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Abstract: We present a number of bounds on convergence time for two elitist population-based Evolutionary Algorithms
using a recombination operator k-Bit-Swap and a mainstream Randomized Local Search algorithm. We study
the effect of distribution of elite species and population size.

1 INTRODUCTION

The main objective of this article is to derive convergence
properties of two elitist Evolutionary Algorithms (EAs)
on OneMax and Royal Roads test functions. One of the
analyzed algorithms uses the k-Bit-Swap (kBS) operator
introduced in (Ter-Sarkisov et al., 2010). We compare
our results to computational findings and other research.

A population consists of a set of solution strings.
We split them into two groups: there are elite strings,
which have the same highest fitness value and the
remaining non-elite strings. We use the standard notation
for the population µ, recombination pool λ, the elite
species α, the non-elite β.

1.1 Past work

Recently (1+ 1)EA with 1
n flip probability (n being the

length of a chromosome) became a matter of extensive
investigation. Sharp lower and upper bounds for One-
Max and general linear functions were found in (Doerr
et al., 2010c; Doerr et al., 2010a; Doerr et al., 2011;
Droste et al., 2002) applying drift analysis and potential
functions. Specifically, in (Doerr et al., 2011) the upper
bound for (1 + 1)EA solving OneMax was derived to
be (1 + o(1))1.39en logn and in (Doerr et al., 2010a)
the lower bound for the same setting was found to be
(1− o(1))en logn. Drift (a form of super martingale)
was introduced in (Hajek, 1982; He and Yao, 2003; He
and Yao, 2004).

1.2 Definitions and Assumptions

We analyze two fitness functions here, OneMax (simple
counting 1’s test function) and Royal Roads (see Section
4 for additional definitions for it). The fitness of a pop-
ulation is defined as the fitness of an elite string. Since
both functions have global solution at n, we are interested
in the following time parameter:

τA = min{t ≥ 0 : f (α) = n} (1)

that is, the minimum time when (for algorithm A) the
best species in the population reaches the highest fitness
value. Since the analysis is probabilistic, we need the
expectation of this parameter: EτA.

We assume that we do not need a large number of
species for evolution. Though this sounds a bit vague,
this justifies the choice of distributions with respective
parameters. The expectation of Poisson random variable
used here is 1, for Uniform it is µ+1

2 . We use the latter
due to its simplicity.

We restrict our attention only to elite pairs (kBS)
or parents (RLS), to simplify the analysis, since other-
wise we would have to make more assumptions about
the fitness of non-elite parents β.

1.3 k-Bit-Swap Operator

This genetic recombination operator (see Figure 1) was
introduced in (Ter-Sarkisov et al., 2010) and proved to
work efficiently both alone and together with mainstream
operators (crossovers and mutation). Its efficiency was
mostly visible on functions like Rosenbrock, Ackley,

ar
X

iv
:1

10
8.

40
80

v1
  [

cs
.N

E
] 

 2
0 

A
ug

 2
01

1



Figure 1: 1-Bit-Swap Operator

Algorithm 1:(µ+λ)EA1BS
1 Initialize population size µ

repeat until condition fulfilled:
2a select λ species from the population using

Tournament selection
2b apply 1BS operator to each pair in the

recombination pool
2c keep α best species in the population,

replace the rest with the best species
from the pool

Algorithm 2:(µ+λ)RLS
1 Initialize population size µ

repeat until condition fulfilled:
2a select λ species from the population using

Tournament selection
2b flip exactly one bit per chromosome
2c keep α best species in the population,

replace the rest with the best species
from the pool

Table 1: Pseudocode for the algorithms analyzed in this article

Rastrigin and Royal Roads. We also tested its perfor-
mance on OneMax specifically for this article.

1.4 Our findings

The models we derive are complete, i.e. they are func-
tions of just population size µ, recombination pool λ and
length of the chromosome n, i.e. the actual parameters
of EAs, though we make some weak assumptions about
the pairing of parents.

We derive the expectation of convergence time for
the population-based elitist EA with a recombination
operator (1-Bit-Swap Operator) and mutation-based
RLS. Our theoretical and computational findings confirm
that for OneMax the benefit of population is unclear, i.e.
its effect is not always positive. For Royal Roads it is
always positive. This problem-specific issue was noticed
before (see e.g. Figures 4 and 5 in (He and Yao, 2002)).

We use two distributions of elite species in the
population: Uniform( 1

µ ) and Poisson(1). Since the ex-
pressions for the expected first hitting time of algorithms
Eτ we have found are quite complicated, we do the
computational estimation and find some asymptotic
results as well.

Tournament Selection Procedure We use this selec-
tion because it is fairly straightforward in implementation
and analysis.
• Select two species xi,x j uniformly at random

• if f (xi) = f (x j), either xi or x j enters the pool at
random

• else the species with better fitness enters the pool

2 ANALYSIS OF ALGORITHM 1 ON
ONEMAX PROBLEM

We start with Uniform distribution of elite species
with parameter 1

µ , which gives the lower bound on
convergence time, which is due to the assumption on the
number of elite species needed for the evolution.

The probability of selecting an elite pair is

Psel =
(

α

µ

)4
+4
(

α

µ

)3 β

µ
+4
(

α

µ

)2(β

µ

)2

=
α2(α+2β)2

µ4 =
α2(α+2(µ−α))2

µ4 (2)

Since we restrict the analysis only to elite pairs, the prob-
ability of evolution (generation of a better offspring as a
result of 1-Bit-Swap) is

Pswap =
1
2
−2
( k

n

)2
(3)

where k = 0 : n
2 −1, which is due to the assumption that at

the start of the algorithm f (α) = n
2 .

2.1 Uniform distribution of elite species

We are deriving an upper bound on the probabil-
ity (and, therefore, lower bound on the expectation
of the first hitting time). We are interested in the
probability of evolving at least 1 new elite species
next generation, i.e. of at least 1 successful swap.

P( at least 1 new elite species in the population at t +1)
= 1−P(no new elite species in the population at t +1)

We define G0 to be the event that no new species
evolves over 1 particular generation. The number of elite
pairs H j in the population varies from 0 to λ

2 , and elite
species α in the population from 1 to µ. In this regard,
probability to select a number of pairs given α elite
species in the population is Pselα. By the Law of total
probability,

P(G0) =

λ
2

∑
j=0

P(G0|H j)P(H j)

=

λ
2

∑
j=0

P(G0|H j)
µ

∑
α=1

P(H j|α)P(α) (4)



We assume Uniform probability of each number of elite
species in the population: P(α) = 1

µ .

P(G0|H0)P(H0) = P(G0|H0)
µ

∑
α=1

P(H0|α)P(α)

=
µ

∑
α=1

P(H0|α)P(α)

=
(

1−Psel1

) λ
2
+
(

1−Psel2

) λ
2
+ . . .+

(
1−Pselµ

) λ
2

=
µ

∑
α=1

(
1−Pselα

) λ
2 (5)

to get 1 elite pair:

P(G0|H1)P(H1) =
(1

2
+2
( k

n

)2)1
µ

µ

∑
α=1

P(H1|α)

and
µ

∑
α=1

P(H1|α) =
(

λ

2
1

) µ

∑
α=1

Pselα

(
1−Pselα

) λ
2−1

therefore, the probability of failure given 1 elite pair
given k improvements so far is

P(G0k|H1)P(H1) =
(1

2
+2
( k

n

)2)( λ

2
1

)
1
µ

µ

∑
α=1

Pselα

(
1−Pselα)

λ
2−1

(6)

For cases {H j : 2≤ j≤ λ

2} the logic is similar, so the full
expression for the probability of failure is

P(G0k) =

λ
2

∑
j=0

P(G0|H j)P(H j)

=
1
µ

λ
2

∑
j=0

(1
2
+2
( k

n

)2) j
(

λ

2
j

) µ

∑
α=1

P j
selα

(
1−Pselα

) λ
2− j

=
1
µ

λ
2

∑
j=0

(
1
2
+2
(

k
n

)2
) j(

λ

2
j

)
·

·
µ

∑
α=1

(
α2(α+2(µ−α))2

µ4

) j(
1− α2(α+2(µ−α))2

µ4

) λ
2− j

Interchanging the sums and using the standard binomial
expansion (s+ t)n = ∑

n
k=0
(n

k

)
sktn−k

P(G0k) =
1
µ

µ

∑
α=1

λ
2

∑
j=0

(
λ

2
j

){( 1
2
+2
( k

n

)2)(α2(α+2(µ−α))2

µ4

)} j

{(
1− α2(α+2(µ−α))2

µ4

)} λ
2− j

=
1

µ2λ+1

µ

∑
α=1

{
µ4−

(1
2
−2
( k

n

)2)
(α(α+2(µ−α)))2

} λ
2

The probability of evolution (obtaining a better species)
is therefore

P(Gk) = 1−P(G0k)

= 1− 1
µ2λ+1

µ

∑
α=1

{
µ4−

(1
2
−2
( k

n

)2)
(α(α+2(µ−α)))2

} λ
2 (7)

for each 0≤ k ≤ n
2 −1 we have

ETk =
1

1− 1
µ2λ+1 ∑

µ
α=1

{
µ4−

(
1
2 −2

(
k
n

)2)
(α(α+2(µ−α)))2

} λ
2

=
µ2λ+1

µ2λ+1−∑
µ
α=1

{
µ4−

(
1
2 −2

(
k
n

)2)
(α(α+2(µ−α)))2

} λ
2

and therefore the expected first hitting time for the algo-
rithm is

Eτ(µ+λ)EA1BS =

n
2−1

∑
k=0

ETk

= µ2λ+1

n
2−1

∑
k=0

1

µ2λ+1−∑
µ
α=1

{
µ4−

(
1
2 −2

(
k
n

)2)
(α(α+2(µ−α)))2

} λ
2

= µ2λ+1
φ(λ,µ,n) (8)

Despite having two sums without closed forms, the
convergence rate of this algorithms depends only on
the size of the population, recombination pool and the
length of the string, that is, the real-life parameters of
EA. Therefore, the model is complete.

3 ANALYSIS OF ALGORITHM 2
SOLVING ONEMAX

For comparison, we derive Eτ for (µ + λ)EARLS using
similar approach (Law of total probability + sum of Geo-
metric RVs). Changes apply mostly to the selection prob-
ability, as we have no pairs to form:

Psel =
(

α

µ

)2
+

2αβ

µ2 =
α(2µ−α)

µ2 (9)

3.1 Uniform distribution of elite species

We use the same assumptions of uniform distribution of
elite species in the population as with the (µ+λ)EA1BS.

Failure event G0 is defined in the same way: no
successful flips in the recombination pool, so the prob-
ability thereof is defined in a similar way to the one in
Equation 4.

P(G0) =
λ

∑
j=0

P(G0|H j)
µ

∑
α=1

P(H j|α)P(α) (10)

Only in this case j is the number of elite parents in the
pool and goes from 0 to λ.

P(H j|α)P(α) =
(

λ

j

)
p j

sel(1− psel)
λ− j

and therefore (using the same idea with the binomial ex-
pansion)

P(G0k) =
1
µ

λ

∑
j=0

( k
n

) j
(

λ

j

) µ

∑
α=1

P j
sel(1−Psel)

λ− j

=
1
µ

µ

∑
α=1

λ

∑
j=0

(
λ

j

)( k
n

Psel

) j
(1−Psel)

λ− j

=
1

µ2λ+1

µ

∑
α=1

[µ2−α(2µ−α)(1− k
n
)]λ (11)



Unfortunately, the closed expression for this sum exists
only for specific values of λ, so we have to keep it this
way and later obtain the results computationally.

P(Gk) = 1−P(G0k) = 1− 1
µ2λ+1

µ

∑
α=1

[µ2−α(2µ−α)(1− k
n
)]λ

So the expected optimization time of the algorithm is

Eτ(µ+λ)RLS =
n−1

∑
k= n

2

ETk =
n−1

∑
k= n

2

1
P(Gk)

= µ2λ+1
n−1

∑
k= n

2

1
µ2λ+1−∑

µ
α=1(µ

2−α(2µ−α)(1− k
n ))

λ
(12)

As the case is with (µ+λ)EA1BS, this is a somewhat op-
timistic estimate, since it assigns fairly high probabili-
ties to high proportions of elite species in the population.
This is confirmed by numerical estimates.

4 ANALYSIS OF ALGORITHM 1 ON
ROYAL ROADS FUNCTION

We use the setup for RR problem along the lines of
(Mitchell, 1996) (referred to as R1 in the book).The
chromosome of length n is split into K blocks, each of
length M. The fitness of each block is 0 if there are any
0s in the block, and M if all of the bits in it have value 1.
The fitness of the chromosome is the sum of the value
of the blocks, so it can take values 0,K,2K, . . .MK. We
index the blocks using index κ. Originally this problem
was designed to test EA’s capacity for recombining
building blocks compared to other heuristics (for details
see (Mitchell, 1996)).

Additionally, we introduce an auxiliary function
used to measure progress between improvements in
the fitness (the idea is similar to that in, e.g. (Doerr
et al., 2010b; He and Yao, 2004)), which in our case
is Vκ = OneMax(sκ) since both functions achieve the
global optimum at sk = M and max f (s) =Vs = ∑Vκ = n.

There is an important difference from the standard
OneMax problem: unlike it, when parents exchange
genetic information, it doesn’t matter where the infor-
mation comes from (which segment of the parent), but
it matters where it is inserted, because it may mean that
the fitness of the recipient segment has reached M, and
therefore the fitness of the whole parent increased by the
same value.

The second important observation is that of all seg-
ments in the chromosome there is one, which evolves
first, denote it κ1 (this is only possible due to the
parameters of the EA in discussion). This means that
segments evolve in a sequence: κ1,κ2, . . . ,κk.

We pessimistically assume that the best auxiliary
function value in the first generation is n

2 and fitness
function is 0. We also assume that the starting value in
each bin κ is M

2 . In the same way as with OneMax, we
make assumptions about the distribution of elite species

in the population, rather than their exact or approximate
number.

We start with introducing the probability of failure:

P(G0) =

λ
2

∑
j=0

P(G0|H j)
µ

∑
α=1

P(H j|α)P(α)

where all variables are the same as in (µ+λ)EA1BS solv-
ing OneMax: H j is j’th elite pair in the recombination
pool λ, α is the number of elite species in the population
µ with both highest fitness and auxiliary function values.
The selection function is the same as Equation 2:

Psel(α) =
α2(α+2(µ−α))2

µ4

The successful event is defined as evolution of at least
one more elite species in the population. The number of
bits equal to 0 left to swap/flip in a segment we use l.
So now the probability of successful swap in Equation 2
becomes

Pswap =
2
(

M
2 − l

)(
n
2 +

kM
2 + l

)
n2 =

(M−2l)(n+ kM+2l)
2n2 (13)

The auxiliary function for each bin κ,Vκ lies between 0
and M

2 − 1 and k between 0 and K− 1, where K is the
total number of bins κ to fill. The probability of failure is

PF = 1−Pswap = 1− (M−2l)(n+ kM+2l)
2n2

=
2n2− (M−2l)(n+ kM+2l)

2n2

The probability to fail to improve a bit in a bin given l
improvements so far is

P(G0l) =
1
µ

λ

2

∑
j=0

(2n2− (M−2l)(n+ kM+2l)
2n2

) j
(

λ

2
j

)
µ

∑
α=1

( (α(α+2µ(µ−α)))

µ2

) j(
1− (α(α+2µ(µ−α)))

µ2

) λ

2− j

=
1
µ

λ

2

∑
j=0

P j
F

(
λ

2
j

) µ

∑
α=1

(Psel(α))
j(1−Psel(α))

λ

2− j

=
1
µ

µ

∑
α=1

(1−Psel(α)Pswap)
λ

2 (14)

Therefore,

P(Gl) = 1−P(G0l) = 1− 1
µ

µ

∑
α=1

(1−Psel(α)Pswap)
λ
2

Expected time until improving the auxiliary function of
a bin κ is

ETκ =

M
2 −1

∑
l=0

1
P(Gl)

(15)

and, finally,summing over all k from 0 to K−1 we obtain
(since G depends on both l and k)

Eτ(µ+λ)EA1BS =
K−1

∑
k=0

M
2 −1

∑
l=0

1
P(Gl,k)

= µ2λ+1
K−1

∑
k=0

M
2 −1

∑
l=0

1

µ2λ+1−∑
µ
α=1(µ

4− (α(α+2(µ−α)))2Pswap)
λ
2

(16)



µ c(µ)
4 24e

41
10 ≈ 1.58198
20 ≈ 1.58198
30 ≈ 1.58198

Table 2: Values of the normalizing constant, Equation 17

5 ANALYSIS OF ALGORITHM 2 ON
ROYAL ROADS FUNCTION

Just as is the case with OneMax, we present the re-
sults for population-based RLS on Royal Roads. This
model is a bit simpler since we do not have to pair the
parents, and the selection is just

P(α)sel =
(

α

µ

)2
+

2αβ

µ2 =
α(2µ−α)

µ2

Instead of Uniform distribution of elite species in the
population, we try Poisson distribution with parameter 1,
and normalizing constant

c(µ) =
e

∑
µ
α=1

1
α!

=
eΓ(µ+1)

eΓ(µ+1,1)−Γ(µ+1)
(17)

since ∑
n
k=0

xk

k! = eλΓ(n+1,λ)
Γ(n+1) where Γ(n + 1,λ) is incomplete

Gamma function. The sizes of populations used in the
computational experiments, the values of the normaliz-
ing constant are set in Table 2.

The flip probability is just

Pf lip =
M−2l

n
(18)

Probability of failure given l successful flips so far is

P(G0l) =
c(µ)

e

λ

∑
j=0

(
1− M−2l

2n

) j
(

λ

j

)

·
µ

∑
α=1

(
α(2µ−α)

µ2

) j(
1− α(2µ−α)

µ2

)λ− j 1
α!

=
c(µ)

e

µ

∑
α=1

1
α!

[
1− α(2µ−α)

µ2

(M−2l
2n

)]λ

=
c(µ)
eµ2λ

µ

∑
α=1

1
α!

[
µ2−α(2µ−α)

(M−2l
2n

)]λ

Therefore, the probability of success is

P(Gl) = 1−P(G0l)

and the expected time to fill the first bin κ1 is therefore

ETκ1 =

M
2 −1

∑
l=0

1

1− c(µ)
eµ2λ ∑

µ
α=1

1
α!

[
µ2−α(2µ−α)

(
M−2l

2n

)]λ

= eµ2λ

M
2 −1

∑
l=0

1

eµ2λ− c(µ)∑
µ
α=1

1
α!

[
µ2−α(2µ−α)

(
M−2l

2n

)]λ

Since we have k such bins and the probability of success-
ful sampling does not depend on the number of 1’s in the
parent (unlike (µ+λ)EA1BS), we obtain the expected first

hitting time for the algorithm on RR:
Eτ(µ+λ)RLS = eµ2λ

K−1

∑
k=0

M
2 −1

∑
l=0

1

eµ2λ− c(µ)∑
µ
α=1

1
α!

[
µ2−α(2µ−α)

(
M−2l

2n

)]λ

= Keµ2λ

M
2 −1

∑
l=0

1

eµ2λ− c(µ)∑
µ
α=1

1
α!

[
µ2−α(2µ−α)

(
M−2l

2n

)]λ
(19)

6 COMPUTATIONAL RESULTS

Since the expressions derived in this article do not have a closed
form, we find them computationally. To test our results, we run each
algorithm with parameter set (µ,λ,n) with µ = λ almost always for 50
independent runs, each run was 2000 generations long. The average of
optimization time is denoted τ̃. Probability distribution used for each
model follow standard notation in Probability theory: R for Uniform
and P for Poisson.

In general, results for Algorithm 1 tend to be better than for Al-
gorithm 2 and for OneMax sharper than for RR. As we mentioned
already, this is due to different patterns of dynamics of elite species and
has to be investigated further. Apparently for both algorithms solving
RR both Uniform( 1

µ ) and Poisson(1) distributions give a fairly rough
approximation that we can improve both statically (using other parame-
ters) and dynamically (modeling change in the number of elite species).

The other important result is that the increase of population size
for both algorithms solving OneMax problem does not necessarily
result in the improvement in performance, which we showed both
theoretically and numerically. For RR the situation is much more clear:
increase in the population always brings about the improvement in
performance. Both models confirm this quite consistently.

7 CONCLUSIONS AND FUTURE
WORK

We have derived expected running time for EAs based on two differ-
ent genetic operators on two relatively simple fitness functions. In the
future there are two extensions that we particularly plan to focus on:

Approximate results for Equations 8, 12, 16, 19 This
is the most obvious of developments. Although these equations give
good estimates for optimization time, and we have found some asymp-
totic lower bounds, it is desirable to find sharper bounds in the form
O(g(µ,λ,n)). A big problem here are the complicated expressions in-
volving sums.

Evolution of elite species. This area has seen little focus in
EA community, and we are keen to develop a dynamic model for
evolution of species. In this article the model is static, i.e. distribution
of elite species in the population is fixed (Uniform or Poisson). As
a result, some bounds, especially for RR, seem to be quite loose. If
instead of assuming a probability distribution of elite species with fixed
parameters we study the convergence of the distribution, we can derive
sharper bounds on optimization time.



n µ λ EτR
Algorithm1 τ̃Algorithm1 EτR

Algorithm2 τ̃Algorithm2

50

1 2 112.9801 113.14 190.7979 192.12
2 2 144.6145 218.12 116.2812 184.6
4 4 94.7621 145.4 73.124 193.54
8 8 62.5691 121.86 48.596 184.52

10 10 55.4784 116.98 43.488 197.92

100

1 2 259.8688 265.84 449.9205 418.8
2 2 332.6321 455.9048 271.56 393.39
4 4 215.2445 314.1 168.03 410.39
8 8 139.2885 267.72 108.826 420.416

10 10 122.4884 266.9 96.3978 405.22

1000

1 2 3743.2354 3682.6 6792.8 6715
2 2 4791.3413 7072.7 4025.9876 6630
4 4 3021.5468 4574.3 2413.0033 6990
8 8 1872.3595 3866.5 1481.761 7016

10 10 1616.4433 3807 1283.5502 6834
Table 3: Theoretical and computational bounds for OneMax test function with the assumption of Uniform distributions of elite species
in the population (Equations 8 and 12)

n K M µ λ EτR
Algorithm1 τ̃Algorithm1 EτP

Algorithm2 τ̃Algorithm2

32 4 8

4 4 145 315.3077 64.8084 672.25
10 10 72.4 268.2195 58.124 504.625
20 20 44.2 192.2917 56.175 334.125
30 30 34.5 173.5625 55.1 221

64 8 8

4 4 570.625 612.46 249.959 -
10 10 279.88 497.93 222.565 820.6667
20 20 153.46 454.4681 212.452 715.92
30 30 112.297 372.04 209.373 663.6744

128 16 8

4 4 2264.36 1365 1021 -
10 10 1048 1239 940.999 -
20 20 570.44 1091.5 887.396 1612
30 30 401.99 949.4 871.1131 1505

Table 4: Theoretical and computational bounds for Royal Roads test function with the assumptions of Uniform and Poisson distribu-
tions of elite species in the population (Equations 16 and 19).
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