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Abstract

In this paper we propose a new nonparametric regression technique. Our pro-

posal has common ground with existing two-step procedures in that it starts with a

parametric model. However, our approach di↵ers from others in the choice of para-

metric start within the parametric family. Our proposal chooses a function that

is the projection of the unknown regression function onto the parametric family in

a certain metric, while the existing methods select the best approximation in the

usual L2 metric. We find that the di↵erence leads to substantial improvement in

the performance of regression estimators in comparison with direct one-step esti-

mation, irrespective of the choice of a parametric model. This is in contrast with

the existing two-step methods, which fail if the chosen parametric model is largely

misspecified. We demonstrate this with sound theory and numerical experiment.
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1 Introduction

We study a new approach to nonparametric regression. Let m = E (Y |X = ·) denote

the true regression function and we assume that m is twice continuously di↵erentiable

with Em
00(X)2 < 1. Instead of estimating m directly by a local smoother, we choose a

function g in a class of functions G = {g : g00 exists and 0 < E g
00(X)2 < 1}, and estimate

a parameter ✓0 and a nonparametric function m0 defined by

✓0 =
Eg00(X)m00(X)

Eg00(X)2
, m0(x) = m(x)�

Eg00(X)m00(X)

Eg00(X)2
· g(x). (1.1)

By definition m0 satisfies

E g
00(X)m00

0(X) = 0 (1.2)

and m is decomposed as

m(x) = ✓0g(x) +m0(x). (1.3)

For each given g 2 G, the decomposition (1.3) is unique under the constraint (1.2). To

see this, suppose that ✓g(X) + ⌘(x) = 0 and E g
00(X)⌘00(X) = 0. Then, ✓2E g

00(X)2 +

E ⌘
00(X)2 = 0 so that ✓ = 0 and ⌘ ⌘ 0.

The decomposition (1.3) with ✓0 and m0 as given in (1.1) has a projection interpreta-

tion. For this, we consider an equivalence relation such that two functions f1 and f2 are

equivalent if the di↵erence is a linear function. The space of the equivalence classes forms

a Hilbert space if we endow it with the inner product

hf1, f2i = Ef 00
1 (X)f 00

2 (X).

Let Hg be the space of equivalence classes spanned by g, i.e., Hg = {c · g(·) : c 2 R}.
Then, we get

Proj(m|Hg) =
Eg00(X)m00(X)

Eg00(X)2
g = ✓0 g.

By estimating m through the decomposition (1.3), as described in the next section, we

may a↵ord a substantial room for reducing the bias. In this paper, we demonstrate the

advantage with a local linear smoother, but the main idea can be extended to other local
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smoothers, see Remark 1 in Section 2. The conventional local linear estimator of m with

a bandwidth b has the asymptotic bias b2cKm00(x)/2 with a constant cK depending on the

kernel of the local linear smoother, while our new approach based on the decomposition

(1.3) gives b
2
cKm

00
0(x)/2, see Proposition 1. This implies a reduction in the asymptotic

average squared error since

Em
00(X)2 = E (✓0g

00(X) +m
00
0(X))2

= ✓
2
0 E g

00(X)2 + Em
00
0(X)2

> Em
00
0(X)2.

(1.4)

Our approach is related to the existing literature where two-step procedures have been

proposed that consist of a parametric and a nonparametric fit of the data. These include

Hjort and Glad (1995), Glad (1998), Gozalo and Linton (2000), Rahman and Ullah (2002),

Fan et al. (2009) and Talamakrouni et al. (2015, 2016). All these papers considered the

approach that finds a pilot estimator of a parametric model assuming that the chosen

parametric model is correct, and then updates the parametric fit by a nonparametric

adjustment. This was done by an additive, multiplicative or a more general adjustment

based on nonparametric fits of the data or of the residuals from a parametric fit. The

success of these two-step procedures turns out to depend highly on the choice of a pilot

parametric model, which we illustrate in Section 3. Our approach is di↵erentiated from

these in that we do not fit a parametric model in the first step, but estimate ✓0 such that

Eg00(X)(m00(X) � ✓0g
00(X)) = 0. By doing this we can always reduce the bias for any

choice of g with E g
00(X)2 > 0, as is seen from (1.4).

The estimation of the model (1.3) is also of independent interest as it answers the

question of what happens in the estimation of partially linear models Y = ✓0g(Z) +

m0(X) + " if the two covariates X and Z are identical or if they nearly coincide. Indeed,

we use the profiling technique (Severini and Wong, 1992) to estimate (1.3), which is

known as a useful technique of fitting partially linear models. Our discussion in this

paper can be generalized to more complex semiparametric models, such as generalized

partially linear models and generalized partially linear additive models, with common
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covariates in the parametric and nonparametric components. In these models one may

also allow specifications of the parametric part g(✓, X) where the parameter ✓ does not

enter linearly. In this paper, to avoid technical di�culties and to make the presentation

transparent, we focus our discussion on the model (1.3) where g(✓, X) is linear in ✓. For

simplicity we also assume that the covariate X is univariate.

This paper is organized as follows. In the next section we discuss the estimation of

m based on the decomposition (1.3), and develop its asymptotic theory. In Section 3 we

present numerical evidences that support the theory. Proofs are deferred to the Appendix.

2 Methodology and Theory

Our estimation procedure consists of two steps. In the first step, the parameter ✓0 is

estimated by an estimator ✓̂. A choice of ✓̂ will be discussed below. In the second step, a

local smoother is applied to regress Y � ✓̂g(X) onto X. The result of the second step is

our estimator of m0. We take a local linear regression estimator as the local smoother.

Specifically, let SbU denote the local linear kernel smoother with a baseline kernel

function K and a bandwidth b taking X as the predictor and U as the response. It can

be written as SbU(x) = n
�1
Pn

i=1 wb(x,Xi)Ui, where

wb(x, u) =
µ̂2(x; b)� µ̂1(x; b)(u� x)/b

µ̂0(x; b)µ̂2(x; b)� µ̂1(x; b)2
·Kb(u� x),

Kb(v) = K(v/b)/b and µ̂k(x; b) = n
�1
Pn

i=1((Xi � x)/b)kK((Xi � x)/b)/b for integers

k � 0. Define

m̃b(x, ✓) = Sb(Y � ✓g(X))(x)

for each ✓. We propose

m̂ = ✓̂g + m̃b(·, ✓̂) (2.1)

as an estimator of m = ✓0g +m0.

The di↵erence between our proposal and the existing two-step procedures is in the

first step. For a direct comparison between the two approaches, suppose that one chooses
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a parametric model of the form {✓g(·) : ✓ 2 R}. Then, the existing two-step procedures

estimate ✓⇤ where ✓⇤g is the best approximation of the true regression function m in the

usual L2 metric so that ✓⇤ = Em(X)g(X)/Eg(X)2, while ours estimates ✓0 as defined in

(1.1).

We discuss the statistical properties of m̂ at (2.1). Our first result states that m̂ as

an estimator of m = ✓0g + m0 behaves like m̃b(·, ✓0) as an estimator of m0 that utilizes

the knowledge of ✓0 and for this it su�ces to have a consistent estimator ✓̂ of ✓0

✓̂ ! ✓0 in probability. (2.2)

In particular, it is not required that ✓̂ approximates ✓0 with a certain rate of convergence.

For stating this result we make use of the following assumptions.

(A1) We observe i.i.d. copies (Xi, Yi), i = 1, . . . , n, of (X, Y ) where X is supported on

[aL, aU ] for some �1 < aL < aU < 1 and has a continuous strictly positive density

f on [aL, aU ]. For the error variable " = Y �m(X), it holds that E("|X) = 0 and

�
2(·) = Var("|X = ·) is continuous on [aL, aU ].

(A2) The function g and the true regression function m have continuous second order

derivatives and fulfill 0 < E g
00(X)2 < 1 and Em

00
0(X)2 < 1.

(A3) The kernel K is a probability density function with compact support, say [�1, 1].

(A4) For the bandwidth b it holds that b ! 0 and nb ! 1.

Proposition 1. Assume (A1)–(A4) and that an estimator ✓̂ fulfills (2.2). Then, it holds

that

m̂(x)�m(x) = Sb"(x) + Sb(m0(X))(x)�m0(x) + oP (b
2),

uniformly for x 2 [aL, aU ].

We note that Sb" + Sb(m0(X)) is the local linear estimator m̃b(·, ✓0) of m0 that is

based on (Xi, Yi � ✓0g(Xi)). The proposition demonstrates that the asymptotic variance
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and bias of m̂ as an estimator of m are the same as those of m̃b(·, ✓0) as an estimator

of m0. The asymptotic variance equals that of the direct estimator SbY . However, the

asymptotic bias of m̂ is b2�(x)m00
0(x), in contrast with b

2
�(x)m00(x) of the direct estimator

SbY , where �(x) is a function of µk(x) =
R aU
aL

((u�x)/b)kKb(u�x) du. Thus, the average

squared bias of m̂ is smaller than that of SbY , see (1.4). To maximize the reduction of

the bias, one may choose g 2 G that maximizes

✓
2
0Eg

00(X)2 =

"
E

 
g
00(X)p

Eg00(X)2
·m

00(X)

!#2
,

which is equivalent to choosing g that minimizes

E

 
g
00(X)p

Eg00(X)2
�m

00(X)

!2

= 1 + Em00(X)2 � 2E

 
g
00(X)p

Eg00(X)2
·m

00(X)

!
. (2.3)

Remark 1. The main idea behind the bias reduction implied by Proposition 1 can be

applied to other local smoothers. For example, in the case of the pth order local polynomial

smoother with an odd p, we choose a function g such that 0 < E g
(p+1)(X)2 < 1, where

⌘
(k)

for a function ⌘ denotes its kth derivative. Then, there is a unique decomposition m =

✓0g +m0 under the constraint E g
(p+1)(X)m(p+1)

0 (X) = 0, where ✓0 and m0 are redefined

in an obvious way. The estimator m̂ as defined in (2.1), with a consistent estimator ✓̂ of

✓0 and m̃b(·, ✓̂) now obtained by applying the pth order local polynomial smoother, admits

the uniform expansion in Proposition 1 with a remainder of order oP (bp+1). The leading

bias of the local polynomial estimator applied directly to Yi equals b
p+1

�(x)m(p+1)(x) for

some function �, while the estimator based on the decomposition gives b
p+1

�(x)m(p+1)
0 (x).

In this case,

Em
(p+1)(X)2 � Em

(p+1)
0 (X)2 =

�
E g

(p+1)(X)m(p+1)(X)
�2

E g(p+1)(X)2
.

It remains to find a consistent estimator of ✓0. Recall that ✓0 we need to estimate is the

one that fulfills E g
00(X)m00(X, ✓) = 0, among all ✓ in the decompositions m = ✓g+m(·, ✓),
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where m(x, ✓) = m(x) � ✓g(x). We achieve this by using the profiling technique. The

profiling technique has been proposed for the partially linear model Y = ✓0g(Z)+m0(X)+

" with Z 6= X. The profile least squares estimator of ✓0 is given by

✓̂h = argmin
✓

nX

i=1

(Yi � ✓g(Xi)� m̃h(Xi, ✓))
2
,

where h is a second bandwidth, which may be chosen to be the same as b in (2.1). The next

proposition demonstrates that ✓̂h is a consistent estimator of ✓0. We need the following

additional assumption for the statement of this proposition.

(A5) For the bandwidth h it holds that h ! 0 and nh
4
! 1.

Proposition 2. Assume (A1)–(A3) and (A5). Then, ✓̂h ! ✓0 in probability.

Remark 2. The condition nh
4
! 1 in (A5) is needed to take care of the properties of

the local linear estimator at the boundary of the interval [aL, aU ]. We note that, although

the local linear smoother Sh a↵ords the same order of biases O(h2) at the boundary and

in the interior, their constant factors are still di↵erent. The condition can be relaxed if

we remove boundary regions in the definitions of Sh and the profile estimator of ✓0 and

if the pilot model g and the density f are su�ciently smooth. In such a case the leading

stochastic terms of the magnitude n
�1/2

h
�2

in an expansion of ✓̂h � ✓0 cancel each other,

which may be deduced from our asymptotic analysis presented in the Appendix.

From our propositions we get the following corollary.

Corollary 1. Assume (A1)–(A5). Then, we have for m̂ = ✓̂hg + m̃b(·, ✓̂h) that

m̂(x)�m(x) = Sb"(x) + Sb(m0(X))(x)�m0(x) + oP (b
2),

uniformly for x 2 [aL, aU ].

We have again the interpretation that we already formulated after the statement of

Proposition 1. Also by profile estimation we get an estimator of m = ✓0g + m0 that

optimally chooses one from a class of local linear estimators. Thus, profile estimation
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works quite well also in the degenerate case X = Z of the partially linear model Y =

✓0g(Z) +m0(X) + ".

The estimator m̂ = ✓̂hg+ m̃b(·, ✓̂h) depends on the bandwidths b and h. We may take

h = b for simplicity and choose a common bandwidth by cross validation. We employed

this strategy in our simulation and found that it worked quite well, see Section 3. To

indicate its dependence on b we write m̂b for m̂ with h = b. Let m̂(�i)
b denote the leave-

one-out version of m̂b that makes use of only the observations {(Xi0 , Yi0) : i0 6= i}. We

choose the bandwidth b by minimizing a CV criterion. The CV bandwidth b̂ is defined

by

b̂ = argmin
b2Bn

nX

i=1

⇣
Yi � m̂

(�i)
b (Xi)

⌘2
.

Our estimator of m is then given by m̂b̂. We will check whether the cross validation

approach works in the next section by simulation.

3 Simulation Results

The purpose of this simulation study is to support the asymptotic theory we demonstrated

in Section 2 and to compare our approach with other competitors. This is done with the

CV bandwidth selectors introduced also in the previous section. We generate (Xi, Yi)

according to the model

Yi = sin(⇡Xi) + ⇢Xi + � cos(⇡Xi) + "i (3.1)

withXi being generated from the uniform distribution on [aL, aU ] with aL = 0 and aU = 1,

and "i from N(0, �2) independent of Xi. For noise level we made two choices, � = 0, 1

and � = 0.5. In the application of our approach, we took g(x) = sin(⇡x). According to

(1.1), this choice gives ✓0 = 1 and m0(x) = ⇢x + � cos(⇡x). We made two choices for �:

� = 0, 0.5, and three choices for ⇢: ⇢ = 0, 1, 2.

We compared our approach with a parametric fit, the direct local linear fit and the

two-step procedure starting with a parametric fit to the model E(Yi|Xi) = ✓g(Xi) and then
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making a nonparametric adjustment. The parametric fit we considered in this comparison

is m̃
pa = ✓̃g where ✓̃ minimizes

Pn
i=1(Yi � ✓g(Xi))2. We denote the direct local linear

smoother by m̃
ll
h̃
= Sh̃(Y ), where h̃ is chosen to minimize

Pn
i=1(Yi � S

(�i)
h (Y )(Xi))2 with

respect to h. The two-step procedure with m̃
pa as a parametric start is m̃ts

b̃
= ✓̃g+m̃b̃(·, ✓̃),

where b̃ is chosen by minimizing the CV criterion
Pn

i=1(Yi�m̃
ts(�i)
b (Xi))2. For comparison

of these estimators, we computed

MISE(m̄) := E

Z aU

aL

(m̄(x)�m(x))2 dx

for each m̄ of m̂b̂, m̃
ts
b̃
, m̃

ll
h̃
and m̃

pa. Tables 1 and 2 give the Monte Carlo approximations

of the MISE values. They also contain the Monte Carlo approximations of the values of

ISB(m̄) :=
R aU
aL

(E m̄(x)�m(x))2 dx and IV(m̄) :=
R aU
aL

Var(m̄(x)) dx.

From the tables we note that the bias of m̃pa does not change as n or the noise level

� varies, which is well expected. We also note that the properties of our proposal m̂b̂ and

the direct local linear estimator m̃ll
h̃
do not change as ⇢ varies. This stems basically from

the property of the weight wb that

nX

i=1

wb(x,Xi)Xi =
nX

i=1

wb(x,Xi)x = x.

Our theory in Section 2 tells that there is a larger reduction in the bias of our proposal

in comparison with that of the direct local linear estimator if g00 is closer to m
00, see (2.3).

This is evident in the numerical results. We note that under the data generating model

(3.1) g00 gets closer to m
00 when � = 0 than when � = 0.5. The ISB values of m̂b̂ in the

tables are less than those of m̃ll
h̃
for both values of � and the relative di↵erence is larger

when � = 0. We also find that m̂b̂ has smaller variance as well. The smaller variance

achieved by our proposal is due to the reduced bias and the CV bandwidth choice b̂ that

trades o↵ the bias and the variance. Theoretically, with a fixed bandwidth applied to both

methods, the variance of our proposal is asymptotically the same as that of the direct

local linear estimator while the bias of the first is smaller than that of the latter. The

smaller bias then gives our proposal some room for sacrificing bias to reduce variance by
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Figure 1: The distributions of the CV bandwidth selectors. From left to right, b̂ for our

proposal m̂b̂, b̃ for the two-step procedure m̃
ts
b̃
and h̃ for the direct local linear estimator

m̃
ll
h̃
.

increasing bandwidth in trading o↵ the bias and the variance. Thus, the CV criteria tend

to choose b̂ > h̃, which results in the smaller variance as well as the smaller bias. This

is well demonstrated in Figure 1, which depicts the distributions of the CV bandwidth

choices b̂ (left) for our proposal and h̃ for the direct local linear estimator (right).

Our proposal exhibits the best performance in all cases except (� = 0, ⇢ = 0), in which

case the parametric method is the best as expected. For the two cases of ⇢ = 0 (� = 0 and

0.5), our proposal and the two-step procedure show comparable performance. In these

cases, the true regression function m is not far from the parametric function g. Indeed,
Z 1

0

(m(x)� g(x))2 dx =
1

2
⇢
2
�

4

⇡2
⇢�+

1

2
�
2
, (3.2)

so that the squared distances between m and g in the case ⇢ = 0 equal 0 and 1/8 for

� = 0 and � = 0.5, respectively. However, m gets away from g as ⇢ > 0 increases and
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is more distant from g when � = 0 than when � = 0.5 if ⇢ > 0. The main lesson from

the results in the tables is that the existing two-step procedure m̃
ts
b̃
with the CV choice b̃

deteriorates very fast as ⇢ departs from ⇢ = 0. The performance of m̃ts
b̃
is even worse than

the direct local linear m̃
ll
h̃
when ⇢ > 0. This is in contrast with our proposal m̂b̂ whose

performance does not change as ⇢ varies.

The success of m̃ts
b̃
when ⇢ = 0 is mainly due to the fact that g(X) is orthogonal to

m0(X) in the space of square integrable random variables. In this case, the estimation of

✓0 and m0 in m = ✓0g+m0 may be done by marginal regression. The marginal regression

for ✓0 is simply the parametric fit that minimizes
Pn

i=1(Yi � ✓g(Xi))2 with respect to ✓.

Thus, in this case the minimizer ✓̃, which is the parametric start of the two-step estimator

m̃
ts
b̃
, approximates well the true ✓0 = 1 at the parametric rate. This observation and our

simulation results suggest that the success of the existing two-step procedure m̃ts
b̃
depends

highly on the choice of a pilot parametric model, while our approach does not as long as

the chosen function g satisfies E g
00(X)2 > 0.

Appendix

A.1 Proof of Proposition 1

From the standard kernel smoothing theory, the condition (A1) gives that, if a function

⌘ is twice continuously di↵erentiable on [aL, aU ], then

Sb⌘(X)(x)� ⌘(x) =
1

2
·
µ̂2(x; b)2 � µ̂1(x; b)µ̂3(x; b)

µ̂0(x; b)µ̂2(x; b)� µ̂1(x; b)2
· b

2
· ⌘

00(x) + oP (b
2), (A.1)

uniformly for x 2 [aL, aU ]. We also note that there exists an absolute constant 0 < C < 1

such that

sup
x2[aL,aU ]

����
µ̂2(x; b)2 � µ̂1(x; b)µ̂3(x; b)

µ̂0(x; b)µ̂2(x; b)� µ̂1(x; b)2

����  C (A.2)

with probability tending to one. For (A.2) what we need is that the support of the baseline

kernel K contains a nontrivial interval in both of the half intervals [�1, 0] and [0, 1], which
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Table 1: Mean integrated squared errors (MISE), integrated squared biases (ISB) and

integrated variance (IV), multiplied by 103, of the four methods: our proposal (m̂b̂) ,

two-step estimator (m̃ts
b̃
), local linear estimator (m̃ll

h̃
) and parametric method (m̃pa), for

the error level � = 0.1.

� = 0 � = 0.5

m̂b̂ m̃
ts
b̃

m̃
ll
h̃

m̃
pa

m̂b̂ m̃
ts
b̃

m̃
ll
h̃

m̃
pa

⇢ = 0 n = 100 MISE 0.35 0.32 0.91 0.09 0.71 0.70 0.94 126

ISB 0.00 0.00 0.17 0.00 0.13 0.11 0.19 125

IV 0.35 0.32 0.74 0.08 0.58 0.58 0.75 0.69

n = 400 MISE 0.10 0.09 0.26 0.02 0.21 0.21 0.27 125

ISB 0.00 0.00 0.04 0.00 0.03 0.03 0.04 125

IV 0.10 0.09 0.22 0.02 0.18 0.18 0.22 0.22

⇢ = 1 n = 100 MISE 0.35 6.29 0.91 126 0.71 1.21 0.94 53.3

ISB 0.00 3.36 0.17 126 0.13 0.43 0.19 53.0

IV 0.35 2.92 0.74 0.48 0.58 0.78 0.75 0.27

n = 400 MISE 0.10 5.26 0.26 126 0.21 0.29 0.27 53.1

ISB 0.00 2.88 0.04 126 0.03 0.10 0.04 53.0

IV 0.10 2.38 0.22 0.15 0.18 0.19 0.22 0.07

⇢ = 2 n = 100 MISE 0.35 15.8 0.91 505 0.71 2.33 0.94 233

ISB 0.00 7.32 0.17 503 0.13 1.27 0.19 233

IV 0.35 8.49 0.74 1.66 0.58 1.06 0.75 0.64

n = 400 MISE 0.10 9.98 0.26 504 0.21 0.53 0.27 233

ISB 0.00 4.82 0.04 503 0.03 0.30 0.04 233

IV 0.10 5.16 0.22 0.58 0.18 0.23 0.22 0.22
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Table 2: Mean integrated squared errors (MISE), integrated squared biases (ISB) and

integrated variance (IV), multiplied by 103, of the four methods: our proposal (m̂b̂) ,

two-step estimator (m̃ts
b̃
), local linear estimator (m̃ll

h̃
) and parametric method (m̃pa), for

the error level � = 0.5.

� = 0 � = 0.5

m̂b̂ m̃
ts
b̃

m̃
ll
h̃

m̃
pa

m̂b̂ m̃
ts
b̃

m̃
ll
h̃

m̃
pa

⇢ = 0 n = 100 MISE 8.73 7.92 15.2 2.13 9.78 9.48 15.5 128

ISB 0.04 0.06 2.27 0.02 0.74 0.74 2.54 125

IV 8.69 7.86 12.9 2.11 9.04 8.74 13.0 2.68

n = 400 MISE 2.55 2.30 4.24 0.53 3.49 3.38 4.38 126

ISB 0.01 0.01 0.44 0.00 0.39 0.38 0.51 125

IV 2.54 2.29 3.80 0.53 3.10 3.00 3.87 0.79

⇢ = 1 n = 100 MISE 8.73 20.4 15.2 128 9.77 20.1 15.5 55.4

ISB 0.04 8.35 2.27 126 0.74 8.35 2.54 53.1

IV 8.69 12.0 12.9 2.53 9.03 11.8 13.0 2.29

n = 400 MISE 2.55 14.1 4.24 126 3.49 9.30 4.38 53.7

ISB 0.01 8.61 0.44 126 0.39 4.01 0.51 53.1

IV 2.54 5.46 3.80 0.59 3.10 5.29 3.87 0.58

⇢ = 2 n = 100 MISE 8.73 47.6 15.2 507 9.78 49.3 15.5 235

ISB 0.04 25.2 2.27 503 0.74 28.9 2.54 232

IV 8.69 22.4 12.9 3.73 9.04 20.4 13.0 2.68

n = 400 MISE 2.55 38.8 4.24 504 3.49 26.2 4.38 233

ISB 0.01 24.1 0.44 503 0.39 14.1 0.51 233

IV 2.54 14.7 3.80 0.95 3.10 12.1 3.87 0.65
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is ensured by the condition (A3). Note that m̃b(·, ✓) = Sb"+Sb(m0(X))�(✓�✓0)Sb(g(X)).

Thus,

m̂(x)�m(x) = ✓̂g(x) + m̃b(x, ✓̂)�m(x)

= Sb"(x) + [Sb(m0(X))(x)�m0(x)]� (✓̂ � ✓0) [Sb(g(X))(x)� g(x)]

= Sb"(x) + [Sb(m0(X))�m0] (x) + oP (b
2)

uniformly for x 2 [aL, aU ]. Here, we used (A.1) and (A.2). ⇤

A.2 Proof of Proposition 2

From the definition of ✓̂h in Section 2 and writing simply Sh⌘ for Sh(⌘(X)), we get

✓̂h = argmin
✓

nX

i=1

h
"i � Sh"(Xi)� (Shm0 �m0)(Xi) + (✓ � ✓0)(Shg � g)(Xi)

i2
.

Thus, it holds that

✓̂h � ✓0 =

"
n
�1

nX

i=1

(Shg � g)2(Xi)

#�1

·


n
�1

nX

i=1

�
Sh"(Xi)� "i

�
· (Shg � g)(Xi)

+ n
�1

nX

i=1

(Shm0 �m0)(Xi) · (Shg � g)(Xi)

�
.

(A.3)

We now argue that with µ2 =
R
u
2
K(u) du

T1 := n
�1

nX

i=1

(Shg � g)2(Xi)�
1

4
h
4
µ
2
2 E g

00(X)2 = oP (h
4),

T2 := n
�1

nX

i=1

(Shm0 �m0)(Xi) · (Shg � g)(Xi) = oP (h
4),

T3 := n
�1

nX

i=1

�
Sh"(Xi)� "i

�
· (Shg � g)(Xi) = OP (h

2
/
p
n).

(A.4)

From (A.3) and (A.4) we get ✓̂h � ✓0 = OP (n�1/2
h
�2) + oP (1). The statement of the

proposition now follows because of (A5).
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It remains to prove (A.4). To prove the first assertion, put µj(x; b) = f(x)
R 1

0 ((u �

x)/b)jKb(u�x) du. For j � 0, we get µ̂j(x; b) = µj(x; b)+oP (1) uniformly for x 2 [aL, aU ].

Let

c(x;h) =
µ2(x; b)2 � µ1(x; b)µ3(x; b)

µ0(x; b)µ2(x; b)� µ1(x; b)2
.

Note that c(x;h) = µ2 for all x 2 [aL + h, aU � h]. This and a version of (A.1) for

(Shg � g)(x) give

T1 =
1

4
h
4
n
�1

nX

i=1

c(Xi;h)
2
g
00(Xi)

2
�

1

4
h
4
µ
2
2 E g

00(X)2 + oP (h
4)

=
1

4
h
4

Z

IB

�
c(x;h)2 � µ

2
2

�
g
00(x)2f(x) dx+ oP (h

4)

= oP (h
4),

where IB = [aL, aU ] \ [aL + h, aU � h]. Similarly, for the second assertion it holds that

T2 =
1

4
h
4
n
�1

nX

i=1

c(Xi;h)
2
m

00
0(Xi)g

00(Xi) + oP (h
4)

=
1

4
h
4
µ
2
2 Em

00
0(X)g00(X) + oP (h

4)

= oP (h
4),

where the last equality follows from the definition of m0 at (1.1). For the last assertion

at (A.4), let Dh(x) := (Shg � g)(x) and Jh(x) = n
�1
Pn

i=1 wh(Xi, x)Dh(Xi). Then T3 =

n
�1
Pn

i=1 (Jh(Xi)�Dh(Xi)) "i. From the versions of (A.1) and (A.2) for the bandwidth h,

we have supx2[aL,aU ] |Dh(x)| = OP (h2). Also, similarly as in (A.2) there exists an absolute

constant 0 < C
0
< 1 such that

n
�1

nX

i=1

|wh(Xi, x)|  C
0
n
�1

nX

i=1

Kh(x�Xi),

so that supx2[aL,aU ] |Jh(x)| = OP (h2). Thus,

sup
x2[aL,aU ]

|Jh(x)�Dh(x)| = OP (h
2). (A.5)
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At this point we remark that the di↵erence |Jh(x)�Dh(x)| is of smaller order than OP (h2)

uniformly in [aL+2h, aU �2h] under additional smoothness assumptions on g and f . The

continuity of �2(·) in the assumption (A1) and the result (A.5) give

Var(T3|X1, . . . , Xn) = n
�2

nX

i=1

(Jh(Xi)�Dh(Xi))
2
�
2(Xi) = OP (n

�1
h
4).

This completes the proof of the proposition. ⇤
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