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Abstract How can Big Data help to understand the

migration phenomenon? In this paper we try to answer

this question through an analysis of various phases of

migration, comparing traditional and novel data sources

and models at each phase. We concentrate on three

phases of migration, at each phase describing the state

of the art and recent developments and ideas. The first

phase includes the journey, and we study migration

flows and stocks, providing examples where big data

can have an impact. The second phase discusses the

stay, i.e. migrant integration in the destination coun-
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try. We explore various datasets and models that can

be used to quantify and understand migrant integra-

tion, with the final aim of providing the basis for the

construction of a novel multi-level integration index.

The last phase is related to the effects of migration on

the source countries and the return of migrants.

Keywords human migration · big data · migration

flows · migration stocks · integration · return of

migrants

1 Introduction

The phenomenon of human migration has been a con-

stant of human history, from the earliest ages until

now. As such, the study of migration spans various
research fields, including anthropology, sociology, eco-

nomics, statistics and more recently physics and com-

puter science. We are at a moment where various types

of data not typically used to study migration are be-

coming increasingly available. These include so called

social big data: digital traces of humans generated by

using mobile phones, online services, online social net-

works (OSNs), devices within the internet of things.

At the same time, new technologies are able to extract

valuable information from these large datasets. Both

traditional and novel models and data are currently be-

ing employed to understand different questions on mi-

gration, including monitoring migration flows, the eco-

nomic and cultural effects on the migrants and also on

the source and destination communities. In this paper

we provide a survey of existing approaches, both tradi-

tional and data-rich andwe propose new methods and

datasets that could contribute significantly to the study

of human migration. We concentrate on three different

phases of migration: the journey - analysing migration
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flows and stocks; the stay - studying migrant integration

and changes in the communities involved; the return -

the study of migrants returning to the origin country.

The journey. At the moment, information about mi-

gration flows and stocks comes from official statistics

obtained either from national censuses or from the pop-

ulation registries. Given that migration intrinsically in-

volves various nations, data is often inconsistent across

databases, and offers poor time resolution. With the

availability of social Big Data, we believe it should be

possible to estimate flows and stocks from available

data in real time, by building models that map ob-

served measures extracted from these unconventional

data sources to official data, i.e. nowcasting stocks and

flows. We also look at migration phenomena within

smaller communities, such as scientific migration, where

even prediction of migration events can be possible. An

important step in understanding migration flows is suit-

able visualisation, which we also explore.

The stay. Migration might generate cultural changes

with both long- and short-term effects on the local and

incoming population. Migrant integration is generally

measured through indicators related to the labour mar-

ket, economic status or social ties. Again, these statis-

tics are available with low resolution and not for all

countries. A new direction is that of observing integra-

tion and perception on migration through Big Data.

For instance, OSN sentiment analysis specific to immi-

gration topics can allow us to evaluate perception of

immigration. Analysis of retail data can enable us to

understand if immigrants are integrated economically
but also if they change their habits during their stay.

Scientific data can help us understand how migration

benefits both the host countries and the migrants them-

selves. Through these data we can derive novel integra-

tion indices that take into account the traces of human

activity observed.

The return. Besides effects on the receiving commu-

nities, the source communities may also see effects of

migration. In fact, migrants can maintain a strong at-

tachment to their home countries and eventually re-

turn there. This can bring multiple benefits: economic

growth, new skills, entrepreneurship, better healthcare,

different participation in governance issues and many

others. We discuss various approaches to analysing these

cases based on existing data.

Both traditional and new methods to analyse migra-

tion depend highly on the availability of data. Hence,

infrastructures that can catalogue the various datasets

and make them available to the community, ensuring

privacy and ethical use, are very useful. At the same

time, with new methods being developed, means of fa-

cilitating their use by the research community are nec-

essary. An example of framework that aims to achieve

these requirements is the SoBigData infrastructure [79]

(www.sobigdata.eu). This includes a catalogue of meth-

ods, datasets and training material, grouped in so-called

exploratories. Virtual research environments allow users

to use some of the data and methods directly in the So-

BigData engine. The exploratory on migration studies

includes many of the methods and datasets presented

below.

The rest of the paper is organised as follows. The

study of migration flows and stocks is discussed in Sec-

tion 2. This compares traditional data (Section 2.1)

with social big data (Section 2.2) including scientific

migration (Section 2.2.1), providing also a review of

tools for visualisation of migration data (Section 2.3).

Section 3 concentrates on migrant integration and per-

ception of migration. We start by looking at approaches

based on traditional data sources (Section 3.1) and move

on to social big data including retail data (Section 3.2.1),

mobile data (Section 3.2.2), language and sentiment

in OSNs (Sections 3.2.3 and 3.2.4), ego-networks (Sec-

tion 3.2.5). The return of migrants is discussed in Sec-

tion 4, while Section 5 concludes the paper with a sum-

mary and a discussion on ethical issues.

2 The journey: migration flows and stocks

In this section we discuss various means of analysing mi-

gration flows and stocks. We start with traditional ap-

proaches and data types, and then move to new datasets

that can be employed for the task, underlining advan-

tages and disadvantages of each approach.

2.1 Traditional data sources and challenges

Tracking international migrants’ flows and stocks is an

important task but also challenging. At the moment,

many researchers and policy makers rely on traditional

data sources to study the journey of migrants. Such

data sources come from either official statistics or from

administrative data. Studying the journey of migrants

with these traditional data sources, however, come with

various limitations as migration intrinsically involves

various nations. For instance, the data are often in-

consistent across databases as different countries em-

ploy various definitions of a migrant. A lot of efforts

have been made so far from both researchers and in-

ternational organizations to improve quality and har-

monize traditional data sources [51,149,172]. Interna-
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tional organizations such as the United Nations provide

also guidelines and suggestions1 which countries should

employ when dealing with migration statistics. In this

section, each type of data source is described in detail

and evaluated.

Census data and surveys are official statistics col-

lected by institutions. They provide socio-demographic

information of the population, including immigrants.

However, the two types of data have different focus. The

census data are collected once in five years or once in ten

years, depending on the country. For example, the most

recent data available in the United States is the 2010

census data, while in Europe the last census was per-

formed in 2011. By the recommendation given by the

United Nations2, countries should collect the data ev-

ery year that ends with zero in order to establish a con-

sistency across different migration datasets. But as the

process of collecting data is expensive and time consum-

ing, some developing countries do not collect the data

as it is recommended, creating inconsistency across dif-

ferent countries’ databases. The high cost is due to the

fact that the majority of countries carry out door-to-

door or phone interviews to a randomly selected sample

of population to collect the data. For instance, the Chi-

nese population is almost 1.4 billion3, so about 6 million

enumerators are needed to conduct all the interviews.

On the other hand, most European countries retrieve

the data from administrative registries which makes the

procedure faster[150,63].

In the census data, migration related information

collected is the following; citizenship, country of birth,

last place of residence as well as length of stay. How-

ever, depending on the countries’ characteristics of im-

migrants and the immigration system4, they do not use

the same information to count the number of immi-

grants. In Europe for example, the focus is also given on

different migrant groups depending on whether they are

from the European Member States or third country5.

On the other hand, the United States counts everyone

born outside of their territory as immigrants. Yet, the

recommendation of the United Nations defines an inter-

national migrant as ‘a person who moves to a country

other than that of his or her usual residence for a pe-

riod of at least a year’. The difference in the definition of

immigrants creates incomparability across different mi-

1 Recommendations on Statistics of International Migra-
tion, Revision1(p.113). United Nations, 1998.
2 Idem.
3 “The Statistics Portal.” Statista. Retrieved from

www.statista.com
4 “Sources and comparability of migra-

tion statistics”. OECD, Retrieved from
https://www.oecd.org/migration/mig/43180015.pdf.
5 Those born outside of Europe

gration data. Furthermore, information about returning

migrants is not well captured through the census data.

This is due to the fact that returning migrants are not

obliged to declare their departure. In the leaving coun-

try’s data, they would simply exit from the data, mean-

ing that information about these migrants is difficult to

track.

Census data is usually published in aggregated form

by the authorities that organised the census. Typically,

immigration rates are made available at country or at

most regional level. For instance, historical immigration

data can be found on the websites of Eurostat [64], the

WorldBank [166], OECD [165] and other local author-

ities and research institutions [98,96,97,68,62]. How-

ever, in certain situations having data with higher spa-

tial resolution can be useful. Recently, the Joint Re-

search Centre of the European Union published a data

challenge6 where they make available for research high

resolution immigration data from the 2011 census, for

selected European countries. However, similar data is

more difficult to obtain for other regions.

Surveys also collect information about the flows and

stocks of immigrants and they are retrieved more often

than the census data. Unlike the census data, they are

generally conducted to collect information on house-

holds, labour market or community, depending on their

main purpose. As a result, there are very few ques-

tions related to migration. For instance, in the employ-

ment survey in France, there are two questions which

are about country of origin and date of arrival. With

these two details, it is difficult to infer the immigrants’

journey since a clear definition of immigrants cannot be

established. As a consequence, it has low accuracy level

in capturing immigrants’ flows and stocks and real-time

observation cannot be done. In addition, information

retrieved from surveys refers to a small subset of the

entire population.

Administrative data are retrieved from registries. It

can be from health insurance, residence permits, labour

permits or border statistics, which gather also informa-

tion about immigrants. Registry data can provide more

detail and are less costly than official statistics as the in-

formation is intrinsically and directly given by the indi-

viduals. For instance, data collected from the residence

permits include details about intention and length of

stay. They also require specific details on place of ori-

gin and address in the country of stay. The same applies

to labour permit data. Nevertheless, in Europe where

the freedom of movement and work is established, it is

difficult to know flows and stocks of EU immigrants us-

ing these administrative data unless all the individuals

6 Data Challenge on Integration of Migrants in Cities
(D4I), https://bluehub.jrc.ec.europa.eu/datachallenge/
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are registered. An alternative is to use health insur-

ance data. With these, it is possible to infer the stocks

more accurately, provided the immigrants register for

health insurance. In addition, registries can also collect

information about asylum seekers7 and refugees8. How-

ever, this information is not always present in all migra-

tion data. In some countries like France, Italy, United

Kingdom and so on, asylum seekers residing at least 12

months in a country are included in the data. In other

countries like Belgium, Sweden and Finland, they are

excluded [63]. Again, an application of different defini-

tions makes it difficult to compare data across different

countries. When studying the journey with administra-

tive data, caution should be used when inferring the

immigrants’ journey as it is difficult to identify the true

movements of immigrants.

The use of traditional data in studying the journey

of immigrants is definitely useful. These can be used for

building models of migration [145] and understanding

the determinants of migration. But for the reasons dis-

cussed above, several drawbacks have to be taken into

account. To improve data quality, institutions provide

estimates to impute the gaps between years, or use the

double-entry matrix 9 firstly introduced by UNECE10

to establish comparability across different nations’ data

(see for instance [143,144,51]). Nevertheless despite of

the efforts, the data still appear inconsistent and unre-

liable. With the availability of social big data sources,

researchers hope not only to overcome the limitations

of traditional data, but also to be able to conduct real-

time analyses at a higher accuracy level.

2.2 Alternative data sources - is nowcasting possible?

In recent studies, the use of social big data in the study

of immigrants’ journey is increasing. A variety of data

types can fall under this category. They can be data

from social media, internet services, mobile phones, su-

permarket transaction data and more. These datasets

contain detailed information about their users. Further-

more, they cover larger sets of population than some of

the traditional data sources which are limited in terms

of sample size. Yet, the literature points out that the

data may be biased because of users’ characteristics in

7 Asylum seekers are individuals who seek to obtain refugee
status
8 Individuals with subsidiary protection are also referred as

refugees
9 It compares statistics of both immigrants and emigrants

between a set of country. The degree of underestimation of
number of emigrants can be inferred by doing so.
10 United Nations Economic Commission for Europe

the sample. For instance with Twitter data, it is known

that the majority of the users are young and that it

cannot represent the whole population. Nevertheless,

various of studies state that the observed estimates of

immigrants’ flows and stocks extracted from these un-

conventional data sources can still improve the under-

standings of migration patterns (see for instance, [184,

88,127]).

Big Data allows researchers to study immigrants’

movements in real-time. Twitter data for instance, pro-

vide geo-located timestamped messages. Geo-located

messages are often the key variable in estimating the

flows and stocks but not the only one. In the work of

[184], the authors infer migration patterns from Twit-

ter data by looking at where the tweets were posted.

Other studies like [127] assume origins of immigrants

from language used in tweets, whether the local lan-

guage was used or not. These studies conclude that

Twitter data allow researchers to localize the flows and

stocks of immigrants and to observe recent trends even

before the official statistics are published. The results

of these studies are validated by matching the big data

results to official data.

In one of our recent works, we have also analysed ge-

olocalised Twitter data, with the aim of quantifying di-

versity in communities, by computing a superdiversity

index [140] (see also Section 3). This index correlates

very well with migration stocks, hence we believe it can

become an important feature in a now-casting model. A

different line of work we are pursuing is that of estimat-

ing user nationality from Twitter data. As seen above,

language can be important in understanding national-

ity, however we believe that this can be refined by em-

ploying also the connections among users. The model

can be validated with data collected through monitor-

ing frameworks such as that presented in [21]. Once

users are assigned a nationality, we can use these for

a now-casting model of migration stocks. Additionally,

we can define communities on Twitted based on nation-

ality, and study the flow of ideas among communities,

and the role of migrants in the spreading of informa-

tion. Furthermore, these data could enable analysis of

ego-networks of migrants (see Section 3.2.5 bellow).

Skype Ego networks data can also be used to explain

international migration patterns [102]. In this case, the

IP addresses that appear when users login to their ac-

count can be used to infer the place of residence. More

precisely, they look at how often the users login to their

IP address, which allows them to label the location as

the users’ place of residence. The users’ place of resi-

dence then can be used to observe whether migration

took place or not.
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Big data can also be used to study movements of in-

dividuals in the time of crisis. For instance, [30] propose

to use mobile phone data to trace individuals’ move-

ments in the occurrence of earthquake in Haiti. With

these data, the authors are able to trace users as the

phone towers provide information about their locations.

They conclude that Big Data can be used to observe

movements in real-time, which cannot be done through

traditional data.

Another limitations in using traditional data source

is that it is difficult to anticipate immigrants’ move-

ment. In the work of [36], they study whether the GTI11

can now-cast the immigrants’ journey. However, as au-

thors point out, not every search means that searchers

have intention to migrate. To address this issue, they

compare Gallup World Poll data12 with the results ob-

tained with GTI data. The Gallup data is a survey done

on more then 160 countries and it contains questions

on whether the individuals are planning to move to an-

other country and if so, whether the plan will take place

within 12 months and lastly, whether they have made

any action to do so, i.e., visa applications or research

for information. The comparison validates that the GTI

data can indeed now-cast the “genuine migration inten-

tion“.

Unconventional Big Data has its limitations like tra-

ditional data. Nevertheless, new big data methods are

developing in order to address the newly arising issues.

In addition, Big Data covers worldwide users with very

fine granularity of information on immigrants’ journey.

The hope is that by merging knowledge from both tra-

ditional and novel datasets we will be able to overcome

some of the issues and build accurate models for now-

casting immigrant journeys and immigration rates.

2.2.1 Scientific migration

Given its importance to scientific productivity and edu-

cation, the study of scientific migration has attracted a

growing interest in the last years, fostered by the avail-

ability of massive data describing the publications and

the careers of scientists in several disciplines [139,48,

130,156]. Understanding the mechanisms driving scien-

tists’ decision to relocate can help institutions and gov-

ernments manage scientific mobility, implement policies

to attract the best scientists or prevent their departure,

hence improving the quality of research. At the same

time, predictive models explaining when, and where,

scientists migrate can facilitate the design of job rec-

ommender systems for scientists based on their profile

11 Google Trend Index, https://trends.google.com/trends/
12 http://gallup.com

[157], or help search committees seek successful candi-

dates for their research jobs.

The studies proposed in the literature on scientific

migration can be grouped into three main strands of

research. A first group of studies focus on country-level

movements or on movements between universities [20,

132,126]. Relying on a large-scale survey, Appelt et al.

find that geographic distance, as well as socio-economic

disparities and scientific proximity, negatively correlate

with the mobility of scientists between two countries

[14]. By investigating the professional and personal de-

terminants of the decision to relocate to a new insti-

tution, Azoulay et al. [22] find that scientists are more

likely to move when they are highly productive and

their local collaborators are fewer and less accomplished

than their distant collaborators, while they find it costly

to disrupt the social networks of their children. Gargiulo

and Carletti [69] investigate the movements of scien-

tists between universities and find that, starting from a

lower rank institution lowers the probability of reaching

a top rank academy and makes higher the probability

to remain in a low rank one and, on the contrary, start-

ing from a high ranked university strongly lowers the

probability of ending in a low rank one.

A second strand of research focuses on understand-

ing the impact of a scientist’s relocation to their sci-

entific impact. In this context, it has been discovered

that while moves from elite to lower-rank institutions

lead to a moderate decrease in scientific performance,

moves to elite institutions does not necessarily result in

subsequent performance gain [53]. Sugimoto [162] anal-

yses the migration traces of scientists extracted from

Web of Science and reveals that, regardless the nation

of origin, scientists who relocate are more highly cited

than their non-moving counterparts.

In the context of studying labor mobility, the avail-

ability of massive datasets of individuals’ career path

fostered works on predicting individuals’ next jobs (out-

side the academia) [157]. Paparrizos et al. [136] build a

system to recommend new jobs to people who are seek-

ing a job, using all their past job transitions as well as

their employees data. They train a predictive model to

show that job transitions can be accurately predicted,

significantly improving over a baseline that always pre-

dicts the most frequent institution in the data. Re-

cently, Li et al. [112] propose a system to predict next

career moves based on profile context matching and ca-

reer path mining from a real-world LinkedIn dataset.

They show that their system can predict future career

moves, revealing interesting insights in micro-level la-

bor mobility.

Our recent work, conducted within the SoBigData

projects, is placed on the line of conjunction of the
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aforementioned strands of research. In particular, we

investigate how a scientist’s scientific profile influences

the decision to move, based on a massive dataset con-

sisting of all the publications in journals of the Ameri-

can Physical Society (APS) from 1950 to 2009 – 360,000

publications, 3,500 institutions and 60,000 scientists [99].

We approach the problem by constructing a two-stage

predictive model. We first predict, using data mining,

which scientist will change institution in the next year.

We describe a scientist’s profile as a multidimensional

vector of variables describing three aspects: the recent

scientific career, the quality of scientific environment

and the structure of the scientific collaboration net-

work. From the constructed predictive model, we iden-

tify the main factors influencing scientific migration.

Secondly, for those scientists who are predicted to move,

we predict which institution they will choose using the

performance-social-gravity model, an adaptation of the

gravity model of human mobility to include the above

mentioned factors.

A different recent line of work in the SoBigData

project is to understand, by using ORCID data, what

was the effect of the Brexit referendum on scientific

migration in and out of the United Kingdom. Prelimi-

nary results (still unpublished) show an increase in UK

researchers moving from the EU to the UK and an in-

crease of EU researchers moving out of the UK.

2.3 Visual Analytics of migration data

The phenomenon of migration is strongly associated

with human movement. Analysis of movement data is

one active topics in Visual Analytics research. The mono-

graph [11] systematically considers a variety of possible

representations of movement data. Frequently used rep-

resentations are trajectories (sequences of time-stamped

positions of individuals), time series (e.g. counts of de-

parting, arriving or transit visitors over time), and events

(e.g. movement with abnormal speed or unusual con-

centration of moving objects). A special case of tra-

jectories is a trajectory consisting of only two time-

stamped positions, origin and destination of a trip. This

representation is frequently used in migration studies,

since more detailed information is often not available.

The following three main classes of techniques are

applied for visualization of origin-destination (OD) flows:

OD matrix [85], OD flow map [168], and a hybrid of a

matrix and a map called OD map [183]. In an OD ma-

trix, the rows and columns correspond to locations and

the cells contain flow magnitudes represented by color

shades. The rows and columns can be automatically or

interactively reordered for uncovering connectivity pat-

terns. Disadvantages of the matrix display are the lack

of spatial context and the limited number of different lo-

cations that can be represented. In OD flow maps, links

between locations are represented by straight or curved

linear symbols analogously to node-link diagrams. Var-

ious possible representations of directed links are dis-

cussed and evaluated by Holten et al. [93]. Flow mag-

nitudes are shown by proportional line widths or by

color shades. OD maps [183] use a map-like grid layout

with embedded maps that represent movement from/to

selected locations to/from all other locations that cor-

respond to remaining maps.

A straightforward approach to showing time-variant

flows is to use multiple displays (e.g. OD matrices, OD

flow maps, or OD maps) arranged either temporally in

animation or spatially in a small multiple display. Map

animation is not effective [171] because the user can-

not memorize and mentally compare multiple spatial

situations. In small multiples, a limited number of spa-

tial situations can be shown simultaneously; hence, this

approach is not suitable for long time series. Cluster-

ing of spatial situations [13] can be used to reduce the

number of distinct situations that need to be shown. A

completely different approach is to show the time series

of flow magnitudes separately from maps, for instance,

as it is done in FlowStrates [38]; however, the spatial

situations and their changes over time cannot be seen.

The paper [12] defines a workflow for analysis of

long-term origin-destination data. The approach starts

with aggregation of flows by origin or destination re-

gions, directions and distances of move, and time in-

tervals. Next, time intervals are clustered according to

feature vectors composed from descriptors of all origins

representing magnitudes of flows in all considered di-

rections and distances. The proposed system enables

exploration and continuous refinement of clustering re-

sults. The process is supported by space- (flow maps,

diagram maps) and time-based (calendar showing tem-

poral dynamics of situations by colors of dates) visual-

izations.

The techniques described in this section have been

successfully applied or are potentially applicable to anal-

ysis of long-term migration data, for detecting patterns

and changes of migration.

3 The stay: effects on communities, immigrant

integration

The study of the effects of migration on the communi-

ties involved includes various traditional lines of study.

Immigrant integration is a complex process that can re-

flect a progressive adoption of the norms that prevail

in the destination country or a return to the habits of

the home countries. Integration has been analysed from
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multiple viewpoints. Here, we outline some of these lines

of work, with some recent examples, and we provide a

few directions for development using big data. However,

this section is not intended to be a complete survey of

methods, since the complexity of the issue would require

much more than a few pages to describe. For more com-

prehensive reviews on migrant integration please see

e.g. [42].

3.1 Current practices

In general, immigrant integration and cultural changes

have been traditionally analysed using census data, ad-

ministrative registries and surveys. In this section we

describe the different criteria used for analysis. We start

with a discussion of research studying social integration

(social network, mixed marriages), then we move on to

labour market integration, and language adoption of

immigrants. We conclude the section with a discussion

of the effects of immigration on educational attitudes,

on economic prosperity and on political attitudes.

The effect of the social network on migration was

analysed by [119] using survey data on Mexican mi-

grants to the US. The richness of the social networks

is shown to promote migration of low-skill migrants,

while for communities where the social networks are

weak, high-skill migrants are present. In terms of mi-

grant integration, social networks in schools were anal-

ysed in European countries by [159]. They show that

homophilic attitudes develop differently for immigrants

and natives, with the former being positively influenced

by multi-ethnicity in class. Ego networks of Turks and

Moroccans in the Netherlands are studied in [173], using

survey data. The authors show that in general closest

friends come from the same ethnic group. The effect is

stronger for women and those that are culturally more

dissimilar to the natives.

In terms of marriage relationships, in the United

States, marriage with whites is analysed for different

ethnicities and education levels [147,146]. Divorce rates

are shown to be higher for mixed than for non-mixed

couples in the Netherland, particularly for couples com-

ing from very distant cultures [158]. The relation be-

tween mixed marriages and the immigration rate in

Italian communities was studied by [4]. The authors

show that there are differences between large cities and

smaller municipalities, and they argue, based on proba-

bilistic interaction models, that this is due to the struc-

ture of the social network, which is disconnected in large

communities. The presence of female immigrants was

found to increase the risk of separation of native cou-

ples in Italy, using survey data and official statistics

[178].

Integration in the labour market has been analysed

for various western and non-western countries by [160].

They show that general patterns of integration and fac-

tors affecting it are very similar between western and

non-western countries. Factors that affect the probabil-

ity to find a job are language exposure, cultural dis-

tances, economic advancement of the origin country.

Recent work shows that language training has an im-

portant effect on labour market integration of immi-

grants in France [113]. The effect of education on em-

ployment is analysed in [133] for Mexican immigrants in

the USA. Integration in the labour market can also de-

pend on the location where immigrants settle. In some

cases, such as refugee situations, locations are assigned

centrally. Recent work[24] has used data on past em-

ployment success to provide better matches between

locations and refugees, showing that the probability of

being employed can be increased by 40 to 70%.

Both mixed marriages and labour market integra-

tion was analysed using official data from Spain by [26].

They show using insights from statistical physics that

while mixed marriages seem to be driven by peer inter-

action, this is missing when it comes to labour market

integration. The same approach can be used to forecast

integration from the two points of view [50].

Language adoption is a very important factor con-

tributing to the success of an immigrant in the host

country, since it provides opportunities for education,

employment, social interaction. Integration in the US

was analysed by [6], looking at the language spoken at

home by third-generation immigrants. The study shows

that while Asians and European adopted the language

at a similar pace, Spanish speaking families were still

preserving some of their mother language. A different

study [174] looks at the dynamics of language adoption

in the US, and show that education is an important

factor positively influencing speed of adoption, while

group size provides negative influence. A related issue

is that of naming children [1]. A recent study of early

US census data shows that people coming from fami-

lies where children were given foreign names were less

successful in terms of education and earnings, and were

more likely to marry foreign spouses. The bilingual set-

tings was studied in [175], i.e. language adoption of im-

migrants in Belgium. The study shows that immigrants

adopt faster the more international language.

The above mentioned works study integration by

looking mostly at the immigrant population. However,

effects on the local population due to integration of mi-

grants exist too. For instance, educational expectations

of middle school children were shown to change in chil-

dren both from native and immigrant communities, in

Italy, based on survey data [124,123]. Immigrant chil-
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dren increased their expectations in the presence of na-

tive children with high expectations. Native children

studying in multiethnic classes seemed more prone to

high expectations. The effect of school class composi-

tion and ethnic attitudes was analysed in [39], showing

that a balanced composition is beneficial for all ethnic

groups involved.

A different effect that can be studied is related to

economic prosperity of the target society. Diversity of

birthplace was shown to increase economic prosperity

[7], especially in the case of high-skill migrants moving

to rich countries. The cultural diversity of the origin

country was also analysed, showing that there is an

optimal cultural distance for immigrants to maximise

the beneficial economic effects. At the same time, how-

ever, [25] show that competition in the labour market

and public services, together with cultural differences,

generates a shift in political inclination. For instance,

a shift of votes towards the left-wing parties was ob-

served in Italy. Similar changes were observed in Aus-

tria, where one factor was the concern about the quality

of the neighbourhood [87].

3.2 Towards a novel integration index using

alternative data sources

While the type of studies exemplified in the previous

section have been instrumental in understanding the

effects of migration, the fact that they are based on

traditional data makes them inherit the disadvantages

of these data. Big Data can help to analyse the issues

above, and others, with the advantage of producing

real-time results, and enabling analysis at higher spa-

tial resolution. For instance, retail data can help under-

stand how immigrants adopt habits and values of the

new community they live in. Mobile call data records

(CDR) can be used to describe social interaction and

mobility patterns of immigrants, and understand seg-

regation. OSN data can help study various topics, such

as social integration, language adoption, changes in the

local language, sentiment towards immigrants, etc. All

these data types can be also combined to build a novel

multi-level integration index than takes into account

all of these criteria. In the following we will exemplify

some of these topics, including existing results from our

project and new directions to pursue.

3.2.1 Retail data: Tell me what you eat, I will tell you

who you are.

The measures for immigrant integration discussed in

Section 3.1 capture choices that can be easily observed

and potentially exposed to social sanctions. Moreover,

they are usually measured at one point in time, while

integration is a dynamic phenomenon. The analysis of

retail data from a supermarket chain can enable us to

understand if immigrants are converging to or diverg-

ing from the norms and habits of the destination coun-

try. By observing immigrants’ food consumption bas-

kets we can estimate the degree of integration and how

this varies in time. This behaviour is less prone to social

sanction, since the food basket is not generally known

to people outside a family. Furthermore, we can identify

which are the most relevant factors for the integration.

The degree of integration can be considered both with

respect to economic aspects but also based on how im-

migrant customers change their habits during their stay

in terms of purchased products.

Market basket analysis and the study of food con-

sumption have been widely used in the literature for dif-

ferent purposes, such as defining individual indicators of

customer predictability [80], studying GDP trends [81],

analyzing customers with respect to their temporal pur-

chasing patterns [83], and classifying them as residents

or tourists according to their shopping profile [82]. Ex-

ploiting retail data to study the migration phenomenon

from an individual and collective point of view that is

not exposed to social sanctions and with multiple obser-

vations in time can bring to the light novel results use-

ful for better understanding the migration phenomenon

and also for developing well-being policies.

Our project owns a key data source for these analy-

ses, composed of scanner data from a large Italian retail

market chain, that are available since January 2007 for

more than 1.1 million customers holding a fidelity card.

The dataset includes the price, quantity, promotional

sales (if any) and the name of the good purchased out of

a set of around 600,000 products. Besides this informa-

tion, for each customer the country of birth is available

and the date on which the fidelity card was obtained.

About 7% of the customers are foreign-born, when the

immigration rate in Italy is currently around 8.5%. On

average, a foreign customer is observed 5 times per

month, with a mean monthly food expenditure of about

EUR150. In Figure 1 we report the cumulative number

of customers joining the fidelity club for Albania, Ro-

mania and France. We observe how the trend is stable

for Albania, while the number of customers with fidelity

card is growing for Romania and decreasing for France.

These indices are in line with the immigration trends

from European official statistics, indicating that these

data could be representative of the migrant population.

In the following we discuss research directions that our

project is pursuing.

To understand whether there is a convergence in

food consumption choices of immigrants (by country of
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Fig. 1 Association to Italian Supermarket Chain. Trends of the number of customers with fidelity card for Albania,
France and Romania.

birth), two orthogonal approaches can be followed. A

top down approach aims at analyzing aggregated vari-

ables among the various items purchased that take into

account for each foreign-born customer the difference

between the normalized amount spent on a specific pe-

riod and the mean spent in that period by Italian cus-

tomers. In this way for each foreign-born customer we

can obtain a time series indicating if that customer is

converging or diverging from the Italian norms. Hence,

we can find foreign countries having customers with ho-

mogeneous behaviors but also countries with different

integration behaviors.

A weakness of the top down approach is that it is

not easy to understand which are the products leading

to the convergence/divergence. A bottom up approach

analyzing the basket composition can provide this kind

of information. In particular, our idea is to extract for

different periods for each customer their individual rep-

resentative baskets using the algorithm defined in [84].

Then re-cluster for each country the representative bas-

ket of the customers and develop national collective

representative baskets. This can allow, through a set-

based distance measure, to develop an indicator of shop-

ping divergence/convergence with respect to the Ital-

ians typical baskets.

Finally, we underline that 14 percent of the foreign-

born customers disappear from the dataset after some

activity. The purchases of these customers could also

be used for studying the return to the origin country.

3.2.2 Call data records

A large amount of work has been done using call data

records (CDR) in understanding individual [76,71,138,

182] as well as group mobility [90,137,115,169]. These

range from empirical analyses of large CDR datasets [76,

138,137,71,182] to proposal of theoretical mobility mod-

els [155]. Initiatives to motivate researchers to analyse

CDR data have also appeared, through data challenges

such as the Data for Development (D4D) challenge in

Senegal [35] or the recent Data for Refugees (D4R) chal-

lenge in Turkey [170,153]. Readers can refer to [34] for

a survey of works related to using CDR data for indi-

vidual mobility studies and models.

A recent example is the study of the flocking and

mobility behavior of the population after the Haiti earth-

quake using CDR data [114]. Researchers found that

mobility patterns of the population after natural calami-

ties is predictable. People tend to move to destina-

tions where they have been making more calls before

the disaster. In another natural calamity study done in

NewZealand with respect to Christchurch earthquake

which happened in Feb, 2011 [2], the researchers found

that people either moved to Big cities like Auckland

or to the small towns. However, no correlation between

the mobile phone calls before and after the disaster has

been reported. In all cases, this is an important out-

come, as it can help in timely and effective infrastruc-

tural decisions in the time of emergencies or natural

disaster [52].

In a different dimension, mobility patterns have also

been studied with respect to socioeconomic develop-

ment [137]. Authors found strong correlation between

human mobility patterns with socio-economic indica-

tors. It has also been shown that mobility patterns can

be used for creating detailed maps of population dis-

tribution which are more accurate and recent. This ap-

proach is in particular useful for poor countries. This in
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turn can help in creating proper socio-economic policies

for the population [52].

However, while mobility analyses are abundant, not

much work has been done to analyse the international

migration phenomenon using CDR. This due to several

reasons. First, CDR datasets typically span only one

nation. Secondly, in general, due to privacy reasons, no

information on the nationality of the customer is pro-

vided. Without these pieces of information, studying

migration with these data is difficult. One exception is

the above mentioned D4R challenge, where refugee sta-

tus of customers is made available. Our project has par-

ticipated in this challenge, together with several other

teams, concentrating on five different aspects: health,

integration, unemployment, safety and security, and ed-

ucation. For details on result obtained by other teams

please see the published collection of articles [152]. Our

objective was to analyse integration and combine the

Turktelekom data with other datasets [31]. We observed

that integration seemed to increase in time for refugees,

and also that the presence of refugees influenced the

house market in Turkey, decreasing housing prices.

Another recent example where CDR data was used

to analyse transnational mobility is [5], using CDR data

that includes mobile roaming events. Transnational pop-

ulation mobility can be defined as living and working in

two or more countries. Understanding this phenomenon

with traditional statistics and register-based data is im-

possible. The authors show that roaming data can en-

able the analysis of travel behavior and social profile of

visitors. They can differentiate between tourists, cross-

border commuters, foreign workers, and transnationals.

3.2.3 Language in online social networks

Language allows us to express needs, feelings and achieve

our communication goals. Society changes and grows

more complex over time, thus language must evolve and

adapt itself to the new needs of its population. As a

consequence, this evolution leads to changes, creation,

and vanishing of expressions, dialects and even whole

languages [75]. Over the past two decades, globaliza-

tion has driven social, cultural and linguistic changes

panorama in societies all over the world. The earlier

multiculturalism, since the 1990s, intended as the eth-

nic minorities paradigm, turned in what Vertovec [177]

calls Superdiversity. The concept aims to acquire the

increasingly complex and less predictable set of rela-

tionships between ethnicity, citizenship, residence, ori-

gin, and language. Thanks to the influence of pioneer-

ing works of linguistic anthropologists, mixing, mobility

patterns and historical framework became key issues in

the study of the languages and of the language groups

[33]. Over time, linguists and sociologists analysed vari-

ation and changes in both oral [106] and written [29]

language by exploiting surveys, corpora, and records

[75]. In the last decade, the pervasive use of online so-

cial networking and micro-blogging services led to the

availability of freely-made contents never seen before.

This unprecedented wealth of written data allowing us

to recover a detailed picture of language evolution both

from the geographical and the time points of view [131].

The literature regarding the language in social net-

works applied to migration studies is wide and involves

several research fields, including but not limited to mo-

bility patterns, migrations stocks and flows, Well-Being

and Sentiment Analysis. Even though some works fo-

cused more on metadata instead of the real data con-

tents, the text bears a wealth of information, start-

ing from the language in which is written [108]. For

instance, Kulkarni et al. [105] have proposed a novel

method allowing to detect English linguistic variation

and quantify its significance among geographic regions;

Ibrahim et al. [95] have combined different data to present

a sentiment analysis system for standard Arabic and

Egyptian dialectal Arabic; The language has been also

investigated in the spatial distribution as well as the

spatial extension of dialects. In [117], geolocated tweets

are exploited to identify localized patterns in language

usage and to analyse the language diversity over dif-

ferent countries; Mocanu et al. [125] have character-

ized the worldwide linguistic geography by aggregating

multi-scale OSN data; Jurdak et al. [100] have com-

pared Twitter mobility patterns with patterns observed

through other technologies, eg. CDRs., by using indi-

viduals’ spatial orbit as the measure of how far they

move; Gonçalves et al. [75] have found two global super-

dialects in the modern-day Spanish; and Doyle [55] have

proposed a Bayesian method to build conditional prob-

ability distributions of the spatial extension of English

dialects.

Within the SoBigData project, we have analysed the

concept of Superdiversity theorized by Vertovec (2007),

and proposed a measure to quantify it [140]. We fo-

cus on the conjunct analysis of both language and ge-

ographic dimensions starting from a Twitter dataset.

Our ground hypothesis is built on the idea that differ-

ent cultures use the language in different ways and, in

consequence, the emotional value associated with words

changes depending on the culture of the person that

writes a tweet. We introduced a Superdiversity Index

(SI), that is based on the diversity of the emotional con-

tent expressed in texts of different communities. Specif-

ically, we extract the emotional valences of words used

by a community from Twitter data produced by that

community. We compare the obtained valences with a
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Fig. 2 Superdiversity index (left) and immigration levels (right) across UK regions at NUTS2 level [140]

standard dictionary tagged with sentiment. The dis-

tance between the community and the standard va-

lences is a measure of superdiversity for the community.

This SI measure is computed at different geographical

scales based on the Classification of Territorial Units

for Statistics (NUTS) for two different nations: Italy

and United Kingdom, and validated with data from the

above mentioned D4I challenge (see Section 2). We ob-

serve a very high correlation with immigration rates at

all geographical levels. Figure 2 shows the case of the

United Kingdom, where we observe that the geograph-

ical distribution of the SI proposed matches very well

that of official immigration rates. Thus, we believe that,

besides quantifying the cultural changes that migrants

instill on the community, our SI can also become a key

measure in a now-casting model for migration stocks.

3.2.4 Migration and sentiment

One way of studying migrant integration is by analysing

the opinions of the locals related to migration topics

and different migrant groups. While performing tar-

geted surveys is one way of collecting such opinions, us-

ing Online Social Networks (OSNs) is a novel direction

that can overcome some limitations of survey data. Us-

ing Twitter for opinion mining and to study sentiment

and user polarization is a vast subject [135]. The exis-

tence of polarization in Social Media was first studied

by Adamic et al. [3] who identified a clear separation

in the hyperlink structure of political blogs. Conover

et al. [49] studied afterwards the same phenomenon

on Twitter, evaluating the polarization based on the

retweets. Most of the studies on polarization are still

based on sentiment analysis of the content. The sen-

timent analysis methods proposed are numerous and

they are mainly based on dictionaries and on learning

techniques through unsupervised [134] and supervised

methods (lexicon-based method [164]) and combina-

tions [104]. Opinion mining techniques are widely used

in particular in the political context [3] and in particular

on Twitter [46]. Recently new approaches based on po-

larization, controversy and topic tracking in time have

been proposed [70,47]. The idea of these approaches

is to divide users of a social network in groups based

on their opinion on a particular topic and tracking their

behavior over time. These approaches are based on net-

work measures and clustering [70] or hashtag classifica-

tion through probabilistic models [47] with no use of

dictionary-based techniques.

Regarding the migration topic, in Coletto et al. [45]

we propose an analytical framework aimed at investi-

gating different views of the discussions regarding po-

larized topics which occur in OSNs. The framework

supports the analysis along multiple dimensions, i.e.,

time, space and sentiment of the opposite views about a

controversial topic emerging in an OSN, and is applied

to the perception of the refugee crisis in Europe and

Brexit. The sentiment analysis method adopted is effi-

cient in tracking polarization over Twitter compared to
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other methods. Concerning other approaches for study-

ing social phenomena, we do not base our analyses on

the change of location of Twitter users to measure the

flow of individuals through space, but rather we aim at

understanding the impact on the EU citizens perception

of migrants’ movements and their resulting decision to

vote for Brexit.

The framework, initially presented in [44], allows to

monitor in a scalable way the raw stream of relevant

tweets and to automatically enrich them with location

information (user and mentioned locations), and senti-

ment polarity (positive vs. negative). The analyses we

conducted show how the framework captures the differ-

ences in positive and negative user sentiment over time

and space. The resulting knowledge supports the under-

standing of complex dynamics by identifying variations

in the perception of specific events and locations.

We used the Twitter Streaming API under the Gar-

denhose agreement (granting access to 10% of all tweets)

to collect the English tweets posted in two periods:

from mid August to mid Sept 2015 for the refugees

dataset, and from mid June to the beginning of July

2016 for the Brexit dataset, respectively. We filtered out

the tweets not related to the specific events analysed.

The first dataset refers to the Refugees crisis and con-

tains about 1.2 M tweets, while the second one refers to

the Brexit referendum and contains about 4.3 M tweets.

The datasets13 are available for use through Transna-

tional Access in the SoBigData project infrastructure.

In our study we try to answer the following an-

alytical questions: What is the evolution of the dis-

cussions about refugees migration in Twitter? What

is the sentiment of users across Europe in relation to

the refugee crisis? What is the evolution of the percep-

tion in the countries affected by the phenomenon? Are

users more polarized in the countries that are most im-

pacted by the migration flow? Is the polarization of the

users about refugees and the Brexit referendum some-

how correlated? For this purpose, we analyse the ratio

between pro- and against-refugee users across Europe.

For example, Figure 3 shows the geographical distri-

bution of this ratio considering all users residing in a

country, but also internal and external perception (per-

ception of the users residing inside/outside a country

C related to the refugees in C). We observe that East-

ern countries in general are less positive than Western

countries. Also, we note that for internal perception

Russia, France and Turkey have a really low sentiment.

We conjecture that the sentiment of a person, when the

problem involves directly his/her own country, could

13 https://sobigdata.d4science.org/group/

resourcecatalogue/data-catalogue?path=/dataset/

hpc_twitter_dumps

be more negative since we are generally more critical

when issues are closer to ourselves. External percep-

tion is generally higher in countries most affected by

the refugee crisis, such as France, Russia and Turkey,

with the exception of Germany where the decision to

open borders seems to have produced positive internal

sentiment.

3.2.5 Ego-networks and their effect on migration

Personal networks of migrants have been shown to play

a strategic role in the destination country chosen by the

migrant, in the well-being of the migrant (once settled

in), and in the professional outcome [66,181,73,10,176].

For this reason, studying the properties of migrants’

personal network is a particularly promising avenue of

research in digital demography, in order to characterise

both the journey and the stay. In this section, we review

the basic concepts of ego networks and some existing

applications, and we argue that studying ego-networks

from OSN platforms can be a powerful tool in the anal-

ysis of migration.

It is a well-established result from sociology that

personal networks, i.e., the ensemble of social relation-

ships that an individual entertains with other people,

have a significant influence on the quality of life of

the individual in terms of, e.g., job opportunities [77,

78], social support [101], power and influence in orga-

nization/communities [154,122,129,109]. Personal net-

works are also closely related to the concept of social

capital, i.e., the network of connections, loyalties, and

mutual obligations [73] that translates into favors and

preferential treatment. In this perspective, studying the
evolution of personal networks over time is the ideal

approach to characterise the modification of migrants’

social structures (or lack thereof), due to the migration

process. This is related to one of the main subjects of

study in this area, i.e., the characterisation of integra-

tion of migrants. Integration is typically measured in

terms of assimilation and transnationalism. Assimila-

tion is defined as the gradual adoption of customs and

traditions from the receiving country by the migrant,

and can be full [8,9], partial [72] or segmented [142].

As a consequence of assimilation, the composition of a

migrant’s personal network is expected to change sig-

nificantly over time. At the opposite side of assimi-

lation, there is the phenomenon of transnationalism,

whereby migrants continue to participate in the polit-

ical, economic and cultural life of origin societies and

of fellow migrants from the same country [141]. Many

researchers have postulated that the widespread avail-

ability of Internet connectivity and OSNs has made eas-

ier to keep alive these transnational links with the ori-
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(a) Global perception (b) Internal perception (c) External perception

Fig. 3 Sentiment related to the refugee crisis across European countries (from [45]: red corresponds to a higher predominance
of positive sentiment, yellow indicates lower positive sentiment. (a) Refers to the whole dataset. (b) Is limited to users when
mentioning locations in the their own country. (c) Is limited to users otherwise.

gin country [110]. Again, this should be reflected into

the personal network of migrants, in terms of number

and relationship strength of links towards migrants and

non-migrants from the same origin area. These changes

can be studied using traditional data coming from tar-

geted surveys, but also from OSN data that can fill

some of the gaps present in survey data.

While most migration studies of personal networks

are qualitative, quantitative studies are available in the

literature on generic social networks. Quantitative stud-

ies often explore the graph-theoretical concept of ego

networks. An ego network is the graph-based abstrac-

tion that models the personal network of an individual

(called ego). Beside the ego, the nodes in the ego net-

work correspond to the people the ego entertains social

relationships with. These people are referred to as al-

ters. The ego and each alter are connected by an edge,

whose weight corresponds to the strength of their social

relations (often referred to as emotional closeness). De-

pending on the ego network model used, ties between

alters can also be included [65]. More rarely, only the

alter-alter ties are considered for extracting ego net-

work properties [118]. Several structural properties of

ego networks can be derived [86].

Ego network models have been used in the litera-

ture to characterise human cognitive constraints and

their impact on the social processes. In particular, evo-

lutionary anthropology has studied the structure of ego

networks (as a representation of human personal net-

works) in terms of the cognitive investment required

from the ego to actively maintain it. Dunbar [56] has

found that the humans’ neocortex size places an upper

limit on the number of meaningful relationships that

can be maintained. Specifically, the group size predicted

by the human neocortex size is around 150 alters and

it has been validated studying tribal, traditional, and

modern societies [59,91]. This limit on the size of the

ego network determined by the cognitive effort required

to maintain active social relationships is known as the

social brain hypothesis [58]. Additional investigations

of this cognitive constraint have shown that the alters

in the ego networks are organised into concentric circles

around the ego, where the emotional closeness decreases

and the number of alters increases as we move from the

ego outwards [91,187]. When looking at the size of the

circles, a typical scaling ratio around 3 between the size

of consecutive circles has been observed [187], with the

size of individual circles concentrating around the val-

ues of 5, 15, 50, 150, respectively.

Quite interestingly, ego networks formed through

many interaction means, including face-to-face contacts [58],

letters [91,187], phone calls [116], co-authorships [17],

and, remarkably, also OSN, are well aligned with the

above model. Specifically, very similar properties have

been found also in Facebook and Twitter ego networks [57,

19]. In this sense, OSN become one of the outlets that

is taking up the brain capacity of humans, and thus are

subject to the same limitations that have been mea-

sured for more traditional social interactions, and are

not capable of “breaking” the limits imposed by cogni-

tive constraints to our social capacity [60]. Tie strengths

and how they determine ego network structures have

been the subject of several additional works. For exam-

ple, in [74] authors provide one of the first evidences

of the existence of an ego network size comparable to

the Dunbar’s number in Twitter. The relationship be-

tween ego network structures and the role of users in

Twitter was analysed in [148]. In general, ego network

structures are also known to impact significantly on the

way information spreads in OSN, and the diversity of

information that can be acquired by users [15]. More

in general, many traits of human social behaviour (re-

source sharing, collaboration, diffusion of information)

are chiefly determined by the structural properties of
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ego networks [163]. Less studied (typically due to the

lack of data) but equally important are the dynamic

properties of ego networks, which characterise the evo-

lution of personal networks over time. Arnaboldi et

al. [16,18] found that, unexpectedly, the strongest social

relations in Twitter change frequently for the majority

of generic users and also for the special class of politi-

cians. This is a marked difference with respect to of-

fline networks, where high-frequency relationships cor-

respond to stable and intimate ties [91].

While data from OSNs have been recently used for

migration studies, as detailed in previous sections, the

graph-theoretical perspective has been rarely taken into

account. The only exceptions are [89], [92], and [108].

In [89], community-centric metrics are used to study

cultural assimilation as a function of the number of so-

cial ties between migrant communities and local people

using the set of friendship links extracted from Face-

book. The graph in this case is unweighted, i.e., the ef-

fect of different emotional closeness between node pairs

is not taken into account. Lamanna et al. [108] again

focus on cultural assimilation but from the spatial seg-

regation standpoint. In this case, they use a bipartite

graph structure, connecting tweet languages and cities.

In [92], Facebook is used to study the network of teenagers

in the Netherlands, concentrating on ethnicity and gen-

der. The analysis shows that ethnicity plays a stronger

role in link formation. However, the extended Facebook

networks are less segregated, in general, compared to

core ego-networks.

To the best of our knowledge, ego networks of mi-

grants built from OSN data have never been investi-

gated in the related literature. This is quite surprising,
as it is well-known that many facets of the human be-

haviour chiefly depend on the ego network structure.

This includes features intrinsically related to migration

and integration, such as willingness to cooperate with

alters, resilience to problems and possibility of seeking

for assistance from trusted alters [161]. As discussed

before, migrants’ ego networks have been studied pre-

viously in the sociology literature, but only traditional

data sources had been considered, and the approach to

the analysis is typically more qualitative than quanti-

tative. Here we advocate, along the lines of digital de-

mography, that it is crucial to integrate traditional and

innovative data sources to provide a timely and deeper

understanding of personal networks and their impact

on the migratory phenomena. For non-migrant users,

the integration of OSN data has already proven suc-

cessful and has highlighted properties that would have

been impossible to extract from offline data alone [57].

Given the role played by personal networks on migra-

tion flows and integration, we believe it is crucial to

fill this gap. OSN are particularly appealing for accom-

plishing this task. In fact, they allow to reach scales

far beyond what can be obtained from traditional data

sources and they can also allow researcher to easily

analyse temporal variations in the ego networks, ulti-

mately allowing forms of nowcasting of the migration

phenomena.

Two research questions are particularly pressing:

understanding and quantifying the relationship between

the migrant’s online ego network and their migration

choices, as well as measuring cultural assimilation and

transnationalism through the evolution of online ego

networks over time. With respect to the first question,

it would be important to study the influence that alters

in the different layers of migrants’ ego networks exert

on the ego’s migration choices, distinguishing between

the role played by weak and strong ties. These results

can then be used to attempt predictions of the future

migration choices of people, similarly to what is dis-

cussed in [99] for scientists. With respect to the second

question, online ego networks can be a strategic asset

for studying cultural assimilation, as they are typically

easy to monitor for a prolonged amount of time, going

beyond the single snapshot problem mentioned in [151].

As the migrant “moves” into the receiving society, we

expect to observe a turnover in the ego network layers,

reflecting the changes in his/her social relationships.

This turnover can be measured in terms of similarity

between layers across different temporal snapshots and

observing the jumps that alters perform in the ego’s

network (similar to what [18,37] do for the ego net-

works of politicians and journalists on Twitter). Special

attention should be reserved to the movements, inside

the ego network, of co-nationals vs natives of the re-

ceiving country. Cultural assimilation predicts that the

first class of ties should weaken progressively, while the

latter should thrive. As a result, we expect to observe

outward movements for co-nationals and inwards move-

ments for natives inside the ego network. If this is not

the case, we can postulate poor or imperfect assimila-

tion and/or strong transnational ties linking migrants

to their origin country.

4 The return: migrants returning to the

country of origin

Migration is commonly seen as a permanent change in

residence habits. However, when considered as a tem-

porary phenomenon, several implications arise. Return

migration is increasing in several countries, i.e. Mexico

[40], China [186], Jamaica [167], Tunisia [121,120], and

Mali [43], with several effects observed. The most recent

literature almost completely agrees in underlining the
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benefits led by returning migrants. These advantages

concern a very wide range of fields and include the rise

of business activity, and the wages increase [179,180],

the improvement of educational attainment and health

conditions, the increase of electoral participation [43],

and the decrease in violence [41].

The origin country can benefit economically from

temporary migration in at least two ways [121,120].

The authors show, taking the example of Tunisia, that

money transfers from abroad to the migrant families

are a sizeable income. Secondly, new skills learned and

savings can enable return migrants to start their own

business in the origin country. The SoBigData project

also performed research in this field, with an approach

based on data journalism that resulted in a documen-

tary on return migration in Senegal: “Demal Te Niew”

[23]. Zhao [186] has analysed the determinants of return

migration and the economic behaviour of return mi-

grants in China. Its findings result partially in mild con-

trast with those already discussed. The author found

that out-migration is still dominant, while the return

migration led by both push and pull factors is limited

in scale. However, inspecting the employment-related

field, the results show that return migrants invest more

in productive farm activity. However, they do not show

higher tendencies to engage in local non-farm activities

than natives and migrants. As well as most of the lit-

erature, Zhao findings testify the return migrants key

role in the modernisation process of developing or less

rich countries.

A lot of research has been focused on the “brain

gain” provided by the return of high-skilled individuals,

i.e., scientists returning in the country of birth. Schol-

ars found that even if migration leads to a brain drain

over the short-term, return migration can contribute

to brain gain [54,180]. Moreover, the most recent re-

searches demonstrate that return migrants contribute

to the own community’s long-term well-being indepen-

dently by skills they have gained abroad [40].

Regarding the health field, Levitt et al. [111] have

investigated dynamics between social practices gained

abroad and healthcare. They show that social practices

introduced by return migrants positively affect health-

care. These results seem related to the better social

conditions of households with links to migrants and re-

turn migrants [61]. A different aspect relates to family-

related decisions of return migrants. A recent study

shows that Egyptian males returning from other Arab

countries have more children than average [32], which

could be due to the effect of the foreign culture on the

decisions of the migrant.

The impact of return migrants on their origin coun-

try governance has been examined in [43,28]. Results

show that local policies are positively affected by re-

turning migrants since these contribute to increase po-

litical participation and enhance political accountabil-

ity. Political orientation of the home community can

also be affected by the migration phenomenon. For in-

stance, for Moldova, a recent study[27] shows how West-

bound migration slowly changed the voting behaviour

leading to the fall of the communist government in 2009.

Concerning education, research results agree that

return migrants can be associated with increases and

improvement of educational attainment. Taking the ex-

ample of Mexico, Montoya et al. [128] have found an in-

crease of 26% in school attendance in households linked

to at least a return migrant. This could mean that re-

turn migrants give higher priority to education.

Although the study of return migration is a long-

standing area, most, if not all, analyses are based on

traditional data. There is however great potential in

employing novel data types such as mobile data or OSN

to study return migration, and it remains an open re-

search area.

5 Discussion and conclusions

We have discussed three lines of research where social

big data can complement existing approaches to pro-

vide small area and high-time resolution methods for

analysis of migration. In terms of estimating flows and

stocks, some research already exists trying to use social

big data to nowcast immigration. However, models still

need to be refined and validated. An important issue

here is that a proper gold standard does not exist: ex-

act current immigration rates are unknown, and those
in the past can be noisy, so validation of nowcasting

models is not straightforward. Finding the relations be-

tween policies and immigration could be a step forward

in finding means to validate model output. Another big

data type that has not been included here and that can

help make predictions in terms of migration related to

climate is satellite data. To measure migrant integra-

tion, we believe that several new data types can be used

to introduce novel integration indices, based on retail

consumer behaviour, mobile data, OSN language, sen-

timent and network analysis. Research in this direction

is slightly less developed, mostly due to low availabil-

ity of ready-to-use datasets. Our consortium is making

steps in this direction, using existing datasets, partici-

pating to data challenges or collecting new data. For the

return of migrants, again research is limited, although

potential exists in data such as retail, mobile or OSN.

In all three dimensions, research has to carefully

consider the issues with the data that is being used. It is

important that each study includes a well-planned data
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collection phase where available data are analysed to

identify gaps, and to devise strategies to fill the gaps by

integrating other types of data. This in order to ensure

that the problem being studied is thoroughly covered

by the data used. In this process, research infrastruc-

tures such as SoBigData can be of great help. On one

hand they can provide means to catalogue data, so that

new datasets are available to the community for integra-

tion. On the other hand, they enable the community to

share methods and experiences so that gaps identified

and the solutions taken to fill these gaps can be reused.

This applies not only to traditional data sources, but

also to social big data. The complexity of digital de-

mography implies that there is no free lunch with digi-

tal traces either [107]. One problem relates to the rep-

resentativeness of the collected samples. For example,

Facebook and Twitter penetration rates are different

world-wide and tend to be different depending on the

considered age of users [185]. Being unable to track spe-

cific categories of users can steer policies on migration

in a direction that unwillingly perpetuates discrimina-

tions or neglects the needs of the invisible groups. For

the above reasons, analytical and technical challenges

to extract meaning from this kind of data, in synergy

with more traditional data sources, remain an open and

very important research area, with some recent efforts

made in this direction [94]. Model validation using ex-

isting statistics and the relation to migration policies is

important. Furthermore, careful data integration could

help in overcoming some of the selection bias, resulting

in novel, multi-level indices based on big data.

A different issue is that related to the ethics dimen-

sion of processing personal data, including sensitive per-

sonal data, describing human individuals and activities.

As also stated in [188], the first rule that a researcher

must follow is to acknowledge that data are people and

can do harm. In particular, the context of migration

is very sensitive to this problem, since individuals de-

scribed in the data are often particularly vulnerable:

refugees and their families might be persecuted in their

home countries, so avoiding their re-identification is a

critical matter. Moreover, mass media and social media

impact our society and integration itself since a neg-

ative tone systematically relates to lower acceptance

rates of asylum practices [103], so extreme care has to

be taken in publishing results. Nevertheless, migration

studies can have a significant impact to improve our

society and to help the inclusion process of migrants;

thus, encouraging data sharing is one of our main goals

for achieving public good.

For all these reasons, it is essential that legal require-

ments and constraints are complemented by a solid un-

derstanding of ethical and legal views and values such as

privacy and data protection, composing an actual ethi-

cal and legal framework. To this end, a number of infras-

tructural, organizational and methodological principles

have been developed by the SoBigData Project, in or-

der to establish a Responsible Research Infrastructure,

allowing users to make full use of the functionalities and

capabilities that big data can offer to help us solve our

problems, while at the same time allowing them to re-

spect fundamental rights and accommodate shared val-

ues, such as privacy, security, safety, fairness, equality,

human dignity, and autonomy [67]. In particular, we

strongly rely on Value Sensitive Design and Privacy-

by-Design methodologies, in order to develop privacy-

enhancing technologies, privacy-aware social data min-

ing processes and privacy risk assessment methodolo-

gies. These methods are developed mainly in the fields

of mobility data (such as GPS trajectories), mobile and

retail data, which are some of the (unconventional) Big

Data used in our migration studies. Moreover, some

other general tools have been implemented to assist re-

searchers in their activities, create a new class of re-

sponsible data scientists, and inform the data subjects

and the society about our work and our goals, such as

an online course, ethics briefs, and public information

documents.
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