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THE CO-PIERI RULE FOR STABLE KRONECKER COEFFICIENTS

C. BOWMAN, M. DE VISSCHER, AND J. ENYANG

Abstract. We generalise the lattice word condition from Young tableaux to all Kronecker tableaux

and hence calculate a large new family of stable Kronecker coefficients.

Perhaps the last major open problem in the complex representation theory of symmetric groups is to

describe the decomposition of a tensor product of two simple representations. The coefficients describing

the decomposition of these tensor products are known as the Kronecker coefficients and they have been

described as ‘perhaps the most challenging, deep and mysterious objects in algebraic combinatorics’ [34].

More recently, these coefficients have provided the centrepiece of Geometric Complexity Theory (GCT),

a “new hope” [16] for settling the P versus NP problem [30]. It was recently shown that GCT requires not

only to understand the positivity, but also precise information on the explicit values of these coefficients

[10]. The positivity of Kronecker coefficients is equivalent to the existence of certain quantum systems

[22, 12, 11] and they have been used to understand entanglement entropy [13]. Much recent progress has

focussed on the stability properties enjoyed by Kronecker coefficients [4, 7, 28, 39, 41].

Whilst a complete understanding of the Kronecker coefficients seems out of reach, the purpose of

this paper is to attempt to understand the stable Kronecker coefficients in terms of oscillating tableaux.

Oscillating tableaux hold a distinguished position in the study of tensor product decompositions [42, 38,

18] but surprisingly they have never before been used to calculate Kronecker coefficients of symmetric

groups. In this work, we see that the oscillating tableaux defined as paths on the graph given in Figure 1

(which we hereafter refer to as standard Kronecker tableaux) provide bases of certain modules for the

partition algebra, Ps(n), which is closely related to the symmetric group. We hence add a new level of

structure to the classical picture — this extra structure is the key to our main result: the co-Pieri rule

for stable Kronecker coefficients.
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Figure 1. The first three layers of the branching graph Y

A momentary glance at the graph given in Figure 1 reveals a very familiar subgraph: namely Young’s

graph (with each level doubled up). The stable Kronecker coefficients labelled by triples from this

subgraph are well-understood — the values of these coefficients can be calculated via a tableaux counting

algorithm known as the Littlewood–Richardson rule [24] (see Theorems 1.6 and 1.15). This rule has long

served as the hallmark for our understanding (or lack thereof) of Kronecker coefficients. The Littlewood–

Richardson rule was discovered as a rule of two halves (as we explain below). In this paper we succeed in

generalising one half of this rule to all Kronecker tableaux, and thus solve one half of the stable Kronecker
1
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problem. Our main result unifies and vastly generalises the work of Littlewood–Richardson [25] and many

other authors [36, 37, 6, 9, 27]. Most promisingly, our result counts explicit homomorphisms and thus

works on a structural level, above any description of a family of Kronecker coefficients since those first

considered by Littlewood–Richardson over eighty years ago [25].

In more detail, given a triple of partitions (λ, ν, µ) and with |µ| = s, we have constructed a skew Ps(n)-

module spanned by the Kronecker tableaux from λ to ν of length s, which we denote by ∆s(λ→ ν) (see

[5]). For λ = ∅ and n > 2s these modules provide a complete set of non-isomorphic Ps(n)-modules (and

we drop the partition ∅ from the notation). The stable Kronecker coefficients are then interpreted as

the dimensions,

g(λ, ν, µ) = dimQ(HomPs(n)(∆s(µ),∆s(λ→ ν))) (†)

for n > 2s. Restricting to the Young subgraph, or equivalently to a triple (λ, ν, µ) of so-called maximal

depth such that |λ| + |µ| = |ν|, these modules specialise to be the usual simple and skew modules for

the symmetric group and hence the multiplicities g(λ, ν, µ) are the Littlewood–Richardson coefficients

c(λ, ν, µ). Thus we naturally recover, in this context, the well-known fact that the Littlewood–Richardson

coefficients appear as the subfamily of stable Kronecker coefficients labelled by triples of maximal depth.

The tableaux counted by the Littlewood–Richardson rule satisfy two conditions: the semistandard and

the lattice word conditions [21, (16.4)]. This rule naturally decomposes into two halves: the Pieri rule

(Theorem 1.9) encapsulates the semistandard condition (for triples in which the lattice word condition is

vacuous) and the co-Pieri rule (Theorem 1.10) which encapsulates the lattice word condition (for triples

in which the semistandard condition is vacuous). While the restrictions on partitions in both rules is

technical, each rule represents one half of the full Littlewood–Richardson rule. This article generalises

the classical co-Pieri rule to stable Kronecker coefficients.

Main Theorem. Let (λ, ν, µ) be a co-Pieri triple or a triple of maximal depth. Then the stable Kronecker

coefficient g(λ, ν, µ) is equal to the number of semistandard Kronecker tableaux of shape λ→ ν and weight

µ whose reverse reading word is a lattice word.

The observant reader will notice that the statement above describes the Littlewood–Richardson coef-

ficients uniformly as part of a far broader family of stable Kronecker coefficients (and is the first result

in the literature to do so). Whilst the classical Pieri rule is elementary, it served as a first step to-

wards understanding the full Littlewood–Richardson rule; indeed Knutson–Tao–Woodward have shown

that the Littlewood–Richardson rule follows from the Pieri rule by associativity [23]. We hope that our

generalisation of the co-Pieri rule will prove equally useful in the study of stable Kronecker coefficients.

The definition of semistandard Kronecker tableaux naturally generalises the classical notion of semi-

standard Young tableaux as certain “orbits” of paths on the branching graph given in Figure 1 (see

Section 1.2 and Definition 4.1). The lattice word condition is identical to the classical case once we gen-

eralise the dominance order to all steps in the branching graph Y to define the reverse reading word of

a semistandard Kronecker tableau (see Definition 2.5 and Section 5).

Examples of co-Pieri triples. Given that the Kronecker coefficients are some of the most difficult

objects in algebraic combinatorics, it is unsurprisingly that we have had to develop a vast new wealth

of difficult and intricate combinatorics in this paper. For an introduction to our combinatorics, we refer

the reader to the slides from the first author’s recent mini-course of three lectures at CIRM, Luminy

which can be found at [1] and to the extended abstract of this paper [3] (which reviews the combinatorics

of some elementary examples of co-Pieri triples in great detail). We have included a further wealth of

examples of both stable Kronecker and non-stable Kronecker coefficients in Section 6. For the ease of the

reader, we now list a few elementary examples of (infinite families of) co-Pieri triples:

(i) λ and ν are one-row partitions and µ is arbitrary. This family has been extensively studied over

the past thirty years and there are many distinct combinatorial descriptions of some or all of

these coefficients [2, 36, 37, 6, 9, 27], none of which generalises.

(ii) the two skew partitions λ \ (λ ∩ ν) and ν \ (λ ∩ ν) have no two boxes in the same column and

|µ| = max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|}. It is easy to see that if, in addition, (λ, ν, µ) is a triple of

maximal depth, then this case specialises to the classical co-Pieri triples.

(iii) λ = ν = (dl, d(l − 1), . . . , 2d, d) for any l, d > 1 and |µ| 6 d.
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(iv) The full definition of a co-Pieri triple is given in Definition 3.10. It can be encapsulated by

the idea that we only wish to consider triples (λ, ν, s) for which the action of the algebra is by

permutation matrices.

As already observed, our description covers the family of stable Kronecker coefficients labelled by

co-Pieri triples uniformly along with the Littlewood–Richardson coefficients. In order to demonstrate

the uniformity of our approach, we now illustrate how to calculate g((2, 1), (3, 3, 2), (2, 2, 1)) = 1 and

g((4), (5), (2, 2, 1)) = 1. The former is an example of a triple of maximal depth (and so is calculated by

the Littlewood–Richardson rule) and the latter is an example of a coefficient indexed by two one-row

partitions. In both cases, there is a unique semistandard Kronecker tableau whose reverse reading word

is a lattice word (under the dominance ordering on Kronecker tableaux). Each of these semistandard

tableaux is an orbit consisting of four individual standard Kronecker tableaux. These tableaux are

pictured in Figure 2: notice that λ and ν appear at the top and bottom of the diagram in Figure 2 and

that the partition µ determines the orbit — which we depict as a dashed series of rectangular frames.

This is explained in detail Sections 1, 2, 5 and 6 of the paper (but we hope this lightly sketched example

helps the reader). We have included a third example in Figure 2 of a co-Pieri triple as in (ii), to help the

reader get a more general picture (the corresponding stable Kronecker coefficient is calculated in Section

6).

1st frame

2 steps in

2nd frame

2 steps in

3rd frame

1 step in

−0

+2+1

−0 −0

+2 +1

−0

+3+2

−0 −0

+3 +2

−0

+3

−1

+1+0

−1 −1

+1 +0

−1 −0

+1+1

−0 −1

+1

−0

+1

−1 −4

+0+0

−4 −1

+0 +0

−1 −2

+3+0

−2 −1

+3 +0

−2

+3

Figure 2. Three examples of semistandard Kronecker tableaux of weight µ = (2, 2, 1). The number of

steps in the ith frame is µi. The first is a triple of maximal depth, the latter two are co-Pieri triples.

For λ = (2, 1) and ν = (3, 2, 2), the (integral) steps taken in the semistandard tableau on the left of

Figure 2 are to add a box in the first row, add two boxes in the second row, and two in the third row

a(1) = (−0,+1) a(2) = (−0,+2) a(2) = (−0,+2) a(3) = (−0,+3) a(3) = (−0,+3).

We record the steps according to the dominance ordering for Kronecker tableaux (a(1) < a(2) < a(3))

and then we refine this by recording the frames in which these steps occur in weakly decreasing fashion,
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as follows (
a(1) a(2) a(2) a(3) a(3)

1 2 1 3 2

)
.

This should be very familiar to experts, who will also recognise that the resulting word is a lattice word.

For λ = (4) and ν = (5), the steps taken in the semistandard Kronecker tableau in the middle of Figure 2

are to remove a box from the first row, do two “dummy” steps in the first row, and add two boxes in

the first row

r(1) = (−1,+0) d(1) = (−1,+1) d(1) = (−1,+1) a(1) = (−0,+1) a(1) = (−0,+1).

We record the steps according to our ‘generalised dominance ordering’ for Kronecker tableaux r(1) <

d(1) < a(1) (see Definition 2.5) and we refine this by recording the frames in which these steps occur

backwards, (
r(1) d(1) d(1) a(1) a(1)

1 2 1 3 2

)
and notice that the second row is again a lattice word (and identical to the previous example!).

Structure of the paper. In Section 1 we recall the classical tableaux combinatorics of the Littlewood–

Richardson rule; we re-cast the notion of a semistandard tableau in a manner which will be generalisable

from the symmetric group to the partition algebra setting. We then recall some well-known facts con-

cerning Kronecker coefficients which will be used in what follows. In Section 2, we define a standard

Kronecker tableau of shape λ → ν to be a path from λ to ν in the branching graph of the partition

algebra. For triples of maximal depth, our definition specialises to the usual definition of (skew) Young

tableaux.

In Section 3 we describe the action of the partition algebra on skew cell modules of shape λ → ν in

the case of co-Pieri triples. That we can understand the action of the partition algebra in this case is the

crux of this paper. However, for reasons of readability (particularly for a non-diagrammatic audience)

we have delayed some of the proofs to Appendices A and B. In Section 4, we define a semistandard

Kronecker tableau of shape λ → ν and weight µ to be an orbit of standard Kronecker tableaux under

the action of the corresponding Young subgroups Sµ. For a triple of partitions of maximal depth, our

construction specialises to the usual definition of semistandard Young tableaux. In the case that (λ, ν, µ)

is a co-Pieri triple we are able to provide an elegant combinatorial description of these semistandard

Kronecker tableaux.

In Section 5, using an ordering on the steps in the branching graph of the partition algebra we define

the reverse reading word of a semistandard Kronecker tableau. We hence extend the classical lattice word

condition to semistandard Kronecker tableaux. When (λ, ν, µ) is a co-Pieri triple of partitions, we show

that the corresponding stable Kronecker coefficient is equal to the number of semistandard Kronecker

tableaux whose reverse reading word is a lattice word, generalising the Littlewood–Richardson rule to

give the co-Pieri rule for stable Kronecker coefficients. Section 6 is dedicated to providing examples of

Kronecker coefficients which can be calculated using our main theorem.

Acknowledgements. The authors are grateful for the financial support received from the Royal Commis-

sion for the Exhibition of 1851 and EPSRC grant EP/L01078X/1.

1. The Littlewood–Richardson and Kronecker coefficients

The combinatorics underlying the representation theory of the partition algebras and symmetric

groups is based on compositions and partitions. A composition λ of n, denoted λ � n, is a sequence

of non-negative integers which sum to n. If the sequence is weakly decreasing, we write λ ` n and refer

to λ as a partition of n. We let Pn denote the set of all partitions of n. We let ∅ denote the unique

partition of 0. Given a partition, λ = (λ1, λ2, . . . ), the associated Young diagram is the set of nodes

[λ] =
{

(i, j) ∈ Z2
>0 | j 6 λi

}
.

We will often identify a partition with its Young diagram. We define the length, `(λ), of a partition λ,

to be the number of non-zero parts. Given λ = (λ1, λ2, . . . ), we let |λ|a =
∑a
i>1 λi for a ∈ Z>0 and

|λ| =
∑
i>1 λi. We formally set |λ|0 = λ0 = 0. Given two partitions λ, µ we say that λ dominate µ and

write λ D µ if |λ| < |µ| or if |λ| = |µ| and |λ|a > |µ|a for all a ∈ Z>0.
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Given λ = (λ1, λ2, . . . , λ`) a partition and n an integer, define

λ[n] = (n− |λ|, λ1, λ2, . . . , λ`).

Given λ[n] a partition of n, we say that the partition has depth equal to |λ|. Given two compositions λ

and ν, we write λ ⊆ ν if λi 6 νi for all i > 1. For λ a partition and ν a composition such that λ ⊆ ν, we

define the skew diagram, denoted ν \ λ, to be the set difference between the Young diagrams of λ and ν.

If |ν| − |λ| = s, we will also write ν \ λ ` s and call ν \ λ is a skew partition of s.

1.1. Young tableaux combinatorics and the Littlewood–Richardson rule. Given λ ` r − s, ν ` r
such that λ ⊆ ν we define a standard Young tableau of shape ν \λ to be a filling of the boxes of ν \λ, with

the entries 1, . . . , s in such a way that the entries are increasing along the rows and columns of ν \ λ.

Example 1.1. The six standard Young tableaux of shape (5, 3, 1) \ (4, 2) are depicted in Figure 3.

3

1

2

3

2

1

1

3

2

2

3

1

1

2

3

2

1

3

Figure 3. The standard Young tableaux s1, s2, t1, t2, u1, u2 of shape (5, 3, 1) \ (4, 2).

Given λ ` r − s, ν ` r, µ = (µ1, µ2, . . . , µ`) � s such that λ ⊆ ν we define a Young tableau of shape

ν \ λ and weight µ to be a filling of the boxes of ν \ λ with the entries

1, . . . , 1︸ ︷︷ ︸
µ1

, 2, . . . , 2︸ ︷︷ ︸
µ2

, . . . , `, . . . , `︸ ︷︷ ︸
µ`

in such a way that the entries are weakly increasing along the rows and columns. We say that the Young

tableau is semistandard if, in addition, the entries are strictly increasing along the columns of ν \ λ. In

the case that λ ` r − s, ν ` r and µ = (1s), we note that these are the standard Young tableaux of shape

ν \ λ.

One should think of a Young tableau of weight µ as an Sµ-orbit of standard Young tableaux; we

shall now make this idea more precise. Let s be a standard Young tableau of shape ν \ λ and let µ be a

composition. Then define µ(s) to be the Young tableau of weight µ obtained from s by replacing each of

the entries |µ|c−1 < i 6 |µ|c in s by the entry c for c > 1. We identify a Young tableau, S, of weight µ

with the set of standard Young tableaux, µ−1(S) = {s | µ(s) = S}. The set µ−1(S) forms the basis of a

cyclic Sµ-module with generator given by any element s ∈ µ−1(S) (see [29, Chapter 4] for more details).

Example 1.2. The three semistandard Young tableaux of shape (5, 3, 1) \ (4, 2) and weight (2, 1) are

depicted in Figure 4. We have that µ(s1) = µ(s2) = S, µ(t1) = µ(t2) = T, and µ(u1) = µ(u2) = U. In

each case, the non-trivial element s1 ∈ S(2,1) ⊆ S3 acts by permuting these pairs of Young tableaux

(and therefore acts trivially on the orbits sums in each case).

2

1

1

1

2

1

1

1

2

Figure 4. The semistandard Young tableaux S,T,U of shape (5, 3, 1) \ (4, 2) and weight (2, 1).

Example 1.3. An example of a semistandard Young tableaux, S, of shape (9, 8, 6, 3)\(6, 4, 3) and weight

(5, 5, 3) is given by the leftmost Young tableau depicted in Figure 5. Two standard Young tableaux, s and

t, of shape (9, 8, 6, 3) \ (6, 4, 3) are depicted in Figure 5. For µ = (5, 5, 3), we have that µ(s) = µ(t) = S.

Definition 1.4. Given a semistandard Young tableau of shape ν \λ and weight µ, we define the reverse

reading word to be the sequence of integers obtained by reading the entries of the Young tableau from

right-to-left along successive rows (beginning with the first row).
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1 1 2

2 2 2 3

2 3 3

1 1 1

1 2 6

7 8 9 11

10 12 13

3 4 5

1 4 8

6 7 10 13

9 11 12

2 3 5

Figure 5. Three semistandard Young tableau of shape (9, 8, 6, 3) \ (6, 4, 3). The first, S, is of weight

(5, 5, 3) and the second, s, and third, t, are standard Young tableaux.

Example 1.5. The reverse reading words of the standard Young tableaux in Example 1.1 are

(3, 1, 2) (3, 2, 1) (1, 3, 2) (2, 3, 1) (1, 2, 3) (2, 1, 3)

respectively. The reverse reading word of the semistandard Young tableau S in Example 1.3 is

(2, 1, 1, 3, 2, 2, 2, 3, 3, 2, 1, 1, 1).

The representation theory of the symmetric group Sr over the rational field Q is semisimple. For

each ν ` r, we have a corresponding Specht module S(ν) which has a basis indexed by all standard

Young tableaux of shape ν. The set {S(ν) | ν ∈ Pr} forms a complete set of non-isomorphic simple

QSr-modules. More generally, for s 6 r and λ ` r− s with λ ⊆ ν, we have a corresponding skew Specht

module S(ν \ λ) for QSs which has a basis indexed by standard Young tableaux of shape ν \ λ [35].

Theorem 1.6. [20] Let λ ` r − s, µ ` s and ν ` r and suppose that λ ⊆ ν. We define the Littlewood–

Richardson coefficients to be the multiplicities,

c(λ, ν, µ) = dimQ HomSr−s×Ss(S(λ)� S(µ),S(ν)↓SrSr−s×Ss) = dimQ HomSs(S(µ),S(ν \ λ)). (1.1)

The Littlewood–Richardson coefficient, c(λ, ν, µ), is equal to the number of Young tableaux of shape ν \λ
and weight µ satisfying the following two conditions,

(1) the Young tableau is semistandard;

(2) the reverse reading word of the Young tableau is a lattice word, that is, for each positive integer

j, starting from the first entry of the word to any other place in word, there are at least as many

entries equal to j as there are equal to (j + 1).

Example 1.7. The Young tableau of shape (9, 8, 6, 3) \ (6, 4, 3) and weight (5, 5, 3) depicted in Figure 5

is semistandard but its (5, 5, 3)-reverse reading word is not a lattice word.

Example 1.8. The three semistandard Young tableaux of shape (5, 3, 1) \ (4, 2) and weight (2, 1) are

depicted in Figure 4. Only the latter two of these Young tableaux satisfy condition (2) of Theorem 1.6.

Therefore c((5, 3, 1), (4, 2), (2, 1)) = 2.

A famous precursor to the full Littlewood–Richardson rule was provided by Pieri’s rule. In this case,

we assume that the weight partition µ = (s). This is equivalent to all Young tableaux of weight µ (and

any arbitrary fixed shape) satisfying condition (2) of Theorem 1.6. Therefore the following rule, while

elementary, serves as a first step towards understanding condition (1) of Theorem 1.6.

Theorem 1.9 (The classical Pieri rule). Let λ ` r − s and ν ` r be such that λ ⊆ ν. We have that

c(λ, ν, (s)) = dimQ HomQSs(S((s)),S(ν \ λ))

is equal to the number of semistandard Young tableaux of shape ν \λ and weight (s). The number of such

Young tableaux is equal to 1 (respectively 0) if ν is (respectively is not) obtained from λ by adding a total

of s nodes, no two of which appear in the same column.

We now consider a dual to the above case, which we refer to as the co-Pieri rule. Here we assume

that the Young diagram of ν \ λ consists of no two nodes in the same column. This is equivalent to all

Young tableaux of shape ν \ λ (and any arbitrary fixed weight) satisfying condition (1) of Theorem 1.6.

Therefore the following rule serves as a first step towards understanding condition (2) of Theorem 1.6.

Theorem 1.10 (The classical Co-Pieri rule). Suppose that λ ⊆ ν and that ν \ λ is a skew partition of s

with no two nodes in the same column. We have that

c(λ, ν, µ) = dimQ HomQSs(S(µ),S(ν \ λ))
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is equal to the number of Young tableaux of shape ν \ λ and weight µ whose reverse reading word is a

lattice word.

To reiterate, Theorem 1.9 describes precisely the set of Littlewood–Richardson coefficients which can

be calculated without mention of the lattice word condition; whilst Theorem 1.10 describes precisely the

set of Littlewood–Richardson coefficients which can be calculated without mention of the semistandard-

ness condition.

1.2. Young tableaux combinatorics revisited. In the next section, we shall see that the Littlewood–

Richardson coefficients appear as a subfamily of the wider class of (stable) Kronecker coefficients. The

purpose of this paper is to generalise the combinatorics of standard and semistandard Young tableaux

from this subclass to the study of all (stable) Kronecker coefficients. In order to illustrate how we shall

proceed, we first recast the pictorial Young tableaux described earlier in the setting of the branching

graph of the symmetric groups.

The branching graph of the symmetric groups encodes the induction and restriction of Specht modules

for the tower of symmetric groups. For k ∈ Z>0, the set of vertices on the kth level are given by the set

of partitions of k. There is an edge λ → µ if µ is obtained from λ by adding a box in the ith row for

some i > 1 in which case we write µ = λ+ εi. The first few levels of this graph are given in Figure 6.

∅

Figure 6. The first few levels of the branching graph of the symmetric groups.

One can then identify any skew standard Young tableau of shape ν \λ with a path from λ to ν in the

branching graph; this is done simply by adding nodes in the prescribed order. This is best illustrated

via an example.

Example 1.11. Let λ = (4, 2) and ν = (5, 3, 1). We have six standard Young tableaux of shape ν \ λ.

Two of these Young tableaux are as follows:

s1 =
(

+ε2−−−−→ +ε3−−−−→ +ε1−−−−→
)

s2 =
(

+ε3−−−−→ +ε2−−−−→ +ε1−−−−→
)

These paths correspond with the two leftmost Young tableaux (also labelled by s1 and s2) depicted in

Figure 3.

We now wish to re-imagine the notion of a semistandard Young tableaux in this setting. Recall that

a Young tableau of weight µ is merely a picture which encodes an Sµ-orbit of standard Young tableaux.

We shall picture a Young tableau, S, of weight µ simply as the corresponding set of paths µ−1(S) in the

branching graph. In order to highlight the weight of the Young tableau, we shall decorate the graph

with a corresponding series of frames. An illustrative example is given in Figure 7. A Young tableau is

semistandard (in the classical picture) if and only if the entries are strictly increasing along the columns;

equivalently the successive differences between partitions on the edges of the frame have no two nodes

in the same column. While we have refrained from being too precise here, a more general definition of

such a tableau is made in Section 4.

We leave the reinterpretation of the reverse reading word in this setting to Section 5.
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+2
+3

+3 +2

+1

+1
+3

+3 +1

+2

+1
+2

+2 +1

+3

Figure 7. The 3 semistandard Young tableaux S,T,U of shape (5, 3, 1) \ (4, 2) and weight (2, 1).

1.3. The Kronecker coefficients. We now introduce the Kronecker coefficients and illustrate how

they generalise the Littlewood–Richardson coefficients discussed above. Given λ, µ, ν ` r we define the

associated Kronecker coefficient to be the multiplicity

g(λ, ν, µ) = dimQ(HomSr (S(ν),S(λ)⊗ S(µ))).

For α ⊂ λ ,β ⊂ µ with |λ \ α| = |µ \ β| = s and ν ` s we extend this notation to skew Specht modules

in the obvious way,

g(λ \ α, ν, µ \ β) = dimQ(HomSs(S(ν),S(λ \ α)⊗ S(µ \ β))).

Given λ = (λ1, λ2, . . .) a partition and n sufficiently large, we set λ[n] := (n − |λ|, λ1, λ2, . . .). It was

discovered by Murnaghan in [31] that the sequence of integers {g(λ[n], µ[n], ν[n])}n∈Z>0
stabilises as n� 0

with stable limit that is denoted g(λ, ν, µ) and called the stable Kronecker coefficient. In other words,

g(λ, ν, µ) = dimQ(HomSn(S(ν[n]),S(λ[n])⊗ S(µ[n])))

for n� 0. Murnaghan also observed that

g(λ, ν, µ) 6= 0 implies |µ| 6 |λ|+ |ν|, |ν| 6 |λ|+ |µ| and |λ| 6 |µ|+ |ν|. (1.2)

The (stable) Kronecker coefficients have been studied extensively (see for example [31, 32, 8, 22, 43]).

Recent work [6, 7, 4] has shown that the stable Kronecker coefficients can serve as an important stepping

stone towards understanding the general case.

The search for a positive combinatorial formula of the Kronecker coefficients has been described by

Richard Stanley as ‘one of the main problems in the combinatorial representation theory of the symmetric

group’, [40]. While this is a very difficult problem, there are many useful descriptions of the Kronecker

coefficients which do involve cancellations; chief among these is the following recursive description.

Theorem 1.12. [14, 2.3]. Given λ[n], µ[n], ν[n] ` n such that |µ| = s, we have that

g(λ[n], ν[n], µ[n]) =
∑

α`n−s
α⊆λ[n]∩ν[n]

g(λ[n] \ α, ν[n] \ α, µ)−
∑

β∈P (n,µ)
β 6=µ[n]

g(λ[n], ν[n], β) (1.3)

where P (n, µ) is the set of partitions of n obtained by adding a total of n− s boxes to µ so that no two

of which are in the same column. In particular, if s < |λ[n] \ (λ[n] ∩ ν[n])| then g(λ[n], ν[n], µ[n]) = 0 and

if s = |λ[n] \ (λ[n] ∩ ν[n])| then

g(λ[n], ν[n], µ[n]) = g(λ[n] \ (λ[n] ∩ ν[n]), ν[n] \ (λ[n] ∩ ν[n]), µ). (1.4)

Corollary 1.13. Let λ, ν, µ be partitions with g(λ, ν, µ) 6= 0. Then we have

max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|} 6 |µ| 6 |λ|+ |ν|.

Proof. This follows directly from (1.2) and Theorem 1.12, noting that max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|} =

|λ[n] \ (λ[n] ∩ ν[n])|. �
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Finally, we conclude this section by realising the Littlewood–Richardson coefficients as a subset of the

wider family of stable Kronecker coefficients.

Definition 1.14. Let λ, ν, µ be partitions. We say that (λ, ν, µ) is a triple of partitions of maximal depth

if |ν| = |λ|+ |µ|. We also call (λ, ν, s) a triple of of maximal depth if |ν| = |λ|+ s.

Theorem 1.15. [24, 32] For (λ, ν, µ) a triple of partitions of maximal depth, g(λ, ν, µ) = c(λ, ν, µ).

2. The partition algebra and Kronecker tableaux

We now define the partition algebra Pr(n) for r, n ∈ N. Although it can be defined over any field,

in this paper we consider Pr(n) over the rational field Q. As a vector space, it has a basis given by all

set-partitions of {1, 2, . . . , r, 1, 2, . . . , r}. We call a part of a set-partition a block. For example,

d = {{1, 2, 4, 2, 5}, {3}, {5, 6, 7, 3, 4, 6, 7}, {8, 8}, {1}},

is a set-partition (for r = 8) with 5 blocks. To define the multiplication on Pr(n), it is helpful to represent

a set-partition by an partition diagram consisting of a frame with r distinguished points on the northern

and southern boundaries, which we call vertices. We number the northern vertices from left to right by

1, 2, . . . , r and the southern vertices similarly by 1, 2, . . . , r and connect two vertices by an edge if they

belong to the same block. Note that such a diagram is not uniquely defined, two diagrams representing

the set-partition d above are given in Figure 8.

3

3

2

2

1

1

4

4

5

5

6

6

7

7

8

8

3

3

2

2

1

1

4

4

5

5

6

6

7

7

8

8

Figure 8. Two representatives of the set-partition d.

We define the product x · y of two diagrams x and y using the concatenation of x above y, where we

identify the southern vertices of x with the northern vertices of y. If there are t connected components

consisting only of middle vertices, then the product is set equal to nt times the diagram with the middle

components removed. Extending this by linearity defines the multiplication on Pr(n). It is easy to see

that Pr(n) is generated (as an algebra) by the elements sk,k+1, pk+ 1
2

(1 6 k 6 r− 1) and pk (1 6 k 6 r)
depicted in Figure 9. We define ∗ to be the anti-involution given by flipping a diagram through its

horizontal axis.

sk,k+1 =

k

k

pk =

k

k

pk+ 1
2

=

k

k

Figure 9. Generators of Pr(n)

The elements sk,k+1 (1 6 k 6 r − 1) generate the subalgebra QSr ⊂ Pr(n). In particular, each

permutation σ ∈ Sr corresponds to the set partition {{1̄, σ(1)}, {2̄, σ(2)}, . . . , {r̄, σ(r)}}.

2.1. Standard Kronecker tableaux. The branching graph, Y, of the partition algebras encodes the

induction and restriction of cell modules for the tower of partition algebras. We will construct the cell

modules explicitely later in this section.

For k ∈ Z>0, we denote by P6k the set of partitions of degree less or equal to k. Now the set of

vertices on the kth and (k + 1
2 )th levels of Y are given by

Yk = {(λ, k − |λ|) | λ ∈P6k} Yk+ 1
2

= {(λ, k − |λ|) | λ ∈P6k}.

The edges of Y are as follows,
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◦ for (λ, l) ∈ Yk and (µ,m) ∈ Yk+ 1
2

there is an edge (λ, l)→ (µ,m) if µ = λ, or if µ is obtained from λ

by removing a box in the ith row for some i > 1; we write µ = λ− ε0 or µ = λ− εi, respectively.

◦ for (λ, l) ∈ Yk+ 1
2

and (µ,m) ∈ Yk+1 there is an edge (λ, l)→ (µ,m) if µ = λ, or if µ is obtained from

λ by adding a box in the ith row for some i > 1; we write µ = λ+ ε0 or µ = λ+ εi, respectively.

When it is convenient, we decorate each edge with the index of the node that is added or removed when

reading down the diagram. The first few levels of Y are given in Figure 1. When no confusion is possible,

we identify (λ, l) ∈ Yk with the partition λ.

Definition 2.1. Given λ ∈Pr−s ⊆ Yr−s and ν ∈P6r ⊆ Yr, we define a standard Kronecker tableau of

shape λ→ ν and degree s to be a path t of the form

λ = t(0)→ t( 1
2 )→ t(1)→ · · · → t(s− 1

2 )→ t(s) = ν, (2.1)

in other words t is a path in the branching graph which begins at λ and terminates at ν. We let

Stds(λ→ ν) denote the set of all such paths. If λ = ∅ ∈ Y0 then we write Stdr(ν) instead of Stdr(∅→ ν).

For λ ∈ Yr−s, ν ∈ Yr, s ∈ Stdr−s(λ) and t ∈ Stds(λ→ ν), we denote the composition of these paths

by s ◦ t ∈ Stdr(ν). Also, for t ∈ Stds(λ→ ν) as in (2.1) and 0 6 m < m′ 6 s we denote by t[m,m′] the

truncation t(m)→ t(m+ 1
2 )→ · · · → t(m′).

Note that we have used the notation λ→ ν, instead of ν \ λ, as we do not have λ ⊆ ν in general.

Remark 2.2. For (λ, ν, s) a triple of maximal depth, the set Stds(λ → ν) can be identified with the set

of standard skew Young tableau of shape ν \ λ for the symmetric group (see Example 2.4 below).

We now extend the dominance order on partitions to the set of standard Kronecker tableaux.

Definition 2.3. For s, t ∈ Stds(λ→ ν), we write s D t if s(k) D t(k) for k = 1, . . . , s.

Example 2.4. Let λ = (4, 2) and ν = (5, 3, 1). We have six standard Kronecker tableaux of shape

λ→ ν and degree 3. Two of these tableaux are as follows:

s1 =
(

−ε0−−−−→ +ε2−−−−→ −ε0−−−−→ +ε3−−−−→ −ε0−−−−→ +ε1−−−−→
)

s2 =
(

−ε0−−−−→ +ε3−−−−→ −ε0−−−−→ +ε2−−−−→ −ε0−−−−→ +ε1−−−−→
)

We remark that s1 B s2. These paths correspond with the two leftmost Young tableaux (also labelled

by s1 and s2) depicted in Figure 3 and Example 1.11.

One can think of a path t ∈ Stds(λ→ ν) as a sequence of partitions; or equivalently, as the sequence

of boxes added and removed. We shall refer to a pair of steps, (−εa,+εb), between consecutive integral

levels of the branching graph as an integral step in the branching graph. We order integral steps as

follows.

Definition 2.5. We define three types of integral step in the branching graph of Pr(n)

(1) move-up m↑(p, q) := (−εp,+εq) for p > q,

(2) dummy d(t) := (−εt,+εt), and

(3) move-down m↓(u, v) := (−εu,+εv) for u < v.

We order them as follows

m↑(p, q) < d(t) < m↓(u, v)

and we refine this to a total order by setting

• m↑(p, q) < m↑(p′q′) if q < q′ or q = q′ and p > p′;

• d(t) < d(t′) if t > t′;

• m↓(u, v) < m↓(u′v′) if u > u′ or u = u′ and v < v′.

We sometimes let a(i) := m↓(0, i) (respectively r(i) := m↑(i, 0)) and think of this as adding (respectively

removing) a box.
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2.2. The Murphy basis. We shall now recall from [15] the construction of an integral basis of the

partition algebra indexed by (pairs of) paths in the branching graph. This basis captures much of the

representation theoretic structure of Pr(n) and naturally generalises Murphy’s basis of ZSr [33]. The

construction inductively associates two elements of the partition algebra, called branching coefficients, to

each edge in the branching graph. These branching coefficients are defined using the following elements.

Definition 2.6. We define elements of Pr(n) as follows

e
(l)

k+ 1
2

= pk−l+ 3
2
· · · pk− 1

2
pk+ 1

2︸ ︷︷ ︸
l factors

e
(l)
k = pk−l+1 · · · pk−1pk︸ ︷︷ ︸

l factors

sl,k = sl,l+1 · · · sk−1,k︸ ︷︷ ︸
k − l factors

for 1 6 l 6 k < r in the first case and Let 1 6 l 6 k 6 r in the second and third cases. If k = 0 or l = 0,

we let e
(l)
k = e

(l)

k− 1
2

= 1. For 1 6 k < l 6 r we let sl,k = s−1
k,l . If l = 0 or k = 0, we let sl,k = 1 and if l < 0

or k < 0 we let sl,k = 0. These elements are depicted in Figure 10.

e
(l)
k =

l

k

e
(l)

k+ 1
2

=

l + 1

k

sl,k =

l

l

k

k

Figure 10. The elements e
(l)
k and e

(l)

k+ 1
2

and sl,k. (If k = 0 or l = 0, we let e
(l)
k = e

(l)

k+ 1
2

= 1.)

The following definition is lifted from [15, Section 6.5] (but we have applied the involution ∗ to their

conventions, in other words we have flipped the diagrams through their horizontal axes).

Definition 2.7. Let 0 6 k 6 r − 1 and t be a standard Kronecker tableau of degree r such that

t(k)
−a−−→ t(k + 1

2 )
+b−−→ t(k + 1)

for a, b > 0. We set t(k) = λ, t(k + 1
2 ) = µ, t(k + 1) = ν and we define the up branching coefficients,

ut(k)→t(k+ 1
2 ) = e

(k−|µ|)
k+ 1

2

s|λ|,|λ|a and ut(k+ 1
2 )→t(k+1) = e

(k+1−|ν|)
k+1

(
νb−1∑
i=0

s|ν|b−i,|ν|b

)
s|ν|b,|ν|

and the down branching coefficients,

dt(k)→t(k+ 1
2 ) = e

(k−|λ|)
k

(
λa−1∑
i=0

s|λ|a−i,|λ|a

)
s|λ|a,|λ| and dt(k+ 1

2 )→t(k+1) = e
(k−|µ|)
k+ 1

2

s|ν|,|ν|b .

Note that in the above definition we take the convention that sa,b = 1 if either a = 0 or b = 0 (recall

that for any partition λ we set λ0 = |λ|0 = 0). Moreover, we set any empty summation equal to 1 (in

particular any sum of the form
∑−1
i=0 is equal to 1). Given ν ∈ Yr and t ∈ Stdr(ν) we let

dt = dt(0)→t( 1
2 )dt( 1

2 )→t(1) · · · dt(r− 1
2 )→t(r) and ut = ut(r− 1

2 )→t(r) · · ·ut( 1
2 )→t(1)ut(0)→t( 1

2 ).

We now provide two examples of branching coefficients to illustrate the manner in which adding/removing

a box in the branching graph is reflected in this construction.

Example 2.8. Intuitively, one should think of the “adding a box” up-coefficients as first pulling the

strand past lower rows and then averaging over the length of the row in which the box is added. For

example if t(4+ 1
2 ) = ((2, 2), 4+ 1

2 )) ∈ Y4+ 1
2

and t(5) = ((3, 2), 5)) ∈ Y5 then the new box (corresponding

to the 5th strand) is moved past the second row (corresponding to the 3 and 4 strands) and added to

the first row (by averaging over the first two strands). This is depicted in Figure 11 below.

Example 2.9. Intuitively, one should think of the “removing a box” up-coefficients as removing a box

from the end of a row. For example if t(5) = ((3, 2), 5) ∈ Y4+ 1
2

and t(5 + 1
2 ) = ((2, 2), 5 + 1

2 )) ∈ Y5 then

we remove the box at the end of row 1 (corresponding to the 3 strand) and then add enough arcs along

the top row. This is depicted in Figure 12 below.
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u((22),4+ 1
2 )→((3,2),5) =

3 2

2 2

+

3 2

2 2

+

3 2

2 2

Figure 11. The up branching coefficient for t(4+ 1
2 ) = ((2, 2), 4+ 1

2 )) ∈ Y4+ 1
2

and t(5) = ((3, 2), 5)) ∈ Y5.

The bottom of the diagram corresponds to the partition (22) on 4 strands and the top corresponds to

(3, 2) on 5 strands. In particular in this example the term e
(k+1−|ν|)
k+1 = 1.

u((3,2),5)→((22),5+ 1
2 ) = e

(1)

5+ 1
2

s5,3 =

3 2

2 2

Figure 12. The up branching coefficient for t(5) = ((2, 2), 5)) ∈ Y5 and t(5+ 1
2 ) = ((22), 5+ 1

2 )) ∈ Y5+ 1
2
.

The bottom of the diagram corresponds to the partition (3, 2) on 4 strands and the top corresponds to

(22) on 5 strands (note we have one strand too many and we fill this up with an arc using the quasi-

idempotent).

The motivation for constructing these branching coefficients comes from the fact that they give an

integral cellular basis for the partition algebra.

Theorem 2.10 ([15, Section 6.5]). The algebra Pr(n) has an integral basis

{dsut | s, t ∈ Stdr(ν), ν ∈P6r}.

Moreover, if s, t ∈ Stdr(ν) for some ν ∈ P6r, and a ∈ Pr(n) then there exist scalars rtu(a), which do

not depend on s, such that

dsuta =
∑

u∈Stdr(ν)

rtu(a)dsuu (mod PBν
r (n)), (2.2)

where PBν
r (n) is the Q-submodule of Pr(n) spanned by

{dqur | µ B ν and q, r ∈ Stdr(µ)}.

Finally, we have that (dsut)
∗ = dtus, for all ν ∈ P6r and all s, t ∈ Stdr(ν). Therefore the algebra is

cellular, in the sense of [19].

Remark 2.11. The subalgebra spanned by {dsut | s, t ∈ Stdr(α), α ∈P6r−1 ⊂P6r} is equal to the 2-

sided ideal generated by the element pr ∈ Pr(n) depicted in Figure 9. The resulting integral cellular

structure on the quotient QSr
∼= Pr(n)/Pr(n)prPr(n) is the basis of [33].

Lemma 2.12. For any ν = (ν1, . . . , ν`) ∈P6r, if we take s to be the Kronecker tableau of the form

a(1) ◦ · · · ◦ a(1)︸ ︷︷ ︸
ν1

◦ a(2) ◦ · · · ◦ a(2)︸ ︷︷ ︸
ν2

◦ · · · ◦ a(`) ◦ · · · ◦ a(`)︸ ︷︷ ︸
ν`

◦ ◦ d(0) ◦ d(0) ◦ · · · ◦ d(0)︸ ︷︷ ︸
r−|ν|

then for any t ∈ Stdr(ν), we have that dsut = x(ν,r)d
∗
t = ut where x(ν,r) = e

(r−|ν|)
r

∑
g∈Sν g.

Proof. We have that ds = e
(r−1−|ν|)
r−1 e

(r−1−|ν|)
r− 1

2

. Now, for any t ∈ Stdr(ν), we have

ut = er−|ν|r

∑
g∈Sν

gd∗t
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by [15, Lemma A.1] and [15, Section 6]. So we have

dsut = e
(r−1−|ν|)
r−1 e

(r−1−|ν|)
r− 1

2

er−|ν|r

∑
g∈Sν

gd∗s = er−|ν|r

∑
g∈Sν

gd∗s = ut

as required. �

Thus, using Theorem 2.10 and Lemma 2.12 we can make the following definition.

Definition 2.13. Given any ν ∈ P6r, the cell module ∆r(ν) is the right Pr(n)-module with basis

{mt = ut + P�ν
r (n) | t ∈ Stdr(ν)}. The action of Pr(n) on ∆r(ν) is given by

mta =
∑

u∈Stdr(ν)

rtu(a)mu,

where the scalars rtu(a) are the scalars appearing in equation (2.2).

Remark 2.14. For ν ∈Pr ⊆ Yr the module ∆r(ν) is isomorphic to the Specht module S(ν) of Sr lifted

to Pr(n) via the isomorphism QSr
∼= Pr(n)/Pr(n)prPr(n).

Example 2.15. Let us start with the cell module ∆3((2, 1)) = S((2, 1)) lifted to P3(n). There are two

standard Kronecker tableaux in Std3((2, 1)), namely

s =
(
∅ −ε0−−−−→ ∅ +ε1−−−−→ −ε0−−−−→ +ε1−−−−→ −ε0−−−−→ +ε2−−−−→

)
t =

(
∅ −ε0−−−−→ ∅ +ε1−−−−→ −ε0−−−−→ +ε2−−−−→ −ε0−−−−→ +ε1−−−−→

)
.

All the branching coefficients coreesponding to edges in these tableaux are equal to 1 except for

us(1+ 1
2 )→s(2) = 1 + s1,2 and ut(2+ 1

2 )→t(3) = (1 + s1,2)s2,3. So we have

us = + ut = +

and {ms = us + P
�(2,1)
3 (n),mt = ut + P

�(2,1)
3 (n)} form a basis for ∆3((2, 1)) (which is indeed the

classical Murphy basis).

Example 2.16. We now use Definition 2.7 to construct a basis for the cell module ∆2((1)) for P2(n).

We have three elements t1, t2, t3 in Std2((1)) totally ordered by t1 � t2 � t3 and given by

t1 =
(
∅ −ε0−−−−→ ∅ +ε0−−−−→ ∅ −ε0−−−−→ ∅ +ε1−−−−→

)
t2 =

(
∅ −ε0−−−−→ ∅ +ε1−−−−→ −ε1−−−−→ ∅ +ε1−−−−→

)
t3 =

(
∅ −ε0−−−−→ ∅ +ε1−−−−→ −ε0−−−−→ +ε1−−−−→

)
Then we have

ut1 = e
(1)
2 e

(1)

1+ 1
2

e
(1)
1 e

(0)
1
2

ut2 = e
(1)
2 e

(1)

1+ 1
2

e
(0)
1 e

(0)
1
2

ut3 = e
(1)
2 e

(0)

1+ 1
2

e
(0)
1 e

(0)
1
2

Concatenating these diagrams we get

ut1 = ut2 = ut3 =

The corresponding {mt1 ,mt2 ,mt3} give a basis for ∆2((1)). Note that the action of P2(n) on these

elements is given by concatenation from below on the uti ’s.

Example 2.17. We now construct the basis element for the cell module ∆3((1)) labelled by the standard

Kronecker tableau

v =
(
∅ −ε0−−−−→ ∅ +ε1−−−−→ −ε0−−−−→ +ε1−−−−→ −ε1−−−−→ +ε0−−−−→

)
.

Using the definition of the branching coefficients we get uv = e
(2)
3 e

(1)

2+ 1
2

(1 + s1,2). By concatenating the

diagrams we obtain
×


×

 +

 = +
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Example 2.18. We refer to Example 3.6 for a larger example for P6(n).

2.3. Skew cell modules. In what follows, we view Ps(n) as a subalgebra of Pr(n) via the embedding

Ps(n) ∼= Q⊗ Ps(n) ↪→ Pr−s(n)⊗ Ps(n) ↪→ Pr(n).

We now recall the definition of skew modules for Ps(n). This family of modules were first introduced (in

the more general context of diagram algebras) in [5]. Given ν ∈ P6r, we let tν ∈ Stdr(ν) denote the

Kronecker tableau of the form

d(0) ◦ d(0) ◦ · · · ◦ d(0)︸ ︷︷ ︸
r−|ν|

◦ a(1) ◦ · · · ◦ a(1)︸ ︷︷ ︸
ν1

◦ a(2) ◦ · · · ◦ a(2)︸ ︷︷ ︸
ν2

◦ · · ·

which is maximal in the dominance ordering on Stdr(ν).

Example 2.19. For ν = (2, 1) ∈P65 ⊆ Y5, the Kronecker tableau tν is equal to(
∅,∅,∅,∅, , , , , ,

)
Definition 2.20. Given λ ∈Pr−s ⊆ Yr−s and ν ∈P6r ⊆ Yr, define

∆r(ν; �λ) = spanQ{mt | t(r − s) � λ} ∆r(ν; tλ) = spanQ{mt | t ∈ Stdr(ν), t[0, r − s] = tλ}

then ∆r(ν; �λ) and ∆r(ν; tλ) + ∆r(ν; �λ) are Ps(n)-submodules of ∆r(ν)↓Ps(n). We define the skew cell

module

∆s(λ→ ν) = (∆r(ν; tλ) + ∆r(ν; �λ))/∆r(ν; �λ).

Remark 2.21. It follows from Definition 2.13 that we can realise the skew cell module as a subquotient

of the algebra Pr(n) as follows. Define

P�(λ→ν)
r,s = Pr(ν) + spanQ{ut | t ∈ Stdr(ν), t(r − s) � λ},

then

∆s(λ→ ν) = spanQ{utλ◦s + P�(λ→ν)
r,s | s ∈ Stds(λ→ ν)}.

Remark 2.22. The basis of ∆s(λ→ ν) is indexed by the elements of Stds(λ→ ν) and if (λ, ν, s) is triple

of maximal depth, this module is isomorphic to S(ν \λ), the skew Specht module for Ss, lifted to Ps(n).

We can now reinterpret the stable Kronecker coefficients in the context of partition algebras as follows.

Theorem 2.23. [4, 5] Let λ ∈Pr−s, µ ∈Ps and ν ∈P6r. Then we have

g(λ, ν, µ) = dimQ(HomPr−s(n)×Ps(n)(∆r−s(λ)�∆s(µ),∆r(ν)↓)) = dimQ(HomPs(n)(∆s(µ),∆s(λ→ ν)))

for all n� 0.

Remark 2.24. Using Remark 2.22 and (1.6) we recover Theorem 1.15. So the Littlewood–Richardson

coefficients appear naturally as a subclass of the stable Kronecker coefficients in the context of the

partition algebra.

3. Skew modules and co-Pieri triples for partition algebras

To describe the action of the generators of the partition algebra on the Murphy basis is very difficult

in general. We define co-Pieri triples as the triples for which we can fully understand the algebra action

in terms of permutation matrices (precisely generalising the triples of Theorem 1.10). In order to make

this paper suitable for a ‘Kronecker audience’, we have postponed the diagrammatic proofs to appendices

A and B of this paper.

Definition 3.1. Fix t ∈ Stdr(ν) and 1 6 k 6 r − 1 and suppose that

t(k − 1)
−t−−→ t(k − 1

2 )
+u−−→ t(k)

−v−−→ t(k + 1
2 )

+w−−→ t(k + 1).

We define tk↔k+1 ∈ Stdr(ν) to be the tableau, if it exists, determined by tk↔k+1(l) = t(l) for l 6= k, k± 1
2

and

tk↔k+1(k − 1)
−v−−→ tk↔k+1(k − 1

2 )
+w−−→ tk↔k+1(k)

−t−−→ tk↔k+1(k + 1
2 )

+u−−→ tk↔k+1(k + 1).
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Figure 13. Examples of the pairs of paths t and tk↔k+1 in Y.

In this section, we will discuss explicitly the action of sk,k+1 on ut for all paths t ∈ Std(ν) such that

the path tk↔k+1 exists.

Before stating the main result, we need one more piece of notation.

Definition 3.2. For t ∈ Stdr(ν) and 1 6 k 6 r with

t(k − 1
2 )

+u−−→ t(k)
−u−−→ t(k + 1

2 )

for u > 0, we define s = ek(t) ∈ Stdr(ν) by s(l) = t(l) for l 6= k and

s(k − 1
2 )

+L−−→ s(k)
−L−−→ s(k + 1

2 ) (3.1)

where L = `(t(k − 1
2 )) + 1. If t(k − 1

2 ) 6= t(k + 1
2 ), then ek(t) is undefined.

Theorem 3.3. Fix 1 6 k 6 r and let t ∈ Stdr(ν). If tk↔k+1 exists, then

(ut)sk,k+1 = utk↔k+1
+ uek(t) − uek(tk↔k+1),

where we take the convention that uek(v) = 0 whenever the path ek(v) is undefined for v ∈ Stdr(ν).

Proof. The proof of this result is an in depth diagrammatic calculation which we have postponed to

Appendix A. �

As before, we identify Ps(n) as a subalgebra of Pr(n) via the embedding Ps(n) ∼= Q ⊗ Ps(n) ⊆
Pr−s(n)⊗ Ps(n) ⊆ Pr(n), that is we view each partition diagram in Ps(n) as a set-partition of {r − s+

1, . . . , r, r − s+ 1, . . . , r}. We also assume throughout this section that n� r. We have seen in Section 2

that

g(λ[n], ν[n], µ[n]) = g(λ, ν, µ) = dimQ(HomPs(n)(∆s(µ),∆s(λ→ ν)))

for any triple of partitions (λ, ν, µ) ∈ Pr−s ×P6r ×Ps. Now, as |µ| = s we have that the ideal

Ps(n)prPs(n) ⊂ Ps(n) annihilates ∆s(µ) and so

dimQ(HomPs(n)(∆s(µ),∆s(λ→ ν)Ps(n)prPs(n))) = 0

and thus we wish to consider the quotient of ∆s(λ → ν) by the submodule ∆s(λ → ν)Ps(n)prPs(n).

This leads us to the following definition.

Definition 3.4. We define the Dvir radical of the skew module ∆s(λ→ ν) by

DRs(λ→ ν) = ∆s(λ→ ν)Ps(n)prPs(n) ⊆ ∆s(λ→ ν)

and set

∆0
s(λ→ ν) = ∆s(λ→ ν)/DRs(λ→ ν).
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By definition, we have that

g(λ, ν, µ) = dimQ(HomPs(n)(∆s(µ),∆s(λ→ ν))) = dimQ(HomPs(n)(∆s(µ),∆0
s(λ→ ν))) (3.2)

for any µ ∈Ps. Thus, in order to understand the coefficients g(λ, ν, µ), we need to construct a basis for

the modules ∆0
s(λ→ ν) and to describe the Ps(n)-action on this basis. Towards that end, we make the

following definition.

Definition 3.5. Given s ∈ Z>0 and (λ, ν) ∈Pr−s ×P6r we set

Std0
s(λ→ ν) =

{
mt

t ∈ Stds(λ→ ν), t has no steps of the form (−ε0,+ε0),

t has at most λi steps of the form (−εi,+εj) for j > 0

}
(3.3)

and we let DR–Stds(λ→ ν) := Stds(λ→ ν) \ Std0
s(λ→ ν).

Example 3.6. Let ν = λ = (2, 1) and s = 3. The path t ∈ Std3(λ→ ν) given by

−ε2−−−−→ +ε2−−−−→ −ε0−−−−→ +ε2−−−−→ −ε2−−−−→ +ε0−−−−→

belongs to DR-Std3(λ→ ν). To see this note that

]{steps of the form (−ε2,+εj) for j > 0 in t} = 2 > 1 = λ2.

Now the element utλ◦t is depicted in Figure 14, below. We see that every elementary diagram in this sum

has at most 2 blocks with both an element from {4, 5, 6} and an element from {1, 2, . . . , 6} ∪ {1, 2, 3}.
This means that utλ◦t ∈ P6(n)p6P3(n) and therefore utλ◦t ∈ DR3(λ→ ν).

+ + +

Figure 14. The element utλ◦t from Example 3.6.

Example 3.6 generalises to give the following proposition.

Proposition 3.7. If t ∈ DR-Stds(λ→ ν) then utλ◦t + P
�(λ→ν)
r,s (n) ∈ DRs(λ→ ν).

Proof. This is another in depth diagrammatic calculation which is deferred to Appendix B. �

Remark 3.8. If (λ, ν, s) is a triple of maximal depth then Std0
s(λ→ ν) = Stds(λ→ ν).

Remark 3.9. By Proposition 3.7, we know that Std0
s(λ → ν) indexes a spanning set for the module

∆0
s(λ → ν) for any s ∈ Z>0 and (λ, ν) ∈ Pr−s ×P6r. In particular, if s > |λ| + |ν| or s < max{|λ \

(λ ∩ ν)|, |ν \ (λ ∩ ν)|} then Std0
s(λ→ ν) = ∅ and g(λ, ν, µ) = 0 for all µ ` s.

Definition 3.10. We say that s ∈ Z>0 and (λ, ν) ∈ Pr−s × P6r form a co-Pieri triple (λ, ν, s) if

Std0
s(λ→ ν) 6= ∅,

(C1) sk↔k+1 exists for all s ∈ Std0
s(λ→ ν) and 1 6 k 6 s− 1 and

(C2) ∆0
s(λ→ ν) has basis indexed by Std0

s(λ→ ν).

We will also refer to any triple of the form (λ, ν, µ) with µ ` s as a co-Pieri triple.

We will shortly provide a combinatorial classification of co-Pieri triples. Before embarking on this, we

observe a simple corollary of the definition which explains our interest in these triples — namely, we can

fully understand the Ps(n)-action for such triples. To simplify the notation for the basis elements of the

skew module ∆s(λ→ ν) we set

mt := utλ◦t + P�(λ→ν)
r,s (n)

for all t ∈ Stds(λ→ ν).
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Corollary 3.11. Let (λ, ν, s) be a co-Pieri triple. Then we have that

{mt + DRs(λ→ ν) | t ∈ Std0
s(λ→ ν)}

is a basis for ∆0
s(λ→ ν) and the Ps(n)-action on ∆0

s(λ→ ν) is as follows:

(mt + DRs(λ→ ν))sk,k+1 = mtk↔k+1
+ DRs(λ→ ν) (3.4)

for 1 6 k < s,

(mt + DRs(λ→ ν))pk,k+1 = 0 and (mt + DRs(λ→ ν))pk = 0

for all 1 6 k < s and 1 6 k 6 s, respectively.

Proof. This follows immediately from Definition 3.10 and Theorem 3.3 �

For triples of maximal depth, it is clear that (C2) is empty and so (λ, ν, s) is a co-Pieri triple if and

only if all λ → ν-tableaux are standard, if and only if there are no two nodes in the same column of

ν \ λ. Indeed, condition (C1) says that all tableaux (not belonging to the Dvir radical) are standard

and condition (C2) simply says that these tableaux give the required basis. While the definition of a

co-Pieri triple is simple and intuitive (and generalises the classical definition of a co-Pieri triple in the

most natural possible way), we shall now see that the classification of general co-Pieri triples is difficult

and technical.

Theorem 3.12 (Classification of co-Pieri triples). Let s ∈ Z>0 and (λ, ν) ∈ Pr−s ×P6r be such that

Std0
s(λ→ ν) 6= ∅. We have that (λ, ν, s) is a co-Pieri triple if and only if

(coP)

{
s = 1, or

s > 1 and if max{`(λ), `(ν)} > 2 then s 6 max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|}+ minmax(λ, ν)

where

minmax(λ, ν) = min{min{λi−1, νi−1} −max{λi, νi} | 2 6 i 6 max{`(λ), `(ν)}}.

Remark 3.13. Note that if (λ, ν, s) satisfies Std0
s(λ→ ν) 6= ∅ and (coP) then the skew partitions λ\(λ∩ν)

and ν \ (λ ∩ ν) contain no two nodes in the same column. To see this, observe that minmax(λ, ν) < 0

precisely when one of these skew partitions has two nodes in the same column. On the other hand,

Std0
s(λ→ ν) 6= ∅ implies that s > max{|λ \ (λ∩ ν)|, |ν \ (λ∩ ν)|}. Thus we must have minmax(λ, ν) > 0.

Example 3.14. Note that any triple (λ, ν, s) with `(λ) = `(ν) = 1 is a co-Pieri triple. We calculate the

corresponding Kronecker coefficients labelled by two two-line partitions in Section 6.

Example 3.15. For d, `,m > 0, we define the partition

ρ = d(`, `− 1, . . . , 2, 1) + (ml)

As minmax(ρ, ρ) = d we have that (ρ, ρ, s) with any s 6 d is a co-Pieri triple.

Example 3.16. Let λ and ν be any pair of partitions such that λ \ (λ ∩ ν) and ν \ (λ ∩ ν) are skew

partitions with no two nodes in the same column and let s = max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|}. Then

(λ, ν, s) is a co-Pieri triple. This clearly includes the triples of Theorem 1.10 as a subcase. For another

example, ((10, 5, 2), (8, 3, 3, 2), 4) is such a co-Pieri triple.

Example 3.17. Let λ = (4, 2) and ν = (4, 3, 1). We have that max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|} = 2 and

minmax(λ, ν) = 1. Therefore (λ, ν, s) is a co-Pieri triple for s = 2 or 3.

Lemma 3.18. Let s ∈ Z>0 and (λ, ν) ∈ Pr−s ×P6r with Std0
s(λ → ν) 6= ∅. Assume that (λ, ν, s)

satisfies (coP). Let n� r and α ⊆ λ[n] ∩ ν[n] be any composition of n− s, say

α = (α1, α2, . . .) = λ[n] − εi1 − εi2 − · · · − εis = ν[n] − εj1 − εj2 − · · · − εjs .

Define the composition

β = (β1, β2, . . .) = λ[n] + εj1 + εj2 + · · ·+ εjs = ν[n] + εi1 + εi2 + · · ·+ εis .

Then for all c > 1 we have

αc > βc+1.

In particular, α ⊆ λ[n]∩ν[n] is a partition and λ[n] \α and ν[n] \α have no two nodes in the same column.
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Proof. First note that as n � r, α1 > β2. If `(λ) = `(ν) = 1 then α2 > β3 = 0 and for c > 3 we have

αc = βc+1 = 0 so we are done. Now assume max{`(λ), `(ν)} > 2. Define multi-sets

I = {i1, i2, . . . , is} and J = {j1, j2, . . . , js}.

For c > 2, define |I|c = ]{ik ∈ I | ik = c} and define |J |c and |I ∩ J |c similarly. Now,

αc = λc−1 − |I|c = λc−1 − |I \ (I ∩ J)|c − |I ∩ J |c
βc+1 = λc + |J |c+1 = λc + |J \ (I ∩ J)|c + |I ∩ J |c+1.

Note that

|I \ I ∩ J |c =

{
λc−1 − νc−1 if λc−1 − νc−1 > 0

0 otherwise,
|J \ I ∩ J |c+1 =

{
νc − λc if νc − λc > 0

0 otherwise.

Hence

λc − |I \ I ∩ J |c = min{λc−1, νc−1}, λc + |J \ I ∩ J |c+1 = max{λc, νc},
and we get

αc − βc+1 = min{λc−1, νc−1} −max{λc, νc} − |I ∩ J |c − |I ∩ J |c+1

> min{λc−1, νc−1} −max{λc, νc} − |I ∩ J |.

Now,

|I ∩ J | = s−max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|}.
So we get

αc − βc+1 > min{λc−1, νc−1} −max{λc, νc}+ max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|} − s.

Using (coP), we get that αc − βc+1 > 0 for 2 6 c 6 max{`(λ), `(ν)}. Now, if c > max{`(λ), `(ν)} then

βc+1 = 0 and so αc > βc+1 = 0 as required. �

We define Std+
s (λ→ ν) = Stds(λ→ ν) \ (∪i>1DRi(λ→ ν)).

Lemma 3.19. Let s ∈ Z>0 and (λ, ν) ∈ Pr−s ×P6r with Std0
s(λ → ν) 6= ∅. Assume that (λ, ν, s)

satisfies (coP). Then we have a bijective map

ϕs :
⊔

α`n−s
α⊆λ[n]∩ν[n]

Stds(α→ ν[n])× Stds(λ[n] → α)→ Std+
s (λ→ ν) (3.5)

where a given pair on the lefthand-side is necessarily of the form

(s, t) = ((−ε0,+εj1 ,−ε0,+εj2 , . . . ,−ε0,+εjs), (−εi1 ,+ε0,−εi2 ,+ε0, . . . ,−εis ,+ε0)),

with il, jl 6= 0 for all 1 6 l 6 s, and such a pair of tableaux is sent to

ϕs(s, t) = (−εi1−1,+εj1−1,−εi2−1,+εj2−1, . . . ,−εis−1,+εjs−1) ∈ Std+
s (λ→ ν).

Moreover, given any ϕs(s, t) = u ∈ Std+
s (λ→ ν) and any 1 6 k 6 s−1 we have that ϕ(sk↔k+1, tk↔k+1) =

uk↔k+1 ∈ Std+
s (λ→ ν) and hence (C1) holds.

Proof. We first show that for any α ` n−s with α ⊆ λ[n]∩ν[n] and (s, t) ∈ Stds(α→ ν[n])×Stds(λ[n] → α)

we have ϕs(s, t) ∈ Stds(λ→ ν). Write

s = (−ε0,+εj1 ,−ε0,+εj2 , . . . ,−ε0,+εjs) t = (−εi1 ,+ε0,−εi2 ,+ε0, . . . ,−εis ,+ε0).

So we have

α = λ[n] − εi1 − εi2 − . . .− εis = ν[n] − εj1 − εj2 − . . .− εjs .
Setting

β = λ[n] + εj1 + εj2 + . . .+ εjs

and using Lemma 3.18 we get

αi > βi+1 ∀i > 1.

In order to prove that u = ϕs(s, t) ∈ Stds(λ → ν) we need to show that for all 1 6 l 6 s − 1 we have

that γ(l) := λ[n] +
∑l
k=1(−εik + εjk) and γ′(l) = λ[n] +

∑l−1
k=1(−εik + εjk) − εil are partitions. But for

γ = γ(l) or γ′(l) we have

γi > αi > βi+1 > γi+1 ∀i > 1.
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So we are done. Now ϕs(s, t) ∈ Std+
s (λ→ ν) follows directly from the fact that α is a partition. Moreover,

it is clear that the map ϕs is injective and that ϕs(sk↔k+1, t↔k+1) = uk↔k+1 by definition.

It remains to show that ϕs is surjective. Given

u = (−εi1 ,+εj1 ,−εi2 ,+εj2 , . . . ,−εis ,+εjs) ∈ Std+
s (λ→ ν),

we set α = minn(u) := λ[n] − εi1+1 − εi2+1 − · · · − εis+1 = ν[n] − εj1+1 − εj2+1 − · · · − εjs+1. As

u ∈ Std+
s (λ → ν) we have that α must be a composition of n − s. Using Lemma 3.18, we know that

α ⊆ λ[n]∩ν[n] is in fact a partition and that λ[n] \α and ν[n] \α contain no two boxes in the same column.

It follows that

s := (−ε0,+εj1+1,−ε0,+εj2+1, . . . ,−ε0,+εjs+1) ∈ Stds(α→ ν[n]) and

t := (−εi1+1,+ε0,−εi2+1,+ε0, . . . ,−εis+1,+ε0) ∈ Stds(λ[n] → α)

satisfy ϕs(s, t) = u as required. �

The next proposition gives a representation theoretic interpretation (for co-Pieri triples) of Dvir’s

recursive formula for calculating Kronecker coefficients (and hence justifies the name ‘Dvir radical’).

Proposition 3.20. Let s ∈ Z>0 and (λ, ν) ∈Pr−s ×P6r with Std0
s(λ→ ν) 6= ∅. Assume that (λ, ν, s)

satisfies (coP). Then there is a surjective Ps(n)-homomorphism

ϕs :
⊕
α`n−s

α⊆λ[n]∩ν[n]

∆s(α→ ν[n])⊗∆s(λ[n] → α)→ ∆0
s(λ→ ν) (3.6)

given by

ϕs(ms ⊗mt) = mϕs(s,t) + DRs(λ→ ν)

for all s ∈ Stds(α → ν[n]) and t ∈ Stds(λ[n] → α) (where Ps(n) acts diagonally on the module on the

lefthand-side). Furthermore, the kernel of this homomorphism is spanned by

{ms ⊗mt |ϕs(s, t) ∈ DR0-Stds(λ→ ν)}. (3.7)

and hence the set

{mu + DRs(λ→ ν) | u ∈ Std0
s(λ→ ν)}

form a basis for ∆0
s(λ→ ν), i.e. (C2) holds.

Proof. By Lemma 3.19 and Proposition 3.7, it is clear that ϕs is a surjective map. The generators pk
and pk,k+1 act as zero on both modules. Using Theorem 3.3, the action of Ss on skew cell modules and

Lemma 3.19 we have that the action of sk,k+1 also coincide under the map ϕs. Thus ϕs is a surjective

Ps(n)-homomorphism. It remains to show that its kernel has the required form. As pk and pk,k+1 act

as zero, we can view ϕs as a homorphism of Ss-modules. As such we have

∆+
s (λ→ ν) :=

⊕
α`n−s

α⊆λ[n]∩ν[n]

∆s(α→ ν[n])⊗∆s(λ[n] → α) ∼=
⊕
α`n−s

α⊆λ[n]∩ν[n]

µ`s

g(λ[n] \ α, ν[n] \ α, µ) S(µ). (3.8)

On the other hand, recall that we have

∆0
s(λ→ ν) =

⊕
µ`s

g(λ[n], ν[n], µ[n]) S(µ). (3.9)

Now, note that ∆+
s (λ→ ν) decomposes as

∆+
s (λ→ ν) =

⊕
06m6s

V ms (3.10)

where V ms is spanned by allms⊗mt such that ϕs(s, t) has preciselym integral steps of the form (−ε0,+ε0).

In particular we have that V 0
s is spanned by all ms ⊗mt with ϕs(s, t) ∈ Std0

s(λ→ ν). We claim that

ker(ϕs) =
⊕

0<m6s

V ms .

By Proposition 3.7 we know that ⊕
0<m6s

V ms ⊆ ker(ϕs). (3.11)
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We will prove that in fact we have equality, in other words V 0
s
∼= ∆0

s(λ→ ν). We proceed by induction

on s. If s = max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|} then Std+
s (λ→ ν) = Std0

s(λ→ ν) and so
⊕

1<m6s V
m
s = 0.

Moreover, in this case equation (3.8) gives

∆+
s (λ→ ν) ∼=

∑
µ`s

g(λ[n] \ (λ[n] ∩ ν[n]), ν[n] \ (λ[n] ∩ ν[n]), µ[n])S(µ)

=
∑
µ`s

g(λ[n], ν[n], µ[n])S(µ)

∼= ∆0
s(λ→ ν), (3.12)

so we are done in this case. Now let s > max{|λ \ (λ∩ ν)|, |ν \ (λ∩ ν)|} and assume that the result holds

for all s′ < s. Note that for m > 0 we have

V ms
∼= (V 0

s−m � S(m)) ↑SsSs−m×Sm , (3.13)

and by induction, we have

V 0
s−m

∼=
⊕

β`s−m

g(λ[n], ν[n], β[n]) S(β) (3.14)

for m > 0. Using the Littlewood–Richardson rule, we have

V ms
∼=

⊕
β`s−m

g(λ[n], ν[n], β[n])(S(β)� S(m)) ↑SsSs−m×Sm

∼=
⊕

β`s−m
µ∈P (s,β)

g(λ[n], ν[n], β[n]) S(µ). (3.15)

for m > 0. Note that µ ∈ P (s, β) if and only if β[n] ∈ P (n, µ). This follows from the fact that µ ∈ P (s, β)

if and only if µi > βi > µi+1 for all i > 1, the fact that β[n] ∈ P (n, µ) if and only if µi > (β[n])i+1 > µi+1

for all i > 1, and noting that (β[n])i+1 = βi. Thus we get⊕
0<m6s

V ms
∼=

⊕
0<m6s

⊕
β`s−m
µ∈P (s,β)

g(λ[n], ν[n], β[n]) S(µ)

=
⊕

0<m6s
µ`s

⊕
β`s−m

β[n]∈P (n,µ)

g(λ[n], ν[n], β[n]) S(µ)

=
⊕
µ`s

⊕
β[n]∈P (n,µ)
β[n] 6=µ[n]

g(λ[n], ν[n], β[n]) S(µ). (3.16)

Combining this with equation (3.8) we get

V 0
s
∼=
⊕
µ`s

(
[∆+

s (λ→ ν) : S(µ)]−
∑

0<m6s

[V ms : S(µ)]

)
S(µ)

=
⊕
µ`s

( ∑
α`n−s

α⊆λ[n]∩ν[n]

g(λ[n] \ α, ν[n] \ α, µ)−
∑

β[n]∈P (n,µ)
β[n] 6=µ[n]

g(λ[n], µ[n], β[n])

)
S(µ)

=
⊕
µ`s

g(λ[n], ν[n], µ[n]) S(µ)

where the last equality follows by using Dvir’s recursive formula. Finally using equation (3.9) we deduce

that V 0
s
∼= ∆0

s(λ→ ν) as required. �

Lemma 3.21. Suppose that s ∈ Z>0 and (λ, ν) ∈ Pr−s ×P6r satisfies (C1). Then neither of the

skew-partitions ν \ (λ ∩ ν) or λ \ (λ ∩ ν) contains two nodes in the same column.

Proof. For s = 1, the result is clear. We assume s > 1. We assume that one of the skew partitions

ν \ (λ∩ ν) or λ \ (λ∩ ν) does contain two nodes in the same column. (Recall that max{|λ \ (λ∩ ν)|, |ν \
(λ ∩ ν)|} 6 s 6 |λ| + |ν| by Remark 3.9 and our assumption that Stds(λ → ν) 6= ∅). We first assume

that s′ = max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|}. We let u ∈ Std0
s′(λ→ ν) be any path of the form

u = (−εi1 ,+εj1 ,−εi2 ,+εj2 , . . . ,−εis′ ,+εjs′ ) (3.17)
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such that the nodes −εik and −εik+1
(respectively +εjk and +εjk+1

) are removed (respectively added)

in the same column for some 1 6 k < s. Such a pair of nodes exists by our assumption on λ and

ν. Note that we can also assume that the tableau u given in equation (3.17) satisfies il, jl 6= 0 for all

1 6 l 6 min{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|} (we will use this fact later in the proof). Now the sequence

(−εi1 ,+εj1 , . . . ,−εik+1
,+εjk+1

,−εik ,+εjk , . . . ,−εis′ ,+εjs′ )

is not an element of Stds′(λ → ν), and so uk↔k+1 does not exist. Therefore (λ, ν, s′) is not a co-Pieri

triple, as required.

We shall now consider larger values of s ∈ N by inflating the tableau in equation (3.17). For s

satisfying

s′ < s 6 |λ \ (λ ∩ ν)|+ |ν \ (λ ∩ ν)|,

we have s− s′ 6 min{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|}, so we can inflate the tableau u given in equation (3.17)

to get ū ∈ Stds(λ→ ν) by setting ū to be the tableau

(−εi1 ,+ε0, . . . ,−εis−s′ ,+ε0︸ ︷︷ ︸
2(s−s′)

,−ε0,+εj1 , . . . ,−ε0,+εjs−s′︸ ︷︷ ︸
2(s−s′)

,−εis−s′+1
,+εjs−s′+1

, . . . ,−εis′ ,+εjs′ ) (3.18)

if the nodes −εik and −εik+1
are removed from the same column or ū to be the tableau

(−ε0,+εj1 , . . . ,−ε0,+εjs−s′︸ ︷︷ ︸
2(s−s′)

,−εi1 ,+ε0, . . . ,−εis−s′ ,+ε0︸ ︷︷ ︸
2(s−s′)

,−εis−s′+1
,+εjs−s′+1

, . . . ,−εis′ ,+εjs′ ) (3.19)

if the nodes +εjk and +εjk+1
are added in the same column. In either case, we have that uk↔k+1 does

not exist, as before. Finally, assume

|λ \ (λ ∩ ν)|+ |ν \ (λ ∩ ν)| 6 s 6 |λ|+ |ν|.

We let λ∩ ν = (α1, α2, . . . , α`). We let a denote the sequence of steps obtained from deleting the middle

t = (2|α|+ |λ \ (λ ∩ ν)|+ |ν \ (λ ∩ ν)| − s) integral steps from

a(1) ◦ a(1) ◦ · · · a(1)︸ ︷︷ ︸
α1

◦ · · · ◦ a(`) ◦ a(`) ◦ · · · a(`)︸ ︷︷ ︸
α`

◦ r(`) ◦ r(`) ◦ · · · r(`)︸ ︷︷ ︸
α`

◦ · · · ◦ r(1) ◦ r(1) ◦ · · · r(1)︸ ︷︷ ︸
α1

(3.20)

or

a(1) ◦ a(1) ◦ · · · a(1)︸ ︷︷ ︸
α1

◦ · · · ◦ a(`) ◦ a(`) ◦ · · · a(`)︸ ︷︷ ︸
α`−1

◦d(`) ◦ r(`) ◦ r(`) ◦ · · · r(`)︸ ︷︷ ︸
α`−1

◦ · · · ◦ r(1) ◦ r(1) ◦ · · · r(1)︸ ︷︷ ︸
α1

(3.21)

for t even or odd respectively. As α ⊆ ν is a partition, we have that a is a standard tableau of degree

s − |λ \ (λ ∩ ν)| − |ν \ (λ ∩ ν)| beginning and terminating at ν. Finally if u is the tableau of degree

|λ \ (λ ∩ ν)|+ |ν \ (λ ∩ ν)| as in equation (3.18) or equation (3.19), then

v = u ◦ a ∈ Std0
s(λ→ ν) and vk↔k+1 6∈ Std0

s(λ→ ν)

for 1 6 k 6 s′ as before, as required. �

Proposition 3.22. Let s ∈ Z>0 and (λ, ν) ∈ Pr−s ×P6r with Std0
s(λ → ν) 6= ∅. If (λ, ν, s) satisfies

(C1) and (C2), then (λ, ν, s) satisfies (coP).

Proof. Using Lemma 3.21 we can assume that neither of the skew partitions ν \ (λ ∩ ν) or λ \ (λ ∩ ν)

contain two nodes in the same column, i.e. minmax(λ, ν) > 0.

Throughout the proof, we let s′ = max{|λ \ (λ ∩ ν)|, |ν \ (λ ∩ ν)|}.
We will prove this result by contrapositive. Suppose that (λ, ν, s) does not satisfy (coP). Then s > 1,

max{`(λ), `(ν)} > 2 and s′ + minmax(λ, ν) + 1 6 s 6 |λ| + |ν|. We pick c > 2 minimal such that

minmax(λ, ν) = min{λc−1, νc−1} −max{λc, νc}.
Case I. minmax(λ, ν) = 0. By the minimality of c we can find u ∈ Std0

s′(λ→ ν) and 0 6 k 6 s′ such

that the (c− 1)th and cth rows of either u(k) or u(k+ 1/2) have the same length. We choose k minimal

with this property. Let s = s′ + 1. By the minimality of c, we have that

v = u[0, k] ◦ (−ik+1,+(c− 1),−(c− 1),+jk+1)︸ ︷︷ ︸
important

◦u[k + 1, s′]
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belongs to Std0
s(λ → ν). If we swap the two important integral steps of v we obtain a sequence which

does not belong to Stds(λ → ν). This violates condition (C1). One can inflate the tableau v as in

equation (3.18) or equation (3.19) and/or by concatenating with a path of the form in equation (3.20)

and (3.21) to obtain an element of Std0
t (λ→ ν) for any s 6 t 6 |λ|+ |ν| which violates (C1).

Cases II and III. For the remainder of the proof we set k = max{0, λc−1 − νc−1, νc − λc}. We let

u ∈ Std0
s′(λ→ ν) denote any path in which all steps of the form −εc−1 or +εc occur in the first k integral

steps and all steps of the form +εc−1 or −εc occur in the final s′− k integral steps. That such a tableau

exists follows from our assumption that s′ is minimal such that Stds′(λ → ν) 6= ∅ (so no step can be

added and removed in the same row).

Case II. minmax(λ, ν) > 0 and c < max{`(λ), `(ν)}. Let s = s′+minmax(λ, ν)+1. For minmax(λ, ν)

even, we let v denote the following tableau

u[0, k] ◦m↓(c− 1, c) ◦ · · · ◦m↓(c− 1, c)︸ ︷︷ ︸
minmax(λ,ν)/2−1

◦ d(c− 1) ◦m↓(c− 1, c)︸ ︷︷ ︸
important

◦m↑(c, c− 1) ◦ · · · ◦m↑(c, c− 1)︸ ︷︷ ︸
minmax(λ,ν)/2

◦u[k, s′].

We have that v ∈ Std0
s(λ→ ν). For minmax(λ, ν) odd, we let v denote the following tableau

u[0, k]◦m↓(c− 1, c) ◦ · · · ◦m↓(c− 1, c)︸ ︷︷ ︸
(minmax(λ,ν)−1)/2

◦m↑(c, c− 1) ◦m↓(c− 1, c)︸ ︷︷ ︸
important

◦m↑(c, c− 1) ◦ · · · ◦m↑(c, c− 1)︸ ︷︷ ︸
(minmax(λ,ν)−1)/2

◦u[k, s′]

We have that v ∈ Std0
s(λ→ ν). In both cases, if we swap the two important integral steps in the tableau

v we obtain a sequence which does not belong to Stds(λ→ ν). This violates (C1). Again, we can inflate

v as in Case I to get an element of Std0
t (λ→ ν) for any s 6 t 6 |λ|+ |ν| which also violates (C1).

Case III. minmax(λ, ν) > 0 and c = max{`(λ), `(ν)}. For s = s′ + 2 minmax(λ, ν) + 1. We let v

denote the following tableau

u[0, k] ◦ r(c− 1) ◦ · · · ◦ r(c− 1)︸ ︷︷ ︸
minmax(λ,ν)−1

◦ d(c− 1) ◦ r(c− 1)︸ ︷︷ ︸
important

◦ a(c− 1) ◦ · · · ◦ a(c− 1)︸ ︷︷ ︸
minmax(λ,ν)

◦u[k, s′].

We have that v ∈ Std0
s(λ→ ν). If we swap the two important integral steps in the tableau v, we obtain a

sequence which does not belong to Stds(λ→ ν). This violates condition (C1). Moreover we can inflate

v as in Case I to show that (λ, ν, s) does not satisfy (C1) for any s′ + 2 minmax(λ, ν) + 1 6 s 6 |λ|+ |ν|.
It remains to consider the case s′ + minmax(λ, ν) + 1 6 s 6 s′ + 2 minmax(λ, ν). We will show that

(λ, ν, s) does not satisfy (C2). We begin with the case s = s′ + minmax(λ, ν) + 1. We shall see that the

map of equation (3.5) is well-defined and injective, but no longer surjective.

Let α ⊂ λ[n]∩ν[n] with α ` n−s. Let s ∈ Stds(α→ ν[n]) and t ∈ Stds(λ[n] → α) and write v = ϕs(s, t)

defined as in equation (3.5). We need to show that v ∈ Stds(λ → ν). Using the same notation as in

Lemma 4.19, following its proof, and using the fact that s 6 s′ + min{λi−1, νi−1} −max{λi, νi} for all

i 6= c (by minimality of c) we obtain that αi > βi+1 for all i 6= c and αc > βc+1. Now following the proof

of Lemma 4.20 this implies that v(l)i−1 > v(l)i for all i 6= c and v(l)c−1 > v(l)c − 1 for all 1 6 l 6 s.

Now suppose, for a contradiction that v(k)c−1 = v(k)c − 1. Then we must have v(k)c−1 = αc = s(k)c
and v(l)c = βc+1 = s(l)c+1, contradicting the fact that s is a standard tableau. Thus ϕs is well-defined.

Injectivity is obvious by definition.We now show that there is some ū ∈ Std0
s(λ→ ν) which is not in the

image of ϕs. Recall, we picked u ∈ Std0
s′(λ → ν) such that all steps of the form −εc−1 or +εc occur in

the first k integral steps and all steps of the form +εc−1 or −εc occur in the final s′ − k integral steps;

this ensures that u(k)c−1 − u(k)c = minmax(λ, ν). Now consider the tableau

ū = u[0, k] ◦ d(c− 1) ◦ · · · ◦ d(c− 1)︸ ︷︷ ︸
minmax(λ,ν)+1

◦u[k, s′]

which belongs to Std0
s(λ→ ν). Suppose for a contradiction that ū = ϕs(s, t) for some standard tableaux

s and t. Now if λc = νc then α = minn(u) is not a partition so u cannot be in the image of ϕs. If λc > νc
then t(k + minmax(λ, ν) + 1) is not a partition and if νc > λc then s(k) is not a partition. In all cases

we see that ū ∈ Std0
s(λ→ ν) is not in the image of ϕs. Now we can decompose⊕

α`n−s
α⊆λ[n]∩ν[n]

∆s(α→ ν[n])⊗∆s(λ[n] → α) =
⊕

06m6s

V ms
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as in (4.11). The fact that the map ϕs is not surjective implies that |Std0
s(λ→ ν)| > dimV 0

s . Now if we

follow (4.16) – (4.22), noting that (λ, ν, s−m) satisfies (coP) for m > 0, we obtain

|Std0
s(λ→ ν)| > dimV 0

s = dim ∆0
s(λ→ ν).

This implies that (C2) is not satisfied, as required.

More precisely, we know that there must be some element
∑

t∈Std0
s(λ→ν) rtut ∈ DRs(λ→ ν) for rt ∈ Q.

We now consider (λ, ν, s) for s′+ minmax(λ, ν) + 1 + k = s 6 s′+ 2 minmax(λ, ν). Let ν′ = ν − kεc−1

and λ′ = λ − kεc−1. Notice that s − k = max{|λ′ \ (λ′ ∩ ν′)|, |ν′ \ (λ′ ∩ ν′)|} + minmax(λ′, ν′) + 1. By

the above, there exists a ∈ Ps−k(n)pr−kPs−k(n) and s ∈ Std0
s−k(λ′ → ν′) such that

usa =
∑

t∈Std0
s−k(λ′→ν′)

rtut ∈ DRs−k(λ′ → ν′)

with some rt 6= 0. Now, for any tableau v ∈ Stds−k(λ′ → ν′) we can inflate the tableau v to obtain

v = r(c− 1) ◦ · · · ◦ r(c− 1)︸ ︷︷ ︸
k

◦v ◦ a(c− 1) ◦ · · · ◦ a(c− 1)︸ ︷︷ ︸
k

∈ Std0
s+k(λ→ ν).

Similarly, given a ∈ Ps−k(n) we let ā ∈ Ps+k(n) denote the image of a under the embedding Ps−k(n)→
Pk(n)× Ps−k(n)× Pk(n). By [5, Corollary 3.12] we have that

usa =
∑

t∈Std0
s(λ→ν

′)

rtut +
∑

w∈Stds+k(λ→ν)
w(s)�ν′

qwuw ∈ DRs+k(λ→ ν)

which again violates (C2). This completes the proof. �

4. Semistandard Kronecker tableaux

Recall from equation (3.2) that for any (λ, ν, s) ∈Pr−s ×P6r × Z>0 and any µ ` s we have

g(λ, ν, µ) = dimQ HomPs(n)(∆s(µ),∆0
s(λ→ ν)) = dimQ HomQSs(S(µ),∆0

s(λ→ ν)),

where QSs is viewed as the quotient of Ps(n) by the ideal generated by pr. Now for each µ =

(µ1, µ2, . . . , µl) ` s we have an associated Young permutation module,

M(µ) = Q⊗Sµ QSs

where Sµ = Sµ1
× Sµ2

× · · · × Sµl ⊆ Ss. It is well known that there is a surjective homomorphism

M(µ)→ S(µ). Moreover, for any τ ` s, the multiplicity of S(τ) as a composition factor of M(µ) is given

by the number of semistandard Young tableaux of shape τ and weight µ. So, as a first step towards

understanding the stable Kronecker coefficients, it is natural to consider

dimQ HomSs(M(µ),∆0
s(λ→ ν)).

In the case of triples of maximal depth, this dimension is given by the number of semistandard Young

tableaux of shape λ → ν and weight µ. We now extend this result by defining semistandard Kronecker

tableaux and show that, in the case of co-Pieri triples, the number of such tableaux give the required

dimension. In fact, we explicitly construct these homomorphisms directly from the associated tableaux.

4.1. Semistandard Kronecker tableaux for co-Pieri triples. We start with a definition of semis-

tandard Kronecker tableaux, generalising the classical definition of semistandard Young tableaux.

Definition 4.1. Let µ = (µ1, µ2, . . . , µl) � s, λ ∈Pr−s, ν ∈P6r and let s, t ∈ Std0
s(λ→ ν).

(1) For 1 6 k < s we write s
k∼ t if s = tk↔k+1.

(2) We write s
µ∼ t if there exists a sequence of standard Kronecker tableaux t1, t2, . . . , td ∈ Std0

s(λ→
ν) such that

s = t1
k1∼ t2, t2

k2∼ t3, . . . , td−1
kd−1∼ td = t

for some k1, . . . , kd−1 ∈ {1, . . . , s− 1} \ {|µ|c | c = 1, . . . , l − 1}. We define a tableau of weight µ

to be an equivalence class of tableau under
µ∼, denoted [t]µ = {s ∈ Std0

s(λ→ ν) | s µ∼ t}.
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(3) We say that a Kronecker tableau, [t]µ, of shape λ → ν and weight µ is semistandard if, for all

1 6 c 6 l, the skew partitions t(|µ|c)\ (t(|µ|c−1)∩ t(|µ|c)) and t(|µ|c−1)\ (t(|µ|c−1)∩ t(|µ|c)) have

no two boxes in the same column.

We denote the set of all semistandard Kronecker tableaux of shape λ → ν and weight µ by

SStd0
s(λ→ ν, µ).

Remark 4.2. Note that if s, t ∈ Std0
s(λ→ ν) with s ∈ [t]µ then s(|µ|c) = t(|µ|c) for all 1 6 c 6 l. So part

(3) is independent of the choice of representative in [t]µ and hence the notion of semistandard Kronecker

tableau is well-defined.

Remark 4.3. If (λ, ν, µ) is a co-Pieri triple, it follows from Lemma 3.18 that for any t ∈ Std0
s(λ→ ν) the

class [t]µ is a semistandard Kronecker tableau.

Remark 4.4. If (λ, ν, µ) is a triple of maximal depth then SStd0
s(λ→ ν, µ) coincide with the classical no-

tion of semistandard Young tableaux of shape λ→ ν and weight µ (and similarly for the non-semistandard

tableaux of a given weight).

To represent these semistandard Kronecker tableaux graphically, we will add ‘frames’ corresponding to

the composition µ on the set of paths Std0
s(λ→ ν) in the branching graph. For t = (−εi1 ,+εj1 , . . . ,−εis ,+εjs)

we say that the integral step (−εik ,+εjk) belongs to the cth frame if |µ|c−1 < k 6 |µ|c. Thus for

s, t ∈ Std0
s(λ → ν) we have that s

µ∼ t if and only if s is obtained from t by permuting integral steps

within each frame.

Example 4.5. Let λ = (4, 2), ν = (5, 3, 1) and s = 3. Then (λ, ν, s) is a triple of maximal depth. Take

µ = (2, 1) � 3. We have three semistandard tableaux of shape λ→ ν and weight µ given by

S1 = {a(2) ◦ a(3) ◦ a(1) , a(3) ◦ a(2) ◦ a(1)}
S2 = {a(1) ◦ a(3) ◦ a(2) , a(3) ◦ a(1) ◦ a(2)}
S3 = {a(1) ◦ a(2) ◦ a(3) , a(2) ◦ a(1) ◦ a(3)}.

They are depicted in Figure 15 and ordered so that one can compare them directly with the tableaux in

Example 1.8.

Example 4.6. Let λ = (7), ν = (6) and s = 6. Then (λ, ν, 6) is a co-Pieri triple. We have |SStd0
6(λ→

ν, (6))| = 3 and a representative for each of these semistandard tableaux is given by

t1 = r(1) ◦ r(1) ◦ r(1) ◦ d(1) ◦ a(1) ◦ a(1)

t2 = r(1) ◦ r(1) ◦ d(1) ◦ d(1) ◦ d(1) ◦ a(1)

t3 = r(1) ◦ d(1) ◦ d(1) ◦ d(1) ◦ d(1) ◦ d(1)

We have |SStd0
6(λ → ν, (3, 2, 1))| = 27. To see this, observe that [t1](6) and [t2](6) each splits into 12

semistandard Kronecker tableaux of weight (3, 2, 1), whereas [t3](6) splits into 3 semistandard Kronecker

tableaux of weight (3, 2, 1).

Theorem 4.7. Let (λ, ν, s) be a co-Pieri triple and µ ` s. Then we define

ϕT(utµ) =
∑
s∈T

us.

for T ∈ SStd0
s(λ→ ν, µ). We have that

{ϕT | T ∈ SStd0
s(λ→ ν, µ)}

is a Z-basis for HomSs(M(µ),∆0
s(λ→ ν)).

Proof. By Frobenius reciprocity,

HomSs(M(µ),∆0
s(λ→ ν)) ∼= HomSµ(Q,∆0

s(λ→ ν) ↓Sµ)

It is clear from equation (3.4) and Remarks 4.2 and 4.3 that ∆0
s(λ→ ν) ↓Sµ decomposes as

∆0
s(λ→ ν) ↓Sµ=

⊕
T∈SStd0

s(λ→ν,µ)

V (T)
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Figure 15. The three elements of SStd0
3((4, 2)→ (5, 3, 1), (2, 1)). These tableaux are ordered to facili-

tate comparison with Figures 4 and 7.

where V (T) = SpanQ{mt + DR(λ → ν) | [t]µ = T}. Moreover, each V (T) is itself a permutation mod-

ule of the form Q ↑SµSτ
for some composition τ � s which is a refinement of µ. Thus we have that

dimQ HomSµ(Q, V (T)) = 1 for each T ∈ SStd0
s(λ→ ν, µ) and the result follows. �

Example 4.8. Let λ = (8, 5, 3), ν = (6, 5, 3, 2) and s = 3. Then (λ, ν, 3) is a co-Pieri triple. We have

that |SStd0
3(λ→ ν, (3))| = 6. A representative for each of these semistandard tableaux is given as follows,

d(1) ◦m↓(1, 4) ◦m↓(1, 4) d(2) ◦m↓(1, 4) ◦m↓(1, 4) m↓(1, 2) ◦m↓(1, 4) ◦m↓(2, 4)

d(3) ◦m↓(1, 4) ◦m↓(1, 4) r(1) ◦m↓(1, 4) ◦ a(4) m↓(1, 3) ◦m↓(1, 4) ◦m↓(3, 4).

The semistandard tableau corresponding to the first of these tableaux is depicted in Figure 16. We have

that |SStd0
3(λ→ ν, (2, 1))| = 15. Two examples of such tableaux are depicted in Figure 16.

5. Latticed Kronecker tableaux

In this section we prove the main result of the paper, namely we find a combinatorial description for

g(λ, ν, µ) = dim HomSs(S(µ),∆0
s(λ→ ν))

for all co-Pieri triples (λ, ν, s) and all µ ` s which naturally extends the Littlewood–Richardson rule.

In the previous section we saw that the semistandard Kronecker tableaux of shape λ→ ν and weight

µ index a basis for HomSs(M(µ),∆0
s(λ→ ν)). We will now find which of these index a basis for

HomSs(S(µ),∆0
s(λ→ ν)). We follow James’ approach [20] and extend his notion of latticed semistandard

tableaux.

We start with any standard tableau s ∈ Std0
s(λ→ ν) and any µ = (µ1, µ2, . . . , µl) � s. Write

s = (−εi1 ,+εj1 ,−εi2 ,+εj2 , . . . ,−εis ,+εjs).

Recall from the previous section that, to each integral step (−εik ,+εjk) in s, we associate its frame c,

that is the unique positive integer such that

|µ|c−1 < k 6 |µ|c.
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Figure 16. Three semistandard Kronecker tableaux of shape (8, 5, 3) → (6, 5, 3, 2) and one of shape

(9, 6, 3)→ (9, 6, 3). The leftmost is of weight (3) and the latter three are of weight (2, 1).

Now we encode the integral steps of s and their frames in a 2 × s array, which we will denote by

ωµ(s), and refer to as the µ-reverse reading word of s as follows. The first row of ωµ(s) contains all the

integral steps of s and the second row contains their corresponding frames. We order the columns of

ωµ(s) increasingly using the ordering on integral steps given in Definition 2.5 (and we place a vertical

lines between any two integral steps which are not equal). For two equal integral steps, we order the

columns so that the frame numbers are weakly decreasing (and so between any two vertical lines, the

entries in in the second row are weakly decreasing).

Note that if t ∈ [s]µ then ωµ(t) = ωµ(s). So it makes sense to define the reverse reading word, ω(S), of

a semistandard Kronecker tableau S ∈ SStd0
s(λ→ ν, µ) to be the 2× s array ω(S) := ωµ(s) for any s ∈ S.

We will write ω(S) = (ω1(S), ω2(S)) where ω1(S) (respectively ω2(S)) is the first (respectively second)

row of the array ω(S). Note that ω2(S) is a sequence of type µ, that is a sequence of positive integers

such that i appears precisely µi times, for all i > 1.

Example 5.1. We begin with an example of a triple of maximal depth. Let ν = (9, 8, 6, 3), λ = (6, 4, 3)

and s = 13. Let s ∈ Std0
s(λ→ ν) be the path

a(1) ◦ a(1) ◦ a(4) ◦ a(4) ◦ a(4) ◦ a(1) ◦ a(2) ◦ a(2) ◦ a(2) ◦ a(3) ◦ a(2) ◦ a(3) ◦ a(3).

Let µ = (5, 5, 3), then in classical notation, the semistandard tableau S = [s]µ is the leftmost tableaux

depicted in Figure 5. The reverse reading word of S is as follows:(
a(1) a(1) a(1) a(2) a(2) a(2) a(2) a(3) a(3) a(3) a(4) a(4) a(4)

2 1 1 3 2 2 2 3 3 2 1 1 1

)
.

Compare the second row of the above array with the corresponding word given in Examples 1.3 and 1.5.

Remark 5.2. Let (λ, ν, µ) be of maximal depth and S ∈ SStd0
s(λ→ ν, µ). The second row of the reverse

reading word of S coincides with the classical reverse reading word given in Definition 1.4.

Definition 5.3. Given a finite sequence of positive integers we define the quality (good/bad) of each

term as follows.
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(1) All 1’s are good.

(2) An i+1 is good if and only if the number of previous good i’s is strictly greater than the number

of previous good i+ 1’s.

A sequence of positive integers is called a lattice word if every term in the sequence is good.

Definition 5.4. For S ∈ SStd0
s(λ → ν, µ) we say that its reverse reading word ω(S) is a lattice word if

ω2(S) is a lattice word. We define Latt0
s(λ → ν, µ) to be the set of all S ∈ SStd0

s(λ → ν, µ) such that

ω(S) is a lattice word.

Example 5.5. Continuing from Example 5.1, the quality of each term (or step) in the reverse reading

word of S is as follows a(1) a(1) a(1) a(2) a(2) a(2) a(2) a(3) a(3) a(3) a(4) a(4) a(4)

× X X × X X × X X × X X X
2 1 1 3 2 2 2 3 3 2 1 1 1

.
We have indicated good steps with a X and each bad step with a ×. We see that S 6∈ Latt0

s((6, 4, 3) →
(9, 8, 6, 3)(5, 5, 3)).

Example 5.6. Of the three semistandard Kronecker tableaux depicted in Figure 15, the reverse reading

words of the final two are lattice words, whereas the first one is not.

Example 5.7. Of the two elements of SStd3((8, 5, 3) → (6, 5, 3, 2), (2, 1)) depicted in Figure 16, the

reverse reading word of the former is a lattice word, whereas the latter is not.

Example 5.8. We continue with Example 4.6. So we take λ = (7), ν = (6) and s = 6. Let S ∈
SStd0

6(λ→ ν, µ) for any µ ` 6. Then ω1(S) must be one of the following

(r(1) r(1) r(1) d(1) a(1) a(1)), (r(1) r(1) d(1) d(1) d(1) a(1)) or (r(1) d(1) d(1) d(1) d(1) d(1)).

It is easy to check that for µ = (3, 2, 1) we have S ∈ Latt0
6(λ → ν, µ) if and only if ω(S) is one of the

following(
r(1) r(1) r(1) d(1) a(1) a(1)

1 1 1 2 3 2

)
or

(
r(1) r(1) d(1) d(1) d(1) a(1)

1 1 2 2 1 3

)
.

Thus |Latt0
6(λ→ ν, µ)| = 2. Similarly, for τ = (4, 2) we have that S ∈ Latt0

6(λ→ ν, τ) if and only if ω(S)

is one of the following(
r(1) r(1) r(1) d(1) a(1) a(1)

1 1 1 1 2 2

)
,

(
r(1) r(1) r(1) d(1) a(1) a(1)

1 1 1 2 2 1

)
,(

r(1) r(1) d(1) d(1) d(1) a(1)

1 1 2 1 1 2

)
or

(
r(1) r(1) d(1) d(1) d(1) a(1)

1 1 2 2 1 1

)
.

So we get |Latt0
6(λ→ ν, τ)| = 4.

Theorem 5.9. For any co-Pieri triple (λ, ν, s) and any µ ` s we have that

g(λ, ν, µ) = dimQ HomSs(S(µ),∆0
s(λ→ ν)) = |Latt0

s(λ→ ν, µ)|.

In the rest of this section we will prove this result. The main technique we will use is James’ pairs of

partitions method which describes how to ‘turn bad steps into good ones’.

Definition 5.10. Let µ � s and let µ] ∈P6s be such that µ]c 6 µc, for all c > 1. Then (µ], µ) is called

a pair of partitions for s.

We record a pair of partitions diagrammatically by drawing the Young diagram for µ and filling all

boxes corresponding to µ] with a ×, for example we have that (µ], µ) = ((22, 1), (24)) is represented as

in the leftmost diagram in Figure 17.

Definition 5.11. Let (µ], µ) be a pair of partitions of s. We denote by s(µ) the set of all sequences of

type µ and by s(µ], µ) ⊆ s(µ) the set of all sequences of type µ having at least µ]i good i’s for all i.
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By definition we have

s(∅, µ) = s((µ1), µ) = s(µ)

and if τ ] ⊆ µ] then

s(µ], µ) ⊆ s(τ ], µ).

Definition 5.12. Let (µ, µ]) be a pair of partitions for s and let 1 < c 6 `(µ) be the smallest integer

such that µ]c < µc.

◦ We let r
µc−µ]c
c (µ) denote the composition of s obtained by removing the µc − µ]c boxes at the end of

row c and adding them at the end of row c− 1.

◦ We let ac(µ
]) denote the partition obtained by adding a single box to the end of µ]c if the result is a

partition. If the result is not a partition, then set (µ, ac(µ
])) = (∅,∅).

Example 5.13. For example, let (µ], µ) = ((22, 1), (24)). Some of the pairs of partitions obtained by

applying the moves in Definition 5.12 to (µ], µ) are depicted in Figure 17.

(µ, µ]) =

× ×
× ×
× (r1

3(µ), µ]) =

× ×
× ×
× (µ, a3(µ])) =

× ×
× ×
× ×

Figure 17. Examples for Definition 5.12

Definition 5.14. Fix µ ` s and define a plane binary tree T (µ) = (V (T (µ)), E) with vertices labelled by

pairs of partitions. Its root is labelled by ((µ1), µ) and given a vertex, (τ ], τ) ∈ V (T (µ)) its descendants

are labelled by the pairs of partitions

(τ ], r
τc−τ]c
c (τ)) and (ac(τ

]), τ)

where 1 < c 6 `(µ) is minimal such that and τ ]c < τc. If there is no such 1 < c 6 `(µ), then τ ] = τ and

(τ, τ) is a terminal vertex (also called a leaf). Note that we identify the labels (τ ], τ) and (η], τ) if τ ]

and η] only differ in the first row and usually choose to write the label (τ ], τ) with τ ]1 = τ1.

We decorate the edges of the tree with the appropriate operators, rkc and ac, for k > 1 and c > 2. We

let VT (T (µ)) denote the set of terminal vertices in V (T (µ)) which are not labeled by pairs of the form

(∅,∅). Given t ∈ VT (T (µ)), we associate the ordered sequence of operators, rt, labelling the edges in

the path from the root to the vertex t. A pair of partitions (τ, τ) will not (in general) label a unique

terminal vertex (see for example, Figure 18).

Example 5.15. The tree T (µ) for µ = (3, 2, 1) is given in Figure 18. There are 8 vertices in VT (T (µ)).

The rightmost terminal vertex is labelled by ((6), (6)) and it correspondes to the path r2r3r
2
2 = r1

2◦r1
3◦r2

2.

Note that we write the composition of operators from right to left and write rj for r1
j to simplify the

notation. The sequences of operators labelling terminal vertices are as follows,

a3a2a2 a2r3a2a2 r2r3a2a2 a3r2a2 a2r3r2a2 r2r3r2a2 a2r3r
2
2 r2r3r

2
2

where each of the paths above can be identified from left to right with the terminal nodes in the graph

in Figure 18.

James proved the following result, see [21, Theorem 15.14].

Theorem 5.16. Let (µ], µ) be a pair of partitions of s and let c > 1 be minimal such that µ]c < µc.

There is a bijection

Rc : s(µ], µ) \ s((ac(µ]), µ))→ s(µ], r
µc−µ]c
c (µ))

defined by changing all bad c’s into c− 1’s.

The next lemma shows that we can extend this bijection to sets of semistandard Kronecker tableaux

for co-Pieri triples. The corresponding result for triples of maximal depth is given in [21](16.3 Lemma).

Define SStd0
s(λ → ν, (µ], µ)) ⊆ SStd0

s(λ → ν, µ) to be the subset of all semistandard Kronecker

tableaux S whose reverse reading word satisfies ω2(S) ∈ s(µ], µ).
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a2 r22

a2 r2 r3a3

a2 r2a3 r3 a3 r3

a2 r2 a2 r2

×××
×××

×××

×××
×

×××××

×××
××

××××
× (∅,∅) ×××××

×××
××
×

×××
××

××××
×
×

××××
×

×××××
× ××××××

××××
××

×××××
×

××××
××

Figure 18. The tree, T (µ), for µ = (3, 2, 1).

Lemma 5.17. Let (λ, ν, s) be a co-Pieri triple and let (µ], µ) be a pair of partitions of s. Take c > 1 to

be minimal such that µ]c < µc. The map

Rc : SStd0
s(λ→ ν, (µ], µ)) \ SStd0

s(λ→ ν, (ac(µ
]), µ))→ SStd0

s(λ→ ν, (µ], r
µc−µ]c
c (µ))

defined by taking

ω1(Rc(S)) = ω1(S) and ω2(Rc(S)) = Rc(ω2(S))

for all S ∈ SStd0
s(λ→ ν, (µ], µ))\SStd0

s(λ→ ν, (ac(µ
]), µ)) (where the map Rc is given in Theorem 5.16)

is a bijection.

Proof. Note that each semistandard Kronecker tableau S is completely determined by the multisets Xi(S)

containing the integral steps in frame i for each i. Hence, the reverse reading word ω(S) completely

determines S. Moreover, as tk↔k+1 ∈ Std0
s(λ → ν) for all t ∈ Std0

s(λ → ν) and all k, if we move some

integral steps from one frame of S to another, the result will still be a semistandard tableau of the

same shape and the appropriate weight. So, using Theorem 5.16, the only thing we need to prove the

bijection is that (ω1(S), Rc(ω2(S)) is the reverse reading word of a semistandard tableau if and only if so

is (ω1(S), ω2(S)).

Write ω1(S) = (x1, x2, . . . , xs) where the xi’s are integral steps, ω2(S) = (u1, u2, . . . , us) andRc(ω2(S)) =

(v1, v2, . . . , vs). We need to show that for xj = xj+1 we have uj > uj+1 if and only if vj > vj+1. Assume

first that uj > uj+1 and vj < vj+1. By definition of the map Rc we must have uj = uj+1 = c, vj = c− 1

and vj+1 = c. This means that uj is a bad c and uj+1 is a good c but this is impossible by Definition 5.3.

Conversely, assume that vj > vj+1 and uj < uj+1. By definition of Rc we must have uj = c − 1,

uj+1 = c and vj = vj−1 = c − 1. This means that uj+1 is a bad c but it is preceeded by uj = c − 1 so

uj+1 has to be a good c by Definition 5.3. So again this case cannot occur. �

Starting at the root vertex of T (µ) and working our way down the edges, Lemma 5.17 allows us to

partition the set SStd0
s(λ→ ν, µ) into subsets corresponding to Latt0

s(λ→ ν, τ) for each terminal vertex

labelled by (τ, τ) for τ ` s. The next lemma describes the terminal vertices of the T (µ).

Lemma 5.18. Let µ, τ ` s. There is a bijective correspondence between the set of terminal vertices in

T (µ) labelled by (τ, τ) and the set SStds(τ, µ) of semistandard Young tableaux of shape τ and weight µ.

Proof. For this proof, it is easier to view the set SStds(τ, µ) in the classical way, as Young diagrams of

shape τ with boxes filled with µ1 1’s, µ2 2’s , . . .. For each edge ac and r
τc−τ]c
c in the tree T (µ), we



30 C. BOWMAN, M. DE VISSCHER, AND J. ENYANG

define corresponding maps

ac : SStds(τ, µ)→ SStds(τ, µ) : T 7→ ac(T) = T,

r
τc−τ]c
c : SStds(τ, µ)→ SStds(r

τc−τ]c
c (τ), µ) : T 7→ r

τc−τ]c
c (T)

where r
τc−τ]c
c (T) is obtained from T by moving the last τc − τ ]c boxes at the end of row c to the end of

row c− 1 together with their content.

Now each terminal vertex in T (µ) correspond to a unique path t starting at the root vertex and ending

at a vertex labelled by (τ, τ) for some τ ` s. Let Tµ be the unique element in SStds(µ, µ) and denote

by rt(Tµ) the tableau obtained by applying the operators along the edges of t to Tµ. We claim that

the map t 7→ rt(Tµ) for each terminal vertex labelled by (τ, τ) gives a bijection between these terminal

vertices and SStds(τ, µ).

As the operator rt moves up the boxes of content 2 first, then the boxes of content 3, then 4, and

so on, it is clear that the result will be a semistandard tableau of shape τ and weight µ, and moreover,

different paths will lead to different semistandard tableaux.

It remains to show that this map is surjective. First note that if SStds(τ, µ) 6= ∅ then τ D µ. Now let

T ∈ SStds(τ, µ) for some τ B µ. Assume that T has precisely kcd boxes of content c in row d. (Note that

of kcd 6= 0 then d 6 c.) For each 2 6 c 6 `(µ) define

r(c) = r
kc1
2 ◦ . . . ◦ (ac−2)k

c
c−2 ◦ r

∑c−2
d=1 k

c
d

c−1 ◦ (ac)
kcc−1 ◦ r

∑c−1
d=1 k

c
d

c ◦ (ac)
kcc .

By construction, we have r(`(µ)) . . . r(3)r(2)(Tµ) = T and r(`(µ)) . . . r(3)r(2) is a path in T (µ) starting at

the root vertex and ending at a vertex labelled with (τ, τ). Thus the map is surjective as required. �

Example 5.19. Given µ = (3, 2, 1), we have that the sequences

a3a2a2 a2r3a2a2 r2r3a2a2 a3r2a2 a2r3r2a2 r2r3r2a2 a2r3r
2
2 r2r3r

2
2 (5.1)

label the terminal vertices in T (µ). Applying these operators to Tµ we obtain all semistandard Young

tableaux of weight µ. This procedure is illustrated in Figure 19.

a2 r22

a2 r12 r13a3

a2 r2a3 r3 a3 r3

a2 r2 a2 r2

1 1 1
2 2 3

1 1 1
2 2
3

1 1 1
2 2
3

1 1 1 2 2

3

1 1 1
2 2
3

1 1 1 2
2
3

(∅,∅) 1 1 1 2 2
3

1 1 1
2 2
3

1 1 1
2 2 3

1 1 1 2
2
3

1 1 1 2
2 3

1 1 1 2 2
3 1 1 1 2 2 3

1 1 1 3
2 2

1 1 1 2 3
2

1 1 1 2
2 3

Figure 19. The set of terminal vertices of this graph gives precisely the set of all semistandard Young

tableaux of weight (3, 2, 1).

Corollary 5.20. Let (λ, ν, s) be a co-Pieri triple and µ ` s. There is one-to-one correspondence

SStd0
s(λ→ ν, µ)

1−1←→
⊔
τ`s

SStds(τ, µ)× Latt0
s(λ→ ν, τ).
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Proof. By repeated applications of Lemma 5.17, we have a bijection between SStd0
s(λ → ν, µ) and the

disjoint union over all terminal vertices of T (µ) of the sets SStd0
s(λ→ ν, (τ, τ)), where (τ, τ) is the label

of the corresponding terminal vertex. Now, by Lemma 5.18, we have that for each τ ` s, the number of

terminal vertices labelled by (τ, τ) is precisely the cardinality of SStds(τ, µ). Moreover, by definition we

have that SStd0
s(λ→ ν, (τ, τ)) = Latt0

s(λ→ ν, τ). Hence the result follows. �

Example 5.21. Let λ = (7), ν = (6), µ = (3, 2, 1) and τ = (4, 2). We have that

|Latt0
6(λ→ ν, τ)× SStds(τ, µ)| = 4× 2 = 8

and the tableaux are listed explicitly in Examples 5.8 and 5.19. We shall now list the 8 elements of

SStd0
6(λ→ ν, µ) which correspond to these pairs of tableaux under the bijection given in Corollary 5.20.

The two terminal vertices labelled by (τ, τ) are determined by the paths r2r3a2a2 and a2r3r2a2.

First consider the path r2r3a2a2. Using Lemma 5.17 we apply R−1
3 ◦R−1

2 to the tableaux in

Latt0
6(λ→ ν, τ) to get(
r(1) r(1) r(1) d(1) a(1) a(1)

1 1 1 1 2 2

)
R−1

3 ◦R
−1
2−→

(
r(1) r(1) r(1) d(1) a(1) a(1)

3 1 1 1 2 2

)
(
r(1) r(1) r(1) d(1) a(1) a(1)

1 1 1 2 2 1

)
R−1

3 ◦R
−1
2−→

(
r(1) r(1) r(1) d(1) a(1) a(1)

3 1 1 2 2 1

)
(
r(1) r(1) d(1) d(1) d(1) a(1)

1 1 2 1 1 2

)
R−1

3 ◦R
−1
2−→

(
r(1) r(1) d(1) d(1) d(1) a(1)

3 1 2 1 1 2

)
(
r(1) r(1) d(1) d(1) d(1) a(1)

1 1 2 2 1 1

)
R−1

3 ◦R
−1
2−→

(
r(1) r(1) d(1) d(1) d(1) a(1)

1 1 3 2 2 1

)
Now consider the path a2r3r2a2. Using Lemma 5.17 we apply R−1

2 ◦R
−1
3 to the tableaux in Latt0

6(λ→
ν, τ) to get the following four elements of SStd0

6(λ→ ν, µ).(
r(1) r(1) r(1) d(1) a(1) a(1)

1 1 1 1 2 2

)
R−1

2 ◦R
−1
3−→

(
r(1) r(1) r(1) d(1) a(1) a(1)

2 1 1 1 3 2

)
(
r(1) r(1) r(1) d(1) a(1) a(1)

1 1 1 2 2 1

)
R−1

2 ◦R
−1
3−→

(
r(1) r(1) r(1) d(1) a(1) a(1)

2 1 1 3 2 1

)
(
r(1) r(1) d(1) d(1) d(1) a(1)

1 1 2 1 1 2

)
R−1

2 ◦R
−1
3−→

(
r(1) r(1) d(1) d(1) d(1) a(1)

2 1 3 1 1 2

)
(
r(1) r(1) d(1) d(1) d(1) a(1)

1 1 2 2 1 1

)
R−1

2 ◦R
−1
3−→

(
r(1) r(1) d(1) d(1) d(1) a(1)

2 1 3 2 1 1

)
We are now ready to prove our main theorem.

Proof of Theorem 5.9. Recall that

g(λ, ν, µ) = dimQ HomSs(S(µ),∆0
s(λ→ ν)).

We prove the result by downwards induction on µ (using the dominance order D). If µ is maximal then

µ = (s) and S(µ) = M(µ). Moreover Latt0
s(λ → ν, µ) = SStd0

s(λ → ν, µ). Thus the result follows from

Theorem 4.7. We now assume that the result holds for all partitions τ � µ. We have

M(µ) =
⊕
τDs

|SStds(τ, µ)|S(τ). (5.2)

By induction we have

dimQ HomSs(S(τ),∆0
s(λ→ ν)) = |Latt0

s(λ→ ν, τ)| ∀τ B µ. (5.3)

By Theorem 4.7, (5.2) and (5.3) we have

|SStd0
s(λ→ ν, µ)| = dimQ HomSs(M(µ),∆0

s(λ→ ν))

= dimQ HomSs(S(µ),∆0
s(λ→ ν)) +

∑
τBµ

|SStds(τ, µ)|dimQ HomSs(S(τ),∆0
s(λ→ ν))

= dimQ HomSs(S(µ),∆0
s(λ→ ν)) +

∑
τBµ

|SStds(τ, µ)| |Latt0
s(λ→ ν, τ)|.
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Comparing this equality with Corollary 5.20 and noting that |SStds(µ, µ)| = 1 we get

g(λ, ν, µ) = dimQ HomSs(S(µ),∆0
s(λ→ ν)) = |Latt0

s(λ→ ν, µ)|

as required. �

6. Examples

In this section we provide several illustrative examples of how to calculate Kronecker coefficients in

terms of latticed Kronecker tableaux. As a warm up exercise, we first consider the decomposition of

tensor products of the form S(λ[n]) ⊗ S(n − 1, 1). These coefficients are trivial to calculate but they

provided our initial motivation for this paper and they illustrate some of the basic ideas very well. We

have

g(ν[n], λ[n], (n− 1, 1)) = dimQ(HomSn(S(λ[n])⊗ S(n− 1, 1),S(ν[n])))

= dimQ(HomS1
(S((1)),∆0

1(λ→ ν)))

= dimQ(HomS1
(M((1)),∆0

1(λ→ ν)))

= |SStd0
1(λ→ ν, (1))|.

Note that as s = 1 we have SStd0
1(λ → ν, (1)) = Std0

1(λ → ν). Moreover, we have Std0
1(λ → ν) =

Std1(λ → ν) unless λ = ν, in which case we have Std0
1(λ → λ) = Std1(λ → λ) \ {(−ε0,+ε0)}. The

coefficient g(ν[n], λ[n], (n − 1, 1)) is therefore equal to the number of paths of length 1 from λ to ν for

λ 6= ν and is equal to one fewer for λ = ν. In the former (respectively latter) case the number of such

paths is equal to 1 (respectively equal to the number of removable nodes of λ). Compare with [40,

Exercise 7.81].

Example 6.1. For example, the coefficients stabilise for n > 7 and we have that

S(n− 3, 2, 1)⊗ S(n− 1, 1) =S(n− 2, 2)⊕ S(n− 2, 12)⊕ S(n− 3, 3)⊕ 2S(n− 3, 2, 1)⊕ S(n− 3, 13)

⊕ S(n− 4, 3, 1)⊕ S(n− 4, 22)⊕ S(n− 4, 2, 12).

The only coefficient not equal to 0 or 1 is g((n − 3, 2, 1), (n − 3, 2, 1), (n − 1, 1)) = 2 for n > 7. See

Figure 20 for the paths from (2, 1) ∈ Y3 to points in Y4.

Figure 20. Paths of degree 1 beginning at (2, 1) in Y3.

We now revisit some of the earlier examples in the paper.

Example 6.2. Consider the rightmost example in Figure 2 from the introduction. We have that

((5, 3, 3), (7, 5, 1, 1), µ) is a co-Pieri triple for µ ` 5. We have that

g((n− 11, 5, 3, 3), (n− 14, 7, 5, 1, 1), (n− 5, 2, 2, 1)) = g((5, 3, 3), (7, 5, 1, 1), (2, 2, 1)) = 11

for all n > 21 and an example of an element of Latt0
5((7, 5, 1, 1) → (5, 3, 3), (2, 2, 1)) is depicted in

Figure 2.
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Example 6.3. We have that ((6, 5, 3, 2), (12, 8, 5, 3), µ) is a co-Pieri triple for µ ` 3. Some of the

corresponding semistandard and latticed tableaux are depicted in Figure 16 and discussed in Example 5.7.

We have that

g((6, 5, 3, 2), (12, 8, 5, 3), (3)) = 6,

g((6, 5, 3, 2), (12, 8, 5, 3), (2, 1)) = 9,

g((6, 5, 3, 2), (12, 8, 5, 3), (13)) = 3.

The six latticed tableaux of weight (3) are given in Example 4.8. We leave constructing those of weight

(2, 1) and (13) as an exercise for the reader.

Example 6.4. We have that ((9, 6, 3), (9, 6, 3), (2, 1)) is a co-Pieri triple and that

g((9, 6, 3), (9, 6, 3), (2, 1)) = Latt0
3(((9, 6, 3)→ (9, 6, 3), (2, 1))) = 60.

The dedicated reader might wish to attempt this calculation themselves once they have digested the

other examples in this section. The rightmost tableau in Figure 16 is an example of a latticed tableau

for this triple.

6.1. Kronecker coefficients labelled by two 2-row partitions. In this section we provide examples

of our tableaux combinatorics for coefficients g(λ[n], ν[n], µ[n]) in which λ[n] and ν[n] are two-part partitions

but µ[n] is arbitrary. These coefficients have been described in many ways and received the attention of

many authors [2, 36, 37, 6, 9, 27]; Hilbert series related to these coefficients have been linked to problems

in quantum information theory [26, 17]. The advantage of our description over previous work is that it

covers these coefficients as a simple example in a far broader class of Kronecker coefficients (including

the Littlewood–Richardson coefficients).

The following proposition is well known from the interpretation of the Kronecker coefficients in the

setting of the representations of the general linear groups. We include a simple proof as it illustrates

some basic properties of latticed Kronecker tableaux.

Proposition 6.5. If λ[n] and ν[n] are 2-part partitions and g(λ[n], ν[n], µ[n]) 6= 0, then `(µ[n]) 6 4.

Proof. First note that g(λ[n], ν[n], µ[n]) 6= 0 implies that g(λ, ν, µ) = |Latt0
s(λ → ν, µ)| 6= 0. Now

the only possible steps in semistandard Kronecker tableaux in Latt0
s(λ → ν, µ) are r(1), d(1), or a(1)

and the ordering on these steps is r(1) < d(1) < a(1). Now by definition of a lattice word, for any

S ∈ Latt0
s(λ → ν, µ), the frame number of a step of type r(1) in S is equal to 1, the frame number of a

step of type d(1) is less or equal to 2 and the frame number of a step of type a(1) is less or equal to 3.

Thus if Latt0
s(λ→ ν, µ) 6= ∅ then `(µ) 6 3 and hence `(µ[n]) 6 4 as required. �

Proposition 6.6. Let λ[n] and ν[n] be 2-part partitions. Let µ[n] be an arbitrary partition. Then we

have that

g(λ[n], ν[n], µ[n]) =

3∑
i=0

(−1)i|Latt0
si(λ→ ν, µ(i))|

where µ(0) = µ and for i > 1 the partition µ(i) is obtained from µ(i−1) by adding a single row of boxes in

the ith row, the last of which having content n− |µ(i−1)|, and si = |µ(i)|.

Proof. By [6, Theorem 3] (and see [4, Theorem 3.7] for the partition algebra theoretic interpretation and

proof) we can write

g(λ[n], ν[n], µ[n]) =
∑
i>0

(−1)ig(λ, ν, µ(i)).

Using Proposition 6.5 we have that if `(µ(i)) > 3 then g(λ, ν, µ(i)) = 0. Now the result follows from

Theorem 5.9. �

Remark 6.7. It is proved in [6, Theorem 3] that the last term in the alternating sum given in Proposition

6.6 is zero, so in fact we only have three non-zero terms.
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Remark 6.8. Note also that if |µ(i)| > |λ| + |ν| then Latt0
si(λ → ν, µ(i)) = ∅. Thus as n gets larger

the sum in Proposition 6.6 has fewer than 4 terms. In fact when n > |λ| + |ν| + µ1 − 1 then we have

|µ(1)| > |λ|+ |ν| and so (letting s = |µ|) we have that

g(λ[n], ν[n], µ[n]) = |Latt0
s(λ→ ν, µ)|.

Example 6.9. Let λ = (7) and ν = (6) and µ = (4, 3, 1). Then ω1(S) must be one of the following

(r(1) r(1) r(1) | d(1) d(1) d(1) | a(1) a(1)) (r(1) r(1) r(1) r(1) | d(1) | a(1) a(1) a(1)).

Is is easy to check that S ∈ Latt0
8(λ→ ν, µ) if and only if ω(S) is one of the following(

r(1) r(1) r(1) d(1) d(1) d(1) a(1) a(1)

1 1 1 2 2 2 3 1

)
(
r(1) r(1) r(1) d(1) d(1) d(1) a(1) a(1)

1 1 1 2 2 1 3 2

)
(
r(1) r(1) r(1) r(1) d(1) a(1) a(1) a(1)

1 1 1 1 2 3 2 2

)
Therefore g((n− 7, 7), (n− 6, 6), (n− 8, 4, 3, 1)) = 3 for n > 15. We leave it as an exercise for the reader

to verify that these semistandard Kronecker tableaux are orbits of size 12, 3, and 1 respectively.

6.2. A Kronecker product labelled by two three-row partitions. We now consider the next

simplest case: namely a pair of 3-row partitions. Let λ = (6, 1) and ν = (4, 3), we have |SStd0
3(λ →

ν, (3))| = |Latt0
3(λ→ ν, (3))| = 3. The corresponding reading words are as follows,(

d(1) m↓(1, 2) m↓(1, 2)

1 1 1

) (
d(2) m↓(1, 2) m↓(1, 2)

1 1 1

) (
r(1) m↓(1, 2) a(2)

1 1 1

)
It is easy to check that any S ∈ SStd0

3(λ→ ν, (2, 1)) must have ω1(S) as follows,

(d(1) | m↓(1, 2) m↓(1, 2)) (d(2) | m↓(1, 2) m↓(1, 2)) (r(1) | m↓(1, 2) | a(2))

and |SStd0
3(λ → ν, (2, 1))| = 7. We have S ∈ Latt0

3(λ → ν, (2, 1)) if and only if ω(S) is one of the

following, (
d(1) m↓(1, 2) m↓(1, 2)

1 2 1

) (
r(1) m↓(1, 2) a(2)

1 2 1

)
(
d(2) m↓(1, 2) m↓(1, 2)

1 2 1

) (
r(1) m↓(1, 2) a(2)

1 1 2

)
We have that |SStd0

3(λ→ ν, (13))| = 12. The unique element S ∈ Latt0
3(λ→ ν, (13)) has ω(S) equal to(

r(1) m↓(1, 2) a(2)

1 2 3

)
We therefore conclude that

g((6, 1), (4, 3), (3)) = 3 g((6, 1), (4, 3), (2, 1)) = 4 g((6, 1), (4, 3), (13)) = 1.

The Kronecker coefficients quickly stabilise in this case, for example

g((62, 1), (6, 4, 3), (10, 3)) = 3 g((7, 6, 1), (7, 4, 3), (11, 3)) = 4

and g((n− 7, 6, 1), (n− 7, 4, 3), (n− 3, 3)) = 4 for n > 14.
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6.3. A larger example. Let λ = (6, 2), ν = (7, 4). We have that (λ, ν, s) is a co-Pieri triple for s 6 5.

Let s = 4 and µ ` s. Given S ∈ SStd0
4(λ→ ν, µ), we have that ω1(S) is equal to one of

(d(1) | a(1) | a(2) a(2)) (d(2) | a(1) | a(2) a(2)) (m↓(1, 2) | a(1) a(1) | a(2)) (m↑(2, 1) | a(2) a(2) a(2)).

We now consider the semistandard and latticed tableaux for each weight µ for µ ` 4. We have that

|SStd0
4(λ→ ν), (4))| = |Latt0

4(λ→ ν, (4))| = 4. The corresponding ω1(S) are as follows:(
d(1) a(1) a(2) a(2)

1 1 1 1

) (
m↓(1, 2) a(1) a(1) a(2)

1 1 1 1

)
(
d(2) a(1) a(2) a(2)

1 1 1 1

) (
m↑(2, 1) a(2) a(2) a(2)

1 1 1 1

)
.

Given S ∈ Latt0
4(λ→ ν, (3, 1)), we have that ω1(S) is one of the following,(

d(1) a(1) a(2) a(2)

1 1 2 1

) (
m↓(1, 2) a(1) a(1) a(2)

1 2 1 1

) (
d(2) a(1) a(2) a(2)

1 2 1 1

)
(
d(1) a(1) a(2) a(2)

1 2 1 1

) (
m↓(1, 2) a(1) a(1) a(2)

1 1 1 2

) (
d(2) a(1) a(2) a(2)

1 1 2 1

)
(
m↑(2, 1) a(2) a(2) a(2)

1 2 1 1

)
Given S ∈ Latt0

4(λ→ ν, (2, 2)), we have that ω1(S) is one of the following,(
d(1) a(1) a(2) a(2)

1 1 2 2

) (
m↓(1, 2) a(1) a(1) a(2)

1 2 1 2

) (
d(2) a(1) a(2) a(2)

1 1 2 2

)
Given S ∈ Latt0

4(λ→ ν, (2, 12)), we have that ω1(S) is one of the following,(
d(1) a(1) a(2) a(2)

1 2 1 3

) (
m↓(1, 2) a(1) a(1) a(2)

1 2 1 3

) (
d(2) a(1) a(2) a(2)

1 2 1 3

)
Finally, we have that |Latt0

4(λ→ ν, (14))| = 0 and therefore

g((6, 2), (7, 4), (4)) = 4 g((6, 2), (7, 4), (2, 2)) = 3 g((6, 2), (7, 4), (14)) = 0

g((6, 2), (7, 4), (3, 1)) = 7 g((6, 2), (7, 4), (2, 12)) = 3
.

We do not calculate all the coefficients g(λ, ν, µ) for µ ` 5 and instead only calculate the µ = (22, 1) case.

Given S ∈ Latt0
5(λ→ ν, (22, 1)), we have that ω(S) is one of the following,(
r(1) a(1) a(1) a(2) a(2)

1 2 1 3 2

) (
d(1) d(1) a(1) a(2) a(2)

1 1 2 3 2

)
(
d(1) m↓(1, 2) a(1) a(1) a(2)

1 1 2 2 3

) (
d(1) m↓(1, 2) a(1) a(1) a(2)

1 2 3 1 2

)
(
d(2) d(1) a(1) a(2) a(2)

1 1 2 3 2

) (
d(2) m↓(1, 2) a(1) a(1) a(2)

1 2 3 1 2

)
(
d(2) d(2) a(1) a(2) a(2)

1 1 2 3 2

) (
m↑(2, 1) m↓(1, 2) a(1) a(2) a(2)

1 2 1 3 2

)
(
d(2) m↓(1, 2) a(1) a(1) a(2)

1 1 2 2 3

) (
m↑(2, 1) m↓(1, 2) a(1) a(2) a(2)

1 1 2 3 2

)
(
d(2) d(1) a(1) a(2) a(2)

1 2 1 3 2

)
and therefore g(λ, ν, (2, 2, 1)) = 11.

Example 6.10. We now consider an example which is not a co-Pieri triple. We let λ = ν = (12). We

have that DR2(∆2(λ→ ν)) is 5-dimensional and is isomorphic to ∆2(1)⊕∆2(∅). The former summand

is spanned by the basis elements indexed by the Kronecker tableaux

d(2) ◦ d(2) d(0) ◦ d(2) d(2) ◦ d(0)
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and the latter summand is spanned by the basis elements indexed by the Kronecker tableaux

a(3) ◦ r(3) d(0) ◦ d(0).

The quotient ∆0
2(λ→ ν) decomposes as a direct sum of two transitive permutation modules

Q{ut | t = m↑(2, 1) ◦m↓(1, 2)} ⊕Q{us | s ∈ {a(1) ◦ r(1), r(2) ◦ a(2)}}.

Note that t1↔2 is not a standard Kronecker tableau and hence we cannot use the results of this paper

to understand ∆0
2(λ → ν). However, one can see that the former summand is isomorphic to ∆2(2) via

the isomorphism ∆2(2) ∼= ∆2(12)⊗∆2(12). The latter summand is isomorphic to ∆2(2)⊕∆2(12).

Appendix A. The action of the partition algebra on skew cell modules

This section is dedicated to the proof of Theorem 3.3. This is essentially an extensive book keeping

exercise, which begins with a few simple but important observations concerning the branching coefficients

of Definition 2.7 which are, in turn, given as products of the diagrammatic elements sk,l, e
(l)
k and e

(l)

k+ 1
2

defined in Definition 2.6. The first step in our book keeping is as follows: Fix t ∈ Stdr(ν) and 1 6 k 6
r − 1. First note that we can factorise ut as follows,

ut = ut[k+1,r]ut[k−1,k+1]ut[0,k−1].

Now as ut[0,k−1] ∈ Pk−1(n), it commutes with sk,k+1 and so we have

ut = ut[k+1,r]ut[k−1,k+1]sk,k+1ut[0,k−1]. (A.1)

So let us first consider ut[k−1,k+1]. We fix the following notation.

t[k − 1, k + 1] = t(k − 1)
−t−−→ t(k − 1

2 )
+u−−→ t(k)

−v−−→ t(k + 1
2 )

+w−−→ t(k + 1) (A.2)

with

t(k − 1) = (α, a) t(k − 1
2 ) = (β, b) t(k) = (γ, c) t(k + 1

2 ) = (δ, d) t(k + 1) = (ζ, z).

As in Definition 3.2, if u = v > 0 we define s := ek(t) by s(l) = t(l) for l 6= k and

s(k − 1
2 )

+L−−→ s(k)
−L−−→ s(k + 1

2 ) (A.3)

where L = `(t(k − 1
2 ))+1. If t(k− 1

2 ) 6= t(k+ 1
2 ), then ek(t) is undefined. For the purposes of book-keeping

we now introduce some notation. Given ν a partition and u,w > 0 we set

mν−εw→ν =

νw−1∑
i=0

s|ν|w−i,|ν|w mν,u,w =

{
mν−εw→νmν−εu→ν if u 6= w

mν−εw→νmν−2εw→ν−εw if u = w.

(Note that mν,u,w = mν,w,u and that mν→ν = 1 following the conventions of Definition 2.7.) By

Definition 2.7, we have

ut[k−1,k+1] = e
(z)
k+1mδ→ζs|ζ|w,|ζ|e

(d)

k+ 1
2

s|γ|,|γ|ve
(c)
k mβ→γs|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t . (?)

In order to prove Theorem 3.3, we need to multiply the element in equation (?) by the Coxeter generator

sk,k+1 and re-express this in terms of branching coefficients. The proof is not conceptually difficult but

requires numerous concatenation of diagrams and careful book keeping. To help the reader follow the

argument, we collect some relations between the elements si,j , e
(l)
k and e

(l)

k+ 1
2

in the following lemma.

Lemma A.1. We have the following commutation and almost-commutation rules in the partition algebra:

(1) (a) si,je
(l)
k = e

(l)
k si,j if i, j 6 k− l or i, j > k+1. (b) si,je

(l)

k+ 1
2

= e
(l)

k+ 1
2

si,j if i, j 6 k− l or i, j > k+2.

(2) si,jsl,k = sl,ksi,j if i, j < min{l, k} or i, j > max{l, k}.
(3) For k < i < j < l we have (a) sl,ksi,j = si−1,j−1sl,k and (b) sk,lsi,j = si+1,j+1sk,l.

(4) sk,jsi,j = si,j−1sk,j−1 for i < j < k.

(5) e
(l)

k+ 1
2

sk,k+1 = e
(l)

k+ 1
2

.

(6) e
(l+1)

k+ 1
2

e
(l)
k e

(l)

k+ 1
2

= e
(l+1)

k+ 1
2
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Proof. (1) and (2) are obvious from the diagrams of these elements given in Definition 2.6. For (3)(a)

note that this is equivalent to showing that sl,ksi,js
−1
l,k = sl,ksi,jsk,l = si−1,j−1. This now follows by

concatenating the diagrams as in Figure 21. The case (3)(b) is similar. The case (4) can be seen by

multiplying the diagrams as in Figure 22. Case (5) follows from the fact that k and k+1 are in the same

block in e
(l)

k+ 1
2

. Finally, (6) can also be seen by concatenating the diagrams as in Figure 23. �

k̄ l̄ī j̄

sl,k

si,j

s−1
l,k

k

=

k

k lk

k

si−1,j−1

ī j̄

Figure 21. The product sl,ksi,js
−1
l,k = si−1,j−1

ī k̄j̄

k

sk,j

si,j

=

k̄ī j̄

k

si,j−1

sk,j−1

Figure 22. The product sk,jsi,j = si,j−1sk,j−1

l + 2

e
(l+1)

k+ 1
2

e
(l)
k

e
(l)

k− 1
2

k

=

l + 2

k

k lk

k

l + 2

e
(l+1)

k+ 1
2

Figure 23. The product e
(l+1)

k+ 1
2

e
(l)
k e

(l)

k− 1
2

= e
(l+1)

k+ 1
2
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Proposition A.2. For t as in equation (A.2), we have

ut[k−1,k+1] = mζ,u,wPk(t) + (1− δu,0)δu,vus[k−1,k+1]

where δu,v and δu,0 are the usual Kronecker deltas , s = ek(t) as in equation (A.3) and

Pk(t) =

e
(z)
k+1s|ζ|w,|ζ|e

(d)

k+ 1
2

s|γ|,|γ|u−1e
(c)
k s|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t if u = v > 0

e
(z)
k+1s|ζ|w,|ζ|e

(d)

k+ 1
2

s|γ|,|γ|ve
(c)
k s|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t otherwise.

Proof. By definition 2.7, we have

ut[k−1,k+1] = e
(z)
k+1mδ→ζs|ζ|w,|ζ|e

(d)

k+ 1
2

s|γ|,|γ|ve
(c)
k mβ→γs|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t .

Claim A. If k > 1, (λ, l) ∈ Yk and (µ,m)→ (λ, l) is an edge in Y then we have

◦ e(l)
k mµ→λ = mµ→λe

(l)
k ,

◦ e(l)
k s|λ|a,|λ| = s|λ|a,|λ|e

(l)
k for any a > 0.

We have that |λ| = k − l so Claim A follows from Lemma A.1(1).

Claim B. We have that

s|γ|,|γ|vmβ→γ =

{
mδ−εu→δs|γ|,|γ|u−1 + s|γ|,|γ|u if u = v > 0,

mδ−εu→δs|γ|,|γ|v otherwise.

(We note that β = γ − εu.) If v = 0, then s|γ|,|γ|v = 1 and δ = γ and so the result holds trivially. If

u = 0, then mβ→γ = 1 = mδ−εu→δ and so the result also holds trivially. We now assume that u, v > 0.

If u < v then γu = δu and |δ|u = |γ|u < |γ|v and so

s|γ|,|γ|vmγ−εu→γ = mγ−εu→γs|γ|,|γ|v = mδ−εu→γs|γ|,|γ|v ,

by Lemma A.1(1). If v < u then |γ|v < |γ|u − i 6 |γ| for all 0 6 i 6 γu − 1 and so

s|γ|,|γ|vmγ−εu→γ = s|γ|,|γ|v

γu−1∑
i=0

s|γ|u−i,|γ|u =

(
γu−1∑
i=0

s|γ|u−i−1,|γ|u−1

)
s|γ|,|γ|v =

(
δu−1∑
i=0

s|δ|u−i,|δ|u

)
s|γ|,|γ|v

where the second equality follows from Lemma A.1(3)(a) and the third equality follows as δu = γu and

|δ|u = |γ|u − 1. Now the final term is equal to mδ−εu→δs|γ|,|γ|v by definition. Finally if u = v > 0 then

s|γ|,|γ|vmβ→γ = s|γ|,|γ|umγ−εu→γ = s|γ|,|γ|u

γu−1∑
i=0

s|γ|u−i,|γ|u = s|γ|,|γ|u

(
1 +

γu−1∑
i=1

s|γ|u−i,|γ|u

)
.

Expanding out the brackets and shifting the indices, we obtain

s|γ|,|γ|u +

γu−1∑
i=1

s|γ|,|γ|us|γ|u−i,|γ|u = s|γ|,|γ|u +

γu−1∑
i=1

s|γ|u−i,|γ|u−1s|γ|,|γ|u−1 by Lemma A.1(4)

= s|γ|,|γ|u +

γu−2∑
i=0

s|γ|u−1−i,|γ|u−1s|γ|,|γ|u−1

= s|γ|,|γ|u +

δu−1∑
i=1

s|δ|u−i,|δ|us|γ|,|γ|u−1

= mδ−εu→δs|γ|,|γ|u−1 + s|γ|,|γ|u

where the penultimate equality follows as |γ|u−1 = |δ|u and γu−2 = δu−1. Therefore Claim B follows.

Claim C. We have that

s|ζ|w,|ζ|mδ−εu→δ =

{
mζ−εu→ζs|ζ|w,|ζ| if w 6= u

mζ−2εw→ζ−εws|ζ|w,|ζ| otherwise.

If u = 0 or w = 0 the result holds trivially. We assume u,w > 0. If u < w then |δ|u = |ζ|u < |ζ|w so we

get

s|ζ|w,|ζ|mδ−εu→δ = mδ−εu→δs|ζ|w,|ζ| = mζ−εu→ζs|ζ|w,|ζ|,
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using Lemma A.1(2). If u > w then |δ|u = |ζ|u − 1 > |ζ|w and so we get

s|ζ|w,|ζ|mδ−εu→δ = s|ζ|w,|ζ|

δu−1∑
i=0

s|δ|u−i,|δ|u =

δu−1∑
i=0

s|δ|u−i+1,|δ|u+1s|ζ|w,|ζ| =

ζu−1∑
i=0

s|ζ|u−i,|ζ|us|ζ|w,|ζ|

where the second equality follows from Lemma A.1(3)(b). Now the final term is equal to mζ−εu→ζs|ζ|w,|ζ|,

as required. Finally, if u = w > 0 then |ζ|w = |ζ|u = |δ|u + 1 and using Lemma A.1(1) we get

s|ζ|w,|ζ|mδ−εu→δ = mδ−εu→δs|ζ|w,|ζ| = mζ−2εw→ζ−εws|ζ|w,|ζ|,

as required. Therefore Claim C follows.

Applying Claim A and Claim B (and noting that s|γ|,|γ|us|γ|u,|γ| = 1) we deduce that

ut[k−1,k+1] =


mδ→ζe

(z)
k+1s|ζ|w,|ζ|e

(d)

k+ 1
2

mδ−εu→δs|γ|,|γ|u−1e
(c)
k s|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t

+e
(z)
k+1mδ→ζs|ζ|w,|ζ|e

(d)

k+ 1
2

e
(c)
k e

(b)

k− 1
2

s|α|,|α|t if u = v > 0

mδ→ζe
(z)
k+1s|ζ|w,|ζ|e

(d)

k+ 1
2

mδ−εu→δs|γ|,|γ|ve
(c)
k s|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t otherwise.

Applying Claim A and Claim C to the above equation, we deduce that

ut[k−1,k+1] =


mζ,u,we

(z)
k+1s|ζ|w,|ζ|e

(d)

k+ 1
2

s|γ|,|γ|u−1e
(c)
k s|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t

+e
(z)
k+1mζ−εw→ζs|ζ|w,|ζ|e

(d)

k+ 1
2

e
(c)
k e

(b)

k− 1
2

s|α|,|α|t if u = v > 0

mζ,u,we
(z)
k+1s|ζ|w,|ζ|e

(d)

k+ 1
2

s|γ|,|γ|ve
(c)
k s|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t otherwise.

Finally, note that

us[k−1,k+1] = e
(z)
k+1mζ−εw→ζs|ζ|w,|ζ|e

(d)

k+ 1
2

s|β+εL|,|β+εL|e
(c)
k mβ→β+εLs|β+εL|,|β+εL|e

(b)

k− 1
2

s|α|,|α|t

and as s|β+εL|,|β+εL| = 1 = mβ→β+εL we have

us[k−1,k+1] = e
(z)
k+1mζ−εw→ζs|ζ|w,|ζ|e

(d)

k+ 1
2

e
(c)
k e

(b)

k− 1
2

s|α|,|α|t . (A.4)

This completes the proof of Proposition A.2. �

Using Proposition A.2 and equation (A.1) we have

utsk,k+1 = ut[k+1,r]mζ,u,wPk(t)sk,k+1ut[0,k−1] + (1− δu,0)δu,vut[k+1,r]us[k−1,k+1]sk,k+1ut[0,k−1].

Lemma A.3. For s = ek(t) as in equation (A.3), we have that us[k−1,k+1]sk,k+1 = us[k−1,k+1].

Proof. As we have seen in equation (A.4),

us[k−1,k+1] = e
(z)
k+1mζ−εw→ζs|ζ|w,|ζ|e

(d)

k+ 1
2

e
(c)
k e

(b)

k− 1
2

s|α|,|α|t ,

with b = c and d = b+ 1. Now s|α|,|α|t ∈ Pk−1(n) and so it commutes with sk,k+1. Moreover, we have

e
(b+1)

k+ 1
2

e
(b)
k e

(b)

k− 1
2

= e
(b+1)

k+ 1
2

and e
(b+1)

k+ 1
2

sk,k+1 = e
(b+1)

k+ 1
2

by Lemma A.3(5) and (6). Hence us[k−1,k+1]sk,k+1 = us[k−1,k+1] as required.

�

Applying Lemma A.3 and noting that ut[k+1,r]us[k−1,k+1]ut[0,k−1] = us we get

utsk,k+1 = ut[k+1,r]mζ,u,wPk(t)sk,k+1ut[0,k−1] + (1− δu,0)δu,vus. (A.5)

It remains to consider the first term in this sum. Note that Pk(t) is a single partition diagram and so

we should, in theory, be able to describe both this set-partition and the set-partition Pk(t)sk,k+1. This

calculation can, however, be much simplified by making the following observation. Using [15], we have

ut[0,k−1] = ct(k−1)d
∗
t[0,k−1]

where ct(k−1) = e
(a)
k−1

∑
σ∈Sα σ ∈ Pk−1(n). So the first term in the sum equation (A.5) can be rewritten

as follows,

ut[k+1,r]mζ,u,wPk(t)sk,k+1ut[0,k−1] = ut[k+1,r]mζ,u,wPk(t)sk,k+1e
(a)
k−1

∑
σ∈Sα σd

∗
t[0,k−1]

= ut[k+1,r]mζ,u,w

(
Pk(t)e

(a)
k−1

)
sk,k+1

∑
σ∈Sα σd

∗
t[0,k−1] (A.6)
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using Lemma A.1(1). Now Pk(t)e
(a)
k is also a single partition diagram and can be described (more simply

than Pk(t)) as follows.

Definition A.4. Let S = {S1, S2, . . . , Sj} be a set of pairwise disjoint subsets of{
1, . . . , k + 1, 1, . . . , k + 1

}
such that there is a bijection between the barred and unbarred elements of{

1, . . . , k + 1, 1, . . . , k + 1
}
\ (S1 ∪ S2 ∪ · · · ∪ Sj).

Write {
1, . . . , k + 1, 1, . . . , k + 1

}
\ (S1 ∪ S2 ∪ · · · ∪ Sj) = {i1 < i2 · · · < i`} ∪ {j̄1 < j̄2 < · · · < j̄`}.

We define Ŝ ∈ Pk+1(n) to be the set partition

Ŝ = S ∪
⋃

16m6`

{{im, j̄m}}.

In other words, Ŝ contains the blocks S1, S2, . . . Sj and determines an order preserving bijection between

the barred and unbarred elements of
{

1, . . . , k + 1, 1, . . . , k + 1
}
\ (S1 ∪ S2 ∪ · · · ∪ Sj).

Example A.5. Let k + 1 = 10 and

S = {{4, 9, 6̄}, {6, 10, 4̄}, {9̄}, {1̄0}},

then

Ŝ = {{4, 9, 6̄}, {6, 10, 4̄}, {9̄}, {1̄0}, {1, 1̄}, {2, 2̄}, {3, 3̄}, {5, 5̄}, {7, 7̄}, {8, 8̄}}.

Proposition A.6. We have that

Pk(t)e
(a)
k−1 = Ŝk(t)

where Sk(t) is the set of pairwise disjoint subsets of
{

1, . . . , k + 1, 1, . . . , k + 1
}

obtained by omitting all

occurrences of 0 and 0 from{{
|α|t, k, |ζ − δw,uεu|u

}
,
{
|α− δt,vεv|v, k + 1, |ζ|w

}
,
{
k − 1− i

}
06i6a−1

,
{
k + 1− j

}
06j6z−1

}
.

Here again, the proof of this proposition is not conceptually difficult but it involves carefully keeping

track of the blocks of the set partitions when concatenating diagrams. To help the reader, we start with

an example to illustrate the proposition and also provide pictures of the concatenations of diagrams

involved at each stage in the proof. Having an explicit description of the element Pk(t)e
(a)
k−1 as a set

partition will allow us to understand its product with sk,k+1 in the next proposition, and hence conclude

the proof of Theorem 3.3.

Example A.7. Let k + 1 = 14. Let t be any tableau such that

t(12) = (4, 2, 12)
−1−−−→ (3, 2, 12)

+2−−−→ (32, 12)
−2−−−→ (3, 2, 12)

+1−−−→ (4, 2, 12) = t(14).

So that α = ζ = (4, 2, 12), β = δ = (3, 2, 12), γ = (32, 12) (so that t = w = 1 and u = v = 2). Then

Ŝ13(t) = Ŝ from Example A.5.

Proof of Proposition A.6. By the definition of Pk(t) given in Proposition A.2, we have that

Pk(t)e
(a)
k−1 = e

(z)
k+1

(
s|ζ|w,|ζ|e

(d)

k+ 1
2

s|γ|,x

)
e

(c)
k

(
s|γ|u,|γ|e

(b)

k− 1
2

s|α|,|α|t

)
e

(a)
k−1

where

x =

{
|γ|u − 1 if u = v > 0

|γ|v otherwise.

By concatenating diagrams, it is easy to see that

s|ζ|w,|ζ|e
(d)

k+ 1
2

s|γ|,x = Ŝk+1

where

Sk+1 =
{
{k + 1, k, . . . , k − d+ 2, k + 1, k, . . . , k − d+ 2, |ζ|w, x}

}
(A.7)
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if v, w > 0. If w = 0, Sk+1 is obtained by replacing |ζ|w with k − d+ 1 in equation (A.7) above. If v = 0,

Sk+1 is obtained by replacing x with k − d+ 1 in equation (A.7) above. Similarly, we have

s|γ|u,|γ|e
(b)

k− 1
2

s|α|,|α|t = Ŝk−1 (A.8)

where

Sk−1 =
{
{k, k − 1, . . . , k − b+ 1, k, k − 1, . . . , k − b+ 1, |γ|u, |α|t}

}
if u, t > 0. If u = 0, then Sk−1 is obtained by replacing |γ|u by k − b in equation (A.8) above. If t = 0,

then Sk−1 is obtained by replacing |α|t by k − b in equation (A.8) above. Now we have

Pk(t)e
(a)
k−1 = e

(z)
k+1Ŝk+1e

(c)
k Ŝk−1e

(a)
k−1,

which for u, v, t, w 6= 0 can be represented by the concatenation of diagrams of the form depicted in

Figure 24, below. This diagram is meant to be seen as a generic example of such a concatenation of

diagrams; however, it can also be seen to be the diagram obtained from the path t in Example A.5.

e
(a)
k−1

kk–1–a

k–c

k+1–z

k+1

|α|t

Ŝk−1

e
(a)
k−1

e
(c)
k

|γ|u

Ŝk+1

x

|ζ|w

e
(z)
k+1

Figure 24. An example of the product Pk(t)e
(a)
k−1 = e

(z)
k+1Ŝk+1e

(c)
k Ŝk−1e

(a)
k−1.

For u, v, t, w 6= 0 the result would follow if we can show that

(1) {x, |α− δt,vεv|v} is a block of Ŝk−1;

(2) {|γ|u, |ζ − δu,wεu|u} is a block of Ŝk+1.

To prove (1), note that α − εt = γ − εu and the propagating lines in Ŝk−1 give a bijection between

the nodes of these two partitions (reading along successive rows starting with the top row). So for

v 6= u we have that {|γ|v, |α|v} is a block of Ŝk−1 unless v = t, in which case {|γ|v, |α|v − 1} is a block

of Ŝk−1. Similarly, {|γ|u − 1, |α|u} is a a block of Ŝk−1 unless u = t, in which case |γ|u = |α|u and

{|γ|u − 1, |α|u − 1} is a block of Ŝk−1.

The proof of (2) follows similarly by noting that ζ − εw = γ − εv and that the propagating lines in

Ŝk+1 give a bijection between the nodes of these partitions. So we have that {|γ|u, |ζ|u} is a block of

Ŝk+1 unless u = w, in which case {|γ|u, |ζ|u − 1} is a block of Ŝk+1. For u = v, note that {|γ|u, |γ|u}
is a block of Ŝk+1 unless |γ|u 6 |ζ|w, in which case {|γ|u, |γ|u − 1} is a block of Ŝk+1. If w < u then

|ζ|w = |γ|w − 1 < |γ|u and |γ|u = |ζ|u so {|γ|u, |ζ|u} is a block of Ŝk+1, as required. If u < w then
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|γ|u − 1 = |ζ|u < |ζ|w so |γ|u 6 |ζ|w and {|γ|u, |ζ|u} is a block of Ŝk+1, as required. Finally, if u = w

then γ = ζ and |γ|u = |ζ|u = |ζ|w and {|γ|u, |ζ|u − 1} is a block of Ŝk+1, as required. This completes

the proof for t, u, v, w 6= 0.

We now consider the cases in which some of t, u, v, w are equal to zero. We treat these as degenerate

versions of the above.

Let w = 0. This is the simplest degenerate case to describe, however the other cases only differ by

superficial book-keeping. If w = 0, then z = d+ 1 and γ − εv = ζ. We replace the top two diagrams in

Figure 24 by the two diagrams in Figure 25 (which establish the bijection between the nodes of γ − εv
and ζ). The values of a, b, c, d, |α|t, |γ|u and x go through unchanged. Thus the block containing k + 1

in Ŝk(t) collapses to {|α− δt,vεv|v, k + 1} as required.

Ŝk+1

x

e
(z)
k+1

Figure 25. The w = 0 case.

If v = 0, then c = d and γ = ζ − εw. We replace Ŝk+1e
(c)
k in Figure 24 by the two diagrams in

Figure 26 (which establish the bijection between γ and ζ − εw). The values of a, b, c, |α|t, and |γ|u go

through unchanged and so the bottom two diagrams of Figure 24 go through unchanged. Therefore the

block containing k + 1 collapses to {k + 1, |ζ|w} as required. The value of |ζ|w will either decrease by

1 (if w > v) or go through unchanged (if w < t as in the case depicted in Figure 26). This results in

the necessary superficial edits to the propagating lines in Ŝk+1 in order to obtain the required bijection

between the nodes of γ and ζ − εw; hence all the blocks of Ŝk(t) which do not contain k + 1 remain

unchanged.

e
(c)
k

Ŝk+1

Figure 26. The v = 0 case.

Similarly if t = 0, then a = b and α = γ − εu. We replace the bottom two diagrams in Figure 24

by the two diagrams in Figure 27 which establish the bijection between α and γ − εu. Thus the block

containing k in Ŝk(t) collapses to {k, |ζ − δw,uεu|u} as required. As above, one can verify that all other

blocks of Sk(t) remain the same, as required.

Finally, if u = 0 then c = b + 1 and we have e
(c)
k Ŝk−1 is given by the leftmost diagram in Figure 28.

Arguing as above, the block of Sk(t) containing k collapses to {|α|t, k} and all other blocks in Sk(t)

remain the same, as required. �

Proposition A.8. Assume that tk↔k+1 exists. Then we have

mζ,u,wPk(t)e
(a)
k−1sk,k+1

∑
σ∈Sα

σ = mζ,u,wPk(tk↔k+1)e
(a)
k−1

∑
σ∈Sα

σ.
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e
(a)
k−1

k k+1

Ŝk−1

Figure 27. The t = 0 case.

e
(c)
k

Ŝk−1

Figure 28. The u = 0 case.

Proof. Using Proposition A.6 and the fact that sk,k+1 swaps k and k + 1, we have

Pk(t)e
(a)
k−1sk,k+1 = Ŝk(t)sk,k+1 = Ŝ′k(t)

where S′k(t) is obtained by omitting all occurrences of 0 and 0 from{{
|α|t, k + 1, |ζ − δw,uεu|u

}
,
{
|α− δt,vεv|v, k, |ζ|w

}
,
{
k − 1− i

}
06i6a−1

,
{
k + 1− j

}
06j6z−1

}
.

Now, we observe (simply by definition) that Sk(tk↔k+1) is obtained by omitting all occurrences of 0 and

0 from{{
|α|v, k + 1, |ζ − δw,uεw|w

}
,
{
|α− δt,vεt|t, k, |ζ|u

}
,
{
k − 1− i

}
06i6a−1

,
{
k + 1− j

}
06j6z−1

}
.

So we get

Ŝ′k(t) = s|ζ−δu,wεw|w,|ζ|w
̂Sk(tk↔k+1)s|α−δt,vεt|t,|α|t .

If t 6= v, then s|α−δt,vεt|t,|α|t = 1 and if t = v, then

s|α−εt|t,|α|t
∑
σ∈Sα

σ =
∑
σ∈Sα

σ,

as required. If u 6= w then s|ζ−εw|w,|ζ|w = 1. Finally, if u = w, then

mζ,w,w =
∑

16j<i6|ζ|w

s|ζ|w−j,|ζ|ws|ζ−εw|w−i,|ζ−εw|w
(
1 + s|ζ−εw|w,|ζ|w

)
.

Clearly, we have that (
1 + s|ζ−εw|w,|ζ|w

)
s|ζ−εw|w,|ζ|w =

(
1 + s|ζ−εw|w,|ζ|w

)
and therefore (mζ,w,w)s|ζ−εw|w,|ζ|w = mζ,w,w. The result follows. �
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Finally, we let t′ := tk↔k+1 and s′ = ek(t′). Combining equation (A.5) and (A.6) and Proposition A.8,

we get

utsk,k+1 = ut[k+1,r]mζ,u,wPk(t′)e
(a)
k−1(

∑
σ∈Sα σ)d∗t[0,k−1] + (1− δu,0)δu,vus

= ut[k+1,r]mζ,u,wPk(t′)ut[0,k−1] + (1− δu,0)δu,vus

= ut[k+1,r]

(
ut′

[k−1,k+1]
− (1− δw,0)δw,tus′[k−1,k+1]

)
ut[0,k−1] + (1− δu,0)δu,v)us

= ut′ + (1− δu,0)δu,vus − (1− δw,0)δw,tus′

which completes the proof of Theorem 3.3.

Appendix B. The Dvir radical

We now set about proving Proposition 3.7, namely that certain paths will always label basis elements

of the Dvir radical.

Definition B.1. For s ∈ Z>0 and (λ, ν) ∈Pr−s ×P6r we define

DR0-Stds(λ→ ν) = {t ∈ Stds(λ→ ν) | ]{integral steps of the form (−ε0,+ε0) in t} > 1},

and for i > 1, we define

DRi-Stds(λ→ ν) = {t ∈ Stds(λ→ ν) | ]{steps of the form −εi in t} > λi}.

and we set DR-Stds(λ→ ν) =
⋃
i>0 DRi-Stds(λ→ ν).

Note that for i > 1 we can also define DRi-Stds(λ→ ν) as

DRi-Stds(λ→ ν) = {t ∈ Stds(λ→ ν) | ]{steps of the form +εi in t} > νi}.

This follows from the fact that λi − ]{steps of the form −εi in t}+ ]{steps of the form +εi in t} = νi.

We can write utλ◦t as a sum of partition diagrams in Pr(n). In order to prove the above proposition

we need to understand some properties of the diagrams that can occur in this sum.

Lemma B.2. Let t = (−εi1 ,+εj1 , . . . ,−εir ,+εjr ) ∈ Stdr(ν). Write ut = ut[r−1,r]ut[0,r−1] where

t[0, r − 1] ∈ Stdr−1(ν′) with t(r − 1) = ν′. We have that

(i) if ir, jr 6= 0 then ut[r−1,r] =
∑νjr−1
k=0 dk with dk as in the first diagram in Figure 29.

(ii) if ir = 0, jr 6= 0 then ut[r−1,r] =
∑νjr−1
k=0 dk with dk as in the second diagram in Figure 29.

(iii) if ir 6= 0, jr = 0 then ut[r−1,r] = d0 as in the third diagram in Figure 29.

(iv) if ir = jr = 0 then ut[r−1,r] = d0 = e
(1)
r depicted in Figure 10.

Proof. By definition, we have

ut[r−1,r] = ut(r− 1
2 )→t(r)ut(r−1)→t(r− 1

2 )

=

νjr−1∑
k=0

e(r−|ν|)
r s|ν|jr−k,|ν|jr s|ν|jr ,|ν|e

(r−1−|t(r− 1
2 )|)

r− 1
2

s|ν′|,|ν′|ir

=

νjr−1∑
k=0

e(r−|ν|)
r s|ν|jr−k,|ν|e

(r−1−|t(r− 1
2 )|)

r− 1
2

s|ν′|,|ν′|ir .

The result follows by concatenating the four diagrams in each case. �

Remark B.3. Note that in each of cases (i) to (iv) of Lemma B.2, the diagrams in Figures 10 and 29

provide the natural bijection between the nodes of ν − (jr, νjr − k) and the nodes of ν′ − (ir, νir ).

Lemma B.4. Let t = (−εi1 ,+εj1 , . . . ,−εir ,+εjr ) ∈ Stdr(ν). Write

ut =
∑
d

αd,td (B.1)

with αd,t ∈ Z>0 and d partition diagrams in Pr(n). Then, for any d appearing in this sum, we have

(1) the northern nodes {r}, {r − 1}, . . . , {r − |ν|} are singleton blocks of d;

(2) for each 1 6 i 6 `(ν), any northern nodes in the set {|ν|i−1 + 1, |ν|i−1 + 2, . . . , |ν|i} is connected to

some southern node k satisfying jk = i.
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dk =

r|ν′|ir

|ν|jr–k

dk =

r

|ν|jr–k

d0 =

r|ν′|ir

Figure 29. The diagrams dk of parts (i) to (iii) of Lemma B.2 respectively. The first diagram is drawn

under the assumption that |ν|jr − k < |ν′|ir , the cases |ν|jr − k = |ν′|ir and |ν|jr − k > |ν′|ir are similar.

Proof. Part (1) follows directly from the fact that ut = e
(r−|ν|)
r x for some x ∈ Pr(n). We prove (2) by

induction on r. If r = 1, then either t = (−ε0,+ε0) or t = (−ε0,+ε1). In the first case, there is nothing

to prove. In the second case, we have that 1 is connected to 1, which satisfies j1 = 1, as required.

Now assume the result holds for r − 1. Write ut = ut[r−1,r]ut′ where t′ = t[0, r − 1] ∈ Stdr−1(ν′) with

t(r − 1) = ν′. By induction, we write

ut′ =
∑
d′

αd′,t′d
′

with αd′,t′ ∈ Z>0. For any d′ appearing in this sum and any 1 6 k 6 `(ν′), we have that any northern

node in the set

{|ν′|k−1 + 1, |ν′|k−1 + 2, . . . , |ν′|k}
is connected to some southern nodes l satisfying jl = i. Now any diagram, d, appearing in equation (B.1)

is of the form d = dkd
′ (for cases (i) and (ii)) or d0d

′ (for cases (iii) and (iv)) as in Lemma B.2. If d0 is

as in case (iii) and (iv), then the diagram d0 provides the natural bijection between the nodes of ν and

ν′ − εir and the result follows. If dk is as in case (i) or (ii) we must show that |ν|jr − i is connected to

a southern nodes of the required form. (That any other northern node in dk is connected to a southern

node of the required form is immediate, as in cases (iii) and (iv) above.) Now, as {r, r} is a block of d′,

we have that |ν|jr − i is connected to r in dkd
′ = d as required. �

Lemma B.5. Let t = (−εi1 ,+εj1 , . . . ,−εir ,+εjr ) ∈ Stdr(ν). Write

ut =
∑
d

αd,td (B.2)

with αd,t ∈ Z>0 and d partition diagrams in Pr(n). For any diagram d appearing in this sum and any

1 6 k 6 r, we have that

(a) if ik = jk = 0 then the southern node k in d is a singleton;

(b) if ik 6= 0 then the southern node k in d is connected to a southern node l < k with jl = ik.

Proof. We prove this lemma by induction on r. If r = 1 then k = 1 and ik = 0. The only path to

consider is t = (−ε0,+ε0). In this case we have ut = d with d = {{1̄}, {1}}, so the result holds.

We shall ssume that the result holds for r − 1 and prove it for r. As in Lemma B.4, we write

ut = ut[r−1,r]ut′ with t′ = t[0, r − 1] ∈ Stdr−1(ν′) and ν′ = t′(r − 1). Write

ut′ =
∑
d′

αd′,t′d
′
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with αd′,t′ ∈ Z>0 and d′ a partition diagram in Pr−1(n) ⊂ Pr(n). By induction, the result holds for all

d′ in this sum and all 1 6 k 6 r − 1. As any diagram d appearing in equation (B.2) has the form dkd
′

where the dk’s are given in Lemma B.2, we have that the result holds for d and any 1 6 k 6 r − 1. It

remains to prove it for k = r.

For part (a), note that d0 is as in Lemma B.2(iv). Now using Lemma B.4(1) we know that {r − 1},
{r − 2}, . . . , {r − 1− |ν′|} are all singleton blocks in d′. As {r, r} is a block in d′ we deduce that {r} is

a singleton block in d = d0d
′.

For part (b), note that dk is as in Lemma B.2(i) or (iii). Thus the southern nodes r and |ν′|ir are

connected in dk. But now, using Lemma B.4(2) we have that in d′ the northern node |ν′|ir is connected

to some southern node k 6 r − 1 with jk = ir. Moreover, {r, r} is a block of d′. Concatenating dk with

d′ we deduce that in d the node r is connected to some k < r with jk = ir as required. �

Proof of Proposition 3.7. Recall that DRs(λ → ν) = ∆s(λ → ν)Ps(n)prPs(n). So if m + P
�(λ→ν)
r (n) ∈

∆s(λ→ ν) and m ∈ Pr(n)prPs(n) then m+ P
�(λ→ν)
r (n) ∈ DRs(λ→ ν). Now Pr(n)prPs(n) is spanned

by all partition diagrams in Pr(n) having at most s − 1 distinct blocks containing both an element of

the set {r − s+ 1, . . . r} and an element of the set {1̄, . . . , r̄, 1, . . . , r − s}. We claim that utλ◦t is a sum

of such diagrams for any t ∈ DR-Stds(λ→ ν). Thus utλ◦t ∈ Pr(n)prPs(n) as required.

We now set about proving this claim. Write tλ ◦ t = (−εi1 ,+εj1 , . . . ,−εir ,+εjr ) and

utλ◦t =
∑
d

αt,dd (B.3)

with αt,d ∈ Z>0 and d a partition diagram in Pr(n). First suppose that t ∈ DR0-Stds(λ → ν). Then

there exists k > r − s + 1 such that the k-th integral step of tλ ◦ t has the form (−ε0,+ε0). Using

Lemma B.5(a), we deduce that k is a singleton in any diagram d appearing in equation (B.3) and hence

d ∈ Pr(n)prPs(n).

Now suppose that t ∈ DRx-Stds(λ → ν) for some x > 0. Then M = {k | k > r − s + 1 and ik = x}
satisfies |M | > λx. By Lemma B.5(b) for any k ∈ M and any diagram d appearing in equation (B.3),

we have that the southern node k is connected to a southern node l < k satisfying jl = x. Now, by

definition of tλ, there are precisely λx such l with l 6 r− s. We conclude that there must be at least one

k ∈M such that the southern node k in d is connected to a southern node from the set {r−s+1, . . . , r}.
This proves that d ∈ Pr(n)prPs(n) as required. �
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