to converge to a rate allocation that does not lead to congestion when users
with sigmoidal-like utility functions are present. Furthermore, the resulting rate
allocation is asymptotically optimal, that is, it is a good approximation of global
optimal rate allocation when there are many users in a system with large capacity
and the number of users that stop transmitting data due to the ‘self-regulating’
property has vanishing proportion.
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3.2.2 Representation as Hard Constraints

In [9] a different modelling approach is for inelastic traffic is presented where in-
stead of using non-concave utility functions, inelastic traffic are modelled explicitly
as hard constraints and objective functions of the NUM problem. Delay-sensitive
traffics are classified into three types. The R-type traffic indexed by r represents
real-time applications, such as real-time IP, which require constant playback rate
and a fixed requested playback starting time. The R-type traffic is specified as
follows

• Playback rate is required to be a constant of vr bits per time unit.

• For each source an admission decision ar is made. If the flow is admitted a
constant utility Ūr is gained.

• The optimisation problem for R-type traffic is an admission control problem
with optimisation variables are ar ∈ {0, 1}.

The B-type traffic indexed by b represents streaming applications which require
constant playback rate, but have a flexible playback starting time. It is assumed
that a playback buffer at the receiver can absorb fluctuations of the source rate to
some extent. The B-type traffic is specified as follows

• Playback rate is required to be a constant of vb bits per time unit.

• The optimisation variables are the actual playback start time wb and the
rate allocation over time xb(t). The optimisation problem for B-type traffic
is joint problem of scheduling and rate allocation over time slots.

• To guarantee the constant playback, receiver buffers should not be depleted
during playback, i.e.

t0∑
t=0

xb(t) ≥ (t0 − wb)vb, ∀t0 > wb

• The utility is Ub(wb) where Ub is non increasing, since users prefer to start
the playback as early as possible.
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The D-type traffic indexed by d represents general delay-sensitive traffic whose
utility depends on the transient behaviour of rate allocation. The D-type traffic is
specified as follows

• The optimisation variables are the rate allocation over time xd(t). The opti-
misation problem for D-type traffic is a rate allocation problem over all time
slots.

• The utility is assumed to be ∑t Ud,t (xd(t)), where Ud,t are concave and in-
creasing.

A simplified version of NUM problem for rate allocation among the three types of
inelastic flows on a single link is then given by

maxxD,aR,xB ,wB

∑
d∈D

T∑
t=0

Ud,t (xd(t)) +
∑
r∈R

arŪr +
∑
b∈B

Ub(wb)

subject to
∑
d∈D

xd(t) +
∑
r∈R

arvr +
∑
b∈B

xb(t) ≤ c ∀t

t0∑
t=0

xb(t) ≥ (t0 − wb)vb ∀t0 > wb, ∀b ∈ B

xd(t) ≥ 0, xb(t) ≥ 0 ∀d ∈ D, b ∈ B, ∀t

ar ∈ {0, 1} ∀r ∈ R

wb ∈ [0, T ] ∀b ∈ B

The first constraint ensures that the traffic flow on the link does not exceed its
capacity. The second constraint ensures that receiver buffers are not depleted
during playback. The above formulation applies to the single link case but can be
readily generalised to arbitrary network topologies. Furthermore, to simplify the
model, it is assumed that all requested flow starting times are time 0, each receiver
playback buffer is infinitely large and all flows have infinite backlogs.

It is shown that the above optimisation problem can be decomposed into in-
dividual source problems and link problems which can then be solved using an
algorithm similar to the canonical distributed algorithm for elastic traffic. How-
ever, the proposed algorithm has two major limitations. Firstly, congestion prices
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have be generated using an iterative algorithm for every time slot along the tem-
poral dimension (as well as for every link in the case of time-sensitive traffic).
Secondly, optimal admission decision, playback time decision, and rate allocation
cannot be made until the end of the entire period t = 0, . . . , T . For the special
case where there are only inelastic real-time traffic and elastic TCP traffic present,
the canonical distributed algorithm can be used for price update and elastic source
rate control, but admission decision of real-time flows can only be made after the
equilibrium price is reached. A price-based admission control heuristics is then
proposed to avoid the delay associated with optimal admission decision.

3.2.3 Comparison of the Modelling Approaches

Representation of delay-sensitivity via the utility functions offers several advan-
tages over the hard-constraint representation. Firstly, since most applications on
the internet have some degree of elasticity to the allocated rate, utility functions
capture more accurately the level of user satisfaction or QoS at the allocated
rate. Secondly, the elasticity modelled by the utility function can then be ex-
ploited through rate control to maximise network efficacy, using a NUM framework.
Thirdly, as discussed previously, for many types of non-concave utility functions,
it is easy to verify that the canonical distributed algorithm (3.4)-(3.6) converges
to the optimal rate allocation. In addition, when some users have sigmoidal-
like utility functions, the canonical distributed algorithm combined with the dis-
tributed ‘self-regulating’ algorithm proposed in [23] converges to a rate allocation
that is asymptotically optimal. On the other hand, the hard-constraint modelling
of delay-sensitive traffic presented in Section 3.2.2 leads to more computationally
complex solutions.

However, the characterisation of delay-sensitivity via (non-concave) utility func-
tions as described in Section 3.2.1 is based on the simplified assumption that the
delay can be merely described in terms of source’s allocated rate. While this is
true for delay between consecutive packets arrival at the receiver, it is not a correct
assumption for packets end-to-end queueing delay. As explained in Section 2.4,
end-to-end queueing delay is dependent on the link congestion levels which are
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determined by dynamics of the rates of flows passing through individual links and
link data rates. Thus the utility functions in the form described in Section 3.2.1
can only capture the sensitivity of an application to the allocated data rate, but
not to packet end-to-end delay. Similarly, end-to-end queueing delay is ignored in
formulating the constraints and objective functions of delay-sensitive traffic pre-
sented in Section 3.2.2. The coming sections describe the predominant approaches
that attempt to address end-to-end queueing delay requirements of delay-sensitive
traffic, using the NUM framework.

3.3 Joint Rate Control and Scheduling for Elas-
tic Traffic

The problem of joint rate control and scheduling for elastic traffic, i.e. the optimi-
sation problem (2.1), (2.2), (2.3) and (2.5), has been extensively studied (see e.g.
[29] and references therein and [7]). Dual optimisation-based approach has been
the preferred solution strategy for this problem since it enables decomposition of
the problem into the rate control and scheduling ‘layers’ coupled loosely through
‘link prices’. Specifically, the dual problem is given by

min
λ≥0

D(λ) (3.7)

where

D(λ) = max
x,c

L(x, c,λ) subject to (2.3) and (2.5)

= max
x,c

∑
s∈S

fs(xs)− λT (Rx− c) subject to (2.3) and (2.5) (3.8)

and λ is the vector of Lagrange multipliers associated with constraint (2.2). Using
the shadow price interpretation of Lagrange variables [6], λ can also be interpreted
as the link data rate prices. The optimisation problem (3.8) can be decomposed
into the following rate control and scheduling subproblems, respectively

Ds
1(λ) = max

xs≥0
fs(xs)− λTRsxs ∀s ∈ S (3.9)
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and

D2(λ) = max
c∈u(p),p∈Π

λTc (3.10)

The dual problem (3.7) can be solved using the subgradient method as follows

λl(t+ 1) = [λl(t) + β (Rlx(λ(t))− cl(λ(t)))]+ ∀l ∈ L (3.11)

where β > 0, Rl is the lth row of R, and x(λ(t)) and c(λ(t)) are the solutions of
(3.9) and (3.10) given λ(t), respectively. Here [·]+ denotes the projection on the set
Λ = {λ|λ ≥ 0}. In (3.11), each link l ∈ L updates its price λl in proportion to the
difference between its aggregate flow rate Rlx(λ(t)) and its data rate cl(λ(t)). The
rate control subproblem (3.9) and the scheduling subproblems (3.10) are coupled
via link prices λ(t). In (3.9), each source s ∈ S adjusts its path rates xs according
to its path prices. In (3.10), link data rates c are updated based on the link prices.
The link price algorithm (3.11) and rate control algorithm (3.9) can be performed
in a distributed fashion by individual links and sources, respectively.

3.3.1 Scheduling Solution Approaches

The scheduling problem (3.10) is a computationally complex problem in general,
since u(p) is not concave in many cases and as a result convex programming
methods cannot be used. Given the fact that link prices λ(t) are updated at
every timeslot and therefore (3.10) has to be solved at every timeslot, finding an
efficient, simple and distributed solution becomes extremely vital. Cases where
the scheduling problem (3.10) is solvable include [29]:

• node-exclusive interference model, where each wireless node can only commu-
nicate with one other node at any time. This model represents Bluetooth-like
networks with high accuracy and is a reasonable approximation to frequency-
hopping code-division multiple-access (FH-CDMA) systems. In this case the
scheduling problem corresponds to a maximum-weighted-matching problem,
which has polynomial-time complexity.
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• low-SINR model, where the data rate of each link is a linear function of its
SINR. This model approximates CDMA systems with a moderate processing
gain. In this case, optimal scheduling is shown to have the property where
each node either transmit at maximum power to only one other node, or does
not transmit at all. This property substantially reduces the search space for
optimal scheduling but the problem still has exponential complexity in the
number of nodes.

In certain cases including the high-SINR model, where the data rate of each link
is a logarithmic function of its SINR; the low-SINR model, and the single channel
Aloha networks, the function u(p) can be transformed into a concave function
after some change of variables [29]. Standard convex programming methods can
then be used to solve the transformed problem.

An alternative approach to compute the exact solution for the scheduling prob-
lem (3.10) is to instead find suboptimal solutions that are simpler and enable dis-
tributed implementation[27, 29]. In [27] the fairness and efficiency of a cross-layer
solution using a class of imperfect scheduling policies referred to as Sγ-policies
are reviewed. Roughly speaking, an Sγ-policy can guarantee a minimum capacity
region of γΛ, where γ ∈ (0, 1], and the capacity region Λ is the largest set of trans-
mission rates x such that for every x ∈ Λ there exists some scheduling policy that
can stabilise the network. Although for the case where the user population is fixed
only a weak fairness property can be shown, the stability region is shown to be at
least γΛ when user population varies according to a stochastic process. The class
of maximal scheduling policies, which are very simple and can be implemented
in a distributed fashion, are then shown to be Sγ-policies with γ = 1

2 under the
node-exclusive interference model.
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3.4 Joint Rate Control and Scheduling for Delay-
Sensitive Traffic

3.4.1 Minimising Delay Using Virtual Data Rates

Since the algorithm (3.11) couples the link prices to their average queue lengths, it
may lead to large queue lengths and hence large queueing delays at the equilibrium.
As suggested in [26, 32, 22], this can be avoided by using the slightly smaller
‘virtual’ link data rates in (3.11) instead of the actual link data rates. Specifically,
cl(λ(t)), l ∈ L in (3.11) is replaced by ρcl(λ(t)), where ρ is a positive factor
slightly smaller than 1. While the modified algorithm still leads to the link prices
close to their optimal level, it results in zero equilibrium queue lengths, since links
traffic loads are slightly less that their actual data rates at equilibrium. Main
disadvantages of this approach are that it does not completely utilise network
capacity and provides no control over the transient behaviour of packet delays.

3.4.2 Minimising Network Congestion

In [40] the problem of joint optimisation of link capacities (data rates) and flow
assignment for delay-sensitive applications with focus on live video streaming is
considered. It is assumed that the data rate of each link l ∈ L is given by

cl = W log2

(
1 + SINRp,l

Γ

)
(3.12)

whereW is the system bandwidth, Γ is a constant determined by the BER require-
ment and the coding scheme, and SINRp,l is SINR at the receiving node of link
l given the power assignment vector p. To reduce the computational complexity,
the transmission power of the transmitting nodes are fixed at their maximum level.
Furthermore, if a particular vector of link data rates c can be generated by appro-
priate time devision of the other link data rates, it is removed. Links with gains
below a certain threshold are also removed to prevent long range communications
and force (upper-layer) routing algorithms to use multi-hop routing to reach the
destination.
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The primary objective is to find a resource allocation strategy that supports
maximum data rates and yields minimum end-to-end delay; however, for general
queueing systems, this leads to an intractable problem formulation. Hence, an
alternative problem formulation is proposed where the network congestion, as a
measure of delay experienced by packets, is minimised while allowing communica-
tion between source and destinations at a given data rate. Specifically, the network
congestion is defined as the maximum link utilisation over all links

∆(c,y) = max
l∈L

yl
cl

(3.13)

The alternative optimisation problem is then given by

minc,y ∆(c,y)

subject to (2.2), (2.3), (2.5)

y = Rx

xs ≥ ms ∀s ∈ S (3.14)

The objective function (3.13) is a quasi-convex function of c and x. The above
optimisation problem can then be solved, for example, by a bisection algorithm
that involves solving a sequence of convex feasibility problems [6]. The optimal
flow assignment however may not be very practical, since it does not directly
indicate the set of paths between sources and destinations, and it may use a large
number of links. Therefore, in a recursive process, the k paths carrying the most
traffic are selected from the optimal solution, and then the optimisation problem
is resolved by constraining the flows to the selected paths. Experimental results
indicate that the proposed cross-layer optimisation approach results in significant
improvement in supported data rate and video quality, compared with a method
based on oblivious layers. Evidently, this approach does not aim to efficiently
utilise links.

3.4.3 Minimising Total Distortion for Video Transmissions

In [41] the problem of optimal rate allocation for multi-stream video transmission
over wireless ad hoc networks is considered. The main focus is on designing a
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distributed rate allocation algorithm that minimises total distortion of all video
streams and can easily adopt to fluctuations in the wireless network conditions.
The following convex optimisation problem is then defined

minx≥0
∑
s∈S

wsDs(xs)

subject to Rx ≤ αc (3.15)

where ws is the relative importance of source s ∈ S, and Ds(xs) is the video
distortion for source s ∈ S defined by

Ds(xs) = D0,s + θs
xs − x0,s

where the parameters D0,s, θs and x0,s are estimated from trial encodings. The
constraint in (3.15) requires that the traffic rate entering each link to be below
the actual link data rate by a margin determined by the scaling factor α < 1. It
is assumed that link data rates c are determined by a media access control mech-
anism, which is dependent on the traffic pattern on each link. Optimal rates are
then computed using a subgradient algorithm where link prices updated similarly
to (3.11), in which at every step the actual data rate (capacity) and flow rates
at each link are estimated from the observed packet arrival and departure times,
averaged over many packets. It is shown using simulation that despite the inaccu-
racies associated with the proposed scheme, the achieved source rates are similar
to those obtained from exhaustive search.

3.4.4 Providing Bounded Delay for Traffic with Elastic
Bandwidth Requirements

This thesis extends the ideas presented in author’s previous papers [19, 20]. In
both papers the correlation between optimal link prices and equilibrium link av-
erage queueing delays in duality-based rate control algorithm is exploited in order
to provide bounded average end-to-end queueing delay. In [19], an approach is
presented first in which lower bounds on sources’ transmission rates are derived
in order to ensure the required bounded delay. This approach inevitably entails
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admission control. In the second approach, an alternative formulation is intro-
duced where the delay constraint is omitted and instead the utility function for
each source is multiplied by a weight factor. The proposed solution comprises a
scheduling algorithm incorporating a duality-based rate control algorithm at its
inner layer, and an algorithm that dynamically adjusts sources’ weights to ensure
the required bounded delay. In this thesis the latter approach is developed by
designing a new scheduling algorithm and delay regulator that regulate average
queueing delay with high accuracy and performance. Moreover, a complete anal-
ysis of the stability of the proposed algorithms is provided. In [20] the sensitivity
of optimal path prices for each source to the variation of its weight factor is anal-
ysed, and a delay regulator is presented that is integrated into the duality-based
rate control and scheduling algorithms given in [29]. Here the sensitivity analysis
results in [20] is used to develop a solution that regulates average queueing delay
with higher accuracy and performance.

3.5 Rate Control for Heterogeneous Traffic

3.5.1 Maximising Utility as a Function of Rate and Delay
- The Concave Case

In [24] the congestion control problem in networks supporting traffic with various
levels of rate, delay and packet loss sensitivity, is studied. The proposed approach
is based on incorporating the requirements for rate, delay and packet loss in the
utility function of sources. It is assumed that each source transmits only one
flow using a fixed path, and that link data rates c are fixed. The average delay
experienced by a packet at link l is given by θl(yl), where θl are assumed to be
positive, increasing and convex for all l ∈ L. The average packet delay for each
source s ∈ S is then given by ∑l∈LR

s
l θl(yl). The utility of each source s ∈ S is

subsequently defined by

Us = asfs(xs)− bs
∑
l∈L

Rs
l θl(yl)
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where coefficients as and bs indicate the degree of sensitivity of the traffic to rate
and delay, respectively. In particular, (as = 0, bs > 0) for delay-sensitive traffic
with fixed rate requirement like VoIP, (as > 0, bs > 0) for delay-sensitive and rate-
sensitive traffic like real-time data, and (as > 0, bs = 0) for rate-sensitive traffic
with no delay requirement like file-downloading. The optimisation problem is

maxx,y
∑
s∈S

Us(xs,y)

subject to Rx = y

y < c

x ≥ 0 (3.16)

It is shown that similar to the basic congestion control problem for elastic traffic,
the above alternative optimisation problem can be solved using either primal al-
gorithms [35] with link prices pl (yl(t)) = (∑s∈S R

s
l bs) θ′l (yl(t)), or dual algorithms

[35] where cl (λl(t)) = θ′l
−1
(

λl(t)∑
s∈S

Rs
l
bs

)
.

The analysis is then applied to networks with mixed voice and data traffic,
for the cases when priority queueing is used and when it is not. When priority
queueing is used, voice packets are given higher priority than data packets. The
arrival processes of voice and data are assumed to be independent, Poisson, and
independent of the service times. Two separate queues are maintained for voice
packets and data packets, respectively. It is assumed that each link is independent
and that the arrival processes of voice and data at each link are also independent.
Let subscripts D and V denote data and voice, respectively. In this case the
average delay of a voice packet for source sV is

δsV

(
yD
)

=
∑
l∈L

RsD

l

(
K

cl
+ K

2cl
yVl + yDl
cl − yVl

)

Moreover, the average delay of a data packet for source sD is

δsD

(
yD
)

=
∑
l∈L

RsD

l

(
K

cl
+ K

2 (cl − yVl )
yVl + yDl

cl − yVl − yDl

)

where yV is fixed for voice traffic. The utility function for the source of voice traffic
sV is set as a function of its R-factor denoted by Rfac

sV . Rfac
sV is typically a convex
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function of average packet delay δsV and packet loss probability given by ψsV =
psV + φsV , where psV is the packet loss probability due to an unreliable wireless
link, and φsV is the probability that the delay of a packet exceeds its deadline ds.
Considering only packet loss as a result of unreliable links, i.e. ψsV = psV , Rfac

sV

is then a linear function of average packet delay δsV . The utility function for the
source of data traffic sD is set as the weighted sum of utility on throughput and
utility on delay. The optimisation problem is formulated as

maxx≥0
v

SV
∑

sV ∈SV

UsV

(
Rfac
sV

)
+ 1− v

SD
∑

sD∈SD

UsD (xsDρsD , δsD)

subject to yV + yD ≤ c

R̄fac
sV ≤ Rfac

sV (δsV ) ∀sV ∈ SV

δsV

(
yD
)
≤ δ̄sV ∀sV ∈ SV

δsD

(
yD
)
≤ δ̄sD ∀sD ∈ SD (3.17)

where v ∈ [0, 1], R̄sV , δ̄sV and δ̄sD are constants, and ρsD = 1 − psD , where psD is
the end-to-end packet loss probability for source sD ∈ SD. The second constraint
states that the R-factor of each voice traffic should not be less than the requested
R-factor. The third and forth constraints impose upper bounds on the average
end-to-end delay of voice and data packets, respectively. Based on the dynamics
of the proposed dual algorithm, a distributed algorithm for solving the above
optimisation problem is then proposed.

For the case with no priority queueing it is assumed that incoming packets on
a link are stored in a queue and transmitted on FIFO basis. Furthermore, it is
assumed that packet arrivals at entry points Poisson processes and each link can
be approximated as an independentM/D/1 queue. In this case the average packet
delay for source s is

δs
(
yD
)

=
∑
l∈L

Rs
l

(
K

2cl
+ K

2 (cl − yVl − yDl )

)

The optimisation problem and its distributed solution is subsequently derived sim-
ilarly to the case with priority queueing.

In the general case where packet loss probability is given by ψsV = psV + φsV ,
it is hard to derive an exact formula for φsV . By Markov inequality, δ

sV

ds
provides
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an upper bound for φsV . Using this upper bound instead of φsV in Rfac
sV , although

the optimisation problem (3.17) is not convex in general, it is shown in [24] to
be convex in the case of no priority queueing. Finding a distributed solution for
this case however is still difficult. Numerical results in [24] show that the priority
queueing improves both the R-factor of voice traffic and the throughput of data
traffic, at the expense of the packet delay of data traffic.

However, the estimation of packet delay is based on approximation of links
as independent M/D/1 queues which, as discussed in Section 2.3, stems from
unrealistic assumptions and results in under-utilised links under optimal resource
allocation.

3.5.2 Maximising Utility as a Function of Rate and Delay
- The Non-Concave Case

In [36] a variant of the basic congestion control problem for elastic traffic [35]
is studied where traffic sources are explicitly sensitive to delay as well as flows.
Sources are heterogeneous with respect to their levels of sensitivity to both rate
and delay. It is assumed that source s ∈ S incurs a delay cost hsd per unit of flow
rate, where d is the average end-to-end delay experienced by a packet. The utility
of each source s ∈ S is subsequently defined by

Us = fs(xs)− hsxs
∑
l∈L

Rs
l θl(yl) (3.18)

When sources are homogeneous in their delay sensitivities, i.e. hs = h, the op-
timisation problem (3.16) with Us defined as in (3.18) becomes similar to the
optimisation problem (3.1) in [35], given the price function fl(yl) in equation (3.1)
in [35] is replaced by C ′l , where Cl(yl) = hylθl(yl). In this case the objective func-
tion is strictly concave and hence the optimisation problem (3.16) has a unique
optimal solution.

However, when sources are heterogeneous with respect to their delay sensitiv-
ities, the optimisation problem (3.16) with Us defined as in (3.18) is shown to be
non-concave in general and consequently may have several stationary points. A
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dynamic rate control algorithm similar to the primal algorithm (3.8) in [35] is then
considered, in which each source adjusts its rate in proportion to the difference
between its marginal utility and its path price. The price of each link is set dynam-
ically as the external effect of the flow that go through it at each time. It is shown
that the considered rate control algorithm converges to a local maximum, which is
a Nash equilibrium for the sources when charged the appropriate price, but never
to a saddle point. A Nash equilibrium is a strategy profile (source transmission
rates) x∗ such that no player (source) s can profit by unilaterally deviating from
its strategy x∗s, assuming every other player (source) ŝ follows its strategy x∗ŝ [31].

Two variants of the dynamic algorithm, one using fixed pricing and one using
dynamic pricing based on total load at the link, are also shown to converge but
generally not to the socially optimal points. It is concluded that dynamic rate
control algorithms such as TCP may not be able to attain efficient rate allocations
and levels of delay that are acceptable to diverse classes of traffic, in the absence of
differentiated services. In this thesis it is assumed that the average packet end-to-
end delay on each path is upper bounded in which case, as explained in Section 2.3,
the problem can be formulated as convex optimisation problem (2.1)-(2.5), given
approximation (2.6).

3.6 Conclusions

In this chapter, first, two prominent approaches to model the requirements of
delay-sensitive traffic are introduced. In the first approach, it is assumed that
delay can be described in terms of a traffic source’s transmission rate, and QoS of
a delay-sensitive traffic is typically represented as a non-concave utility function
of its transmission rate. Since most current applications have some degree of elas-
ticity to the allocated rate, this approach captures more accurately the QoS as a
function of the allocated rate. Using the NUM framework, the modelled traffic
elasticity can then be exploited to maximise network efficacy. Furthermore, for
many types of non-concave utility functions, it is easy to verify that the canonical
distributed algorithm, which solves the NUM problem for the elastic traffic, con-
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verges to the optimal rate allocation. In the second approach, inelastic traffic are
modelled explicitly as hard constraints and objective functions of the NUM prob-
lem, which normally leads to a computationally complex problem. Nevertheless,
both approaches in their current form only characterise QoS in terms of packet
inter arrival delay rather than end-to-end queueing delay.

Next, the prominent solution approach for the joint rate control and schedul-
ing NUM problem for the elastic traffic is presented, which elegantly decomposes
the problem into rate control and scheduling problems. The rate control prob-
lem is simply solved using the canonical distributed algorithm. The structure of
the scheduling problem has also enabled the development of simple, efficient and
distributed scheduling algorithms for many cases.

The predominant NUM approaches that aim to address end-to-end queueing
delay requirements of delay-sensitive traffic have been mainly based on either re-
ducing link utilisation, or approximation of links as M/D/1 queues. The former
approach which includes using virtual data rates [26, 32] and minimising network
congestion [40], normally leads to nearly zero queue lengths in the long term due
to reduced link utilisation, but provides no control over the transient behaviour
of packet delays. The latter approach which is adopted in [24] and [36] is based
on assumptions that contrast with realistic scenarios. Moreover, it also results in
under-utilised links under optimal resource allocation. These limitations motivate
the research objectives stated in Section 1.3.4.

The elegance and simplicity of the solution algorithms, as well as the efficiency
of the optimal solutions of the NUM problem when traffic QoS is characterised as
a concave utility function of its transmission rate is the main motivation behind
the proposed approach in this thesis. As will be described in the next chapters,
the proposed approach is based on representation of delay-sensitive traffic QoS as
a concave utility function of its transmission rate, whose shape is adjusted as the
algorithm converges.



Chapter 4

Alternative Problem Formulation

4.1 Introduction

Given the limitations of the optimisation problem (2.1)-(2.5) discussed in Chapter
2, in this chapter an alternative formulation and its proposed solution is presented,
on which the proposed approach for providing bounded delay will be based. In
Section 4.2 the proposed alternative optimisation problem, in which the delay
constraints are omitted and utility functions are multiplied by weight coefficients,
is presented and its properties are examined. In Section 4.3 the scheduling rep-
resentation of the alternative problem is introduced, which is based on vertical
decomposition of the problem into master scheduling problem and the well-known
multipath rate control with fixed link data rates subproblem. After deriving condi-
tions for the uniqueness of the solutions of the multipath rate control subproblem,
the proposed distributed algorithm for solving the scheduling problem is presented.

4.2 The Alternative Optimisation Problem

The proposed alternative optimisation problem is given by

max
x,c

∑
s∈S

wsfs(xs) subject to (2.2), (2.3), and (2.5) (4.1)

58
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where wsfs(xs) represents source s’s utility, or preference over transmission rate
xs. Compared with original problem (2.1)-(2.5), in the alternative problem (4.1),
delay constraint (2.4) has been omitted and instead the utility function for each
source s ∈ S is multiplied by the weight parameter ws. A geometric interpretation
of ws is that higher (respectively, lower) values of ws results in higher (respectively,
lower) marginal increase in source s’s preference or utility at a particular rate.

The dual problem for (4.1) is given by

min
λ≥0,µ≥0

D(λ,µ) (4.2)

where

D(λ,µ) = max
x,c

L(x, c,λ,µ) subject to (2.3)

= max
x,c

∑
s∈S

wsfs(xs)− λT (Rx− c) + µTx subject to (2.3)(4.3)

and λ and µ are the Lagrange multipliers associated with constraints (2.2) and
(2.5), respectively. Using the shadow price interpretation of Lagrange variables
[6], λ can also be interpreted as the link data rate prices.

Since optimisation problem (4.1) is convex and constraints (2.2) and (2.5) are
affine, by Slater’s theorem [6] the optimal duality gap is zero. Let (x∗, c∗) and
(λ∗,µ∗) be the primal and dual optimal solutions, respectively. Let also q∗ =
RTλ∗. It then follows from Karush-Kuhn-Tucker (KKT) optimality conditions [6]
that

wsf
′
s(x∗s)− qsi ∗ + µsi

∗ = 0 ∀i ∈ Is, ∀s ∈ S (4.4)

λ∗l (Rlx
∗ − c∗l ) = 0 ∀l ∈ L (4.5)

µsi
∗xsi
∗ = 0 ∀i ∈ Is, ∀s ∈ S (4.6)

Equation (4.6) implies that µsi ∗ = 0 for any i ∈ Is for which xsi
∗ > 0. It then

follows from (4.4) that

qsi
∗ = wsf

′
s(x∗s) i ∈ Is, xsi

∗ > 0, ∀s ∈ S (4.7)

, q∗s
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which means that for each source s ∈ S the values of qsi ∗ associated with paths
with positive flows are minimum and hence equal. Since the objective function in
(4.1) is strictly concave with respect to {xs}, {x∗s} is unique and it follows from
(4.7) that q∗ is also unique. However, (4.1) is not strictly concave in either x or c,
and hence neither x∗ or c∗ may be unique. Furthermore, given that q∗ = RTλ∗,
and R may have linearly dependent rows, λ∗ may not be unique in general.

4.3 Representation as a Scheduling Problem

Optimisation problem (4.1) can be alternatively presented as the following equiv-
alent form

max
c
Uw(c) subject to (2.3) (4.8)

where
Uw(c) = max

x

∑
s∈S

wsfs(xs) subject to (2.2) and (2.5) (4.9)

The key feature of the alternative form (4.8) is the decomposition of the problem
into master scheduling problem (4.8), and the well-known rate control subproblem
(4.9) with fixed link data rates. In addition, Uw is concave by Proposition 3.4.3 in
[4], and therefore, as shown in Section 5.4.4 in [4], the set of optimal Lagrange mul-
tipliers associated with constraint (2.2) in subproblem (4.9) is the subdifferential
of Uw.

The dual problem for (4.9) is similar to (4.2) and (4.3) with fixed link data
rates c. Consequently, KKT conditions (4.4)-(4.6) and Equation (4.7) also hold for
problem (4.9). Let x(c) and (λ(c),µ(c)) be the primal and dual optimal solutions
of (4.9) given c, respectively. Let also q(c) = RTλ(c). Since the objective function
in (4.1) is strictly concave with respect to {xs}, {xs(c)} is unique and it follows
from (4.7) that q(c) is also unique. However, as in the case of problem (4.1), λ(c)
is not unique in general. Hence λ(c) ∈ Λ(c), where Λ(c) is the set of optimal
Lagrange multipliers associated with constraint (2.2).
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4.3.1 Solution of the Multipath Rate Control Subproblem

Throughout the rest of this thesis, algorithms are presented using the continuous-
time model. The presented continuous-time algorithms can also be viewed as the
functional limit of their discrete-time counterparts, providing that the discrete-
time time steps are appropriately rescaled and step sizes are close to zero.

Rate control problem (4.9) has been extensively studied in the literature [35].
Here, the duality-based solutions are considered where Lagrange variables are up-
dated according to

λ̇l = β

cl
[Rlx(λ)− cl]+λl

∀l ∈ L (4.10)

where β > 0, Rl is the lth row of R, x(λ) are the path rates given λ, and [g(x)]+x
is defined by

[g(x)]+x =

 g(x) x > 0
max(g(x), 0) x = 0

Since the objective function in (4.9) is not strictly concave in x, by Proposition
6.1.1 in [4], the dual function of (4.9) may not be differentiable at every point.
Moreover, as shown in Section 6.1 in [4], the term within the brackets in (4.10)
is a subgradient of the dual function and thus the term on right side of (4.10)
is discontinuous. For the discrete-time version of (4.10), it is shown in [28] that
while duality-based approaches always converge to a dual optimal solution, as a
result of non-differentiability of the dual function, path rates x do not converge
and continuously oscillate.

For certain forms of R, such as the case where the number of disjoint paths is
sufficiently large, optimal path rates x(c) are unique, as shown in the following
lemma.

Lemma 4.1. Let Id be the number of disjoint paths in R, i.e. paths that do not
share any links with any other paths. Furthermore , let Sd be the number of sources
with only disjoint paths. If

Id = I − S + Sd (4.11)

then x(c) is the unique primal optimal solution of (4.9).
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Proof. Let BL = {l ∈ L|Rlx(c) = cl} and BI = {i ∈ Is, s ∈ S|xsi (c) = 0}. It can
be easily verified that at optimality, for every i /∈ BI , there exists l ∈ BL such that
Rs
l,i = 1 and λl(c) > 0. The strict complementary slackness condition at l results

from (4.4) and the assumption f ′ > 0. Moreover, if i ∈ Id then i /∈ BI . Since
disjoint paths do not share any links, it then follows that there exist at least Id
linearly independent vectors Rl, where l ∈ BL and λl(c) > 0. Further, it results
from the definition of Lagrangian in (4.3) that

zT∇2
xL (x(c),λ(c),µ(c)) z =

∑
s∈S

wsf
′′
s (xs(c)) (

∑
i∈Is

zi)2 (4.12)

≤ 0 ∀z 6= 0

Clearly, in order for (4.12) to be zero, ∑i∈Is
zi = 0, for all s ∈ S. This results in S

linear equations of z with linearly independent multiplier vectors, which, except
for sources with only disjoint paths, are also linearly independent from Rl vectors,
where l ∈ BL and λl(c) > 0, that are associated with i ∈ Id. Hence, given (4.11),
there does not exists z ∈ RI , z 6= 0 such that (4.12) is zero and Rlz = 0, for all
l ∈ BL, λl(c) > 0. It then follows that the second-order sufficient conditions for a
unique local maximising point of (4.9) (Lemma 3.2.1 in [14], Appendix B.1) hold
at x(c). Furthermore, concavity of (4.9) implies that x(c) is the unique global
maximiser of (4.9).

The right-hand side of algorithm (4.10) corresponds to the β multiple of marginal
increase in average queueing delay at link l, given the traffic rate entering link l is
equal to Rlx(λ). While this condition holds at links at the network traffic entry
points, the traffic rate at the other links are bounded by the data rates of the links
connected to their source node. However, at the equilibrium, the right-hand side of
(4.10) is the β multiple of marginal increase in average queueing delay for all links
l ∈ L. This implies that, by the results from stability of systems with vanishing
perturbation [21], if link prices are updated according to β multiple of the link
average queueing delays, path rates x(λ) and link prices λ converge to the primal
and dual optimal solutions of (4.9), respectively, given β is sufficiently small. In
this case, link average queueing delays at equilibrium are equal to β−1λ(c).
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4.3.2 Solution of the Scheduling Problem

First, the condition under which optimal link data rates are unique is given in the
following lemma.

Lemma 4.2. Let c∗ and c̃∗ be optimal link data rates for (4.1). Let x(c∗) and
x(c̃∗) be optimal path rates corresponding to c∗ and c̃∗, respectively. Then x(c∗) =
x(c̃∗) implies c∗ = c̃∗.

Proof. Suppose that c∗ 6= c̃∗. Since the objective function of (4.3) is an affine
function of c, and c∗ and c̃∗ are maximisers of (4.3) at (λ∗,µ∗), they are maximal
points of Co(C), i.e. if c ∈ Co(C), c � c∗[c̃∗] only if c = c∗[c̃∗]. Thus, there exist
l, l̂ ∈ L, l 6= l̂ such that c∗l < c̃∗l and c∗

l̂
> c̃∗

l̂
. Let x(c∗) = x(c̃∗) , x∗. It then

follows from (2.2) that Rlx
∗ ≤ c∗l < c̃∗l and Rl̂x

∗ ≤ c̃∗
l̂
< c∗

l̂
, which means that Rx∗

is upper bounded by a link data rates vector that is not a maximal point of Co(C).
This implies that x∗ is not optimal, which contradicts the initial assumption.

Inspired by the ideas from the gradient optimisation methods [4], the following
solution for scheduling problem (4.8) is proposed

ċ = γ(c̃− c) (4.13)

where 0 < γ ≤ 1, and

c̃ =

 c c = arg maxς∈Co(C) λ (c)T ς
arg maxς∈C λ (c)T ς otherwise

(4.14)

where λ (c) is the optimal Lagrange variable of (4.9) given c. Since C is a finite set,
Co(C) is a polyhedral set and hence by Proposition B.21 in [4], the optimisation
problem in (4.14) attains a maximum at some extreme point of Co(C). Therefore,
the solution space in (4.14) is reduced to C. It can be seen that λ (c)T (c̃− c) > 0
when c is not an equilibrium. Given λ(c) is a subgradient of Uw at c, then (4.13)-
(4.14) resembles a gradient optimisation method. The problem (4.14) is of the
same form as the well-known scheduling problem (3.10) and thus can be solved
using distributed solutions discussed in Section 3.3.
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The right-hand side of (4.13) may not be continuous in general, for example,
when λ (c) is not unique, or when in (4.14) strict complimentary slackness condi-
tion does not hold at c̃ (Theorem 3.2.2 in [14], Appendix B.1), and as a result the
existence of solutions is not guaranteed. In the analysis that follows it is assumed
that the following conditions, which are prerequisites for the results in [2], hold

H1 For any initial condition c0, at least one solution of (4.13)-(4.14) exists.

H2 The right-hand side of (4.13) is Lebesgue measurable and locally bounded.

The following definitions apply Definitions 3, 4, and 6 in [2] (Appendix B.2) to
algorithm (4.13)-(4.14):

Definition 1. A function V : RL → R is said to be nonpathological if it is
locally Lipschitz continuous and for every absolutely continuous function
c : T → RL and for almost every t ∈ T , the set ∂CV (c(t)) is a subset of an
affine subspace orthogonal to ċ(t), where ∂CV (c) denotes the Clarke gradient
of real function V at point c.

Definition 2. Let V : RL → R be a nonpathological function and g(c) denote
the right-hand side of (4.13). Let

AV =
{
c ∈ RL : eT1 g(c) = eT2 g(c) ∀e1, e2 ∈ ∂CV (c)

}
(4.15)

if c ∈ AV , the nonpathological derivative of the map V with respect to (4.13)-
(4.14) at c is defined by

V̇ g(c) = eTg(c) (4.16)

where e is any vector in ∂CV (c).

Definition 3. A set M is said to be weakly invariant for (4.13)-(4.14) if for any
c0 ∈M there exists a c ∈ Sc0 , where Sc0 denotes the set of maximal solutions
of (4.13)-(4.14) with initial condition c0, such that c(t) ∈M for all t ≥ 0.

By Theorem 2.2.6 in [14] (Appendix B.1), the mapping q(c) is continuous, and
since q(c) is also unique, it is a continuous function. It is assumed that q(c) is
also nonpathological [2].
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Theorem 4.1. Algorithms (4.13)-(4.14) converge to an optimal solution of (4.8).

Proof. Let ĉ be an equilibrium point of (4.13)-(4.14). From (4.14) it follows that

ĉ = arg max
ς∈Co(C)

λ(ĉ)T ς (4.17)

Since λ(ĉ) is a subgradient of Uw at ĉ,

Uw(c) ≤ Uw(ĉ) + λ(ĉ)T (c− ĉ) ∀c ∈ Co(C)

It follows from (4.17) that λ(ĉ)T (c− ĉ) ≤ 0, so Uw(c) ≤ Uw(ĉ) for all c ∈ Co(C).
This means that ĉ is an optimal solution of (4.8), i.e. ĉ ∈ C∗, where C∗ denotes
the set of optimal solutions of (4.8).

Consider the Lyapunov function

V (c) = 1
2 ‖q(c∗)− q(c)‖2

2

where c∗ ∈ C∗. Since q(c∗) = q∗ is unique, V (c∗) = 0 and V (c) > 0, for all c /∈ C∗.
Moreover, since q(c) is nonpathological, V (c) is also nonpathological. Let V̇ be the
nonpathological derivative of the map V with respect to (4.13)-(4.14) at c ∈ AV ,
where AV and V̇ are defined in (4.16) and (4.15), respectively. Let ψs ∈ ∂Cqs(c),
s ∈ S, where ∂Cqs(c) is the Clarke gradient of qs at c. Also let Ψ = [ψ1 · · ·ψS]T .
Then

V̇ (c) = − (q(c∗)− q(c))T q̇(c)

= − (q(c∗)− q(c))T Ψ ċ

= − (q(c∗)− q(c))T Ψ γ(c̃− c)

= −γ (q(c∗)− q(c))T Ψ (c∗ − c+ c̃− c∗)

= −γ (q(c∗)− q(c))T Ψ (c∗ − c)

− γ (q(c∗)− q(c))T Ψ (c̃− c∗)

Using the characterisation of Clarke gradient in equation A.11 in [1] (Appendix
B.2), it follows from Taylor’s theorem that q(c∗)−q(c) ≈ Ψ(c∗−c), as c approaches
c∗. Furthermore, since Uw is concave, by Proposition B.24 in [4], there exists
λ̂ ∈ Λ(c∗) such that

λ̂
T (c− c∗) ≤ 0 ∀c ∈ Co(C) (4.18)



CHAPTER 4. ALTERNATIVE PROBLEM FORMULATION 66

thus
V̇ (c) ≈ −γ ‖q(c∗)− q(c)‖2

2 − γ(λ̂− λ(c))TR Ψ(c̃− c∗)

where λ̂ satisfies (4.18).
It can be shown that typically R Ψ ≈ −k(c)IL, where k(c) > 0 and IL is

the identity matrix. To see this, consider the case where each source has only a
single path, i.e. Is = 1. In this case x(λ) is differentiable with respect to λ and
∂x(λ)
∂λ

= diag
{

1
wsf ′′s (xs(λ))

}
RT [30]. Evaluating the sensitivity equation (2.9) in [21]

for dual algorithm (4.10) at its equilibrium point λ(c) yields

0 = diag
{
βl
cl

}
R
∂x(λ(c))

∂λ

∂λ(c)
∂c

− diag
{
βl
c2
l

Rlx(λ(c))
}

= diag
{
βl
cl

}
R diag

{
1

wsf ′′s (xs(λ(c)))

}
RT ∂λ(c)

∂c
− diag

{
βl
c2
l

Rlx(λ(c))
}

≈ R diag
{

1
wsf ′′s (xs(λ(c)))

}
∂q(c)
∂c

− IL

The last approximation is based on the fact that at optimality total flow on each
link is near or equal its capacity. Thus, after factoring out diag

{
βl

cl

}
, the second

term on the right-hand side of the equality can be approximated as an identity
matrix. Furthermore, it is assumed that the system operates at points where ws
and as a result x∗s are close for all s ∈ S. Consequently, the values of wsf ′′s (xs(c)),
s ∈ S are close. Hence, R∂q(c)

∂c
≈ −k(c)IL, where k(c) ≈ |wsf ′′s (xs(c)) |, s ∈ S.

From (4.14) it follows that

λ(c)T (c̃− c∗) ≥ 0 ∀c ∈ Co(C)

Also, (4.18) implies
λ̂
T (c̃− c∗) ≤ 0

Adding both inequalities yields

(λ̂− λ(c))T (c̃− c∗) ≤ 0 ∀c ∈ Co(C) (4.19)

thus

V̇ (c) = −γ ‖q(c∗)− q(c)‖2
2 + γk(c)IL(λ̂− λ(c))T (c̃− c∗)

≤ −γ ‖q(c∗)− q(c)‖2
2 (4.20)
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Furthermore, the largest weakly invariant set of points c ∈ Av for which V̇ (c) = 0
is the set of equilibrium points C∗. Hence, by Proposition 3 in [2] (Appendix B.2),
every solution of algorithms (4.13)-(4.14) approaches the set of equilibrium points
C∗ as t→∞.

4.4 Conclusions

In this chapter the optimisation problem (4.1) is presented as an alternative for-
mulation to the original optimisation problem (2.1)-(2.5). In the alternative for-
mulation the delay constraints are omitted and utility functions are multiplied by
weight coefficients. Generally, primal optimal solutions (x∗, c∗) and dual optimal
solutions, or optimal link prices, λ∗ are not unique. However, optimal aggregate
source rates {x∗s} are unique. Furthermore, paths with positive flows at optimality
have minimum and thus equal price. It then follows that optimal path prices are
q∗ are also unique.

The alternative optimisation problem (4.1) is then presented as an equiva-
lent scheduling problem, which consists of the master scheduling problem (4.8)
and the well-known multi-path rate control with fixed link data rates subproblem
(4.9). The rate control subproblem is solved using the duality-based algorithm,
where dual variables, or link prices, are updated in proportion to the link queue-
ing delays. Using this update mechanism, link queueing delays at equilibrium are
proportional to the optimal link prices λ(c). However, it has been shown that
while the duality-based approach always converge to a dual optimal solution, for
sources with multiple alternative paths, path rates do not converge and continu-
ously oscillate.

Next, conditions on the number of disjoint paths are derived that guarantee
unique optimal path rates x∗(c). This result is based on satisfying the second-
order sufficient conditions for a unique local maximising point of the multi-path
rate control subproblem (4.9). This suggests an approach for future work where
the second-order sufficient conditions are used to design a multi-path rate control
algorithm that converges the unique optimal path rates, given the conditions on
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the number of disjoint paths are guaranteed by the topology control algorithm.
A distributed algorithm for the scheduling problem (4.8) is then proposed and

is shown to converge to an optimal solution c∗. The proposed scheduling algo-
rithm is based on solving the well-known scheduling problem (3.10) and thus can
incorporate the distributed solutions discussed in Section 3.3.

The proposed solution for providing bounded delay comprises an algorithm
that is incorporated in the proposed scheduling algorithm and is based on its key
feature which is the proportionality of link queueing delays and link prices λ(c), as
well as the correlation between optimal path prices and utility weights coefficients
in the alternative optimisation problem (4.1), as will be described in the next
chapter.



Chapter 5

Proposed Solution for Providing
Bounded Delay

5.1 Introduction

In this chapter the proposed solution to the optimisation problem (2.1)-(2.5) is
developed, with focus on the performance objectives described in Section 1.3.4,
namely, ensuring bounded end-to-end queueing delays, enabling distributed im-
plementation with low communication overhead, leading to maximal link capacity
utilisation, and having controllable transient behaviour. The proposed solution
exploits the properties of the alternative optimisation problem (4.1) and its pro-
posed solution described in Chapter 4. In Section 5.2, bounds on the sensitivity of
optimal path prices q∗(w) and aggregate source rates to the variations of utility
weight coefficients w in the alternative optimisation problem (4.1) are derived.
Based on the sensitivity results, in Section 5.3 an algorithm for providing bounded
end-to-end queueing delays as well as other performance objectives is proposed,
which is integrated in the scheduling algorithms (4.13)-(4.14).
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5.2 Effect of Sources’ Weights on Delay

As explained in Section 4.3.1, if link prices in the duality-based algorithm (4.10)
are instead updated proportionally to link average queueing delays, optimal link
prices are then proportional to the link average queueing delays at equilibrium.
Furthermore, by (4.7) optimal path prices for each source s ∈ S are equal to
its marginal utility at its optimal aggregate data transmission rate, multiplied
by its weight. This suggests an alternative approach to the original formulation
(2.1)-(2.5), in which the delay bounds in (2.4) are instead guaranteed by adjusting
the weight of sources. Optimal allocation of sources’ data transmission rates in
this approach may differ slightly from the case with the initial source weights
but no delay constraints, and consequently may lead to slight reduction in the
overall perceived signal quality. However, since this approach utilises the network
available capacity, it outperforms the previously proposed solutions described in
Section 3 in terms of the overall perceived signal quality.

The following lemma shows that for the alternative problem (4.1) the optimal
path prices for each source s ∈ S, that is q∗s = Rs

i
Tλ∗, i ∈ Is, grow as its weight

ws increases.

Lemma 5.1. If the utility functions fs are twice continuously differentiable, strictly
concave, increasing, and f ′′s < 0 for all s ∈ S, then upper and lower bounds on the
sensitivity of q∗s(w) and x∗s(w) to the variation of parameters ws are given by

0 < ∂q∗s
∂ws

≤ f ′s(x∗s) (5.1)

0 ≤ ∂x∗s
∂ws

<
f ′s(x∗s)
wsf ′′s (x∗s)

(5.2)

for all s ∈ S.

Proof. It results from (4.7) that

∂q∗s
∂wr

=

 wsf
′′
s (x∗s)

∂x∗s
∂ws

+ f ′s(x∗s) r = s

wsf
′′
s (x∗s)

∂x∗s
∂wr

r 6= s
∀s ∈ S (5.3)
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Let w̃ be a perturbation of parameter w defined by

w̃s =

 ws + dwr s = r

ws otherwise
∀s ∈ S

where r ∈ S and dwr > 0. If x∗r(w̃) = x∗r(w), taking the limit dwr → 0 yields
∂x∗r
∂wr

= 0, and from (5.3), ∂q∗r
∂wr

= f ′r(x∗r). If x∗r(w̃) 6= x∗r(w), given the strict
concavity of f , {x∗s(w)} and {x∗s(w̃)} are the unique maximisers for problem (4.1)
with parameters w and w̃, respectively. So∑

s∈S
wsfs(x∗s(w)) >

∑
s∈S

wsfs(x∗s(w̃))

and ∑
s∈S

w̃sfs(x∗s(w̃)) >
∑
s∈S

w̃sfs(x∗s(w))

Adding both inequalities results in∑
s∈S

(w̃s − ws)(fs(x∗s(w̃))− fs(x∗s(w))) > 0

Except for s = r, all the elements in the above summation are zero. Since w̃r−wr =
dwr > 0, fr(x∗r(w̃)) > fr(x∗r(w)), which implies x∗r(w̃) > x∗r(w), since f is an
increasing function. Thus

x∗r(w̃)− x∗r(w)
dwr

> 0

Taking the limit dwr → 0 yields the lower bound of (5.2).
It results from the optimality condition in Proposition 2.2.2 in [4] for optimi-

sation problem (4.1) at w that∑
s∈S

wsf
′
s(x∗s(w))(x∗s(w̃)− x∗s(w)) ≤ 0

Similarly, it results from the optimality condition for (4.1) at the perturbed w̃
that ∑

s∈S
w̃sf

′
s(x∗s(w̃))(x∗s(w)− x∗s(w̃)) ≤ 0

Using definition (4.7), adding both inequalities and taking the limit dwr → 0 yields
∑
s∈S

∂x∗s
∂wr

∂q∗s
∂wr

≥ 0 ∀r ∈ S (5.4)
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Let Sd = {s ∈ S, s 6= r|x∗s(w̃) < x∗s(w)}. Since x∗r(w̃) > x∗r(w), Sd is non-
empty, otherwise {x∗s(w)} would not be optimal. Since it is assumed that f ′′ < 0,
f ′s(x∗s(w̃)) > f ′s(x∗s(w)), and hence from (4.7), q∗s(w̃) > q∗s(w) for all s ∈ Sd.
Taking the limit dwr → 0 results in ∂x∗s

∂wr
< 0 and ∂q∗s

∂wr
> 0, so

∑
s∈Sd

∂x∗s
∂wr

∂q∗s
∂wr

< 0 ∀r ∈ S

Let Si = {s ∈ S, s 6= r|x∗s(w̃) ≥ x∗s(w)}. Using a similar argument, q∗s(w̃) ≤ q∗s(w),
for all s ∈ Si, so ∑

s∈Si

∂x∗s
∂wr

∂q∗s
∂wr

≤ 0 ∀r ∈ S

Hence, since it was assumed that ∂x∗s
∂ws

> 0, it follows from (5.4) that ∂q∗s
∂ws

> 0, for
all s ∈ S.

In (5.3), since f ′′s (x∗s) < 0, the first and second terms on the right side of the
equation are negative and positive, respectively. Since the term on the left side of
the equation is positive,

0 ≤ −wsf ′′s (x∗s)
∂x∗s
∂ws

< f ′s(x∗s)

from which the upper bounds in (5.1) and (5.2) can be verified.

As explained in Section 4.3.1, if link prices in the duality-based rate control
algorithm are updated according to β multiple of the link average queueing delays,
link average queueing delays at equilibrium are equal to β−1λ(c), and as a result
path average queueing delays at equilibrium equal β−1q(c). Consequently, Lemma
(5.1) suggests a strategy for providing bounded end-to-end delay based on the
adjustment of sources’ weights.

5.3 Delay Regulation via Dynamic Adjustment
of Sources’ Weights

The main challenge in guaranteeing bounded delay through adjustment of sources’
weights is that sources’ weights that guarantee the required bounded delay gener-
ally vary for different network configurations. Clearly, a concave utility function
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always implies that a connection has elastic bandwidth requirements and as a re-
sult best-effort strategies may allocate different rates to the same connection (with
the same weight) under various network configurations in order to maximise the
aggregate utility of all connections. This means that for every network configura-
tion, sources’ weights have to be recomputed to ensure the required bounded delay.
Hence, the dynamic and decentralised nature of multihop wireless networks calls
for a robust, responsive and distributed algorithm that can adjust sources’ weights
so as to ensure bounded end-to-end delay under modest parameter perturbations.

To order to meet these requirements, the following integral controller is pro-
posed where, based on the results from Lemma (5.1), each source uses current
end-to-end delay on its paths to adjust its weight ws, and hence to regulate end-
to-end delay at optimality.

ẇs = α

[
ds −

qs(c,w)
β

]+

ws

∀s ∈ S (5.5)

Algorithm (5.5) is performed by each source independently and ensures bounded
end-to-end delay under parameter perturbations that do not destabilise the sys-
tem.

As in Section 4.3.2, in the following analysis it is assumed that the following
conditions, which are prerequisites for the results in [2], hold

H1 For any initial condition (c0,w0), at least one solution of (4.13)-(4.14) and
(5.5) exists.

H2 The right-hand sides of (4.13) and (5.5) is Lebesgue measurable and locally
bounded.

The following definitions apply Definitions 3, 4 and 6 in [2] (Appendix B.2) to
algorithm (4.13)-(4.14) and (5.5):

Definition 1. A function V : RL+S → R is said to be nonpathological if it is
locally Lipschitz continuous and for every absolutely continuous function
(c,w) : T → RL+S and for almost every t ∈ T , the set ∂CV (c(t),w(t)) is
a subset of an affine subspace orthogonal to (ċ(t), ẇ(t)), where ∂CV (c,w)
denotes the Clarke gradient of real function V at point (c,w).
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Definition 2. Let V : RL+S → R be a nonpathological function and g(c,w)
denote the right-hand side of (4.13) and (5.5). Let

AV =
{

(c,w) ∈ RL+S : eT1 g(c,w) = eT2 g(c,w) ∀e1, e2 ∈ ∂CV (c,w)
}
(5.6)

if (c,w) ∈ AV , the nonpathological derivative of the map V with respect to
(4.13)-(4.14) and (5.5) at (c,w) is defined by

V̇ g(c,w) = eTg(c,w) (5.7)

where e is any vector in ∂CV (c,w).

Definition 3. A setM is said to be weakly invariant for (4.13)-(4.14) and (5.5) if
for any (c0,w0) ∈ M there exists a (c,w) ∈ S(c0,w0), where S(c0,w0) denotes
the set of maximal solutions of (4.13)-(4.14) and (5.5) with initial condition
(c0,w0), such that (c(t),w(t)) ∈M for all t ≥ 0.

The following theorem examines the conditions under which algorithms (4.13)-
(4.14) combined with (5.5) achieve asymptotic regulation of end-to-end delay.

Theorem 5.1. Algorithms (4.13)-(4.14) combined with (5.5) converge to an op-
timal solution of (4.8) with parameter w∗, where w∗ is the weight of sources that
guarantees bounded delay specified in (2.4), if

• subproblem (4.9) is solved using duality-based algorithm (4.10), where link
prices are instead updated as β multiple of link average queueing delays,

• the following conditions hold∣∣∣∣1− 1
εs

∣∣∣∣ ≤ 1√
S − 1

∀s ∈ S (5.8)

where 0 < εs ≤ 1, s ∈ S satisfy
∂q∗s
∂ws

= εsf
′
s(x∗s) ∀s ∈ S (5.9)

• and parameter α in (5.5) satisfies

α <
βγ

2 maxs∈S f ′s(x∗s)
(5.10)
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Proof. As explained in Section 4.3.1, if link prices in the duality-based rate control
algorithm are updated according to β multiple of the link average queueing delays,
link average queueing delays at equilibrium are equal to β−1λ(c), and as a result
path average queueing delays at equilibrium equal β−1q(c), which are bounded by
d at the equilibrium (c∗,w∗).

By Theorem 2.2.6 in [14] (Appendix B.1), the mapping q∗(w) is continuous,
and since q∗(w) is also unique, it is a continuous function. It is assumed that
q∗(w) is also nonpathological. Consider the Lyapunov function

V (c,w) = 1
2 ‖q

∗(w∗)− q∗(w)‖2
2 + 1

2 ‖q
∗(w)− qw(c)‖2

2

Where qw∗(c∗) = q∗(w∗) = βd. Therefore, V (c∗,w∗) = 0 and V (c,w) > 0, for all
(c,w) 6= (c∗,w∗). Moreover, since qw(c) and q∗(w) are nonpathological, V (c,w)
is also nonpathological. Let V̇ be the nonpathological derivative of the map V with
respect to (4.13)-(4.14) and (5.5) at (c,w) ∈ AV , where AV and V̇ are defined in
(5.6) and (5.7), respectively. Let Ψw = [ψ1,w · · ·ψS,w]T , where ψs,w ∈ ∂Cqs,w(c),
s ∈ S, and ∂Cqs,w(c) is the Clarke gradient of qs,w at c. Also let Φ = [φ1 · · ·φS]T ,
where φs ∈ ∂Cq∗s(w), s ∈ S, and ∂Cq∗s(w) is the Clarke gradient of q∗s at w. Then

V̇ (c,w) = −(q∗(w∗)− q∗(w))T q̇∗(w) + (q∗(w)− qw(c))T (q̇∗(w)− q̇w(c))

= −(q∗(w∗)− q∗(w))TΦ ẇ + (q∗(w)− qw(c))TΦ ẇ

− (q∗(w)− qw(c))T q̇w(c)

= −α
β

(q∗(w∗)− q∗(w))TΦ (βd− qw(c))

+ α

β
(q∗(w)− qw(c))TΦ (βd− q∗(w) + q∗(w)− qw(c))

− (q∗(w)− qw(c))T q̇w(c)

= −α
β

(q∗(w∗)− q∗(w))TΦ (βd− qw(c))

+ α

β
(q∗(w)− qw(c))TΦ (βd− q∗(w))

+ α

β
(q∗(w)− qw(c))TΦ (q∗(w)− qw(c))− (q∗(w)− qw(c))T q̇w(c)

Since f ′′ < 0, (5.3) implies that ∂x∗s
∂wr

∂q∗s
∂wr
≤ 0, for all r 6= s. It then follows from
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(5.4) and (5.3) that

∂x∗s
∂ws

∂q∗s
∂ws

≥

∣∣∣∣∣∣∣∣
∑
r∈S
r 6=s

∂x∗s
∂wr

∂q∗s
∂wr

∣∣∣∣∣∣∣∣ ∀s ∈ S

(
∂q∗s
∂ws
− f ′s(x∗s)

)
∂q∗s
∂ws

1
wsf ′′s (x∗s)

≥

∣∣∣∣∣∣∣∣
∑
r∈S
r 6=s

(
∂q∗s
∂wr

)2 1
wrf ′′r (x∗r)

∣∣∣∣∣∣∣∣ ∀s ∈ S

It is assumed that the system operates at points where ws and as a result x∗s
are close for all s ∈ S. Therefore, the values of wsf ′′s (xs(c)), s ∈ S are close.
Furthermore, it follows from (5.1) that there exists 0 < εs ≤ 1, s ∈ S that satisfies
(5.9) and so

∣∣∣ ∂q∗s
∂ws
− f ′s(x∗s)

∣∣∣ =
∣∣∣1− 1

εs

∣∣∣ ∂q∗s
∂ws

. Thus

∣∣∣∣1− 1
εs

∣∣∣∣ ∂q∗s∂ws
>

∑
r∈S
r 6=s

(
∂q∗s
∂wr

)2


1
2

≥ 1√
S − 1

∑
r∈S
r 6=s

∣∣∣∣∣ ∂q∗s∂wr

∣∣∣∣∣
It then follows from condition (5.8) that

∂q∗s
∂ws

≥
∑
r∈S
r 6=s

∣∣∣∣∣ ∂q∗s∂wr

∣∣∣∣∣ (5.11)

Inequality (5.11) implies that Φ is approximately strictly diagonally dominant
(Definition 6.1.9 in [18], Appendix B.3). Moreover, off-diagonal elements of Φ are
very small relative to the diagonal elements, and as a result Φ can be assumed
to have almost the same properties as a symmetric matrix. Since by (5.1) the
diagonal elements of Φ are positive, it then follows from Theorem 6.1.10 in [18]
(Appendix B.3) that all eigenvalues of Φ are real and positive and hence Φ is
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positive definite. Thus

V̇ (c,w) = −α
β

(q∗(w∗)− q∗(w))TΦ (βd− qw(c))

+ α

β
(βd− q∗(w))TΦ (q∗(w)− qw(c))

+ α

β
(q∗(w)− qw(c))TΦ (q∗(w)− qw(c))− (q∗(w)− qw(c))T q̇w(c)

= −α
β

(q∗(w∗)− q∗(w))TΦ (q∗(w∗)− q∗(w))

+ α

β
(q∗(w)− qw(c))TΦ (q∗(w)− qw(c))− (q∗(w)− qw(c))T q̇w(c)

<
α

β
(q∗(w)− qw(c))TΦ (q∗(w)− qw(c))− (q∗(w)− qw(c))T q̇w(c)

In the first equality, the second term on the right-hand side results from the as-
sumption that Φ is symmetric. The above inequality results from the positive
definiteness of Φ. It follows from Geršgorin Theorem (Theorem 6.1.1 in [18],
Appendix B.3) and inequalities (5.11) and (5.1) that eigenvalues of Φ are upper-
bounded by 2f ′s(x∗s), s ∈ S. Applying Rayleigh-Ritz Theorem (Theorem 4.2.2 in
[18], Appendix B.3) to the first term, and using the upperbound (4.20) for the
second term on the right-hand side of the above inequality then yields

V̇ (c,w) <
(

2α
β

max
s∈S

f ′s(x∗s)− γ
)
‖q∗(w)− qw(c)‖2

2 (5.12)

Consequently, if parameter α satisfies (5.10) then V̇ (c,w) ≤ 0 for all (c,w).
Furthermore, the largest weakly invariant set of points (c,w) ∈ AV for which
V̇ (c,w) = 0 is the set of equilibrium points (c∗,w∗). Hence, by Proposition 3 in
[2] (Appendix B.2), every solution of algorithms (4.13)-(4.14) combined with (5.5)
approaches the set of equilibrium points (c∗,w∗) as t→∞.

5.4 Conclusions

In this chapter, for the alternative optimisation problem (4.1), upper and lower
bounds on the sensitivity of optimal path prices q∗(w) and aggregate source rates
{x∗s(w)} to the variations of utility weight coefficients w are derived. The sensi-
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tivity results show that for each source s ∈ S, optimal path prices q∗s grow as its
weight ws increases.

Given the correlation between path queueing delays and path prices q∗(c) in
the scheduling algorithms (4.13)-(4.14), an alternative approach is then proposed
where utility weight coefficients are used as control variables to regulate end-to-end
queueing delays. Based on this approach, an integral controller is incorporated in
the scheduling algorithms (4.13)-(4.14) whereby each source regulates the queueing
delay on its paths at the desired level, using its weight coefficient as the control
variable.

The proposed integral controller is distributed, since it is implemented at each
source and uses only local path queueing delay information. Moreover, since the
equilibrium of the scheduling algorithms (4.13)-(4.14) combined with integral con-
troller (5.5) is the optimal solution of the optimisation problem (4.1) with equi-
librium weight coefficients w∗, it results in maximal link utilisation. For future
work, linearisation and linear system design methods can further be used to adjust
the controller parameter for the desired transient behaviour. Thus the proposed
solution meets the objectives stated in Section 1.3.4.

Finally, the conditions under which algorithms (4.13)-(4.14) combined with
the proposed integral controller (5.5) achieve asymptotic regulation of end-to-end
delay are examined. The performance characteristics of the proposed solutions
will also be demonstrated using simulation in the next chapter.



Chapter 6

Simulation Results

6.1 Introduction

In this chapter simulation experiments are performed to address three fundamen-
tal questions. Firstly, to illustrate that algorithms (4.13)-(4.14) converge to the
optimal solutions of (4.8), despite using approximate values of link prices λ (c)
computed by the inner layer rate control algorithm (4.10). Secondly, to illustrate
that algorithms (4.13)-(4.14) combined with (5.5) can regulate packet end-to-end
latency, using an estimation of end-to-end delay as feedback in (4.13)-(4.14), and
to compare their performance against the previously proposed main approaches
to support delay-sensitive traffic. Finally, to assess the dynamic behaviour of the
proposed algorithms when network configuration changes.

In Section 6.2, the simulated network and its mathematical model are de-
scribed. The SimEvents implementation of the proposed algorithms in Chapters
4 and 5 for the network model is described in Section 6.3. The result of the sim-
ulation experiments is presented in Section 6.4. The conclusions are presented in
Section 6.5.
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6.2 Network Model

For simulation experiments the network topology in Figure 6.1 is considered, where
there are two source-destination pairs A→ C and E → D. For source-destination
pair A → C, there are two alternative paths A → B → C and A → D → C.
Consequently, the routing matrix for the network is given by

R =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1


Each active link is assumed to have a fixed data rate of c0 packet per second.

To model the scheduling constraint (2.3), the notions of contention graph and
contention matrix [7] are used. In the contention graph, vertices represent links
and edges represent the contention between the links. Maximal cliques of the
contention graph embody the local contention among links; Links that belong to
the same maximal clique cannot be active simultaneously. Let N be the number
maximal cliques in the contention graph. The N ×L contention matrix F is then
defined by

Fn,l =


1
c0

if link l ∈ L belongs to the maximal clique n,

0 otherwise.

Thus, a necessary condition for scheduling is given by

Fc ≤ 1 (6.1)

It can be shown that (6.1) is also a sufficient condition for scheduling if the con-
tention graph is perfect [7]. Thus, in this example (6.1) models the scheduling
constraint (2.3).

It is assumed that each wireless node can only communicate with one other
node at any time. This results in the contention graph shown in Figure 6.2. There
are four maximal cliques: links (3,4,5), links (1,2), links (1,3) and links (2,4).
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Thus, only one link on each path of source-destination pair A→ C can be active.
Moreover, links on path A → D → C are in contention with the link on the
only path of source-destination pair E → D, since they all share node D. The
contention matrix for the network is then given by

F =


0 0 1 1 1
1 1 0 0 0
1 0 1 0 0
0 1 0 1 0


Since the contention graph in Figure 6.2 has no odd holes, it is perfect and therefore
(6.1) is a sufficient scheduling constraint in this case.

The utility functions for both sources are assumed to be of the form wsfs(xs) =
ws ln(xs). Logarithmic utility functions have all the necessary properties described
in Section 2.2, i.e. twice continuously differentiable, strictly concave, increasing,
and have strictly positive second derivative. Moreover, they have been shown to
achieve weighted proportionally fair resource allocation, i.e. any deviation from
optimal rate allocation results in less than, or equal to zero, weighted sum of
proportional changes to each source’s rate [35].

6.3 Implementation Using SimEvents

As the main objective of the simulation is to evaluate packet end-to-end latency
when the proposed algorithms in Chapters 4 and 5 are implemented in a multihop
wireless network architecture, the discrete-event simulation software SimEvents is
used for simulation experiments. The SimEvents simulation models are presented
in the Appendix. Figure A.1 shows the simulation model of the network in Figure
6.1. Nodes buffers are modelled as FIFO queues with infinite capacities. Links
are modelled as servers with packet service time computed by the scheduling sub-
system. Packets on each path are generated by the entity generators with entity
intergeneration time controlled by the Source Rate Control subsystems. Packet
end-to-end latencies are recorded by timers on every path.
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Figure 6.2: Network contention graph and its maximal cliques
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The Scheduling subsystem implements algorithms (4.13)-(4.14), using link prices
computed by Link Price Update subsystems. As indicated in Figure A.1, the
Scheduling subsystem runs at discrete time steps with the duration of 500 time
units, in order to allow link prices and path rates to reach near their optimal level
for the current link data rates. To examine the robustness of the proposed algo-
rithms in delay regulation in the presence of discrepancies between link prices and
the corresponding average queueing delays, it is assumed that link prices are rather
an estimation of β multiple of link average queueing delays, based on duality-based
algorithm (4.10) initialised according to

λ0
l (c(k)) =


cl(k−1)
cl(k) λl(c(k − 1)) k > 0

0 k = 0
(6.2)

where λ0
l (c) is the initial point of (4.10) given c and k corresponds to the discrete

time step of the scheduling algorithm. Link Price Update subsystems implement
duality-based algorithm (4.10), using path rates computed by Source Rate Control
subsystems. They are initialised according to (6.2) every time link data rates
are updated by the Scheduling subsystem, and run in continuous-time for the
duration of scheduling time step, as shown in Figure A.3. Source Rate Control
subsystems compute path rates in (4.3), given fixed link data rates. However,
since Source 1 has two alternative paths, the computation of path rates in the
Source 1 Rate Control subsystem is based on inclusion of small quadratic term
δxTx in (4.3), in order to stabilise the path rates (Figure A.2). Source Rate
Control subsystems run jointly with Link Price Update subsystems in continuous-
time for the duration of scheduling time step. Source Delay Regulator subsystems
implement algorithm (5.5), using current average end-to-end delays as feedback.
Source Delay Regulator subsystems run at discrete time steps with the duration
of 500 time units, simultaneously with the Scheduling subsystem, in order to allow
link prices and path rates to reach near their optimal level for the current link
data rates.

The algorithms implemented in the simulation subsystems are then summarised
as follows.
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Scheduling subsystem At step k:

c(k) = c(k − 1) + γ (c̃− c(k − 1)) (6.3)

where
c̃ = arg max

ς
λ (c(k − 1))T ς s.t. F ς ≤ 1 (6.4)

and 0 < γ ≤ 1.

Source Delay Regulator subsystem At step k:

ws(k) =
[
ws(k − 1) + α

(
ds −

qs (c(k − 1),w(k − 1))
β

)]+

∀s ∈ S

(6.5)
where α > 0, and qs (c(k − 1),w(k − 1)) is computed using the values of
link prices (computed by Link Price Update subsystem) at the end of the
previous step k − 1.

Link Price Update subsystem Given the current link data rates c(k), continue
until the next scheduling update at step k + 1:

λ̇l = β

cl(k) [Rlx (λ(t))− cl(k)]+λl
∀l ∈ L (6.6)

where β > 0, the initial point λ0
l is given by (6.2), and x (λ(t)) is computed

by the Source Rate Control subsystem.

Source Rate Control subsystem Given λ(t) andw(k), solve the following sys-
tems of equations for all s ∈ S:

ws(k)f ′s

∑
i∈Is

xsi

− qsi (t) + 2δxsi = 0 ∀i ∈ Is (6.7)

here fs(xs) = ln(xs), and δ > 0 is a small constant.
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6.4 Results

The objective of the simulation experiments is threefold. Firstly, to illustrate that
algorithms (6.3)-(6.4) indeed converge to the unique optimal solutions of (4.8),
where link prices λ (c(k)) are computed using (6.6)-(6.7) and (6.2) running for
a finite time. Moreover, to observe how closely actual average end-to-end delays
correspond to the path prices q (c(k)) computed using (6.6)-(6.7) and (6.2). Sec-
ondly, to examine the robustness and accuracy of algorithms (6.3)-(6.4) combined
with (6.5) in regulating packet end-to-end latency, where average end-to-end delay
is used as feedback in (6.5) but link prices λ (c(k)) in (6.3)-(6.4) are rather an
estimation of β multiple of link average queueing delays based on (6.6)-(6.7) and
(6.2). Furthermore, to compare their performance against the previously proposed
main approaches to support delay-sensitive traffic, namely, the virtual data rates
approach (Section 3.4) and the proposed approach by [24] (Section 3.5). Since
the convergence of the proposed solutions were shown on basis of the assumption
that network topology, channel conditions and other network configuration remain
fixed, or their changes can be compensated at the physical layer, over the timescale
of the problem (as discussed in Sections 1.2.6 and 1.3.2), the final objective is to as-
sess the dynamic behaviour of the proposed algorithms in the presence of network
configuration changes, specifically when a new flow enters the network.

In all experiments it is assumed that c0 = 1 packet per milliseconds, γ =
1 × 10−2, β = 1 × 10−3, and δ = 1 × 10−1. In the first experiment, source
weights are fixed at w1 = 2 and w2 = 1 and algorithms (6.3)-(6.4) are simu-
lated. The evolution of path transmission rates and link data rates are shown in
Figures 6.3 and 6.4, respectively. Despite the fact that (6.3)-(6.4) use approxi-
mate values of link prices λ (c(k)), link data rates converge to their optimal level
(0.5, 0.5, 0.1667, 0.1667, 0.6667) relatively quickly, but have a non-smooth curve
due to discontinuous nature of the right-hand side of original scheduling algorithm
(4.13). The approximate values of link prices λ (c(k)) result in slight oscillations
in the path prices as shown in Figure 6.5, which in turn lead to the oscillations of
the corresponding path rates (Figure 6.3). Although the rate oscillations for the
only path of source 2 are also modest, they are more significant for both paths of
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source 1. As described in Section 4.2, for sources with multiple alternative paths,
only paths that have the minimum price will have positive flows at optimality.
Thus, although path transmission rates converge quickly to a close neighbourhood
of their optimal values (0.5, 0.1667, 0.6667), the almost coincidence of path prices
for source 1 at non-differentiability points of link data rate curves results in equal
path rates at the corresponding points. At the other points, however, due to the
slight divergence of path prices, path rates for source 1 also diverge. In this case,
the added quadratic term to (4.3) stops the rate of path 2 from becoming zero.

In Figure 6.5, path prices are compared with normalised end-to-end delays.
Although the dynamic behaviour of path prices and the corresponding normalised
end-to-end delays are similar, the normalised end-to-end delays lag slightly behind
the path prices. Moreover, the magnitude of path prices for source 1 is approx-
imately twice as high as their corresponding normalised end-to-end delays. The
latter discrepancy is due to the fact that algorithms (6.6)-(6.7) leads to the same
price, and consequently same data rate, for links belonging to the same path. In
the simulation model, however, packet arrival rates at links 2 and 4 are equal to
the data rates of links 1 and 3, respectively. Furthermore, since packet arrival
rates and data rates of links 2 and 4 are almost equal throughout the simulation,
their queueing delay is zero. Hence, the normalised end-to-end delay is almost half
of the total price for each path of source 1.

In the second experiment, algorithms (6.3)-(6.4) are simulated jointly with (6.5)
with delay bounds d1 = d2 = 1 × 103 milliseconds, and α = 2 × 10−5. Moreover,
to compare their performance against the previously proposed main approaches to
support delay-sensitive traffic, algorithms (6.3)-(6.4) are also simulated with the
same setup as the first experiment but the dual-based algorithm (6.6) is modified
using the following alternative methods

• virtual data rates (Section 3.4):

λ̇l = β

cl(k) [Rlx (λ(t))− ρcl(k)]+λl
∀l ∈ L (6.8)

where ρ = 0.99 to retain high link utilisation.
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• the proposed approach by [24] (Section 3.5):

λ̇l = β

cl(k)

[
Rlx (λ(t))− θ′l

−1
(
λl(t)
Rlb

)]+

λl

∀l ∈ L (6.9)

where θl(cl, yl) is computed from (2.6) with cl = cl(k), b is an I × 1 vector
with elements bsi = bs, ∀i ∈ Is, and bs indicates the degree of sensitivity
of source s to delay. Here, b1 = 0.001 and b2 = 0.0005 to retain high link
utilisation.

The evolution of packet end-to-end delays in both first and second experiments
are compared in Figure 6.6. Despite the discrepancies between path prices and
actual average end-to-end delay, such as time lag and difference in magnitude, using
actual average end-to-end delay as feedback and with proper choice of parameter
α, algorithms (6.3)-(6.4) combined with (6.5) regulate end-to-end delays at their
upper bound levels with good precision. Moreover, since their equilibrium is the
solution of the optimisation problem (4.1) with equilibrium parameter w∗, they
lead to maximal link utilisation. The delay regulator’s parameter α can further
be adjusted to achieve the desired transient behaviour of end-to-end delays by, for
example, by linearisation around the equilibrium point and using linear control
systems design methods.

Other alternative approaches reduce the delay to near zero in the long term,
as they lead to under-utilised links at the equilibrium (Section 3.6). This result
confirms the inaccuracy of the delay estimation using M/D/1 queue delay models
discussed in Section 2.4. Moreover, the rate by which they reduce delay is inversely
correlated to the levels of link utilisation at their equilibrium. Specifically, in the
approach based on virtual link data rates, the speed of delay reduction increases
as parameter ρ, and hence link utilisation, decreases. Similarly, in the approach
proposed by [24], the rate of delay reduction increases as the delay-sensitivity
coefficients bs, s ∈ S, increase. Consequently, the delay functions, which grow ex-
ponentially as link utilisations approach unity, have higher weight in the objective
function (Section 3.5), and as a result link utilisation at optimality further de-
creases. In addition, the other alternative approaches are incapable of regulating
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end-to-end delays at pre-specified levels with desired transient behaviour. Never-
theless, these examples show that the proposed scheduling algorithms (4.13)-(4.14)
can be effectively used in conjunction with other approaches designed to support
delay sensitive traffic, in particular the rate control approach proposed by [24]
which is originally designed for networks supporting heterogeneous traffic where
link data rates are fixed and sources transmit only one flow using a fixed path.

The final experiment simulates the response of algorithms (6.3)-(6.4) combined
with (6.5) when a new flow enters the network. Specifically, the second experi-
ment is repeated with the difference that flow E → D starts at simulation time
2.5 × 104. The evolution of path transmission rates, link data rates, path prices,
packet end-to-end delays and source weights are shown in Figures 6.7-6.11. Before
the start of flow E → D, path rates of flow A→ C as well as data rates of links 1-4
have approached near their maximum levels (0.5,0.5) packets/milliseconds. After
the start of flow E → D, the transmission rate of path 1 of flow A → C and
the data rates of associated links continue to approach their maximum level 0.5
packets/milliseconds. However, as the transmission rate of flow E → D rises, the
data rate of link 5 increases causing the data rates of links 3 and 4, and hence
the transmission rate of path 2 of flow A → C, to decrease. At the start of flow
E → D, its transmission rate shoots up rapidly, resulting in a big surge in its
packet end-to-end delay. This causes its weights to go down rapidly, which in
turn leads to a quick drop in its packet end-to-end delay. Consequently, packet
end-to-end delays approach their upper bounds quickly. After this point, there is a
relatively long period of slight oscillations before stabilisation, due to the feedback
errors discussed earlier. The oscillations of path rates and link data rates have
higher magnitude, due to the extra disturbances caused by the perturbations in
parameters w. This experiment shows that in the presence of network configura-
tion changes, the proposed algorithms converge only if they converge at a shorter
timescale than the changes in network configuration.
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6.5 Conclusions

In this chapter an example of simultaneous transmissions of several delay-sensitive
traffics over a multi-hop wireless network is formulated as the original optimisation
problem (2.1)-(2.5). The example network is modelled as a queueing network where
link data rates and source data transmission rates are controlled by the proposed
algorithms in Chapters 4 and 5, and subsequently implemented using SimEvents
discrete-event simulation software.

The first experiment shows that despite using approximate values of link prices
λ (c(k)), scheduling algorithms (6.3)-(6.4) converge relatively quickly to the unique
optimal solutions of (4.8), but the evolution of link data rates is non-smooth due
to discontinuous nature of the right-hand side of the original scheduling algorithm
(4.13). The approximate values of link prices λ (c(k)) result in slight oscillations
in the path prices, which in turn lead to the oscillations of the corresponding path
rates. The resulting path rate oscillations are greater for sources with multiple
paths due to the well-known oscillation problem of rate control algorithms (6.6)-
(6.7).

The second experiment shows that despite the presence of feedback error caused
by the delay approximation used in the rate control algorithms (6.6)-(6.7), algo-
rithms (6.3)-(6.4) combined with (6.5) regulate end-to-end delays at their upper
bound levels with good precision. They also enable the control of transient be-
haviour of end-to-end delays using standard control systems design techniques.
Moreover, since their equilibrium is the solution of the optimisation problem (4.1)
with equilibrium parameter w∗, by design they lead to maximal link utilisation.
On the other hand, alternative approaches such as virtual data rates (Section 3.4),
and the proposed approach by [24] (Section 3.5), can only achieve relatively high
(but still not maximal) link utilisation at expense of slow reduction of end-to-end
delays. In addition, they cannot regulate end-to-end delays at pre-specified levels
with desired transient behaviour. In fact they lead to near zero delays in the long
term, confirming the inaccuracy of the delay estimation usingM/D/1 queue delay
models. This experiment, however, demonstrates that the proposed scheduling al-
gorithms (6.3)-(6.4) can be effectively used in conjunction with other approaches
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Figure 6.3: Path transmission rates when source weights are fixed at w1 = 2 and
w2 = 1 and algorithms (4.13)-(4.14) are simulated

designed to support delay sensitive traffic, in order to reduce delay.
The third experiment demonstrates the limitations of the proposed algorithms

in the presence of network configuration changes, in that the proposed algorithms
converge only if their convergence rate is faster than the rate of changes in network
configuration.
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Figure 6.4: Link data rates when source weights are fixed at w1 = 2 and w2 = 1
and algorithms (4.13)-(4.14) are simulated
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Figure 6.5: Path prices and normalised end-to-end delays when source weights are
fixed at w1 = 2 and w2 = 1 and algorithms (4.13)-(4.14) are simulated
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Figure 6.6: Packet end-to-end delay when algorithms (4.13)-(4.14) are simulated
jointly with (5.5) with delay bounds d1 = d2 = 1× 103 msec
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Figure 6.7: Path transmission rates when (4.13)-(4.14) are simulated jointly with
(5.5) with delay bounds d1 = d2 = 1 × 103 msec, and flow E → D starts at time
2.5× 104
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Figure 6.8: Link data rates when (4.13)-(4.14) are simulated jointly with (5.5) with
delay bounds d1 = d2 = 1× 103 msec, and flow E → D starts at time 2.5× 104
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Figure 6.9: Path prices when (4.13)-(4.14) are simulated jointly with (5.5) with
delay bounds d1 = d2 = 1× 103 msec, and flow E → D starts at time 2.5× 104
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Figure 6.10: Packet end-to-end delays when (4.13)-(4.14) are simulated jointly
with (5.5) with delay bounds d1 = d2 = 1 × 103 msec, and flow E → D starts at
time 2.5× 104
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Figure 6.11: Source weights when (4.13)-(4.14) are simulated jointly with (5.5)
with delay bounds d1 = d2 = 1 × 103 msec, and flow E → D starts at time
2.5× 104



Chapter 7

Conclusions

7.1 Main Findings

The main focus of this research is the problem of supporting delay-sensitive traffic
with elastic data rate requirements and hard end-to-end delay constraints in multi-
hop wireless networks, using source data transmission rates and link data rates as
the key design variables. It is assumed that routing tables are already computed
by a source-driven routing algorithm, and remain constant within the time horizon
of the problem. Furthermore, the set of feasible link data rates, or schedules, are
known and remain constant over the time horizon of the problem. The network
utility maximisation (NUM) framework is adopted as the main design method as
it enables the design of distributed and efficient solutions.

The conventional modelling of the delay constraints based on M/D/1 queue
approximation of links is shown to have several major flaws. Firstly, the key
assumption behind M/D/1 queue delay model, i.e. Poisson arrival of packets at
links, is invalid in this problem, and delay is mainly determined by the transient
behaviour of the rate control and scheduling algorithms. Thus this model leads
to inaccurate delay estimation. Secondly, it leads to inefficient utilisation of links
at optimality since their estimated delay grows exponentially as link flow rates
approach their capacities.

The joint rate control and scheduling NUM problem for the elastic traffic,

99
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whose QoS is modelled as concave utility function of its transmission rate, has
been shown to lead to the canonical distributed rate control algorithm, as well as
scheduling algorithms, which in many cases, are simple, efficient and distributed.
Modelling the QoS of delay-sensitive traffic as a non-concave utility function of its
transmission rate, has also been shown to lead to the solutions with similar proper-
ties in many cases; however, the utility function in this approach only characterises
QoS in terms of packet inter arrival delay rather than end-to-end queueing delay.

Moreover, previous work attempts to address end-to-end queueing delay re-
quirements of delay-sensitive traffic have been mainly based on either reducing
link utilisation, such as using virtual data rates and minimising network conges-
tion, or approximation of links as M/D/1 queues. Both approaches result in
unpredictable transient behaviour of packet delays, and inefficient link utilisation
under optimal resource allocation.

The efficient and distributed nature of the solution algorithms, as well as the
efficiency of the optimal solutions of the the joint rate control and scheduling
NUM problem for the elastic traffic motivates an approach, in which in place of
hard delay constraints based on inaccurate M/D/1 delay estimates, traffic end-
to-end delay needs are guaranteed by some forms of concave and increasing utility
functions of traffic source rates, similar to the utility functions of the elastic traffic.

An alternative NUM formulation is then considered where the delay constraints
are omitted and the original concave utility functions are multiplied by weight
coefficients. The alternative NUM problem is then transformed into a master
scheduling problem and the well-known multi-path rate control with fixed link
data rates subproblem. At the inner layer, a duality-based rate control algorithm
using link queueing delays as feedback ensures that optimal dual variables, or link
prices, stay in proportion to the link queueing delays. Conditions on the number
of disjoint paths are derived that guarantee unique optimal path rates. The theo-
retical basis of this result can be further used in future work to design a multi-path
rate control algorithm that avoids the well-known path rates oscillation problem
associated with the duality-based algorithm, given the conditions on the number
of disjoint paths are satisfied by the topology control algorithm. A distributed
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algorithm for the master scheduling problem is then proposed, and is shown to
converge to the optimal data rates. The proposed algorithm at its core solves a
well-known scheduling problem, for which efficient and distributed solutions have
been developed in several cases.

Having derived upper and lower bounds on the sensitivity of path prices to the
variations of utility weight coefficients for each traffic source, it becomes apparent
that optimal path prices for each source increase with its utility weight coefficient.
Given the correlation between path queueing delays and path prices in the pro-
posed scheduling algorithm, this reaffirms the idea of satisfying traffic end-to-end
delay constraints using some form of concave utility function. The form of the
concave utility function that ensures the end-to-end delay requirements in this
approach, however, will be dependent on the actual network configuration. As
such, an integral controller is incorporated in the scheduling algorithm whereby
each source regulates the queueing delay on its paths at the desired level, using its
weight coefficient as the control variable. Upper bound on the step size of the pro-
posed integral controller is then derived that ensures the proposed joint scheduling
algorithm and delay regulator achieve asymptotic regulation of end-to-end delay.

Simulation experiments show that the presence of feedback error, i.e. approx-
imate values of path prices, the proposed scheduling algorithm converges to the
optimal solution of the alternative optimisation. However, approximate values of
path prices aggravates the well-known path rates oscillation problem associated
with the duality-based algorithm. Moreover, despite the additional feedback error
caused by the delay approximation in the rate control algorithms, the proposed
joint scheduling algorithm and the integral controller regulate end-to-end delays
at their desired levels with good precision. However, alternative approaches based
on virtual data rates and M/D/1 delay estimates, can only achieve relatively high
(but still not maximal) link utilisation at expense of slow reduction of end-to-end
delays. They appear to have asymptotic zero delay, confirming the inaccuracy of
M/D/1 delay estimates, with unpredictable transient behaviour. The experiments
also demonstrate that the proposed scheduling algorithms can be effectively used
in conjunction with other approaches designed to support delay sensitive traffic, in
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order to reduce delay. Finally, simulation experiments illustrate that the proposed
algorithms converge only if their convergence rate is faster than the rate of changes
in network configuration.

7.2 Contributions to Knowledge

This thesis addresses the problem of supporting delay-sensitive traffic with elastic
data rate requirements and hard end-to-end delay constraints in multi-hop wireless
networks, with source data transmission rates and link data rates as the main
design freedom. Previous network utility maximisation based approaches to tackle
end-to-end queueing delay requirements of delay-sensitive traffic have been mainly
based on either reducing link utilisation, or approximations using M/D/1 queue
delay estimates. Both approaches suffer from unpredictable transient behaviour
of packet delays, and inefficient link utilisation under optimal resource allocation.

Motivated by the simple, efficient and distributed nature of the solution al-
gorithms, as well as the efficiency of the optimal solutions of the similar NUM
problem for the elastic traffic, an alternative approach is proposed, in which in
place of hard delay constraints based on inaccurate M/D/1 delay estimates, traf-
fic end-to-end delay needs are guaranteed by proper forms of concave and increas-
ing utility functions of traffic source rates, similar to the utility functions of the
elastic traffic. The proposed approach is realised by a scheduling algorithm that
runs jointly with an integral controller whereby each source regulates the queueing
delay on its paths at the desired level, using its utility weight coefficient as the
control variable. The proposed scheduling algorithm at each step solves a familiar
scheduling problem, for which efficient and distributed solutions have been devel-
oped in several cases, and the well-known multi-path rate control problem, which
is solved using distributed duality-based algorithms.

The proposed algorithms are simple and distributed, as they are, for most part,
based on canonical distributed rate control and scheduling algorithms. Further-
more, as they are based on solving the alternative concave optimisation problem,
they lead to maximal link utilisation. The proposed algorithms are shown, us-
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ing both theoretical analysis and simulation, to achieve asymptotic regulation of
end-to-end delay given the step size of the proposed integral controller does not
exceed a specified upper limit. The step size of the proposed integral controller can
potentially be further adjusted to achieve the desired transient behaviour, using
linearisation and linear system design methods.

It is well known that for traffic sources with multiple alternative paths, path
rates in duality-based algorithms do not converge and continuously oscillate. In
this research conditions on the number of disjoint paths are derived that guarantee
unique optimal path rates. The theoretical basis of this result can potentially
be further used to design a duality-based multi-path rate control algorithm that
converges the unique optimal path rates.

7.3 Limitations of the Work

There are several limitations associated with the proposed solution, which also
provide motivations for possible future research directions.

Firstly, a key assumption in the proposed solution is that routing information
at each traffic source, which are already computed by a source-driven routing,
remain constant in the time horizon of the algorithm. This implies that variations
at the physical layer can be compensated at the physical layer without affecting
the network topology, and hence the routing information in the time horizon of
the solution. Likewise, it is assumed that the set of feasible link data rates, or
schedules, remain constant over the time horizon of the problem, which means
that variations in link SINR levels can be compensated quickly by power control
or adjusting other physical layer parameters without affecting the link data rates
within the time horizon of the solution. While these are widespread assumptions
in most related literature, they may not be valid in highly dynamic scenarios where
network configuration changes rapidly.

Secondly, the proposed algorithm consists of an outer-layer scheduling algo-
rithm and delay regulator, where each step of the outer layer algorithms requires
the convergence of the inner-layer multi-path rate control algorithm. In order
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for the outer-layer joint scheduling algorithm and delay regulator to converge,
inner-layer multi-path rate control algorithm has to converge sufficiently close the
optimal solutions. In addition to the slow convergence, distributed implementa-
tion of this two-layer structured algorithm is rather difficult, since it is difficult to
control the accuracy of the solution of the inner-layer algorithm in a distributed
setting.

7.4 Future Work

While the scope of this thesis was limited to the development and testing an alter-
native approach for regulating end-to-end queueing delay with greater efficiency
compared to the previous NUM approaches, there remain several interesting di-
rections for future research.

Firstly, given the dependency of the proposed solution on the assumptions that
the network topology and the feasible link data rates remain unchanged over the
time horizon of the solution, in other words, the solution algorithm convergence
rate is faster than the rate of changes in network conditions, as described in the
previous section, it would be interesting to analyse the stability of the solution in
the presence of frequent variations in channel conditions and network configuration
modelled by random processes.

Secondly, given the distributed implementation issues caused by the two-layer
convergence structure of the proposed algorithm, as discussed in the previous sec-
tion, further work would be needed on the practical distributed implementation of
the proposed algorithm, particularly in analysing and controlling the accuracy of
the solution.

Thirdly, as pointed out in Chapter 4, it is widely known that while the duality-
based rate control algorithms always converge to a dual optimal solution, for
sources with multiple alternative paths, path rates do not converge and continu-
ously oscillate. In Chapter 4, the second-order sufficient conditions for a unique lo-
cal maximising point of the multi-path rate control subproblem were subsequently
used to derive conditions on the number of disjoint paths that guarantee unique
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optimal path rates. This suggests a promising approach to address the path rate
oscillation problem, by using the second-order sufficient conditions to design a
multi-path rate control algorithm that converges the unique optimal path rates,
in conjunction with a topology control algorithm that guarantees the required
conditions on the number of disjoint paths.

Fourthly, designing efficient feedback mechanisms for the proposed algorithms
as well as analysing the solution stability in the presence of the induced feedback
delay remains an open issue to investigate.

Lastly, the application of linearisation and linear system design methods to
adjust the delay regulator parameter, in order to achieve a desired transient be-
haviour of packet end-to-end delay, would be an interesting future step.
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Figure A.1: Simulation model of the network in Figure 6.1
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Mathematical Background

B.1 Sensitivity Analysis in Nonlinear Program-
ming

Consider the following mathematical program

minx f(x, ε)

s.t. x ∈ R(ε)

ε ∈ T

where R(ε) represents a constraint set as a function of the parameter ε, and X and
T are topological vector spaces. Let f ∗(ε) = infx {f(x, ε) | x ∈ R(ε)}, and define
the mapping S : T → X by S(ε) = {x ∈ R(ε) | f(x, ε) = f ∗(ε)}.

Theorem 2.2.6 [14] Assume that the space X is locally convex and that R(ε) 6=
∅ for each ε ∈ T and that R is continuous and convex-valued on T (i.e., R(ε)
is convex for each ε ∈ T ). If f(x, ε) = min {f1(x, ε), f2(ε)}, where f1 is
continuous on X × T and strictly quasi-convex in x for each fixed ε, and f2

is continuous on T , then S is continuous and convex-valued on T .
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Consider the problem of determining a local solution x(ε) of

minx f(x, ε)

s.t. gi(x, ε) ≥ 0, i = 1, · · · ,m (B.1)

hj(x, ε) = 0, j = 1, · · · , p

where x ∈ Rn and ε is a parameter vector in Rk.
The Lagrangian of (B.1) is defined as

L(x, u, w, ε) ≡ f(x, ε)−
m∑
i=1

uigi(x, ε) +
p∑
j=1

wjhj(x, ε) (B.2)

Lemma 3.2.1 [14] (Second-order sufficient conditions for a strict local minimis-
ing point of problem (B.1).) If the functions defining problem (B.1) are twice
continuously differentiable in a neighbourhood of x∗, then x∗ is a strict local
minimising point of problem (B.1) (i.e., there is a neighbourhood of x∗ such
that there does not exist any feasible x 6= x∗ where f(x, 0) ≤ f(x∗, 0)) if
there exist Lagrange multiplier vectors u∗ ∈ Rm and w∗ ∈ Rp such that the
KKT conditions hold, i.e.

gi(x∗, 0) ≥ 0, i = 1, · · · ,m

hj(x∗, 0) = 0, j = 1, · · · , p

u∗i gi(x∗, 0) = 0, i = 1, · · · ,m

u∗i ≥ 0, i = 1, · · · ,m

∇L(x∗, u∗, w∗, 0) ≡

∇f(x∗, 0)−
m∑
i=1

u∗i∇gi(x∗, 0) +
p∑
j=1

w∗j∇hj(x∗, 0) = 0

and, further, if

zT∇2L(x∗, u∗, w∗, 0)z > 0 for all z 6= 0 such that

∇gi(x∗, 0)z ≥ 0 for all i, where gi(x∗, 0) = 0

∇gi(x∗, 0)z = 0 for all i, where u∗i > 0

∇hj(x∗, 0)z = 0 j = 1, · · · , p
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Remarks on Lemma 3.2.1 [14] It is shown that the conclusion of Lemma 3.2.1
can be strengthened to assert that x∗ is a locally unique and hence isolated
local minimum of problem (B.1), if the second-order sufficient conditions
of Lemma 3.2.1 are strengthened by assuming these hold for all optimal
Lagrange multipliers (u,w) associated with x∗ and, given (B.1) is convex,
the Slater’s condition holds at x∗.

Theorem 3.2.2 [14] (First-order sensitivity results for a second-order local min-
imising point x∗.) If

1. the functions defining (B.1) are twice continuously differentiable in x

and if their gradients with respect to x and the constraints are once
continuously differentiable in ε in a neighbourhood of (x∗, 0),

2. the second-order sufficient conditions for a local minimum of (B.1) hold
at x∗, with associated Lagrange multipliers u∗ and w∗,

3. the gradients ∇gi(x∗, 0) (for i such that gi(x∗, 0) = 0) and ∇hj(x∗, 0)
(all j) are linearly independent,

4. u∗i > 0 when gi(x∗, 0) = 0, i = 1, · · · ,m (i.e. strict complementary
slackness holds),

then

1. x∗ is a local isolated minimising point of problem (B.1) and the associ-
ated Lagrange multipliers u∗ and w∗ are unique,

2. for ε in a neighbourhood of 0, there exists a unique, once continuously
differentiable vector function y(ε) = (x(ε), u(ε), w(ε))T satisfying the
second-order sufficient conditions for a local minimum of problem (B.1)
such that y(0) = (x∗, u∗, w∗)T , and hence x(ε) is a locally unique local
minimum of problem (B.1) with associated unique Lagrange multipliers
u(ε) and w(ε), and

3. for ε near 0, the set of binding inequalities is unchanged, strict com-
plementary slackness holds, and the binding constraint gradients are
linearly independent at x(ε).
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B.2 Discontinuous Control

Consider the autonomous differential equation

ẋ = f(x) (B.3)

where x ∈ Rn, f : Rn → Rn.

Definition 1 [2] Let I be an interval of R. A function φ : I → Rn is said to
be a Carathédory solution of (B.3) on I if φ(t) is absolutely continuous and
dφ(t)
dt

= f (φ(t)) for almost every t ∈ I.

Definition 3 [2] A function V : Rn → R is said to be nonpathological if it is
locally Lipschitz continuous and for every absolutely continuous function
φ : I → Rn and for almost every t ∈ I, the set ∂CV (φ(t)) is a subset of an
affine subspace orthogonal to φ̇(t), where ∂CV (x) denotes the Clarke gradient
of real function V at point x.

Characterisation of Clarke gradient (Equation A.11 in [1]) If V is Lips-
chitz continuous, by Rademacher’s theorem, its gradient ∇V (x) exists al-
most everywhere. Let N be the subset of Rn where the gradient does not
exist. It is possible to characterise Clarke generalised gradient as

∂CV (x) = Co
{

lim
xi→x
∇V (xi), xi → x, xi /∈ N ∪ Ω

}
where Ω is any null measure set.

Definition 4 [2] Let V : Rn → R be a nonpathological function and Let (B.3)
be given. Let

AV = {x ∈ Rn : p1.f(x) = p2.f(x) ∀p1, p2 ∈ ∂CV (x)}

if x ∈ AV , the nonpathological derivative of the map V with respect to (B.3)
at x is defined by

V̇ f (x) = p.f(x)

where p is any vector in ∂CV (x).
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Definition 5 [2] A vector field f : Rn → Rn is said to have the solutions closure
property if for any sequence φn of solutions of (B.3) such that φn → φ

uniformly on compact subsets of R, one has that also φ is a solution of
(B.3).

Definition 6 [2] A setM is said to be weakly invariant for (B.3) if for any x0 ∈M
there exists a φ ∈ Sx0 , where Sx0 denotes the set of maximal solutions of (B.3)
with initial condition x(0) = x0, such that φ(t) ∈M for all t ≥ 0.

Proposition 3 [2] Assume that the vector field f has the solutions closure prop-
erty. Let V : Rn → R be positive definite, nonpathological and radially
unbounded. Let AV be defined as in Definition 4 and assume

V̇ f (x) ≤ 0, ∀x ∈ AV

Let ZV
f = {x ∈ AV : V̇ f (x) = 0} and let M be the largest weakly invariant

subset of ZV
f . Then for any x0 and any φ ∈ Sx0

lim
t→+∞

dist (φ(t),M) = 0

B.3 Matrix Analysis

Theorem 4.2.2 (Rayleigh-Ritz) [18] Let A ∈ Mn be Hermitian, and let the
eigenvalues of A be ordered as

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = λmax

Then
λ1x

∗x ≤ x∗Ax ≤ λnx
∗x ∀ x ∈ Cn

λmax = λn = max
x 6=0

x∗Ax

x∗x
= max

x∗x=1
x∗Ax

λmin = λ1 = min
x 6=0

x∗Ax

x∗x
= min

x∗x=1
x∗Ax
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Theorem 6.1.1 (Geršgorin) [18] Let A = [aij] ∈Mn, and Let

R′i(A) =
n∑
j=1
j 6=i

|aij| , 1 ≤ i ≤ n

denote the deleted absolute row sums of A. Then all the eigenvalues of A are
located in the union of n discs

n⋃
i=1
{z ∈ C : |z − aii| ≤ R′i(A)} ≡ G(A)

Furthermore, if a union of k of these n discs forms a connected region that
is disjoint from all the remaining n − k discs, then there are precisely k

eigenvalues of A in this region.

Definition 6.1.9 [18] Let A = [aij] ∈Mn. The matrix A is said to be diagonally
dominant if

|aii| ≥
n∑
j=1
j 6=i

|aij| = R′i, i = 1, · · · , n

It is said to be strictly diagonally dominant if

|aii| >
n∑
j=1
j 6=i

|aij| = R′i, i = 1, · · · , n

Theorem 6.1.10 [18] Let A = [aij] ∈Mn be strictly diagonally dominant. Then

1. A is invertible.

2. If all main diagonal entries of A are positive, then all the eigenvalues of
A have positive real parts.

3. If A is Hermitian and all main diagonal entries of A are positive, then
all the eigenvalues of A are real and positive.
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