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Abstract — Monitoring security properties of cyber systems at runtime is necessary if the preservation of 
such properties cannot be guaranteed by formal analysis of their specification. It is also necessary if the 
runtime interactions between their components that are distributed over different types of local and wide 
area networks cannot be fully analysed before putting the systems in operation. The effectiveness of runtime 
monitoring depends on the trustworthiness of the runtime system events, which are analysed by the monitor. 
In this paper, we describe an approach for assessing the trustworthiness of such events. Our approach is 
based on the generation of possible explanations of runtime events based on a diagnostic model of the 
system under surveillance using abductive reasoning, and the confirmation of the validity of such 
explanations and the runtime events using belief based reasoning.  The assessment process that we have 
developed based on this approach has been implemented as part of the EVEREST runtime monitoring 
framework and has been evaluated in a series of simulations that are discussed in the paper. 
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I. INTRODUCTION 
Monitoring the preservation of security properties of distributed software systems at runtime is a form of 

operational verification that complements static or dynamic model checking and system testing. Monitoring 
is particularly important for security properties in cases where the preservation of the specification of a 
system by its implementation cannot be guaranteed, or there is a possibility of having runtime interactions 
between system components, which are difficult to foresee and detect during system design and testing and 
can create security vulnerabilities. Such circumstances may arise when systems deploy software 
components outside the ownership and control of the system provider dynamically. 

Cyber systems – i.e., systems based on components distributed and deployed over the Internet (and 
possibly a mix of local area and ad hoc networks) and offering services accessible over it – fall under this 
category due to the inevitably loose control and distributed ownership of the components that they deploy. 
Successful security attacks over cyber systems (e.g., denial-of-service attacks, man-in-the-middle attacks), 
indicate that regardless of how carefully the security of system component interactions and communications 
has been analysed, it will always be possible to identify system vulnerabilities and lunch successful cyber 
attacks [51].    

Over the last decade, several approaches have been developed to support runtime system monitoring (aka 
runtime verification). Some of these focus on monitoring security properties (e.g. [18][21][23][26][29][46]) 
whilst others are aimed at monitoring other general types of system properties (e.g. [5][6][10]). Also when it 
comes to cyber systems, monitoring tends to focus on the network (as opposed to the application) level 
[44][45][44][47][48][49]. 

A limitation of existing approaches arises from the fact that they check properties based on events that 
they receive at runtime from the system under surveillance without assessing whether these events are 
genuine and trustworthy. Monitoring can be affected by faulty events produced by malfunctioning system 
components, or malfunctioning captors and transmitters that have responsibility for intercepting and sending 
them to the monitor. Also, event captors and transmitters as well as the communication lines between them 
and the monitor might become the target of attacks aiming to produce fake events (attack events) and, 
through them, compromise the monitoring process and, consequently, system security. When any of these 
compromises occurs and faulty or attack events are sent to monitors, the latter can generate erroneous results. 

 
 



 
 

Figure 1. Location based access control system (LBACS) 
 
To illustrate why, consider a system providing location based access control to different resources of an 

organisation with spatially distributed premises, based on user and device authentication, as well as device 
location information; this system is an industrial case study introduced in [3] that we will refer to as 
“Location Based Access Control System” or simply “LBACS” in the following. In LBACS, users who move 
within the distributed physical spaces of the organisation using mobile computing devices (e.g., PDAs, smart 
phones) may be given access to different resources (e.g., intranet, printers, scanners), depending on their 
credentials, the credentials of their devices, and their exact location within the physical space(s). Such 
resource accessing scenarios arise frequent in systems supporting digital commercial and financial 
transactions (e.g., systems with mobile points of sale, mobile banking etc.) as well as enterprise systems 
allowing and/or based on bring your own device (BYOD) scenarios [50].  

Fig.1 shows the components and physical configuration of LBACS. As shown in the figure, the operation 
of LBACS is based on several autonomous and distributed components.  These include a location server, an 
access control server, sensors and Internet routers. The access control server polls the location server at 
regular intervals, to obtain the position of the devices of all the users who are logged on to LBACS. LBACS 
compliant devices can log on to it through the wireless network available in the physical space controlled by 
LBACS (not the sensors) and must have installed daemons sending signals to the location server via the 
location sensors, periodically. Based on these signals, the location server can calculate the position of a 
device at regular time intervals. Note that LBACS components may be distributed across different physical 
spaces (e.g., office spaces and hardware/software components may be located in different buildings). 

The correctness and security of the operation of LBACS depends on several conditions including, for 
example, the liveness of daemons in the mobile devices, the confidentiality of signals sent from daemons to 
the location server, and the availability of the location server. Such conditions need to be monitored at 
runtime, as attacks to LBACS components can compromise the whole system operation. However, as the 
components of LBACS are autonomous, runtime checks need to be based on some external monitoring entity 
receiving and checking events emitted from LBACS components. Furthermore, to ensure that the results of 
the monitoring process are correct, it is necessary to assess whether the runtime events received by the 
monitor are trustworthy, faulty, or the result of an attack onto the system. Delayed or dropped signals from 
the daemons of mobile devices would, for instance, prevent the detection of the location of a device and lead 
to not allowing it to access certain resources. Also, an attack resulting in delaying or dropping the signals of 
the location server can compromise the whole operation of LBACS, preventing access to any resource 
controlled by it. 

As discussed earlier, runtime monitoring has been supported by several approaches and systems. 
However, to the best of our knowledge, the problem of assessing the trustworthiness of events that underpin 
the monitoring process, in cases of cyber systems like LBACS, has received less attention in the literature. 

In this paper we present an approach that we have developed to address this problem. Our approach is 
based on attempting to generate possible explanations of the runtime events received by a monitor and 
checking whether these explanations are supported/confirmed by further operational evidence (i.e., other 
events that have been generated by the system under surveillance and could be the consequence of the same 
explanations). The generation of explanations of runtime events is based on hypothesising the possible causes 
of events using a diagnostic model about the operation of the system under surveillance and its components. 



The process of generating explanatory hypotheses is based on abductive reasoning [30]. Following the 
generation of hypothetical explanations for an event, we assess their validity by identifying the effects that 
the generated explanations would have if they were correct, and checking whether these effects correspond 
and can, therefore, be confirmed by other runtime events in the monitor’s log. 

It should be noted that the exploration of violations of desired system properties has been the focus of 
work in software engineering (e.g., [6][15][31][37]) and AI (e.g., [11][32]) and has been often termed as 
“diagnosis”. In this work, diagnosis is typically concerned with the detection of the root causes of violations 
or faults through the identification of the trajectories of events that have caused them. This is similar to the 
work that we present in this paper. However, the focus of our approach is different from existing work on 
diagnosis, since our focus is the assessment of the trustworthiness of the events that indicate the presence of 
violations of desired system properties as opposed to the identification of the root cause of a detected system 
fault or security violation (see Sect VI for a more detailed comparison). 

To cope with inherent uncertainties that arise in assessing the trustworthiness of monitoring events, the 
assessment of the validity of the explanations generated for the events and the event trustworthiness itself is 
based on the computation of beliefs using belief measuring functions grounded in the Dempster-Shafer (DS) 
theory of evidence [33]. The belief-based assessment of event trustworthiness becomes what we term in our 
approach as “event genuineness”.  

To test and validate our approach, we have developed an event assessment module as part of the Event 
Reasoning Toolkit (EVEREST [35][36]). EVEREST has been developed to support the monitoring of security 
and dependability properties for distributed systems expressed as monitoring rules in a formal temporal logic 
language that is based on Event Calculus (EC) [22], called EC-Assertion. 

Early versions of our event assessment approach have been presented in [39][40][41]. The main 
contributions of this paper with respect to our earlier work are related to: 

(a) the introduction new belief functions for assessing event genuineness and the formalisation of these 
functions in the context of the DS theory of evidence; 

(b) the introduction of the algorithm for generating hypothetical explanations of events; 
(c) the explanation of how the results of the diagnosis process can be utilised in monitoring; and 
(d) the experimental evaluation of our approach. 
The rest of this paper is organised as follows. Section II provides background information regarding the 

EVEREST framework that underpins the implementation of our approach. Section III presents the process of 
generating and validating event explanations. Section IV describes the belief functions used to assess event 
genuineness. Section V presents an experimental evaluation of our approach. Section VI overviews related 
work. Finally, Section VII provides some concluding remarks about our approach and outlines plans for 
further work.  

II. PRELIMINARIES: THE EVEREST FRAMEWORK 
Before discussing the details of our approach, we provide an overview of the EVEREST system and the 

way in which it expresses the properties to be monitored. This is necessary in order to understand the form of 
the diagnosis model used by our approach. 

A. Overview of EVEREST 
Fig. 2 shows the overall architecture of EVEREST, which consists of an Event Collector, a Monitor, a 

Predictive Monitoring Module, a Manager and a Diagnosis Module (i.e., the module implementing the 
approach that we describe in this paper). 

The event collector receives notifications of events that are captured by external captors, transforms these 
events into an internal representation used by EVEREST, stores the transformed events into an internal event 
database (aka monitor log), and notifies other EVEREST components that events have occurred. 

The monitor checks if the received events violate specific properties. This module is implemented as a 
reasoning engine whose operation is driven by the monitoring specification provided for a system. This 
specification consists of monitoring rules expressing the properties that need to be checked at runtime and 
monitoring assumptions that are used to set and update the values of state variables required for monitoring.  
Monitoring rules and assumptions are expressed as EC-Assertion formulas as discussed in Section II.B.  

The predictive monitoring module of EVEREST receives the same stream of events as the monitor but 
checks for potential (as opposed to definite) violations of monitoring rules. Both the monitor and the 
predictive monitoring module take into account assessments of the genuineness of runtime events, if this is 
required according to the monitoring specification.  
 



 

 Figure 2. EVEREST architecture 
 

The assessment of the genuineness of runtime events is the responsibility of the diagnosis module of 
EVEREST. The module generates explanations of runtime events based on a diagnosis model of the system 
under surveillance and uses them to compute beliefs in the trustworthiness of events. These beliefs are then 
stored in the event database (Event DB) from which they can be accessed by the monitor and the predictive 
monitoring module. The diagnosis model used in this process contains assumptions about the operation of the 
system under surveillance. These assumptions take the form of sequences of operation invocations and 
responses as well as the effect that these actions have in the state of the system (see Sect III.B below for 
examples).  

The monitor and the predictive monitoring module store their results in a monitoring results database 
(Monitoring Results DB), along with diagnostic information regarding the genuineness of the events that 
have caused a violation or underpin the prediction about a violation. This database is accessed by the 
Manager, which provides an interface to external clients for retrieving detected violations for a given system. 

B. Monitoring specifications and diagnostic models 
In EVEREST the properties to be monitored are expressed as formulas of EC-Assertion [35]. EC-

Assertion is a restricted form of the first order temporal logic language of Event Calculus (EC) [22]. 
The basic modeling elements of EC are events and fluents. An event is something that occurs at a specific 

instance of time and is of instantaneous duration. The occurrence of an event at a particular instance of time 
is expressed by the predicate Happens. Events may change the state of the system that is being modeled. 
More specifically, an event can initiate or terminate a state. States are modeled as fluents and the initiation 
and termination of a fluent by an event are expressed by the predicates Initiates and Terminates, respectively. 
In addition to the predicates Happens, Initiates and Terminates, EC offers the predicate HoldsAt which 
expresses a check of whether a given fluent holds at a specific instance of time. 

TABLE I.  EC-ASSERTION PREDICATES & THEIR MEANINGS 

Predicate Meaning 
Happens(e,tℜ(tL,tU)) An event e of instantaneous durations occurs at some time point t within 

the time range ℜ(tL,tU) (ℜ(tL,tU)=[ tL,tU]). 
HoldsAt(f,t) A state (aka fluent) f holds at time t. This is a derived predicate that is true 

if the f has been initiated by some event at some time point t’ before t and 
has not been terminated by any other event within the range [t’,t]. 

Initiates(e,f,t) Fluent f is initiated by an event e at time t 
Terminates(e,f,t) Fluent f is initiated by an event e at time t 
Initially(f) Fluent f holds at the start of system operation. 
<rel>(x,y) 
where <rel>::=  = | < | > | ≤ | ≥ | ≠ 

The relation <rel> holds between the x and y.  

 
EC-Assertion adopts the basic modeling constructs of EC but introduces special terms to represent types 

of events, fluents and computations needed for runtime monitoring, and special predicates to express 
comparisons between basic data type values (see [35] for more details), and terms denoting calls to special 
built-in functions that are available in order to compute complex computations (e.g. to compute statistical 
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information and fit statistical distributions over data). The exact syntactic form and meaning of the predicates 
Happens, Initiates, Terminates, HoldsAt and Initially in EC-Assertion are shown in Table I. 

The properties monitored by EVEREST are expressed in EC-Assertion as monitoring rules of the form 
mr: B1 ∧ … ∧ Bn ⇒ H1 ∧ … ∧ Hm. 

In this form, the predicates Bi and Hj are restricted to Happens, HoldsAt and relational predicates. A 
monitoring rule mr is satisfied if when the sub formula B1 ∧ … ∧ Bn (aka body of the rule) becomes True, the 
sub formula H1 ∧ … ∧ Hm (aka head of the rule) also becomes True. 

An example of an EVEREST monitoring rule is given below: 
Monitoring Rule R11 
Happens(e(_eID1,_devID,_locServerID, REQ, signal(_devID),_locServerID), t1, 
R(t1,t1)) ⇒ 
Happens(e(_eID2,_devID,_locServerID, REQ, signal(_devID),_locServerID), t2, 
R(t1,t1+m)) ∧ _eID1 ≠ _eID2 
 

This rule refers to the LBACS system introduced in Sect. I and checks the liveness of daemons in the 
mobile devices accessing LBACS. In particular, R1 checks if the location server of LBACS (signified by the 
value of the variable _locServerID) receives signals from a given device (_devID) every m time units. Every 
signal that is sent by a device and captured by the location server at some time point t1 will trigger the check 
of the rule by matching the predicate 
Happens(e(_eID1,_devID,_locServerID,REQ,signal(_devID),_locServerID),t1,R(t1,t1)) in the body 
of the rule. Subsequently, the monitor of EVEREST will expect to receive another signal (event) from the 
same device that could be matched with the predicate Happens(e(_eID2,_devID, 

_locServerID,REQ,signal(_devID),_locServerID),t2,R(t1,t1+m)) at some time point t2 that is within 
the range [t1, t1+m] and if no such a signal is received the rule will be violated. 

Another example of a monitoring rule of LBACS is: 
Monitoring Rule R2: 
Happens(e(_eID1,_devID,_ctrlServerID, REQ, 
requestAccess(_devID,_result),_ctrlServerID), t1,R(t1,t1)) ⇒ 
HoldsAt(AUTHENTICATED(_devID),t1)  

 

This rule checks if a device has been authenticated when it makes a request to the control server for 
accessing a resource. The authentication of a device that sends the request is indicated by the fluent 
AUTHENTICATED(_devID) and the rule checks the authentication through the predicate 
HoldsAt(AUTHENTICATED(_devID),t1). As discussed earlier, however, HoldsAt is a derived predicate 
that is true only if its fluent argument has been initiated by an event prior to the time at which the predicate is 
checked and has not been terminated by any other event until then. Thus, when the monitor receives a 
resource access request event matching the Happens predicate in its body (i.e., a 
requestAccess(_devID,_result) event) at some time point t1, it will need to check if the HoldsAt 
predicate in its head is true at the same time. 

Since, in EC fluents can only be initiated and terminated by events, the monitoring specification in this 
instance will need to specify how the fluent AUTHENTICATED(_devID) is initiated and (if applicable) 
terminated. In EVEREST, this is specified by monitoring assumptions. A monitoring assumption in EC-
Assertion has the form : B1 ∧ … ∧ Bn ⇒ H1 ∧ … ∧ Hm where predicates Bi are restricted to Happens, HoldsAt 
and relational predicates and the predicates Hj are restricted to Initiates and Terminates predicates.  

In the case of R2 the monitoring assumption used to establish how AUTHENTICATED(_devID) is 
initiated is: 

Monitoring Assumption MA1 
Happens(e(_eID2,_ntwrkCntrl,_devID, RES, connect(_devID, 
_connection),_ntwrkCntrl), t1, R(t1,t1)) ∧ (_connection ≠ NIL) ⇒ 
Initiates( e(_eID2, …), AUTHENTICATED(_devID), t1) 
 
According to this assumption, a device is authenticated if it has made a request for connection to the 

controller of the network in the area covered of LBACS at least once (see the event connect(_devID, 
_connection) and this request has been accepted (as specified by _connection ≠ NIL) . 

It should be noted that the general form of monitoring assumptions of EVEREST that was shown above 
allows the expression of more complex patterns of fluent initiation and termination than the pattern shown in 

                                                             
1  In all EC-Assertion formulae of this paper, the names of non time variables start with underscore (i.e., _varName) and time variable 

names are always “t” with a subscript (i.e., ti). 



the previous example. The monitoring assumption MA2 below gives an example of a fluent that is used to 
record movements of a device in different parts of the network of the LBACS case study (i.e., the fluent 
MOVEMENT(_devID,_originalNetworkController,_destinationNetworkController)). As 
indicated by MA2, when a device makes two consecutive requests for connection to two different areas of 
the LBACS network, the fluent MOVEMENT is initiated to indicate the movement of the device between these 
two areas.  

Monitoring Assumption MA2 
Happens(e(_eID1,_ntwrkCntrl1,_devID, REQ, connect(_devID, 
_connection1),_ntwrkCntrl1), t1, R(t1,t1)) ∧  
Happens(e(_eID2,_ntwrkCntrl2,_devID, REQ, connect(_devID, 
_connection2),_ntwrkCntrl2), t2, R(t1,t2)) ∧ 
(_ntwrkCntrl1 ≠ _ntwrkCntrl2) ∧   
¬∃t3: Happens(e(_eID3,_ntwrkCntrl3,_devID, REQ, connect(_devID, 
_connection3),_ntwrkCntrl3), t3, R(t3,t3)) ∧ (t3 ≤ t1) ∧ (t3 ≤ t2)   ⇒ 
Initiates( e(_eID2, …), MOVEMENT(_devID,_ntwrkCntrl1,_ntwrkCntrl2),t2) 
 
To assess the trustworthiness of events, EVEREST relies on a diagnostic model (see Fig. 1). This model 

consists of diagnostic assumptions about the system under surveillance.  
Diagnostic assumptions are specified as EC-Assertion formulas of the form a: B1 ∧ … ∧ Bn ⇒ H. In this 

form, Bi can be any of the EC predicates shown in Table I, and H can be a Happens, Initiates or Terminates 
predicate. HoldsAt predicates cannot be specified in the head (H) of diagnostic assumptions since their truth-
value can only be derived from the axioms of EC. Diagnostic assumptions enable the specification of 
expected sequences of events, which may be observable events (i.e., events of the system under surveillance 
that are visible to the monitor) or internal events of the system under surveillance. Internal events are events 
that might not be desirable to emit externally (e.g. due to performance or confidentiality reasons) but are 
often necessary to include in a diagnostic model in order to indicate how a system operates internally. The 
following formula gives an example of a diagnostic assumption for LBACS: 

Diagnostic Assumption DA1 
Happens(e(_eID1,_x1,_x2, activeDaemon(_devID),_x3),t1,R(t1,t1))⇒ 
(∃t2:Time)Happens(e(_eID2,_devID,_locSerID, signal(_devID),_locSerID), t2, 
R(t1,t1+2)) 
 
DA1 states that if the daemon of a device is active at a given time point t1, then it must send a signal to the 

location server within 2 time units. As we discuss in Sect. IV below, this assumption enables the diagnosis 
process to create a hypothesis (explanation) that the daemon of a device, which appears to have sent a signal 
to the location server of LBACS, was active for a given period before the dispatch of the signal. 

III. ASSESSMENT OF EVENT GENUINENESS 

A. Overview 
The event assessment process has three phases: (i) the explanation generation phase in which hypotheses 

about the possible explanations of events are generated; (2) the effect identification phase in which the 
possible consequences (effects) of the hypothetical explanations of an event are derived; and (3) the 
explanation validation phase in which the expected consequences of each explanation are checked against 
the event log of the monitor to establish if there are events that match the consequences and, therefore, 
provide supportive evidence for the validity of the explanation.  

The above phases are described in detail below. 

B. Generation of event explanations 
The first phase of the assessment process uses abductive reasoning to find possible explanations for 

events. The algorithm used to carry out this process is shown in Fig. 3.  
The algorithm gets as input an atomic predicate e for which an explanation is required and the boundaries 

of the time range of this predicate tmin(e) and tmax(e). It also has a fourth input parameter, called finit, 
representing the initial formula that is to be used for generating explanations. This parameter is not used in 
the initial invocation of Explain since the objective of the process is to find all the possible alternative 
explanations of the input predicate. In subsequent recursive invocations of the algorithm, however, it is used 
to indicate the identifier of the last formula that was used in the generation of an on-going explanation since, 
along with explanations, the algorithm records the backward chaining path through which the abduced 
atomic predicates of each explanation were generated (see lines 10 and 28 in Fig 3). Given an input predicate 
e that is to be explained, if the predicate symbol of e is an abducible predicate (i.e., a predicate whose validity 



can be assumed through the abduction process), a pair of the predicate e and its time range (i.e., (e, tmin(e), 
tmax(e))) is added to the current list of explanations Φe and the algorithm terminates by returning Φe (see lines 
8 and 44 in Fig. 3). 

 

 
 

Figure 3. Explanation generation algorithm 
 
If e is not an abducible predicate, however, Explain searches through the diagnosis model of the system 

under surveillance (i.e., the set of diagnostic assumptions AS for the system) to identify if there are any 
diagnostic assumptions that could explain e, i.e., assumptions that have a predicate P in their head, which can 
be unified with e (see line 13). For every assumption f that has such a predicate, the algorithm checks if a 
unifier of P and e exists, and, if it exists, whether the unifier provides bindings for all the non time variables 
in the body of f (see lines 15-16 in the algorithm). The unification test is performed by calling the function 
mgu(head(f),e). This function returns the most general unifier between its input formulas [20] for all but the 
non-time variables of these formulas. 

The exclusion of time variables from the unification test is because for time variables, the explanation 
process needs to find if there are feasible time ranges for them rather than merely checking variable 
unifiability. More specifically, if all other unifiability conditions are satisfied, the algorithm checks if the 
time constraints imposed by the event e on each of the instantiated predicates in the body of f, can lead to 
concrete and feasible time ranges for the predicate. To check this, all the constraints involving the time 
variable of the predicate C in the body of f (i.e., tmin(C) and tmax(C)) are retrieved and tC is replaced by the 
time stamp of e.  

Subsequently, the boundaries of the possible values for the time variables of the other predicates in the 
body of f are computed (see the call of ComputeTimeRange(C, tmin(e), tmax(e), tmin(C), tmax(C)) in line 23 of the 
algorithm). ComputeTimeRange treats this computation as a linear programming problem due to the way in 
which constraints for the time variables of EC-Assertion formulas are specified. More specifically, each EC-

Explain(e, tmin(e), tmax(e), finit, Φe) 
1. // IN: e: an event and/or grounded atomic predicate to explain  
2. // IN: tmin(e), tmax(e): min and max boundaries of the time range of e 
3. // IN: finit: set of explanations generated in the context of explaining e 
4. // OUT: Φe: a list of explanations of atomic predicate e 
5. Φe = [  ]OR   
6. // e is an abducible atom; add e to the current explanation    
7. If e ∈ ABD Then  
8.     Φe = append(Φe , [(e, tmin(e), tmax(e))]) 
9.     //APathe[ ]: list of identifiers of f visited in abducing e 
10.     append(APathe[ ], finit)   
11.  // e is not an abducible atom; find explanations for it  
12. Else      
13.  For all f ∈ AS Do //search for explanations based on all f in AS 
14.          // mgu(f,e): most general unifier of event e and predicate p  
15.         u = mgu(head(f), e)  
16.         If u ≠ ∅ & u covers non time variables in body(f) then    
17.          //CNDf: list of predicates in body of f (conditions) 
18.         Copy body(f) into CNDf     
19.    Failed = False 
20.    Φf  = []AND //Φf : list of explaining elements of CNDf 
21.    While Failed = False and CNDf ≠ ∅ DO     
22.        select C from CNDf   
23.        ComputeTimeRange(C, tmin(e), tmax(e), tmin(C), tmax(C))  
24.        If tmin(H) ≠ NULL and tmax(C) ≠ NULL Then  
25.            Cu = ApplyUnification(u, C) 
26.     If Cu ∈ ABD Then // Cu is an abducible atom 
27.      Φf  = append (Φf , [(Cu, tmin(C), tmax(C))]ABD ) 
28.      append(APathCu[ ], f) 
29.     Else    // C is not an abducible atom 
30.            find a derived predicate or event ec such that:          mgu(ec, Cu ) ≠ ∅ &           tmin(ec) 

≥ tmin(C) & t(ec) ≤ tmax(C) 
31.       // no recorded/derived predicate matching C 
32.      If ec ≠ NULL Then  
33.         ΦC = Explain (C, tmin(C), tmax(C), f) 
34.       If ΦC is empty Then Failed = True 
35.       Else Φf = append(Φf , ΦC) End If 
36.      End If 
37.       End If 
38.          End If 
39.      End While  
40.      If Failed = False Then Φe = append (Φe,Φf)  End if 
41.       End if 
42.    End For 
43. End If 
44. return(Φe) 

END Explain 



Assertion formula must define an upper and a lower boundary for the time variables of all its predicates. 
Given the time variable tk of a predicate Pk in a formula f, its upper and lower boundaries ub and lb are 
defined by linear expressions of the form: lb = l0 + l1 t1 + l2 t2 + … + ln  tn and ub = u0 + u1 t1 + u2 t2 + … + un 
tn where ti (i=1, ..., n) are the time variables of the remaining predicates in f and the constraints related to tk 
are of the form: 

 l0 + l1 t1 + l2 t2 + … + ln  tn ≤ TE  (C1) 
 TE ≤  u0 + u1 t1 + u2 t2 + … + un tn  (C2) 
From (C1) and (C2), it may be possible to compute the minimum and maximum possible values of any 

variable ti (i=1, ..., n) in the predicates by solving the linear optimisation problems max(ti) and min(ti) subject 
to constraints C1 and C2. By solving these optimization problems for each of the time variables of the 
predicates in the body of a diagnostic assumption f, it can be established if a concrete and feasible time range 
exists for the time variables of f.  

If such a range exists, the explanation generation algorithm applies the unifier of e and C to the predicates 
in the body of f (see line 25 in the algorithm). Then it checks if the instantiated predicates in the body of f are 
abducible predicates. When this happens, the instantiated abducible predicates in the body of f are added to 
the partially developed explanation (see lines 27-28 in the algorithm). If an instantiated predicate in the body 
of f is not an abducible predicate but can be unified with an event already recorded in the monitor’s log or 
with a predicate that could be derived by a diagnostic assumption (derivable predicate), the algorithm tries to 
find an explanation for the predicate recursively (see lines 30-37 in the algorithm). 

If an instantiated predicate in the body of f is neither an abducible predicate nor does it correspond to a 
recorded event or derivable predicate, the explanation generation process searches for other diagnostic 
assumptions whose head predicate can be unified with e. When an assumption a that underpins a partially 
generated explanation has some predicate Bj in its body that is not an abducible, does not match with any 
logged event, and cannot be explained through other assumptions, a is skipped and no further attempt is 
made to generate an explanation from it (see line 34 in the algorithm). 

As an example of applying Explain, consider the search for an explanation of an event 
E1=Happens(e(E1,D33,LS1,signal(D33),LS1),15,R(15,15)). This event represents a signal sent to the 
location server of LBACS from a device D33. Assuming the diagnostic assumption DA1 introduced in 
Section II.B, the diagnostic process detects that E1 can be unified with the predicate in the head of DA1 (the 
unifier of the two predicates is U={_eID2/E1,_devID/D33,_locSerID/LS1,t2/15}).  

Following this unification, the linear constraint system that will be generated for the time variable t1 in 
DA1 will include the constraints t1≤15 and 15 ≤ t1 + 2 or, equivalently, 15−2 ≤ t1 and 15 ≤ t1. Thus, a feasible 
time range exists for t1 (i.e., t1∈[13,15]) and, as the non time variables in the body of DA1 are covered by U, 
the conditions of the explanation generation process are satisfied and the formula 
Ê:Happens(e(eID1,_x1,_x2, activeDaemon(D33),_x3), t1, R(13, 15) will be generated as a possible 
explanation of E1. The meaning of this explanation is that the daemon of D33 had been active in the period 
of up to 2 time units before the dispatch of the signal and sent the signal (i.e., a benign explanation for the 
dispatch of the signal).  

C. Identification of possible explanation consequences 
Following the generation of an explanation Ê for a logged event e, the assessment process identifies all 

the consequences other than e that Ê would have and uses them to assess the validity of Ê. This reflects the 
hypothesis that, if the additional consequences of Ê also match with events in the log, then there is further 
evidence that Ê is likely to be true and the cause of e (as well as the additional events matching its further 
consequences). 

The identification of explanation consequences is based on the diagnostic model of the system and 
deductive reasoning. Given an explanation Ê =P1 ∧…∧ Pn where Pi (i=1,…,n) are abduced atomic predicates, 
the diagnosis process iterates over the predicates Pi and, for each of them, it finds diagnostic assumptions 
a:B1 ∧ … ∧ Bn ⇒ H having a predicate Bj in their body that can be unified with Pi. For each of these 
assumptions, the process checks if the rest of the predicates in its body match with conjuncts of Ê or an event 
in the log. In cases where these conditions are satisfied, if the predicate H in the head of the assumption is 
fully instantiated and the boundaries of its time range are determined; H is derived as a possible consequence 
of Pi. Then, if H is an observable predicate, i.e., a predicate that referring to an observable event, and can be 
matched with an event in the current log, H is added to the possible effects of Ê. Otherwise, if H is not an 
observable predicate, the diagnosis process tries to generate the consequences of H recursively and, if it finds 
any such consequences that correspond to observable predicates, it adds them to the set of the consequences 
of Ê. 

As an example, consider the explanation Ê derived in Section III.B above for the LBACS. A possible 
consequence of this explanation is 



C:Happens(e(_eID2,D33,LS1,signal(D33),LS1),t2,R(13,17)) 

This consequence is derived from Ê and DA1 and means that any signal sent by D33, other than the one 
represented by the event E1, within the time range [13,17] would support the validity of Ê.  

Following the identification of the expected consequences of an explanation, the assessment process 
searches for events in the log that can be unified with them and, if it finds any, it assesses the genuineness of 
the matched events. 

It should be noted that a consequence is a non-ground event ei that is expected to be produced by an event 
captor c within a time range [ti

L, ti
U]. Hence, to match an event elog in the log with ei, three conditions should 

be satisfied: 
• elog should be produced by the same event captor as ei, (CND1) 

• elog should be unifiable with ei (CND2), and 
• the timestamp of elog should be within the time range of ei (i.e., ti

L ≤ tlog ≤  ti
U) (CND3). 

IV. BELIEFS IN EVENT GENUINENESS & EXPLANATION VALIDITY 

A. Uncertainty in the assessment process 
The assessment of the trustworthiness of events based on the process we described in Section III has three 

uncertainties. 
The first of these uncertainties relates to the generation of explanations through abductive reasoning 

(AR). Given a known causal relation (C ⇒ E) between a cause (C) and an effect (E), AR assumes that C is 
true every time that E occurs. This is not, however, always the case (or otherwise it would also be known that 
E ⇒ C). The second uncertainty relates to the possibility of having alternative explanations for the same 
effect. In cases where it is known, for example, that C’⇒ E, there is uncertainty as to which of C or C’ 
should be assumed to have been the cause of E when E occurs. 

The third uncertainty relates to the fact that the absence of an event from the monitor’s log does not 
necessarily imply that the event has not occurred. This possibility affects the explanation validation phase 
since the absence of an event matching a consequence of an explanation, at the time of the search, does not 
necessarily mean that such an event has not occurred. 

More specifically, as we discussed in Sect. IV.C, to match an event in the log of the monitor with the 
consequence of an explanation conditions CND1—CND3 should be satisfied. However, there may be cases 
where an event, which would satisfy these conditions, might have occurred but not arrived at the monitor yet, 
due to communication delays in the “channel” between the monitor and the event’s captor. 

To cope with these uncertainties, we use an approximate assessment of the validity of explanations and 
event genuineness, based on belief functions grounded in the DS theory. The use of DS beliefs, instead of 
classic probabilities, enables us to represent uncertainty when the existing evidence cannot directly support 
both the presence and the absence of events. In the case of validating an explanation consequence ei that 
should be matched by an event occurring up to the time point ti

U, for example, if the timestamp t’ of the latest 
event from the captor of ei is less than ti

U, there is no evidence for the existence or absence of an event 
matching ei. Also, if t’>ti

U whilst the presence of genuine events with a timestamp in the range [ti
U,t’] does 

provide evidence that an event matching ei has not occurred, the absence of such events does not provide 
evidence that ei has occurred. 

A possible alternative to the use of DS theory would be the use of a Bayesian approach in our framework 
[16]. A Bayesian approach, however, would require the identification and assignment of a priori probabilities 
to each of the possible diagnostic assumptions in advance, as well as, conditional probabilities for the 
consequences of these assumptions. Besides this additional upfront cost, a Bayesian approach would need to 
address issues like the accuracy all the a priori and conditional probabilities of diagnostic assumptions. 

Due to these reasons, we use DS belief functions to represent the uncertainty in the assessment of event 
genuineness. These belief functions are introduced below following a short overview of the different types of 
belief functions in DS theory.   

B. DS preliminaries  
In DS theory, there are two types of belief functions: (i) basic probability assignment functions and (ii) 

belief functions. Both these types of functions must be defined over a set θ of mutually exclusive 
propositions representing exhaustively the phenomena to which beliefs should be assigned. The set θ is 
called frame of discernment (FoD) in the DS theory. 

A basic probability assignment (BPA) is a function m that provides a measure of belief to the truth of a 
subset P of θ that cannot be split to any of the subsets of P (P is taken to express the logical disjunction of 
the propositions in it). Formally, a BPA is defined as a function preserving the following axioms: 

 
m: ℘(θ) → [0,1]      (a1) 



m(∅) = 0      (a2) 
ΣP⊆θ m(P) = 1     (a3) 
where ℘(θ) denotes the power set of θ. 

The subsets P of θ for which m(P) > 0 are called "focals" of m and the union of these subsets is called 
"core" of m. Each basic probability assignment m induces a unique belief function Bel that is defined as: 

 
Bel: ℘(θ) → [0,1]    (a4)  
Bel(A) = ΣB⊆A m(B)    (a5) 

 
Bel measures the total belief committed to the set of propositions P by accumulating the beliefs 

committed by the BPA underpinning it to the subsets of P. Bel must preserve the following axioms: 
 

Bel(∅) = 0      (a6) 
Bel(θ) =       (a7) 
ΣI⊆{1,...,n} and I≠θ (–1)|I|+1Bel(∩iεI Pi) ≤ Bel(∪i=1,…,n Pi) 
where n = |℘(θ)| and P ⊆ θ , (i=1,…,n)   (a8) 

 
Finally, in DS theory two BPAs – say m1 and m2 – that have been defined over the same FoD can be 

combined according to the rule of the "orthogonal sum": 
 

m1 ⊕ m2 (P) = (ΣX∩Y=P m1(X) × m2(Y)) / (1 – k0) 
where k0 = ΣV∩W=∅ and V⊆θ and W⊆θ m1(V) × m2(W)  (a9) 

C. Belief in event genuineness  
The computation of a BPA and a belief in event genuineness needs to cover two types of events, namely 

runtime events recorded in the monitor’s log, and consequent events generated as expected consequences of 
explanations of other runtime events. The genuineness of events of the latter type must be assessed since it 
underpins the assessment of the validity of explanations (see Section III.C).  

The BPA to the genuineness of an event is defined as follows: 
 
Definition 1: The BPA function the genuineness of an event e, expected to occur within [te

L, te
U], is defined 

as follows: 
(a) if U(e) ≠ ∅: 

mG(P) = 

 

mEX(∨ei⊆U(e) Eei,Uo,W) if P =  Ge,Uo,W 

mEX(∧ei⊆U(e) ¬Eei,Uo,W) if P =  ¬Ge,Uo,W 

1 − (mEX(∨ei⊆U(e) Eei,Uo,W) + mEX(∧ei⊆U(e) ¬Eei,Uo,W)) if P = Ge,Uo,W∨¬Ge,Uo,W 

(b) if U(e) = ∅ 

mG(P) = 

 

0 if  tc
max < te

U, and P =  ¬Ge,Uo,W or P =  Ge,Uo,W  
0 if  tc

max ≥ te
U and P =  Ge,Uo,W  

mEX(∨ei⊆A(e) Eei,Uo,W) if  tc
max ≥ te

U and P = ¬Ge,Uo,W 

1 − mEX(∨ei⊆A(e) Eei,Uo,W) if  tc
max ≥ te

U and P = Ge,Uo,W∨¬Ge,Uo,W 

where 
• Ge,Uo,W and ¬Ge,Uo,W are propositions denoting that e is genuine and not genuine, respectively2; 
• U(e) is the set of concrete events in the monitor’s log that can be unified with e; 
• tc

max is the latest timestamp of all the events in the log that have been received from the captor c of e; 
• A(e) is the set of concrete events in the log that have been received from the captor c of e but occurred 

after e (i.e., events having a timestamp t’ such that t’ ≥ te
U);  

• Eei,Uo,W and ¬Eei,Uo,W are propositions denoting that, without considering the events in the set Uo, a 
concrete event ei, which can be unified with e, has a valid explanation or no valid explanation, 
respectively, within the time range [tmid−w/2, tmid+w/2] (tmid is the midpoint of the range [te

L, te
U]); and 

• mEX is the BPA function resulting from the combination of the BPAs mi
EX to the propositions Eei,Uo,W and 

¬Eei,Uo,W that are defined in Definition 2 (i=1,…,n; n=|U(e)|); i.e., mEX = m1
EX ⊕ m2

EX ⊕ … ⊕ mn
EX . q 

                                                             
2 All propositions used in Definitions 1-3 are defined in reference to a common frame of discernment that has been formally defined in 

[38]. 



Definition 1 distinguishes between two cases: (a) the case of events that can be matched with runtime 
events in the monitor’s log, i.e., when U(e)≠∅, and (b) the case of events that cannot be matched with any 
event in the monitor’s log U(e)=∅. Case (a) may involve both runtime and consequent events. For a runtime 
event e, U(e)={e}. For a consequent event e, which may be expected to occur within a given time range (as 
opposed to a single time point) and/or have parametric arguments, U(e) may contain more than one runtime 
events matching e. 

If U(e)≠∅, the criterion that underpins Definition 1 is that an event e is considered as genuine if any of 
the runtime events matching it has at least one valid explanation (see disjunction ∨ei⊆U(e) Eei,Uo,W). Also an 
event is considered to be non-genuine if none of the events matching it has a valid explanation (see 
conjunction ∧ei⊆U(e)¬Eei,Uo,W). Consequently, mGN measures the BPA to the genuineness and non genuineness 
of an event as the BPA mEX(∨ei⊆U(e) Eei,Uo,W) and the BPA mEX(∧ei⊆U(e) ¬Eei,Uo,W), respectively. 

For consequent events e that cannot be unified with any event in the log, i.e., when U(e)=∅, the 
computation of mGN depends on the latest timestamp of the captor of e, tc

max. If tc
max < te

U, the occurrence of 
an event matching e cannot be precluded. In such cases, mGN remains agnostic by assigning a zero basic 
probability to Ge,Uo,W and ¬Ge,Uo,W. If tc

max ≥ te
U, mGN assigns a zero basic probability to the genuineness of e 

because there is no event matching it. However, since tc
max is determined by the time stamp of the latest event 

received from captor c, its accuracy would also need to be assessed. This is because if the event with 
timestamp tc

max is not genuine, tc
max will not be correct. To address this possibility, mGN computes the basic 

probability of the non genuineness of the event of interest (i.e., ¬Ge,Uo,W) as the combined basic probability of 
the genuineness of the events in the log that have occurred after te

U (i.e., the basic probability assigned to the 
disjunction ∨ei⊆A(e) Eei,Uo,W). This is because if all the events in A(e) are confirmed by valid explanations, then 
captor c’s time is more likely to have progressed beyond te

U and, therefore, the absence of events matching e 
would be more certain. Fig. 4 presents the time ranges that underpin the formulation of sets U(e), A(e) and 
the proposition Eei,Uo,W. 

 

 
 

Figure 4. Time ranges for U(e), A(e) and Eei,Uo,W 
 
 
The functional form of the BPA mG and the belief function induced by it are derived by the following 

theorem. 

Theorem 1: Let U(e) and A(e) be non empty set of runtime events, Eei,Uo,W be a proposition denoting that 
a concrete event ei in U(e) or A(e)  has a valid explanation within the time range [tmid−w/2, tmid+w/2], and 
¬Eei,Uo,W be a proposition denoting that ei has no valid explanation within the time range [tmid−w/2, 
tmid+w/2]. 
(a) The BPA mEX defined as mEX = m1

EX⊕ m2
EX⊕ … ⊕ mn

EX where mi
EX (i=1,…,n; n=|U(e)| or n=|A(e)|) are 

the BPA functions defined in Definition 2 has the following form: 

mG(x) = 

 

ΠiεImi
EX(Eei,Uo,W)×ΠjεI'mj

EX(¬Eej,Uo,W) 
if x= ∩iεIEei,Uo,W∩jεI'¬Eej,Uo,W 
for all I, I' such that I ⊆ S & I' = S − I 
where S=U(e) or S=A(e)3 

0 if x≠ ∩iεIEei,Uo,W ∩jεI'¬Eej,Uo,W 

(b) The beliefs to the propositions ∨ei∈U(e) Eei,Uo,W, ∧ei∈U(e) ¬Eei,Uo,W and ∨ei⊆A(e) Eei,Uo,W produced by the belief 
function induced by mG are computed by the following formulas: 
BelG(∨ei∈U(e) Eei,Uo,W) = ΣI⊆U(e) and I≠Ø(−1)|I|+1{ Πi∈I mi

EX(Eei,Uo,W)} 
BelG(∧ei∈U(e) ¬Eu,Uo,W) = Π ei∈U(e) mi

EX(¬Eei,Uo,W) 

                                                             
3 For any two sets identified as I and I', I' denotes the complement set of I with respect to some common set S. Unless defined 

otherwise in a theorem or definition, I' denotes the complement set of I w.r.t the common frame discernment θ defined in [38]. 
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BelG(∨ei⊆A(e) Eei,Uo,W) =ΣI⊆ A(e) and I≠Ø(−1)|I|+1{ Πi∈I mi
EX(Eei,Uo,W)} 

The proof of Theorem 1 is given in [38]. Based on it, the belief in event genuineness is computed as: 

 
(i) if U(e)≠∅ 

BelG(P) = 

 

ΣI⊆U(e) and I≠Ø(−1)|I|+1{Πi∈I mi
EX(Eei,Uo,W)} if  P=Ge,Uo,W 

Πu∈U(e) mi
EX(¬Eei,Uo,W) if  P=¬Ge,Uo,W 

 
(ii) if U(e)=∅ 
 

BelG(P) = 

 

0 if  P= Ge,Uo,W or P= ¬Ge,Uo,W, and tc
max < te

U 
0 if  P= Ge,Uo,W and tc

max ≥ te
U 

ΣI⊆A(e) and I≠Ø (−1)|I|+1{Πi∈I mi
EX(Eei,Uo,W)} if  P= ¬Ge,Uo,W and tc

max ≥ te
U 

 
BelG depends on the BPA mi

EX for computing the basic probability of the existence or not of a valid 
explanation for a concrete event ei. The BPA function mi

EX is defined as follows. 

Definition 2: The BPA function mi
EX for the existence of a valid explanation for a runtime event ei is defined 

as: 
(a) if EXP(ei) ≠ ∅: 

mi
EX(P) = 

 

mVL(!Êj∈EXP(ei) VL(ei,Êj,Uo,W))  if P= Eei,Uo,W 

mVL("Êj∈EXP(ei) (¬VL(ei, Êj,Uo,W)) if P=¬Eei,Uo,W 

(b) if  EXP(ei)  = ∅ 
 

mi
EX(P) = 

 

α1 if P= Eei,Uo,W  

1 − α1 if P= ¬Eei,Uo,W 

where, 
• EXP(ei) is the set of possible explanations generated by abduction for ei and Êj is an explanation in this 

set,  
• VL(ei,Êj,Uo,W) (¬VL(ei,Êj,Uo,W)) is a proposition denoting that Êj is (not) a valid explanation for ei given 

the events in the log within the range [tmid–w/2, tmid+w/2] excluding those in Uo,  
• α1 is a parameter taking values in [0,1] determining the default basic probability of event genuineness in 

the case of events that have no explanation (α1 should be set to 0 if such events need to be considered as 
non genuine events), and 

• mVL is the BPA function resulting from the combination of the basic probability assignments mi
VL to the 

propositions VL(ei,Êj,Uo,W) and ¬VL(ei,Êj,Uo,W) i.e., mVL = m1
VL ⊕ m2

VL ⊕ … ⊕ mn
VL where n=|EXP(ei)|. 

The BPA functions mi
VL are defined in Definition 3. q 

 
According to Definition 2, an event is considered to have an explanation if at least one of the alternative 

explanations found for it is valid (see disjunction ∨Êj∈EXP(ei) VL(ei,Êj,Uo,W)), and not to have an explanation if 
none of its alternative explanations is valid (see conjunction ∧Êj∈EXP(ei) (¬VL(ei, Êj,Uo,W)). The functional form 
of mVL is given by Theorem 2. 

Theorem 2: Let eu be a runtime event, EXP(eu) be a non empty set of explanations of eu, and VL(eu,Ê,Uo,W) 
and ¬VL(eu,Ê,Uo,W) be the propositions defined in Definition 2.  
(a) The combined basic probability assignment mVL defined as mVL = m1

VL⊕ m2
VL⊕ … ⊕ mn

VL will be the 
function:  

mVL(x) = 
 

ΠiεImi
VL(VL(eu,Êj,Uo,W))×ΠjεI'mj

VL(¬VL(eu,Êj,Uo,W)) if x= ∩iεIVL(eu,Êj,Uo,W) ∩jεI'¬VL(eu, Êj,Uo,W) 
0 if x≠ ∩iεI VL(eu,Êj,Uo,W) ∩jεI'¬VL(eu, Êj,Uo,W) 

(b) The beliefs to the propositions ∨Êj∈EXP(eu) VL(eu,Êj,Uo,W) and ∧Êj∈EXP(eu)¬VL(eu, Êj,Uo,W) produced by the 
belief function induced by mVL will be: 
BelVL(∨Êj∈EXP(eu) VL(eu,Êj,Uo,W)) =ΣI⊆EXP(eu) & I≠Ø (−1)|J|+1{ΠÊj∈I mj

VL(VL(eu, Êj,Uo,W))} 
BelVL(∧Êj∈EXP(eu)¬VL(eu,Êj,Uo,W)) = Π Êj∈EXP(eu)  mj

VL(¬VL(eu, Êj,Uo,W))}  



where mj
VL (j=1,…,|EXP(eu)|) are the basic probability assignment functions defined in Definition 3. 

 
The proof of Theorem 3 is given in [38]. Based on this theorem, the belief in the existence or not of a 

valid explanation for a runtime event, if it is possible to identify at least one explanation through the 
abductive reasoning process described in Sect. IV, is computed as: 

BelVL(P) = 
 

ΣJ⊆EXP(ei) & J≠Ø (−1)|J|+1 {Π Êj∈J mj
VL(VL(ei,Êj,Uo,W))} if  P = Eei,Uo,W 

Π Êj∈EXP(ei)  mj
VL(¬VL(ei, Êj,Uo,W))  if  P = ¬Eei,Uo,W  

In cases when EXP(ei)=∅, BelVL(Eei,Uo,W) = α1 and BelVL(¬Eei,Uo,W) = 1 − α1. These formulas result from 
(a5) and the definition of mVL. 

D. Belief in explanation validity  
The BPA to the validity of an explanation is defined as: 

Definition 3: The BPA for the validity of an explanation Êj for a runtime event ei is defined as: 
 
(a) if  GN(ei, Êj Uo,W) ≠ ∅ 
 

mj
VL(P) = 

 

mCN(∨ej∈CN(ei,Êj,Uo,W) Gej,Uo,W)  if  P = VL(ei,Êj,Uo,W) 

mCN(∧ej∈CN(ei, Êj,Uo,W) ¬Gej, Uo,W) if  P = ¬VL(ei,Êj,Uo,W) 

 
(b) if  GN(ei, Êj,Uo,W) = ∅ 
 

mj
VL(P) = 

 

α2 if  P = VL(ei,Êj,Uo,W) 

1 − α2 if  P = ¬VL(ei,Êj,Uo,W) 

where, 
• GN(ei,Êj,Uo,W) is the set of the consequent events that the explanation Êj has in the time range defined by 

W excluding any events in Uo and ei or, formally, GN(ei,Êj,Uo,W) = {c | ({Êj, AS, L} |= c) and (c∉Uo) and 
(c≠ei) and (tmid – w/2 ≤ tc

L) and   (tc
U ≤ tmid+w/2)} where , AS is the set of system assumptions and L is the 

monitor’s event log. 
• α2 is a parameter taking values in [0,1] that provides the default basic probability of the validity of an 

explanation that has no consequences (α2 should be set to 0 if such explanations should be totally 
disregarded for a given system).  

• mCN is the belief function resulting from combining the BPAs to the genuineness of the consequences of 
individual explanations, i.e., mCN = m1

GN ⊕ m2
GN ⊕ … ⊕ mn

GN where n=|GN(ei,Ê,Uo,W)|. q 

mVL computes the basic probability of the validity of an explanation Ê as the basic probability of at least 
one of the consequences of Ê being a genuine event, and the basic probability of the non-validity of Ê as the 
basic probability of none of the consequences of Ê being a genuine event. 

The functional form of mECN is given by the following theorem. 

Theorem 3: Let Ê be a possible explanation for a runtime event eu, GN(eu,Ê,Uo,W) be the set of the 
consequences that Ê has in the time range defined by W excluding events in Uo and eu, and Ge,Uo,W, ¬ Ge,Uo,W 
be the propositions denoting the genuineness and non genuineness of the events e GN(eu,Ê,Uo,W), 
respectively. 
(a) The combined basic probability assignment mCN defined as mCN = m1

GN ⊕ m2
GN ⊕ … ⊕ mn

GN will be the 
function: 

mCN(x) = 

 

ΠiεImi
GN(Gei, Uo,W)× ΠjεI'mj

GN(¬Gej, Uo,W) if x=∩iεI Gei,Uo,W ∩jεI'¬ Gej,Uo,W 

0 if x≠∩iεI Gei,Uo,W ∩jεI'¬ Gej Uo,W 

where mj
GN (j=1,…,|GN(eu,Ê,Uo,W)|) are the basic probability assignment functions defined in Definition 1. 

(b) The beliefs to the propositions ∨ej∈CN(eu,Ê,Uo,W) Gej,Uo,W and ∧ej∈CN(eu,Ê,Uo,W)¬Gej,Uo,W produced by the belief 
function induced by mCN will be:  
BelCN(∨ej∈CN(eu,Ê,Uo,W) Gej,Uo,W) = ΣJ⊆CN(eu,Ê,Uo,W) and J≠Ø (−1)|J|+1{Π ej∈J mj

GN(Gej,Uo,W)} 
BelCN(∧ej ∈ CN(eu,Ê,Uo,W) ¬ Gej, Uo,W)  = Π ej ∈ CN(eu,Ê,Uo,W) mj

GN(¬Gej,Uo,W)} 
 



The proof of Theorem 4 is given in [38]. Based on this theorem, the belief in the validity of an individual 
explanation that has a non empty set of consequences is computed as: 

 
 

BelCN(P) = 

 

ΣJ⊆CN(ei,Ê,Uo,W) & J≠Ø (−1)|J|+1{Πej∈J mj
GN(Gej,Uo,W)} if  P = VL(ei,Ê,Uo,W) 

 
Πej ∈ CN(ei,Ê,Uo,W)mj

GN(¬Gej,Uo,W) 
if  P = ¬VL(ei,Ê,Uo,W) 

In cases where an explanation Ê for an event has no consequences other than the event it was created to 
explain itself, the belief in the validity of the explanation is computed as:  

 

BelCN(P) = 
 

α2 if  P= VL(ei,Ê,Uo,W) 
1 − α2 if  P= ¬VL(ei,Ê,Uo,W) 

 
The above form of BelCN is the direct consequence of axiom (a5) and the definition of mCN (Definition 3). 
It should also be noted that, as proved in [38], the functions mG, mVL and mEX satisfy the axioms of basic 

probability assignments in the DS theory. In the following, we give an example of computing event 
genuineness beliefs using the above belief functions. 

E. Example 
Fig. 5 below shows a graph representing part of the diagnosis model of the LBACS system. The graph 

has been extracted from diagnostic assumptions for LBACS, expressed in EC-Assertion. The nodes and 
edges of the graph represent EC-Assertion formulas as indicated in the key of the figure. 

Based on this model, the Explain algorithm of Fig. 3 would generate the following explanation for an 
event E:Happens(e(e1,s1,r1,login(u1,101,n1),c1),10050,R(10050) in the monitor’s log: 
Ê: Happens(e(e2, …, InPremises(101,n1),c2),t2, R(9050,10050))  
Ê would be generated by abduction from the assumption A1 in the graph of Fig. 5. From Ê, the following 
expected consequences would also be derived by deduction: 

• C1:Happens(e(_x,…,signal(101),…),t1,R(6050,10050)) (C1 is derived by deduction from the assumption 
corresponding to the edge InPremises à signal in Fig 5) 

• C2:Happens(e(_x,…,login(_U,101,_NS),…),t1,R(8050,10050)) 
 (C2 is derived by deduction from the assumption corresponding to the edge InPremises à login) 

• C3:Happens(e(_y,…,accessTo(101),…),t2,R(9050,69050)) 
 (C3 is derived by deduction from the assumption corresponding to the edge InPremises à accessTo) 
 

 
 

Figure 5. Part of LBACS diagnosis model 

TABLE II.  EXPLANATION VALIDITY AND EVENT GENUINENESS BELIEFS 

Event Log mVL(Ê) mG(E) 
Happens(e(…,signal(101)…), 8050, R(8050,8050) α2 + α2 − α2 × α2 = 0.36 0.36 
Happens(e(…,signal(101)…), 8050, R(8050,8050); 
Happens(e(…,accessTo(101)…), 9801, R(9801, 9801) 

α2 + (α2 + α2 − α2 × α2 ) − α2 × (α2 + α2 − 
α2 × α2 ) = 0.488 

0.488 

 
Thus, depending on the log of events, the beliefs in the validity of Ê and the genuineness of E would be as 

shown in Table II (the computations in Table II assume that α2 = 0.2 and W = 100000 milliseconds).   
The first row in the table shows the case where only the first of the consequences of Ê (C1) matches with 

an event in the log. The second row shows the case where two of the consequences of Ê (C1 and C3) match 



with events in the log. The belief in the validity of Ê increases in the second case, as there are more events in 
the log confirming the consequences of Ê.  

V. EVALUATION 

A. Objectives and experimental set up 
To evaluate our approach, we have performed a series of experiments aimed at investigating: (a) the 

accuracy of the event assessment process, (b) possible factors that may affect this accuracy, and (c) the time 
required for the execution of the assessment process. 

The experimental evaluation was based on a simulation of the LBACS industrial case study. The use of 
simulation was necessary in order to be able to introduce attacks in the communication lines of the system 
and investigate their effect on the assessment process. The model of LBACS used in the simulation is shown 
in Fig. 6. This model covered all the components of LBACS and associated the communication lines between 
these components with adversaries able to intercept, and block or delay events transmitted over the lines. 

The simulation model was used to generate different event logs for analysis. Each event log was 
generated by producing random seed events triggering interactions between LBACS components and then 
using the model to produce further events based on the specification of the components of the model. A 
request for accessing an LBACS resource sent by a mobile device to the access control server, for example, 
was a seed event generated at a random time point and with event parameter values (e.g., device ID) that 
were randomly selected from pre-specified sets of values having an equal probability of selection. Upon the 
receipt of such a seed request, the access control server would request the location of the device from the 
location server. The latter server would then respond according to its specification and with a random delay. 
Furthermore, adversaries could intervene in interactions by dropping or delaying randomly selected events. 
Adversary03 in Fig. 6, for example, could delay the request to the access control server or drop it altogether 
thus stopping the event sequence. Following a random choice to delay an event, an adversary introduced a 
random delay to it.  

 

 
Figure 6. LBACS simulation model 

 
Based on this process, we generated three groups of simulated events (G1, G2, and G3) to represent 

different levels of adversary intervention. Adversary intervention levels, or “attack sizes”, were measured by 
the number of the events affected by adversaries in a simulation (i.e., the number of delayed or dropped 
events). The level of intervention was set to 10 percent for G1, 20 percent for G2 and 30 percent for G3. Each 
of G1, G2 and G3 consisted of five different events sets consisting of 5000 random events each. All the five 
sets in each group had the same level of adversary intervention. The generated event sets were subsequently 
fed into EVEREST to execute monitoring and event assessment. In this process, we used 18 diagnostic 
assumptions. 

The accuracy and degree of completeness of the event genuineness assessment process was measured 
separately for genuine and fake events, using the following formulas: 
Pf = |EventsBR ∩ Eventsf| / |EventsBR|         (1) 
Pg = |EventsBR  ∩ Eventsg| / |EventsBR|          (2) 
Rf = |EventsBR ∩ Eventsf| / |Eventsf |          (3) 
Rg = |EventsBR  ∩ Eventsg| / |Eventsg|         (4) 
 



In these formulas, EventsBR is the set of events for which the assessment process generated a genuineness 
belief in the range BR, Eventsg and Eventsf are the sets of genuine events and fake events generated in a 
simulation respectively, and |•| is the cardinality of a set. 

The first two of the above formulas measure the precision (accuracy) of the assessment process. More 
specifically, (1) measures the ratio of events with a genuineness belief in the range BR that are fake, and (2) 
measures the ratio of events with a belief in the range BR that are genuine (note that Pg = 1–Pf). The next two 
formulas (i.e., (3) and (4)) measure the recall (i.e., extent of completeness) of the assessment process. In 
particular, (3) measures the ratio of fake events whose belief was in the range BR and (4) measures the ratio 
of genuine events whose belief was in the range BR.  

In addition to different types of events (i.e., fake and genuine) and different ranges of genuineness beliefs, 
the precision and recall of the assessment process was investigated with respect to different sizes of 
assessment windows (W), and different attack sizes (AS). In particular, we investigated accuracy for: 
• Three different belief ranges, namely a low belief range set to [0, 0.3), a medium belief range set to [0.3, 

0.7) and a high belief range set to [0.7, 1.0]. 
• Five different assessment windows (i.e., windows of 1.5, 2.5, 5, 7.5 and 10 seconds). 
• Three different attack sizes (i.e., simulations where the events affected by adversaries accounted for 10%, 

20% and 30% of the entire event log produced in the simulation). 
The outcomes of this investigation are discussed below. 

B. Precision and recall of assessment 
Tables III and IV show the precision and recall for genuine and fake events in the experiments, 

respectively. Precision and recall are shown for different belief ranges (BR) and sizes of the assessment 
window (W). The precision (Pg and Pf) and recall measures (Rg and Rg) shown in the tables have been 
computed as averages across the five different sets of events that were generated in the simulations (i.e., a 
total of 25,000 simulated events), assuming an attack size of 20% (i.e., simulations where one in every five 
events was fake). The tables show also the average recall and precision measures, as computed across all five 
assessment windows, for the different belief ranges and genuine/fake events (see columns AVEW in the 
tables). Graphs of the AVEW measures are also shown in Figures 7 and 8. 
 

 
Figure 7. Average precision/recall of genuine events 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Average precision/recall of fake events 

 
As Figure 7 shows, the average precision for genuine events (Pg) grows, as expected, from 0.47 at the 

lower belief range to 0.88 at higher belief range. The same pattern was mirrored in the case of precision of 
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fake events (Pf) but in the opposite direction (i.e., Pf decreased from the lower to the higher belief range as Pf 
=1–Pg) as indicated in Figure 84. 

The average recall for genuine events (Rg) peaked at 0.51 in the middle belief range (i.e., 51% of genuine 
events had genuineness belief measures in that range) and showed unexpectedly high and low values for the 
lower and higher belief range (i.e., 0.31 and 0.18, respectively). The average recall measures for fake events 
(Rf) were in line with expectations dropping from 0.57 at the lower belief range down to 0.13 at the higher 
belief range. 

Overall, the experimental results indicated that genuineness belief measures were capable of spotting with 
accuracy genuine and fake events. In particular, belief measures higher than 0.3 were found to be a good 
indicator of event genuineness and belief measures below 0.3 were found to be a good indicator of fake 
events. The experiments also indicated that belief measures shown a reasonable recall performance in the 
case of fake events but mixed performance in the case of genuine events.  

 
 

TABLE III.  PRECISION/RECALL OF GENUINE EVENTS W.R.T TO ASSESSMENT WINDOW AND BELIEF RANGE 

  Assessment Window (W)  

 
Belief 
Range 
(BR) 

1.5 2.5 5 7.5 10 
 
AVEW 

Rg 
[0.0, 0.3) 0.00 0.01 0.37 0.41 0.77 0.31 
[0.3, 0.7) 0.53 0.63 0.59 0.58 0.22 0.51 
[0.7, 1.0] 0.47 0.36 0.05 0.01 0.01 0.18 

 

Pg 
[0.0, 0.3) 0.00 0.13 0.74 0.70 0.78 0.47 
[0.3, 0.7) 0.84 0.86 0.90 0.94 1.00 0.91 
[0.7, 1.0] 0.85 0.90 0.63 1.00 1.00 0.88 

 
TABLE IV.  PRECISION/RECALL OF FAKE EVENTS W.R.T TO ASSESSMENT WINDOW AND BELIEF RANGE 

  Assessment Window (W)  

 
Belief 
Range 
(BR) 

1.5 2.5 5 7.5 10 
 

AVEW 

Rf 
[0.0, 0.3) 0.13 0.29 0.58 0.82 1.00 0.57 
[0.3, 0.7) 0.47 0.50 0.37 0.18 0.00 0.30 
[0.7, 1.0] 0.40 0.21 0.05 0.00 0.00 0.13 

 

Pf 
[0.0, 0.3) 1.00 0.87 0.26 0.30 0.22 0.53 
[0.3, 0.7) 0.16 0.14 0.10 0.06 0.00 0.09 
[0.7, 1.0] 0.15 0.10 0.37 0.00 0.00 0.12 

 
The more detailed figures in Tables III and IV show also some performance differences across the 

different assessment windows. Most notably, increasing the assessment window can lead to increased 
precision in the high belief range. More specifically, as Table III indicates, Pg increased from 0.85 to 1.00 
when W increased from 1.5 secs to 10 secs (correspondingly Pf decreased from 0.15 to 0 across these W 
sizes, as indicated in Table IV). Increasing the assessment window, however, made low beliefs less accurate 
indicators of fake events. In particular, for beliefs in the range [0.0, 0.3), Pf fell from 1.0 to 0.22 and, 
correspondingly, Pg increased from 0.29 to 0.76. 

Overall, the most accurate assessment of fake and genuine events was observed for the assessment 
windows of 1.5 and 2.5 seconds. For these assessment windows the aggregate probability of making a wrong 
assessment, i.e., characterizing a fake event as genuine based on a belief higher than 0.7 or a genuine event as 
fake based on a belief less than 0.3 was 0.15 and 0.26, respectively (this probability is computed as the sum 
of Pf [0.7,1.0] + Pg[0.0,0.3)). The most likely explanation of the better performance in the case of the two smaller 
assessment windows is that length of these windows was closer to the average time difference between the 
events used in the monitoring rules and assumptions of the experiments. The recall (Rg) of genuine events in 
the low belief range [0, 0.3) was, as expected, very low (almost 0 per cent) for the two shorter assessment 
windows (W=1.5 and W=2.5). This performance deteriorated as W increased.  

To assess the statistical significance of the observed differences in the Rg, Rf, Pg, and Pf measures across 
different belief ranges and sizes of assessment windows, we performed two-way analysis of variance [14]. 

This analysis shown that the differences observed in Pg and Pf measures across different belief ranges 
were statistically significant in at α=0.05 (P-value: 0.022, F-value: 6.344). Unlike them, the differences 
observed for Rg and Rf across different belief ranges were not found to be statistically significant at α=0.05. 

                                                             
4 The Pf line shown in Figure 8 is symmetrically opposite to the Pg line in Figure 7. The reason for showing it, in addition to the Pf line 

is to enable a direct visual comparison with Rf in a single graph. 



The analysis of variance indicated also that the differences observed in precision and recall measures across 
different assessment windows were not statistically significant at α=0.05. 

In the experiments, we also investigated the accuracy of assessment for different attack sizes. Tables V 
and VI show recall and precision measures for genuine and fake events, respectively, for different belief 
ranges, and attack sizes of 10%, 20% and 30%. These measures were computed as averages over five 
different random event sets for each attack size (i.e., a total of 15,000 events) whilst W equaled 2.5secs in all 
experiments. 

As shown in the tables, the precision of genuine events (Pg) with a belief in the high belief range [0.7, 1.0] 
dropped from 0.94 to 0.77 as the attack size increased from 10% to 30%. Similarly the precision of fake 
events (Pf) with a genuineness belief in the low belief range [0.0, 0.3) dropped as the attack size increased (Pf 
was 1.0 for AS=10%, 0.95 for AS=20% and 0.98 for AS=30%). The analysis of variance of Pg and Pf 
indicated that the differences observed in these measures across different attack sizes were not of statistical 
significance at α=0.05. 

 

TABLE V.  PRECISION AND RECALL FOR GENUINE EVENTS W.R.T TO ATTACK SIZE AND BELIEF RANGE 

     Attack size (AS) 
 Belief Range 

(BR) 
10% 20% 30% 

Rg 
[0.0, 0.3) 0.00 0.00 0.00 
[0.3, 0.7) 0.66 0.60 0.61 
[0.7, 1.0] 0.34 0.40 0.38 

 

Pg 
[0.0, 0.3) 0.00 0.05 0.02 
[0.3, 0.7) 0.94 0.85 0.76 
[0.7, 1.0] 0.94 0.90 0.77 

TABLE VI.  PRECISION W.R.T TO ATTACK SIZE AND BELIEF RANGE 

     Attack size (AS) 
 Belief Range 

(BR) 
10% 20% 30% 

Rf 
[0.0, 0.3) 0.22 0.20 0.26 
[0.3, 0.7) 0.37 0.56 0.50 
[0.7, 1.0] 0.40 0.24 0.24 

 

Pf 
[0.0, 0.3) 1.00 0.95 0.98 
[0.3, 0.7) 0.06 0.15 0.24 
[0.7, 1.0] 0.06 0.10 0.23 

 
Recall measures showed a mixed performance across different attack sizes that cannot lead to some 

conclusion about the effect of the assessment window size upon it. This was confirmed by the analysis of 
variance of Rg and Rf which indicated that the differences of Rg and Rf measures across different attack sizes 
were not of statistical significance at α=0.05. 

C. Belief computation time  
Fig. 9 shows the average time required for the computation of an event genuineness belief measure for 

assessment windows (W) of different size. The average time shown was calculated across a total of 25,000 
computations of belief measures for each window size. 

 
 

 
Figure 9. Average computation time for genuineness beliefs 

 
As shown in the figure, the belief computation time increases exponentially along with increments in W 

since, as W becomes larger, there are more runtime events to consider whilst searching for matches to the 
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expected consequences of the alternative explanations of each event whose genuineness is assessed. Fig. 9 
shows also the exponential trend line that was fitted to the data using regression. The correlation co-efficient 
of this line (i.e., R2=0.9894) was found to be statistically significant at a=0.05, confirming the effect of the 
assessment window onto the computation time of genuineness beliefs. 

The exponential increase of the belief computation time along with W increments raises a question about 
the scalability of our approach when applied to complex systems. In response to this question, we should note 
that there are ways of controlling the exponential increase of the computational cost of the assessment 
process. One such way is to keep the size of W small to ensure a timely generation of the required beliefs. 
Our initial experiments have indicated that this would be possible without affecting the accuracy of the 
assessment, as demonstrated by the experimental data in Table III. 

The computational cost of our approach depends also on the number of the diagnostic assumptions that 
can be applied for generating an explanation: it can grow exponentially as the number of assumptions 
increases. However, in many cases, this cost could be controlled through the adequate (re-)formulation of the 
diagnostic model. More specifically, it is possible to omit some intermediate diagnostic assumptions and 
retain in a diagnostic model only those, which connect directly a final event outcome with the event(s) that 
are the root-cause of it. To appreciate how consider, for example, a set of n-1 diagnostic assumptions 
producing an explanation path e1 à e2 à … à en where 
• en is an observable event; 
• e1 is an observable event or an internal non observable system event that can cause an observable 

outcome other than en; and 
• e2, …, en-1 are derived events that cannot cause any observable outcomes other than en. 
In this example, it would be possible to reduce the diagnostic model to one assumption generating directly 
the path e1 à en and save time during the search for confirmed explanations for en. In approaches, which use 
abductive reasoning to provide a full diagnostic explanation of the trace of events within a system that has led 
to a specific outcome, the reduction of a diagnostic assumptions set, as the above example, would not be 
possible without affecting the quality of diagnosis. In our approach, however, this is not a problem as in the 
chain e1 à e2 à … à en the only events that can affect the computation of belief measures are e1 and en. 
Note also that the diagnostic model for a system can also be reduced through static analysis. More 
specifically, it is possible to use static analysis to identify those assumptions in the model that involve only 
derived events in their head and only non observable events in their body, which furthermore cannot directly 
cause any observable events other than the event en of interest. If such diagnostic assumptions exist, they can 
be removed from the diagnostic model, and be replaced by alternative assumptions expressing the relations 
between the causes of the events in their body and the effects of the events in their head. 

Following the trimming of a diagnosis model, a further optimisation would be to pre-compute 
symbolically and maintain a graph of: (a) all the possible abstract (i.e., non-grounded) explanations for each 
observable event in the model, and (b) all the possible abstract consequences of these explanations. More 
specifically, for each observable event that is represented by a Happens predicate in the head of a diagnostic 
assumption in the model, it is possible to compute an explanation tree and, for each of the leaf events in this 
tree, to compute its possible consequences tree. Subsequently, when a genuineness assessment is required for 
a concrete event matching the original Happens predicate at runtime, the generated explanation and 
consequences trees could be instantiated directly to generate the explanations for the event of interest and 
their potential confirmation events. This would make it unnecessary to search for explanations and deduce 
consequences from scratch at runtime by using the diagnostic assumptions of the model. 

D. Discussion  
The undertaken experimental evaluation of our approach has focused on exploring key factors that may 

affect its performance. Whilst the initial results are positive, especially with regards to the accuracy 
(precision) of the assessment, further investigation is required in order to investigate the recall performance 
of our approach, and to explore additional factors that may affect other aspects of its performance. 

In particular, it will be interesting to explore the sensitivity of the accuracy of event genuineness 
assessments when using diagnostic models (i.e., sets of diagnostic assumptions) of varying degrees of 
completeness with respect to the behavior of a system under surveillance. It will also be interesting to explore 
the sensitivity of the accuracy of genuineness assessments when using diagnostic models of varying degrees 
of correctness (e.g., assumptions specifying incorrect time intervals between the events that they involve). 
Depending on the assessment window that is used, it should be noted that the latter factor might affect not 
only the accuracy but also the efficiency of our approach. 

It will be also interesting to explore the effect of adversaries with more advanced capabilities, including 
the ability to introduce groups of interrelated fake events into a system in order to overcome the basic 
premise of the diagnosis model, i.e., the principle of seeking confirmation of an event through other events 
that can be the outcome of the same cause. In the LBACS case study, for instance, an attacker with such 



capabilities should be able to generate multiple fake signals for a given mobile device and fake resource 
access requests. This would compromise the ability of our approach to detect the fake events, if the given 
type of fake events is not related to several other event types through common causes in the underlying 
diagnosis theory. 

It should be noted that whilst attackers with such capabilities would be able to overcome the detection 
power of our approach, in reality to be effective, such attackers should have or be able to develop knowledge 
of the exact diagnosis theory that it deploys for detecting fake events for a given system. More specifically, to 
be effective an attacker should have or be able to derive knowledge about co-occurrences of events in 
diagnostic assumptions, events with potentially common causes, time dependencies between events in 
explanation chains, and time dependencies between events with common causes. This, in our view, would be 
difficult for complex diagnostic theories. 

Further experimentation will also be needed in order to investigate the sensitivity of our approach to 
parameters a1 and a2, and especially when varying these values along with the total number of assumptions 
in a diagnostic theory. It will also be necessary to explore whether there is some systematic drop in the 
accuracy of the assessment for particular ranges of assessment window sizes (as in the case of W=5 in our 
simulations which led to a drop in accuracy that seemed to be an outlier point). 

Lastly, we should note that an experimentation based on some benchmark data set would be useful. This 
has not been possible so far, as existing benchmarks for security or dependability (e.g. [43]) do not provide 
detailed specifications of the internal behaviour of their underlying systems that would enable us construct a 
diagnosis theory to use with our approach.    

VI. RELATED WORK 
The problem of assessing the trustworthiness of runtime events used in runtime software system 

monitoring is relevant to work on runtime system verification, and diagnosis in the fields of software 
engineering and systems security. It is also relevant to work on abductive reasoning and diagnosis in AI. In 
the following, we present an overview of relevant strands of work in these areas, and position our approach 
within it. 

Runtime verification has been the focus of several approaches and systems (e.g., 
[5][6][7][10][12][27][42]). The focus of runtime verification is to check whether the execution trace(s) of a 
software system satisfy or not a given property [25]. This check has often to rely on partial traces of system 
executions and may involve prediction of the remaining trace. RV systems may be distinguished by the 
language that they use to express properties (e.g. rule based [5][6], query based [27], or assertion based and 
temporal logic based approaches [4][24]), and the way in which they realise their checks (e.g. intrusive 
approaches where monitoring code is weaved into the code of the system to be monitored [10][5] vs. non 
intrusive approaches that deploy external monitors [35][36]). 

Examples of general-purpose RV systems include Java-MoP [28], JPaX [17], Java-MaC [19], Jassda 
[9], Temporal-Rover [13], JNuke [4] and JPF [52]. Java-MoP [28] realizes the monitoring oriented 
programming (MoP) approach in which monitoring code is synthesized automatically from assertions 
specified by programmers and is weaved into system’s code to perform the runtime checks. JPaX (Java 
PAth eXplorer [17]) carries out various forms of error pattern analysis to detect potential violations of 
properties expressed as past and future LTL formulas (e.g. deadlocks) by instrumenting Java byte code. 
Java-MaC [19] performs runtime checks of safety properties of Java programs. These properties are 
expressed using a primitive and a meta-event definition language (PEDL and MEDL), enabling the 
definition of code level events (PEDL) and high-level events (MEDL) defined in terms of low-level events 
to enable the specification of the required properties. Java-MaC generates monitors automatically. Jassda 
[9] checks assertions by observing traces of Java program events generated for debuggers through the Java 
Debug Interface (JDI). Java-MaC assertions are written in a CSP-like language. Temporal Rover [13] is a 
commercial toolkit supporting the runtime verification of temporal properties over C, C++, VHDL, Verilog, 
and ADA programs. These properties are expressed as linear or metric temporal logic (LTL/MTL) 
assertions that are embedded as comments the source code of the program to be monitored. JNuke [4] is an 
integrated runtime verification and model-checking framework. JNuke offers a specialized VM and an RV 
API supporting backtracking in Java program execution and access to the program state. Backtracking is 
supported through the specification of program checkpoints that allow the exploration of alternative 
program execution paths at runtime. Custom checking algorithms can be implemented on top of JNuke. JPF 
(JavaPathFinder) [52] is a model checker for Java byte code offering a specialized Java Virtual Machine 
(JVMJPF), supporting exhaustive program execution. JPF searches the state space of the checked program 
for “low-level” properties like deadlocks, unhandled exceptions and/or failed assertions and is extensible 
via a listener API to external monitors wishing to check more general properties. 

There are also systems focusing on runtime verification of security properties. Naldurg et al [29] have 
developed a framework for intrusion detection using temporal patterns, specified in EAGLE [6]. These 



patterns enable reasoning about the data values observed in individual events. Thus, their framework 
supports the monitoring of attacks whose signatures have statistical properties. Ko et al. [21] have also used 
RV techniques to detect vulnerabilities of security-critical programs. In their framework, trace policies, 
expressed in "parallel environment grammar (PE-grammar)" determine security-valid operation sequences 
monitored against program executions. PE-grammar can express various classes of security trace policies, 
including access to system objects, synchronization, operation sequencing, and race conditions in 
concurrent or distributed programs. Execution Monitoring [34] is an approach for monitoring violations of 
security policies, based on the security automata (i.e., automata with control capabilities) that can terminate 
system execution if would violate a security policy. Finally, EVEREST, the monitoring framework 
integrated with the event assessment approach described in this paper, has been developed to support the 
monitoring of security and dependability properties of distributed software systems and/or software systems 
that may integrate components dynamically [35]. 

 Diagnosis of software system faults and violations of desired system properties has also been the focus of 
several strands of works [8][15][31][37], which view it as the identification of trajectories of events that have 
caused the faults or violations of the desired properties. Typically, the different approaches to diagnosis use 
automata expressing the expected behaviour of the monitored system and try to synchronize them with the 
event traces generated by the system under surveillance for carrying out the diagnostic task. The work in 
[31], for instance, adopts a decentralised diagnosis approach where automata are synchronised with 
individual system components (to enable fault detection at system components level), and are then 
aggregated for the global system to enable fault detection at system level. The work in [37] and [8] focuses 
on generating algorithms acting as detectors of internal system faults (aka diagnosers). 

In our approach, we distinguish between monitoring and diagnosis treating the former as the task of 
detecting violations of system properties and the latter as the task of assessing the genuineness of events that 
underpin monitoring. Hence, both our focus and our approach are distinct from runtime verification and 
diagnosis as they appear in the literature. Our approach, however, is complementary to runtime verification 
and diagnostic systems as it can be used to assess the trustworthiness of the events they analyse. This 
capability is useful in cases of RV systems supporting non-intrusive external monitoring based on events that 
are produced and captured by different distributed system components. 

Forms of diagnosis more similar to our work have been the focus of work in AI. Console et al. [11], for 
example, have proposed a temporal abduction approach, which makes use of an underlying domain theory to 
generate explanations for observations. Our approach differs from in two main respects: (a) it assesses the 
validity of explanations by evaluating the genuineness of their consequences, and (a) it treats the time 
constraint satisfaction problem as a linear programming problem. The approach in [32] also uses causal and 
temporal dependencies between events/propositions. Time in this approach is represented using Allen’s 
interval algebra [2], and uncertainty is expressed by Bayesian probabilities assigned to dependencies. Our 
approach differs from [32], as we use a more elaborate representation of time and treat uncertainty through 
DS theory beliefs. Thus, we avoid the need to rely on a-priori probabilities of causal/temporal event 
dependencies, and can account for uncertainties regarding the occurrence of events. Finally, the AR system 
SCIFF [1] also uses the notion of confirmation of abduced information against dynamic observations (i.e., 
the equivalent of events in our approach). SCIFF, however, assumes that dynamic observations, which have 
not happened within their expected time range, disconfirm abduced information automatically. Furthermore, 
SCIFF does not quantify confirmation through the use of uncertainty measures (e.g. beliefs or probabilities), 
as ours. 

  

VII. CONCLUSIONS 
In this paper we have presented an approach for assessing the genuineness of events used for runtime 

monitoring of cyber systems. Our approach is based on the generation of possible explanations for runtime 
events using abductive reasoning and assessing whether any further effects that these explanations would 
have can be confirmed by other runtime events in the monitor’s log. The confirmation of such effects 
provides evidence in support of the validity of explanations and, therefore, evidence that the original events 
are genuine. The assessment of the genuineness of events (including those generated by the system under 
surveillance and the explanation effects) and the validity of explanations is based on the computation of 
beliefs using functions grounded in the DS theory of evidence. 

An initial experimental evaluation of our approach has shown promising results. Notably, high and low 
event genuineness beliefs have been shown to correlate with genuine and fake events. The accuracy of 
assessments based on such beliefs depends on the extent of the attacks that a system has been subjected to. 
This ability to distinguish genuine from fake events is a prerequisite for effective monitoring of security of 
cyber systems without a detrimental effect to their operational continuity. 



Currently, our work focuses on investigating ways for analysing statically the effectiveness of the 
diagnostic model used for a system and updating it based on monitoring results. Our overall objective is to 
develop support for optimising the sets of diagnostic assumptions used for a system. In particular, we are 
investigating the use of static analysis of a diagnostic model to determine the coverage that it offers against a 
monitoring specification, to build symbolic explanation and consequence trees for all the observable events 
defined in the model, and to identify diagnostic assumptions that could be removed from the model without 
affecting the closure of the results of the event assessment process. These types of analysis and pre-
processing of diagnosis model can help avoiding unnecessary computations during the generation of 
explanations as we discussed in Sect. V. We are also exploring the use of statistical data regarding the 
application of individual diagnostic assumptions in a diagnostic model and their effectiveness in producing 
accurate assessments of genuineness. Statistical analysis may, for example, indicate that a partcular 
diagnostic assumption produces unconfirmed consequent events because of the incorrect time range within 
which it expects the events to occur. 

Finally, we are working on some limitations of our framework and the EVEREST monitoring system that 
underlies it. One such limitation is that the framework does not distinguish between events that could not 
possibly have an explanation (because there is no diagnostic assumption that could explain them) and events 
for which although it would – in principle – be possible to identify an explanation (as there are diagnostic 
assumptions having them as a consequence), no explanation is found due to the absence of observed or 
derived events matching the conditions required by the relevant assumptions. In its current form, the 
diagnosis framework does not distinguish between these two cases of events and assigns a fixed belief 
measure (i.e., the value of parameter α1) to the genuineness of events with no explanation regardless of the 
exact reason why this is the case. These two cases can be distinguished by modifying the BPA function 
mi

EX(P) (e.g., to make it assign different belief measures in each of these cases). 
With regards to EVEREST, we are extending it to support time-triggered event, i.e., events represent that 

the clock of a computational infrastructure reaches a particular time point T such as the end of the day, month 
etc. 
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