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1 Introduction

The worldvolume theory of a stack of D3-branes probing a toric Calabi-Yau (CY) cone-

type singularity is a 4d N = 1 supersymmetric gauge theory. Such gauge theories can be

represented by quivers in which the bifundamental matter contents and the superpotentials

are encoded1 [1]. Each toric CY3 corresponds to a toric diagram which is a 2-dimensional

1Saying this, we should bear in mind that the superpotential is generally additional data for defining a

theory, unless we are considering periodic quivers for toric theories.
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0 1 2 3 4 5 6 7 8 9

D5 × × × × × ×
NS5 × × × × —– Σ —–

Table 1. The brane configuration of D5 and NS5 branes.

lattice polytope, viz, a lattice polygon. The geometry of the CY3’s can thus be studied via

their toric diagrams.

Hence, it is natural to expect that there are some connections between the quivers and

toric diagrams. From one diagram, we can find the other following the approaches in [2, 3].

Given a quiver diagram, the process of finding the toric diagram is called the forward

algorithm. Conversely, obtaining quivers from a toric diagram is known as the inverse

algorithm. Generally speaking, the correspondence between the two kinds of diagrams is

often one-to-many. A toric diagram may give rise to more than one quivers while many

quivers can have the same toric diagram. As a matter of fact, these quiver theories are

related by toric duality, which can be understood as Seiberg duality in the toric phases [1, 4].

If we consider the back reaction to the geometry from D3s, then we get an AdS near-

horizon geometry. As a result, the gauge/gravity duality [5] gives another point of view to

the above problem. The 4d N = 4 SYM theory is related to the string theory in AdS×S5.

If we replace the 5-sphere with a Sasaki-Einstein manifold Y of real dimension 5, then the

SUSY is broken down to N = 1 [6, 7].

In fact, we can use type IIB brane configurations to study this. Consider D5-branes

suspended between an NS5-brane wrapping a holomorphic surface Σ as tabulated in table 1.

Then the Newton polynomial of the toric diagram defines this holomorphic surface. The

system is compactified along directions 5 and 7 on a torus T2. After performing a T-duality

on each of these two directions, the D5s would be mapped back to D3s probing the CY

3-fold.

We can draw a 5-brane web diagram on T2. The dual graph of the web diagram is

then a bipartite periodic graph on the torus. Such dual graphs are known as dimers/brane

tilings [8–12]. With the help of brane tilings, we are able to bridge the toric diagrams and

the quivers.

Similar stories also happen in other dimensions. Under n T-dualities, the system of

D(7 − n)-branes suspended between an NS5 wrapping a holomorphic n-cycle, where the

branes meet in a Tn, corresponds to D(7 − 2n)-branes probing CYn+1 [13]. These are

related to various topics in different dimensions, such as Chern-Simons theory [14–18],

brane brick models [19–22], triality [23], quadrality [24] and so forth.

For reflexive polytopes, the cases are very well-studied in [13, 25, 26]. In this paper,

we will try to extend these to non-reflexive cases, in particular, polygons with two interior

points. Up to SL(2,Z) equivalence, there are 45 such polygons (5 triangles, 19 quadrilater-

als, 16 pentagons and 5 hexagons). They are found in [27] and we list them in appendix A,

as well as their volume functions in appendix B. Hence, we will apply the inverse algorithm

to get the corresponding gauge theories. Most of the toric varieties are related to known

– 2 –
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families including C3, (generalized) conifolds (C) [28, 29], suspended pinch point (SPP),

Y p,q [30–33], La,b,c [34], Xp,q [35] and (pseudo) del Pezzos ((P)dP) [2, 36–38]. When orb-

ifolding a space, the orbifold action can be determined via Hermite normal forms and

barycentric coordinates [39, 40]. In particular, some of the quivers and superpotentials are

studied in previous literature, such as Y 3,0 in [41] and toric diagrams up to (normalized)

area 8 in [42]. In [43–45], some of the toric diagrams are studied from 5d SCFT perspec-

tive. The number of interior points is the rank of the 5d SCFT, which sheds light onto the

classification of 5d SCFTs.

We start by briefly reviewing the relevant background of quivers and volume mini-

mizations in section 2. Then in section 3–6, we report the gauge theories obtained from

inverse algorithm. Since many toric diagrams correspond to a large number of quivers, we

will present only one toric quiver for each polytope. Some more toric quivers in different

phases are presented in appendix D. In section 7, we will turn to the compact surfaces

constructed from these toric diagrams. The relevant topology can be related to the volume

minization which plays an important role especially in R-symmetry. Finally, we will make

a summary and discuss possible future directions in section 8.

Nomenclature

∆ : convex lattice polytope

X(∆) : compact toric variety corresponding to ∆;

if ∆ ⊂ Zn, then X(∆) is of complex dimension n

X̃ = X̃(∆) : complete resolution of X(∆)

Xi(∆) : compact toric variety;

obtained from choosing the ith-grade point as the origin

X̃ ′1(∆) : toric variety X̃1(∆) with a further blow-up

X : affine CY cone over ∆;

if ∆ ⊂ Zn, then X(∆) is of complex dimension (n+ 1)

M/Γ (a1, . . . , an) : orbifold from space M quotiented by a discrete group Γ

with action (a1, . . . , an)

e.g. orbifold C3/Z6 (1,1,4) is C3 quotiented by Z6

with group action (z1, z2, z3) ∼ (ωz1, ωz2, ω
4z3) where ω6 = 1

HS = HS(ti;X ) : Hilbert series of X , with ti being the fugacities

Y = BR(X ) : Sasaki-Einstein base manifold of X ;

if dimC(X ) = n+ 1, then Y is of real dimension (2n+ 1)

– 3 –
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V = V (bi;Y ) : volume function of Y , with bi being components of Reeb vector

I&NP : number of interior & perimeter points of the toric diagram

G : number of gauge nodes in the quiver

E : number of bifundamentals in the quiver

c : number of perfect matchings in the brane tiling

OX̃ : structure sheaf of X̃

D : (Weil) divisor D on X̃

OX̃ (D) : sheaf of divisor D on X̃

c
(
X̃
)

: (total) Chern class of X̃ , with ci denoting the ith Chern class

Ci : the ith Chern number

(the top Chern number is the Euler number χ)

2 Quiver gauge theories and the inverse algorithm

We begin with a lightning review of the key requisite concepts, from toric CY cones to

quiver gauge theories.

2.1 Lattice polytopes

A lattice polytope ∆ is a convex hull of a finite number of points in Zn, and its vertices

form the set ∆ ∩ Zn. A polytope is said to be reflexive if its dual polyotpe

∆◦ = {v ∈ Zn : u · v ≥ −1, ∀u ∈ ∆} (2.1)

is also a lattice polytope in Zn. For n = 2, it is not hard to show that ∆ is reflexive iff

there is only one interior point.2 Hence, we can always choose this unique interior point as

the origin.

However, in this paper, we will contemplate 2d polytopes with two interior points.

Hence, they are not reflexive, and we have two choices of origins. This would lead to a

different discussion on the compact toric surface X(∆) in section 7. Here, we will first focus

on the rational polyhedral cone generated by the vertices of the polytope/toric diagram ∆

in 3d.3

The affine toric CY 3-fold. We take the origin (0,0,0)∈ Z3 =: M , and let the vertices

in the polygon be u′i =(ui,1)∈ Z3. Then these vectors generate a cone σ with the origin

2We acknowledge Alexander Kasprzyk for pointing out that this statement (namely the “if” part, in

other words, the “⇐” direction) is not generally true when n 6= 2.
3Notice that this construction can be done in any dimension, but here we are just talking about lattice

polygons.
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as the apex to the vertices of ∆:

σ =

{∑
i

λiu
′
i : λi ≥ 0

}
⊂M ⊗Z R =: MR. (2.2)

The dual cone lives in the dual lattice NR where N := Hom(M,Z):

σ∨ = {w ∈ NR : w · u ≥ 0, ∀u ∈ σ} . (2.3)

Then we have the algebra C[σ∨ ∩ N ] spanned over C by the points in σ ∩M . We can

therefore define an affine toric variety X to be the maximal spectrum of this semigroup

ring:

X ∼= SpecmaxC[σ∨ ∩N ] . (2.4)

Since the endpoints of σ live on the same (hyper)plane, X is a Gorenstein singularity,

and hence can be resolved to a CY 3-fold, although being co-hyperplanar makes it non-

compact [13, 46, 47].

The Higgs-Kibble mechanism. The Higgs(-Kibble) mechanism [48–50] has a natural

interpretation in the toric diagrams. Blowing down points of the polytopes corresponds to

higgsing while blowing up points is unhiggsing. All the 45 toric diagrams (and corresponding

quiver gauge theories) can be obtained by higgsing the same parent theory. This is analyzed

in appendix C.

2.2 Brane tilings

As mentioned in section 1, the junction of N D5-branes and one NS5-brane can be plotted

on the torus. Given a toric diagram, we can draw the outer normal vector to each segment

separated by the perimeter points of the polytope. Then we put these vectors on the

torus, which will divide the torus into different regions. Each region is a bound state of

5-branes, including (N ,0) and (N ,±1) 5-branes. Every time when we move from one region

to another, we will cross a vector. If we cross the vector from left (right) to right (left),

then the NS5 charge is increased (decreased) by 1. For instance, the NS5 cycles of C3/Z5

(1,2,2) which we will study later in section 3.2 is (figure taken from [51], figure 29):

. (2.5)

Then we can obtain a bipartite graph by taking the (N ,±1) regions to be white/black

nodes. The (N ,0) regions give faces in the tiling. The intersection points of the branes,

for which we have massless open strings, correspond to edges in the tiling. As the open

– 5 –
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Fivebrane diagram Brane Tiling Quiver

(N ,1) brane white node superpotential term (+)

(N ,−1) brane black node superpotential term (−)

(N ,0) brane face gauge node/group

open string edge bifundamental

Table 2. The relation for fivebrane diagrams, brane tilings and quivers.

strings/bifundamentals are oriented, every loop surrounding the white/black node is clock-

wise/counterclockwise, which gives a sign in the corresponding superpotential term. For

instance, the above example leads to the brane tiling in (3.11). Since the bipartite graph

is periodic, the fundamental region is in a red box. From fivebrane diagrams/brane tilings,

we can read off the quivers. This is summarized in table 2. Readers are referred to [51, 52]

for a detailed discussion.

Quivers. In our context, our quivers only have two objects: round nodes and arrows.

Each round node corresponds to a gauge group, which is always unitary here. Also, as

we are contemplating toric quivers, viz, quivers in the toric phases, the ranks of nodes

in one quiver are always the same. Each arrow connects two gauge nodes. These arrows

correspond to the matter fields transform under fundamental and anti-fundamental rep-

resentations under the two gauge groups. We can write a G × E matrix, where G is the

number of gauge nodes4 and E is the number of edges/bifundamentals, called incidence

matrix d to encode the quiver data. If the arrow leaves the node i, viz, the bifundamental

Xij , then the corresponding entry is assigned 1. Likewise, if the arrow comes into the node

i, viz, the bifundamental Xji, then the entry is −1. Otherwise, the entry is 0.

Perfect matchings and charges. It is always to possible to find a set pα of bifunda-

mentals that connect all the nodes in the brane tiling precisely once. This set pα is known

as a perfect matching. A new basis of fields in the language of gauged linear sigma model

(GLSM) [53] can be naturally defined from the bifundamental fields [2]. The number of

GLSM fields is the number of perfect matchings c. Then we can write the PE×c perfect

matching matrix P which encodes the relation between the two sets of matter fields. For

instance, the first row in (3.4) indicates that

X1
12 = q1s2s4s6r5p2. (2.6)

As the F-terms come from ∂W/∂Xij = 0, where W is the superpotential and Xij ’s

are the bifundamentals, one can show that the charges of GLSM fields under the F-term

constraints are given by the F-term charge matrix of size (c−G− 2)× c:

QF = ker(P ). (2.7)

4As we will see shortly, the number of nodes G is always equal to the number of unit simplices under

full triangulation of the toric diagram. This in turn equals twice the area of the toric diagram where the

area of a unit triangle is not normalized here, i.e., equals 1/2.

– 6 –
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From [53], we know that the D-terms in terms of the bifundamentals Xa’s are

Di = −e2
(∑

a

dia|Xa|2 − ζi

)
, (2.8)

where e is the gauge coupling and d is the incidence matrix. The ζi’s are Fayet-Iliopoulos

(FI) parameters. In fact, as shown in [1, 2], the FI parameters encode the resolutions of

toric singularities. In the matrix form, this reads

δ · |Xa|2 = ζ, (2.9)

where δ is the reduced quiver matrix5 of size (G− 1) × E. This can be related to perfect

matching matrix via [2, 25]

δ = QDP
T, (2.10)

where QD is a (G − 1) × c matrix. As QD encodes the GLSM charges under D-term

constraints, this is known as the D-term matrix.

In light of GLSM, the F- and D-terms can be treated on an equal footing. Hence, the

two charge matrices can be concatenated to a (c− 3)× c matrix, known as the total charge

matrix [2]:

Qt =

(
QF

QD

)
. (2.11)

As the F-terms must vanish while the D-terms are adjusted by the FI parameters, the last

column is always in the form (0, ζ)T. Hence, we will always omit the last column. Then

taking the kernel yields

Gt = ker(Qt). (2.12)

This matrix Gt exactly encodes the information of the toric diagrams. Each column is the

coordinate of a vertex in the polytope (thus, the last row of Gt is (1,. . . ,1)). Therefore,

every vertex is assigned to some GLSM field(s). Each corner (aka extremal) point always

correspond to one GLSM field with non-zero R-charge. On the other hand, non-extremal

points corresponds to multiple GLSM fields all with zero R-charges.

Toric/Seiberg duality. The toric/Seiberg duality [4, 54, 55] is a duality among theories

that have the same IR fixed point under RG flow. As we are always staying in the toric

phases, there will be no fractional branes, and hence our theories keep superconformal

and the quivers have nodes of the same rank as aforementioned. The dual quiver gauge

theories all have the same moduli space/Higgs branch, which is exactly the toric CY cone

corresponding to the toric diagram.

Therefore, we can use toric duality to obtain different quivers of the same toric diagram

with the following steps:

5In [1, 2], the reduced quiver matrix was originally denoted by ∆. However, as ∆ represents polyotpes

here, we use δ for the matrix to avoid any possible confusion.
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1. As Seiberg duality takes SU(Nc) gauge group with Nf fundamentals and Nf bifun-

damentals to SU(Nf − Nc) gauge group, in the toric phase, only nodes satisfying

Nf = 2Nc can be dualized.6 We first scale the gauge couplings of gauge groups

other than the chosen node i to zero, and the fields not connected to i decouple.

Then the bifundamentals connected to i is reduced to (anti-)fundamentals under the

flavour symmetry. Since duality requires the dual quarks to transform in the conju-

gate (flavour) representations to the original ones, the directions of the 2Nf arrows

should be reversed. The overall result is that every time we perform such duality, we

flip one node i in the quiver so that the arrows connecting to it are all reversed.

2. To be anomaly-free, new arrows needs to be added among pairs of nodes adjacent to

dualized node i so as to keep them balanced. This is just the quarks-to-meson map

QiQ̃
j →M j

i . As the flavours groups are gauged back, these mesons are promoted to

bifundamentals. Overall, we are adding Nf arrows to the pairs of unbalanced nodes

after we flip the dualized node.

In cluster algebra, the whole process is known as the quiver mutations [56]. For the

superpotential, the composite singlets are replaced with the new mesons, and adding new

cubic terms couples the mesons to magnetic flavours. This may make some fields massive,

so we need to integrate them out as they become non-dynamical when flowing to IR. In

terms of brane tilings, the technique called urban renewal can be applied to obtain dual

tilings. For more details in Seiberg duality in quiver gauge theories, one is referred to, for

example, [9, 57–59].

2.3 The moduli spaces

The master space F [ [60, 61] is a combination of baryonic and mesonic moduli spaces

defined as the symplectic quotient of the perfect matching ring:7

F [ = Cc[p1, . . . , pc]//QF . (2.13)

The global symmetry. The master space has global symmetry that can be divided into

two parts:

• The mesonic symmetry is U(1)3 or its enhancement with rank 3. It may be enhanced

to SU(2)×U(1)2, SU(2)2×U(1) or SU(3)×U(1). The enhancement is determined by

the duplicated columns in Qt. In particular, there is always a U(1) which is the

R-symmetry.

• The baryonic symmetry is U(1)G−1 or its enhancement with rank (G−1). It consists

of non-anomalous and anomalous symmetries. The non-anomalous symmetry is al-

ways U(1)NP−3, where NP is the number of perimeter points in the polytope. The

6As we will take only U(1) nodes for simplicity, this means we can only choose nodes with two arrows

in and two arrows out. However, we should remember that any node can be dualized if we do not restrict

to staying in toric phases.
7Strictly speaking, this is the largest irreducible component, known as the coherent component, of the

master space rather than F[ itself. Nevertheless, we will solely focus on the coherent component and make

this abuse.
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anomalous symmetry is U(1)2I or an enhancement of rank 2I, where I is the num-

ber of interior points. The enhancement is determined by the repeated columns in

QF . The non-abelian enhancement of anomalous symmetry is also known as hidden

symmetry.

Notice that the combination in the baryonic symmetry is actually the Pick’s theorem:

G

2
= I +

NP

2
− 1 = A, (2.14)

where A is the (unnormalized) area of the toric diagram.

The mesonic moduli space and Hilbert series. The mesonic moduli space M is a

subspace of F [:
M = F [//QD = (Cc[p1, . . . , pc]//QF )//QD. (2.15)

We can use the (mesonic) Hilbert series (aka Hilbert-Poincaré series) to desribe the moduli

space. The Hilbert series is a generating function that enumerates the invariant monomials

under the group action. Physically, it counts the gauge invariant operators of each degree

in the chiral ring. As aforementioned, the moduli space coincides the toric CY 3-fold X .

Hence, we can use the following formula to compute the Hilbert series. The (refined)

Hilbert series for a toric CY n-fold cone can be computed as [62, 63]

HS =
r∑
i=1

n∏
j=1

(1− tui,j )−1 . (2.16)

The number r is the number of (n−1)-dimensional simplices under triangulation. The index

j runs over the n faces of each simplex. The vector ui,j is an n-vector inner normal to the jth

face of the ith simplex, and t are the fugacities t1,. . . ,tn. Then tui,j =
n∏
k=1

t
ui,j(k)
k , multiplied

by the kth component of u. One can also use Molien-Weyl integral to compute Hilbert series

of the Higgs branch [64]. The two results should be the same under some fugacity map.

2.4 Volume minimization

As X of complex dimension n is the Kähler cone over the Sasaki-Einstein manifold Y =

X|r=1 of real dimension (2n− 1):

ds2(X ) = dr2 + r2ds2(Y ), (2.17)

the volume of Y is then [62, 63]

vol(Y ) = 2n

∫ 1

0
dr r2n−1vol(Y ) = 2n vol(X|r≤1) = 2n

∫
r≤1

ωn

n!
, (2.18)

where ω is the Kähler form of X . We are now going to see that the volume of the Sasaki-

Einstein base is closely related to the R-charges of the fields in our theory.

The Reeb vector K := J (r∂/∂r) is the Killing vector of Y , where J is the complex

structure of X . Since the torus action Tn of the toric X leaves ω invariant, we can take
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the vector fields ∂/∂φi to be the generators of the action with φi ∼ φi + 2π. Then the reeb

vector reads K = bi∂/∂φi, where the components bi’s are algebraic numbers, with the last

component bn set to be n.

In [62, 63], the volume function of Y , which is shown to be related to the Reeb vector

components, is introduced to be

V (bi;Y ) =
vol(Y )

vol(S2n−1)
(2.19)

such that the volume of the (2n− 1)-sphere,

vol(S2n−1) =
2πn

(n− 1)!
, (2.20)

is normalized. Then the volume function is related to the Hilbert series of X via8

V (bi;Y ) = lim
µ→0

µn HS(ti = exp(−µbi);X ). (2.21)

It is known that V always admits precisely one positive minimum Vmin. Since the Reeb

vector is algebraic, Vmin is also an algebraic number.

For toric threefolds, in [65], it was shown that the a-function, in terms of the volume

function, can be expressed as

a(R) =
1

4V
, (2.22)

where R denotes the R-charges of the superconformal theory. A procedure known as a-

maximization can be used to determine the R-charges [66–68]. The central charges a and

c of the SCFT in 4d are

a(R) =
3

32
(3TrR3 − TrR), c =

1

32
(9TrR3 − 5TrR), (2.23)

where TrR3 and TrR are ’t Hooft anomalies. In general, as we have flavour symmetries in

IR, a possible candidate is

Rt = R0 +
∑
i

tiFi, (2.24)

where Fi’s are the charges of global non-R symmetries and Rt is called the trial R-charge.

According to [66], the U(1) R-symmetry should satisfy

9Tr(R2Fi) = TrFi, Tr(RFiFj) < 0, (2.25)

which can be translated into the maximization of a(Rt). When the trial a-function is

maximized, only the R-charge R0 will make contribution. Thus, we see that Vmin plays a

crucial role in determining the R-charges.

8If we are taking outer normal vectors to the faces of simplices when computing the Hilbert series, the

Hilbert series would just change by the fugacity map ti → 1/ti. As a result, the volume function would

only differ by a minus sign.
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In light of quiver diagrams, let XI be the R-charges of the bifundamentals. Then the

vanishing β-function from the theory being conformal yields∑
I

XI = 2,
∑
I

(1−XI) = 2, (2.26)

where the first sum is taken in each superpotential term and the second sum is taken with

respect to each gauge node. Let NW be the number of superpotential terms, then we

have (G+NW ) equations for E parameters in all, which in general are not all independent

though G+NW = E as the bipartite graph is embedded on a torus. With these conditions,

the a-function can be written as9

a =
3

32

(
2G+

∑
I

(3(XI − 1)3 − (XI − 1))

)
. (2.27)

Anomaly cancellation implies a = c, viz, TrR=0 [69, 70].10 Thus, we have

a =
9

32

(
G+

∑
I

(XI − 1)3

)
. (2.28)

As we have seen, this is equivalent to minimizing V , together with (2.26), we can solve for

the R-charges of the bifundamentals, and hence the R-charges of GLSM fields as well.

Example. Let us consider the abelian orbifold Cn/Zn with orbifold action (1,. . . ,1) as

an example. The Hilbert series reads

HS =

(1− t−sn
n−1∏
i=1

tsi

)
n−1∏
j=1

(
1− tsj

)−1

+
n−1∑
i=1

(1− t−si )
1− tsni tsn

n−1∏
j=1

tsj

 n−1∏
k=1
k 6=i

(
1− tskt−si

)
−1

, (2.29)

where s = (−1)n. As the limit picks out the leading order of µ, the volume function is

V =
(−1)nnn−1

n−1∏
j=1

(
n−1∑
i=1

bi − nbj − bn
) . (2.30)

Then taking bn = n, we find that Vmin = 1/n at b1 = · · · = bn−1 = 0. In quiver gauge

theories, we have a unique toric quiver for each n. The R-charges of all the bifundamentals

are 2/n. Hence, the R-charges of the n GLSM fields corresponding to extremal points are

all 2/n, with others vanishing. Interestingly, the Sasaki-Einstein base of Cn (whose toric

diagram is the unit simplex) is the (2n− 1)-sphere. Hence, the volume function equals 1.

As we will see in section 7.2, it is not a coincidence to have 1/n = V (S2n−1)/|Zn| here.

9Notice that this expression itself, which is generally true when we assume all the gauge groups have

the same rank N and normalize by N2, does not require that the dimer is embedded on T2.
10The relevant anomalies are the ones of the R-symmetry current with itself or with the stress tensor,

namely 〈RRR〉 or 〈RTT 〉.
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3 Five triangles

Having warmed up with an explicit example of an orbifold, and illustrating it with all the

relevant concepts, let us now proceed to study the polygons of our concern. As aforemen-

tioned, there are 45 lattice polygons investigated here, which are collected in appendix A

(one can explicitly see the 2 interior points, one of which could be taken as the origin). We

begin with the five triangles.

3.1 Polytope 1: C3/Z6 (1,1,4)

The polytope is

p1

r

s

p2 p3q . (3.1)

The brane tiling and the corresponding quiver are11

5
6

1

5
6

1

5
6

1
6

3

5

1

2
3

4
5

6
1

2
3

4
5

6
1

2
3

4
5

6
1

2

3
4

5
6

1

2
3

4
5

6
1

2
3

4
5

6
1

2
3

4

6

;

1

2

3

46

5

. (3.2)

The superpotential is12

W = X1
23X

2
34X42+X1

45X
2
56X64+X1

61X
2
12X26+X1

56X
2
61X15+X1

12X
2
23X31+X1

34X
2
45X53

−X2
23X

1
34X42−X2

45X
1
56X64−X2

61X
1
12X26−X2

56X
1
61X15−X2

12X
1
23X31

−X2
34X

1
45X53 . (3.3)

11Notice that the numbers in the nodes are labels, not ranks.
12There is always a trace on the right hand side. For brevity, we will just omit it here. Alternatively, we

can also think of it as the repeated lower indices being traced. Moreover, the upper indices are the labels

of multiple bifundamentals between two nodes (rather than powers).
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The perfect matching matrix is

P =



q1 s1 s2 s3 r1 s4 r2 s5 s6 r3 r4 r5 p1 p2 p3 q2 s7 s8 s9 r6

X1
12 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0

X2
12 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0

X1
23 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0

X2
23 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0

X1
34 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

X2
34 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

X1
45 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0

X2
45 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0

X1
56 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0

X2
56 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0

X31 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1

X64 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1

X26 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0

X42 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 1

X15 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0

X53 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1

X1
61 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

X2
61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1



, (3.4)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



q1 s1 s2 s3 r1 s4 r2 s5 s6 r3 r4 r5 p1 p2 p3 q2 s7 s8 s9 r6

3 −1 −1 2 0 −1 0 −1 0 0 0 0 0 −1 −1 0 0 0 0 1

2 0 −1 1 0 0 0 −1 0 0 0 0 0 −1 −1 0 0 0 1 0

2 −1 0 1 0 −1 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0

2 −1 −1 1 0 0 0 0 0 0 0 0 0 −1 −1 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 0 0 0 0

2 −1 −1 1 0 −1 0 −1 0 0 0 0 1 0 0 0 0 0 0 0

1 0 −1 1 0 −1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0

1 −1 0 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 −1 −1 2 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 0

2 −1 0 2 0 0 0 −1 0 0 0 0 0 −1 −1 0 0 0 0 0

2 −1 1 1 0 −1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0

2 −2 0 1 0 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0

2 −1 0 0 0 1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0



(3.5)

with kernel

Gt =

 q1 s1 s2 s3 r1 s4 r2 s5 s6 r3 r4 r5 p1 p2 p3 q2 s7 s8 s9 r6

−1 0 0 0 1 0 1 0 0 1 1 1 2 −2 0 −1 0 0 0 1

2 1 1 1 0 1 0 1 1 0 0 0 −1 4 0 2 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (3.6)

From Gt, we can get the GLSM fields associated to each point as shown in (3.1), where

q = {q1, q2}, r = {r1, . . . , r6}, s = {s1, . . . , s9}. (3.7)

From Qt (and QF ), the mesonic symmetry reads SU(2)×U(1)×U(1)R and the baryonic

symmetry reads U(1)4h×U(1), where the subscripts “R” and “h” indicate R- and hidden

symmetries respectively.
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The Hilbert series of the toric cone is

HS =
1(

1− t2
t1

)(
1− t22

t1

)(
1− t21t3

t32

) +
1

(1− t1)
(

1− t1
t2

)(
1− t2t3

t21

)
+

1(
1− t1

t2

)(
1− t21

t2t3

)(
1− t22t

2
3

t31

) +
1(

1− t31
t42

)(
1− t2

t1

)(
1− t32

t21t3

)
+

1(
1− t1

t22

)(
1− t2

t1

)
(1− t2t3)

+
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

. (3.8)

The volume function is then

V = − 18

(b2 + 3)(−3b1 + 2b2 + 6)(−3b1 + 4b2 − 6)
. (3.9)

Minimizing V yields Vmin = 1/6 at b1 = b2 = 0. Thus, amax = 3/2. Together with the

superconformal conditions, we can solve for the R-charges of the bifundamentals, which

are XI = 2/3 for any I, viz, for all the bifundamentals. Hence, the R-charges of GLSM

fields are pi = 2/3 with others vanishing.13

3.2 Polytope 2: C3/Z5 (1,2,2)

The polytope is

p1

rsp2

p3

. (3.10)

The brane tiling and the corresponding quiver are

1 1

4

5

1

4

5

4

5

1

2

3

5

1

2

3

4

5

1

2

3

4

5

4

1

3

1

2

3

4

5

1

2

3

4

5

2

4

5

;

1

2

3

5 4

. (3.11)

The superpotential is

W = X1
12X25X

2
51 +X2

12X
1
23X31 +X2

23X
1
34X42 +X2

34X
1
45X53 +X2

45X
1
51X14

−X2
12X25X

1
51 −X1

12X
2
23X31 −X1

23X
2
34X42 −X1

34X
2
45X53 −X1

45X
2
51X14. (3.12)

13We will simply use pi to denote the R-charge of pi. This should not cause any confusion based on the

context.
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The perfect matching matrix is

P =



p1 p2 s1 s2 s3 r1 s4 r2 s5 r3 r4 r5 p3

X1
12 1 0 0 0 1 0 1 0 0 0 0 1 0

X2
12 0 1 0 0 1 0 1 0 0 0 0 1 0

X1
23 1 0 0 1 0 0 0 0 1 0 1 0 0

X2
23 0 1 0 1 0 0 0 0 1 0 1 0 0

X1
34 1 0 1 0 0 0 1 1 0 0 0 0 0

X2
34 0 1 1 0 0 0 1 1 0 0 0 0 0

X1
45 1 0 0 1 1 1 0 0 0 0 0 0 0

X2
45 0 1 0 1 1 1 0 0 0 0 0 0 0

X1
51 1 0 1 0 0 0 0 0 1 1 0 0 0

X2
51 0 1 1 0 0 0 0 0 1 1 0 0 0

X31 0 0 1 0 0 1 0 1 0 1 0 0 1

X25 0 0 0 1 0 1 0 1 0 0 1 0 1

X42 0 0 0 0 1 1 0 0 0 1 0 1 1

X14 0 0 0 0 0 0 1 1 0 0 1 1 1

X53 0 0 0 0 0 0 0 0 1 1 1 1 1


, (3.13)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



p1 p2 s1 s2 s3 r1 s4 r2 s5 r3 r4 r5 p3

2 2 −1 −1 −1 0 −1 0 −1 0 0 0 1

1 1 0 0 −1 0 −1 0 −1 0 0 1 0

1 1 0 −1 0 0 −1 0 −1 0 1 0 0

1 1 −1 0 −1 0 0 0 −1 1 0 0 0

1 1 −1 −1 0 0 −1 1 0 0 0 0 0

1 1 −1 −1 −1 1 0 0 0 0 0 0 0

0 0 −1 1 0 0 1 0 −1 0 0 0 0

0 0 −1 0 −1 0 2 0 0 0 0 0 0

0 0 −2 0 0 0 1 0 1 0 0 0 0

0 0 −1 −1 1 0 1 0 0 0 0 0 0


(3.14)

with kernel

Gt =

 p1 p2 s1 s2 s3 r1 s4 r2 s5 r3 r4 r5 p3

−3 0 −1 −1 −1 0 −1 0 −1 0 0 0 1

5 0 2 2 2 1 2 1 2 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1

 . (3.15)

From Gt, we can get the GLSM fields associated to each point as shown in (3.10), where

r = {r1, . . . , r5}, s = {s1, . . . , s5}. (3.16)

From Qt (and QF ), the mesonic symmetry reads SU(2)×U(1)×U(1)R and the baryonic

symmetry reads U(1)4h, where the subscripts “R” and “h” indicate R- and hidden symme-

tries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t1
t3

)(
1− t1t2

t3

)(
1− t33

t21t2

) +
1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

)
+

1(
1− 1

t2

) (
1− t1t22

) (
1− t3

t1t2

) +
1(

1− 1
t2

)(
1− 1

t1t22

) (
1− t1t32t3

)
+

1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (3.17)

The volume function is then

V = − 25

(b1 − 2b2 + 3)(2b1 + b2 − 9)(b1 + 3b2 + 3)
. (3.18)
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Minimizing V yields Vmin = 1/5 at b1 = 2, b2 = 0. Thus, amax = 5/4. Together with the

superconformal conditions, we can solve for the R-charges of the bifundamentals, which

are XI = 2/3 for any I, viz, for all the bifundamentals. Hence, the R-charges of GLSM

fields are pi = 2/3 with others vanishing. Such result is expected as the theory is in the

same family of McKay quivers as the one in section 3.1.

3.3 Polytope 3: C3/Z8 (1,3,4)

The polytope is

p1

r s

p2

p3u t q . (3.19)

The brane tiling and the corresponding quiver are

4 5 4 5 4 5 4

7

1

2 3

4 5

6 7

8 1

2 3

4 5

6 7

8 1

2 3

4 5

6 7

8 1

2

4

6

7

1

2 3

6 7

8 1

2 3

6 7

8 1

2 3

6 7

8 1

2

6
;

2

1

6

8

3

5

4

7

. (3.20)

The superpotential is

W = X82X21X18 +X13X38X81 +X34X42X23 +X25X53X32 +X46X65X54 +X57X74X45

+X68X87X76 +X67X71X16 −X23X38X82 −X13X32X21 −X25X54X42 −X34X45X53

−X57X76X65 −X46X67X74 −X16X68X81 −X18X87X71. (3.21)
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The perfect matching matrix is

P =



s1 s2 s3 r1 s4 r2 q1 t1 r3 r4 t2 u1 t3 u2 u3 p1 p2 s5 r5 r6 r7 p3 q2 q3 t4 q4 t5 t6 u4 s6 s7 s8 r8

X13 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

X16 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

X18 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X21 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X25 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0

X23 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X32 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

X34 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0

X38 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X42 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1

X45 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

X46 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0

X54 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0

X53 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0

X57 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0

X65 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1

X68 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

X67 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

X76 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

X71 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0

X74 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0

X87 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1

X81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

X82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1



, (3.22)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



s1 s2 s3 r1 s4 r2 q1 t1 r3 r4 t2 u1 t3 u2 u3 p1 p2 s5 r5 r6 r7 p3 q2 q3 t4 q4 t5 t6 u4 s6 s7 s8 r8

1 0 0 −1 1 0 1 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0

1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0

2 −1 0 −1 1 0 1 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0

1 0 −1 0 1 0 1 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0

1 −1 1 −1 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0

2 −1 0 −1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0

1 0 −1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0

1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 0 0 1 0 −1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 0 −1 1 0 0 0 −1 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 1 0 0 0 −1 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 1 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 0 −1 1 0 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 2 0 0 0 0 0 0 0 −1 0 0 0 −2 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 −2 0 −1 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 2 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 1 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 −1 0 0 −1 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 1 1 0 −2 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0



(3.23)

with kernel

Gt =

s1 s2 s3 r1 s4 r2 q1 t1 r3 r4 t2 u1 t3 u2 u3 p1 p2 s5 r5 r6 r7 p3 q2 q3 t4 q4 t5 t6 u4 s6 s7 s8 r8

0 0 0 1 0 1 −2 −1 1 1 −1 0 −1 0 0 1 2 0 1 1 1 −3 −2 −2 −1 −2 −1 −1 0 0 0 0 1

1 1 1 0 1 0 2 1 0 0 1 0 1 0 0 −1 0 1 0 0 0 3 2 2 1 2 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (3.24)
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From Gt, we can get the GLSM fields associated to each point as shown in (3.19), where

q = {q1, . . . , q4}, r = {r1, . . . , r8}, s = {s1, . . . , s8},
t = {t1, . . . , t6}, u = {u1, . . . , u4}. (3.25)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t1t2
t3

)(
1− t1t22

t3

)(
1− t33

t12t23

) +
1(

1− 1
t1

)(
1− t2

t1

)(
1− t12t3

t2

)
+

1

(1− t2t3)
(

1− t1t2
t3

)(
1− t3

t1t22

) +
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1(

1− t3
t1

)
(1− t2t3)

(
1− t1

t2t3

) +
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1(

1− t1
t3

)
(1− t2t3)

(
1− t3

t1t2

) . (3.26)

The volume function is then

V =
16

(b2 + 3)(−2b1 + b2 − 3)(2b1 + 3b2 − 9)
. (3.27)

Minimizing V yields Vmin = 1/8 at b1 = 2, b2 = −1. Thus, amax = 2. Together with the

superconformal conditions, we can solve for the R-charges of the bifundamentals, which

are XI = 2/3 for any I, viz, for all the bifundamentals. Hence, the R-charges of GLSM

fields are pi = 2/3 with others vanishing.

3.4 Polytope 4: C3/(Z2 × Z5) (1,0,1)(0,1,4)

The polytope is
p1

rs

p2p3 u t

q

vw . (3.28)

The brane tiling and the corresponding quiver are
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The superpotential is

W = X16X62X21 +X25X51X12 +X59X96X65 +X56X6,10X10,5 +X4,10X10,9X94

+X39X9,10X10,3 +X37X74X43 +X34X48X83 +X18X87X71 +X27X78X82

−X16X65X51 −X25X56X62 −X6,10X10,9X96 −X59X9,10X10,5 −X39X94X43

−X34X4,10X10,3 −X48X87X74 −X37X78X83 −X18X82X21 −X12X27X71. (3.30)
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The perfect matching matrix is

P =



u1 v1 t1 u2 v2 w1 u3 v3 s1 r1 s2 s3 s4 r2 r3 r3 s5 s6 q1 s7 s8 s9 s10 r5 s11 s12 s13 r6 p1 t2 u4 p2

X12 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0

X16 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1

X18 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0

X21 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0

X25 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

X27 1 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0

X34 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

X37 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1

X39 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

X43 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

X48 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

X4,10 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

X51 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0

X59 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1

X65 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

X62 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

X6,10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

X78 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0

X71 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1

X74 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

X87 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0

X82 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

X83 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X9,10 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0

X94 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1

X96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

X10,9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0

X10,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

X10,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(3.31)

t3 u5 v4 t4 u6 r7 r8 s14 r9 v5 w2 u7 v6 w3 p3 v7 w4 q2 s15 s16 s17 u8 v8 t5 u9 v9 w5 u10 v10 s18 r10 s19 s20

0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0

0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0

0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0

0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0

0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1

1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1

0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



,

where the relations between bifundamentals and GLSM fields can be directly read off.
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Then we can get the total charge matrix:

Qt =



u1 v1 t1 u2 v2 w1 u3 v3 s1 r1 s2 s3 s4 r2 r3 r3 s5 s6 q1 s7 s8 s9 s10 r5 s11 s12 s13 r6 p1 t2 u4 p2

3 0 −1 0 0 0 0 0 −2 1 −1 0 1 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

2 0 0 0 0 0 0 0 −1 0 −1 0 1 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

2 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

2 0 0 0 0 0 0 0 −2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

4 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

3 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

3 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

2 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

3 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

1 0 −1 0 1 0 0 0 −1 1 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

3 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 −1 0 0 0 0 0 −1 1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

2 −1 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

2 −1 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

3 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

2 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

2 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0

0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0

0 0 −1 0 1 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

0 −1 0 0 1 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0

1 −1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 −1 0 1 0 0 0 1 1 −1 0 −1 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 2 0 −1 0 −1 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 2 −1 0 0 −1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 1 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 1 0 0 0 0 1 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 −1 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0

1 −1 0 0 0 0 0 0 2 −1 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

2 −1 −1 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 0 0 −1 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −2 0 0 0 0 0 0 2 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −1 0 0 1 0 0 0 2 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 −1 1 0 0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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t3 u5 v4 t4 u6 r7 r8 s14 r9 v5 w2 u7 v6 w3 p3 v7 w4 q2 s15 s16 s17 u8 v8 t5 u9 v9 w5 u10 v10 s18 r10 s19 s20

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(3.32)

– 22 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
1

with kernel

Gt =

 u1 v1 t1 u2 v2 w1 u3 v3 s1 r1 s2 s3 s4 r2 r3 r3 s5 s6 q1 s7 s8 s9 s10 r5 s11 s12 s13 r6 p1 t2 u4 p2

−1 0 −2 −1 0 1 −1 0 1 0 1 1 1 0 0 0 1 1 2 1 1 1 1 0 1 1 1 0 2 −2 −1 −3

1 0 2 1 0 −1 1 0 0 1 0 0 0 1 1 1 0 0 −1 0 0 0 0 1 0 0 0 1 0 2 1 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(3.33)

t3 u5 v4 t4 u6 r7 r8 s14 r9 v5 w2 u7 v6 w3 p3 v7 w4 q2 s15 s16 s17 u8 v8 t5 u9 v9 w5 u10 v10 s18 r10 s19 s20

−2 −1 0 −2 −1 0 0 1 0 0 1 −1 0 1 2 0 1 2 1 1 1 −1 0 −2 −1 0 1 −1 0 1 0 1 1

2 1 0 2 1 1 1 0 1 0 −1 1 0 −1 −2 0 −1 −1 0 0 0 1 0 2 1 0 −1 1 0 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 .
From Gt, we can get the GLSM fields associated to each point as shown in (3.28), where

q = {q1, q2}, r = {r1, . . . , r10}, s = {s1, . . . , s20}, t = {t1, . . . , t5},
u = {u1, . . . , u10}, v = {v1, . . . , v10}, w = {w1, . . . , w5}. (3.34)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)5, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t1t2
t3

)(
1− t1t22

t3

)(
1− t33

t21t
3
2

) +
1

(1− t2t3)
(

1− t1t2
t3

)(
1− t3

t1t22

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1(
1− 1

t1

)(
1− t1

t2

)
(1− t2t3)

+
1(

1− t3
t1

)
(1− t2t3)

(
1− t1

t2t3

)
+

1(
1− t1

t3

)
(1− t2t3)

(
1− t3

t1t2

) +
1(

1− 1
t1t3

)
(1− t2t3)

(
1− t1t3

t2

)
+

1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− 1
t2

)(
1− t2

t1

)
(1− t1t3)

. (3.35)

The volume function is then

V =
10

(b2 + 3)(−b1 + b2 − 3)(2b1 + 3b2 − 9)
. (3.36)

Minimizing V yields Vmin = 1/10 at b1 = 1, b2 = −1. Thus, amax = 5/2. Together with

the superconformal conditions, we can solve for the R-charges of the bifundamentals, which

are XI = 2/3 for any I, viz, for all the bifundamentals. Hence, the R-charges of GLSM

fields are pi = 2/3 with others vanishing.

3.5 Polytope 5: C3/(Z2 × Z6) (1,0,1)(1,0,5)

The polytope is
p1

rs

p2p3 w x

q

vu

t

y . (3.37)
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The brane tiling and the corresponding quiver are
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. (3.38)

The superpotential is

W = X1,9X9,2X2,1 +X2,10X10,1X1,2 +X10,3X3,9X9,10 +X9,4X4,10X10,9

+X3,7X7,4X4,3 +X4,8X8,3X3,4 +X7,12X12,8X8,7 +X8,11X11,7X7,8

+X11,5X5,12X12,11 +X12,6X6,11X11,12 +X5,1X1,6X6,5 +X6,2X2,5X5,6

−X1,9X9,10X10,1 −X2,10X10,9X9,2 −X3,9X9,4X4,3 −X4,10X10,3X3,4

−X8,3X3,7X7,8 −X7,4X4,8X8,7 −X11,7X7,12X12,11 −X12,8X8,11X11,12

−X5,12X12,6X6,5 −X6,11X11,5X5,6 −X2,5X5,1X1,2 −X1,6X6,2X2,1. (3.39)

The number of perfect matchings is c = 129, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (3.37),

where

q= {q1, q2}, r= {r1, . . . , r30}, u= {u1, . . . ,u6}, v= {v1,v15}, w= {w1, . . . ,w20},
t= {t1, t2}, s= {s1, . . . ,s30}, y= {y1, . . . ,y6}, x= {x1, . . . ,x15}. (3.40)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)7,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

) +
1

(1− t2t3)
(

1− t1t2
t23

)(
1− t23

t1t22

)
+

1(
1− 1

t2

)(
1− t23

t1

)(
1− t1t2

t3

) +
1(

1− t1
t23

)
(1− t2t3)

(
1− t23

t1t2

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

)
+

1(
1− t1

t3

)
(1− t2t3)

(
1− t3

t1t2

) +
1(

1− 1
t1t3

)
(1− t2t3)

(
1− t1t3

t2

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (3.41)
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The volume function is then

V =
6

(b2 + 3)(−b1 + b2 − 3)(b1 + 2b2 − 6)
. (3.42)

Minimizing V yields Vmin = 1/12 at b1 = 2, b2 = −1. Thus, amax = 3. Together with the

superconformal conditions, we can solve for the R-charges of the bifundamentals, which

are XI = 2/3 for any I, viz, for all the bifundamentals. Hence, the R-charges of GLSM

fields are pi = 2/3 with others vanishing. We find that all the triangles can give the same

R-charge vectors.

4 Nineteen quadrilaterals

Now moving on to quadrilaterals, we should recall that each polytope in section 4–6 cor-

responds to more than one dimer models and toric quivers. In the main context, we will

just list one for each polytope.

4.1 Polytope 6: L3,3,1

The polytope is

p1

rs p4

p2

p3

. (4.1)

The brane tiling are the corresponding quiver are

3
5

3
5

3

4

5

6

1

2 3

4

5

6

1

2 3

4

5

5

6

1

2 3

4

5

6

1

2 3

4

5

6

1

2 3

4

5

6

1

2 3

4

5

6

1
4

6

1
4

6

1

;

1

2

6

3

5

4

. (4.2)

The superpotential is

W = X15X
1
56X

2
61 +X26X

1
61X

2
12 +X64X

1
45X

2
56 +X53X

1
34X

2
45 +X1

12X23X
2
34X41 (4.3)

−X2
61X

1
12X26 −X2

56X
1
61X15 −X2

45X
1
56X64 −X2

34X
1
45X53 −X23X

1
34X41X

2
12.
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The perfect matching matrix is

P =



s1 s2 r1 s3 s4 s5 r2 p1 p2 p3 s6 r3 r4 r5 p4 s7 s8 r6

X1
12 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0

X2
12 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

X15 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

X23 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0

X26 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0

X1
34 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

X2
34 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0

X1
45 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0

X2
45 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0

X41 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1

X1
56 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

X2
56 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

X53 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1

X1
61 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1

X2
61 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1

X64 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1



, (4.4)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



s1 s2 r1 s3 s4 s5 r2 p1 p2 p3 s6 r3 r4 r5 p4 s7 s8 r6

2 0 −1 2 −1 0 0 −1 −1 0 0 −1 0 0 0 0 0 1

2 −1 0 2 −1 0 0 −1 −1 0 0 −1 0 0 0 0 1 0

1 0 0 1 0 0 0 −1 −1 0 0 −1 0 0 0 1 0 0

1 0 −1 1 −1 0 0 0 0 0 0 −1 0 0 1 0 0 0

1 −1 0 1 −1 0 0 0 0 0 0 −1 0 1 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0

1 0 −1 1 0 0 0 −1 −1 0 1 0 0 0 0 0 0 0

1 −1 0 1 0 0 0 −1 −1 1 0 0 0 0 0 0 0 0

1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

3 0 −1 3 0 0 0 −2 −2 0 0 −1 0 0 0 0 0 0

3 0 −1 1 −1 0 0 −1 −1 0 0 0 0 0 0 0 0 0

2 0 −2 1 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0

1 1 −1 0 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0

3 −1 −1 1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0


(4.5)

with kernel

Gt =

 s1 s2 r1 s3 s4 s5 r2 p1 p2 p3 s6 r3 r4 r5 p4 s7 s8 r6

0 0 1 0 0 0 1 −1 0 −1 0 1 1 1 2 0 0 1

1 1 0 1 1 1 0 3 0 2 1 0 0 0 −1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.6)

From Gt, we can get the GLSM fields associated to each point as shown in (4.1), where

r = {r1, . . . , r6}, s = {s1, . . . , s8}. (4.7)

From Qt (and QF ), the mesonic symmetry reads SU(2)×U(1)×U(1)R and the baryonic

symmetry reads U(1)4h×U(1), where the subscripts “R” and “h” indicate R- and hidden

symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1
t22t3

2

)(
1− t2t3

t1

) +
1(

1− 1
t2

)(
1− 1

t1t2

)(
1− t1t22

t3

)
+

1(
1− 1

t2

)(
1− t1t23

t32

)(
1− t3

t1t22

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1

t2t3

)
+

1(
1− 1

t2

)
(1− t1t2)

(
1− 1

t1t3

) +
1

(1− t1)(1− t2)
(

1− 1
t1t2t3

) . (4.8)
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The volume function is then

V =
3(4b1 + 2b2 + 21)

(b1 + 3)(b1 + b2 + 3)(b1 + 3b2 − 6)(b1 − 2(b2 + 3))
. (4.9)

Minimizing V yields Vmin = 4
405(9 + 4

√
6) at b1 = (−6 + 3

√
6)/2, b2 = 0. Thus, amax =

27
16(−9+4

√
6). Together with the superconformal conditions, we can solve for the R-charges

of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(p3 + 5p4) p
2
2 +

(
p23 + 6p4p3 − 2p3 + 5p24 − 10p4

)
p2

= −3p4p
2
3 − 3p24p3 + 6p4p3 − 8

√
6 + 18 (4.10)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.2 Polytope 7: L3,3,2

The polytope is
p3

rs p1

p4

p2

. (4.11)

The brane tiling and the corresponding quiver are

4 5 4 5 4 5 4
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1

2
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5
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2
3

4 5

6
1

2
3

4 5

6

2

4 5

6

;

1 2

4

3

6

5

. (4.12)

The superpotential is

W = X1
12X26X

2
61 +X2

12X
1
23X31 +X14X

2
45X56X

1
61 +X34X

1
45X52X

2
23

−X2
12X26X

1
61 −X1

12X
2
23X31 −X14X

1
45X56X

2
61 −X34X

2
45X52X

1
23. (4.13)

The perfect matching matrix is

P =



r1 s1 r2 s2 r3 r4 p1 s3 p2 s4 s5 r5 p3 p4 s6 s7 r6

X1
12 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0

X2
12 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0

X14 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

X1
23 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

X2
23 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0

X26 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0

X31 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 1

X34 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

X1
45 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

X2
45 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0

X52 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1

X56 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

X1
61 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

X2
61 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1


, (4.14)
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where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 s1 r2 s2 r3 r4 p1 s3 p2 s4 s5 r5 p3 p4 s6 s7 r6

1 1 −1 1 0 −1 0 0 0 0 0 0 −1 −1 0 0 1

1 0 −1 1 0 0 0 0 0 0 0 0 −1 −1 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 −1 −1 1 0 0

1 1 −1 0 0 −1 0 −1 0 0 0 1 0 0 0 0 0

1 0 0 0 0 −1 0 −1 0 0 1 0 0 0 0 0 0

1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0

0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 2 0 0 0 1 0 0 0 0 −2 −2 0 0 0

2 1 −1 2 0 −1 0 −1 0 0 0 0 −1 −1 0 0 0

1 2 −1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0

2 1 −2 1 0 0 0 0 0 0 0 0 −1 −1 0 0 0

0 1 −1 1 0 1 0 0 0 0 0 0 −1 −1 0 0 0


(4.15)

with kernel

Gt =

 r1 s1 r2 s2 r3 r4 p1 s3 p2 s4 s5 r5 p3 p4 s6 s7 r6

1 0 1 0 1 1 2 0 −1 0 0 1 0 0 0 0 1

0 1 0 1 0 0 −1 1 2 1 1 0 2 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.16)

From Gt, we can get the GLSM fields associated to each point as shown in (4.11), where

r = {r1, . . . , r6}, s = {s1, . . . , s7}. (4.17)

From Qt (and QF ), the mesonic symmetry reads SU(2)×U(1)×U(1)R and the baryonic

symmetry reads U(1)4h×U(1), where the subscripts “R” and “h” indicate R- and hidden

symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)(1− t1t2)
(

1− t3
t1t22

) +
1(

1− 1
t2

)(
1− 1

t1t2

) (
1− t1t22t3

)
+

1

(1− t2)
(

1− t1t22
t3

)(
1− t23

t1t32

) +
1(

1− 1
t2

)(
1− t1

t3

)(
1− t2t23

t1

)
+

1

(1− t2)
(

1− 1
t1t2

)
(1− t1t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (4.18)

The volume function is then

V =
6(b1 + b2 + 12)

(b1 + 3)(b1 − b2 − 6)(b1 + 2b2 + 3)(b1 + 3b2 − 6)
. (4.19)

Minimizing V yields Vmin = 1
648(63 + 11

√
33) at b1 = 3

2(−5 +
√

33), b2 = 0. Thus,

amax = 1
4(−1701 + 297

√
33). Together with the superconformal conditions, we can solve

for the R-charges of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(3p3 + 3p4) p
2
2 +

(
3p23 + 8p4p3 − 6p3 + 3p24 − 6p4

)
p2

= −4p4p
2
3 − 4p24p3 + 8p4p3 − 88

√
33 + 504 (4.20)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.
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4.3 Polytope 8: Y 3,0

The polytope is
p3

r

s
p1

p4

p2

. (4.21)

The brane tiling and the corresponding quiver are
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. (4.22)

The superpotential is

W = X41X
1
12X23X

2
34 +X63X

1
34X45X

2
56 +X25X

1
56X61X

2
12

−X1
34X41X

2
12X23 −X1

56X63X
2
34X45 −X1

12X25X
2
56X61. (4.23)

The perfect matching matrix is

P =



r1 s1 s2 r2 p1 p2 s3 r3 s4 p3 s5 r4 r5 p4 s6 r6

X1
12 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0

X2
12 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0

X23 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0

X25 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0

X1
34 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

X2
34 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

X41 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1

X45 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0

X1
56 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

X2
56 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

X61 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1

X63 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1


, (4.24)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 s1 s2 r2 p1 p2 s3 r3 s4 p3 s5 r4 r5 p4 s6 r6

1 1 0 −1 0 0 0 0 −1 0 0 −1 0 0 0 1

1 1 −1 0 0 0 0 0 −1 0 0 −1 0 0 1 0

0 1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0

0 1 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0

1 0 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0

1 0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0

1 1 0 −1 −1 −1 0 1 0 0 0 0 0 0 0 0

1 1 −1 0 −1 −1 1 0 0 0 0 0 0 0 0 0

1 1 0 −1 1 1 0 0 −2 0 0 −1 0 0 0 0

2 2 0 −1 −1 −1 0 0 −1 0 0 0 0 0 0 0

2 1 0 −2 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 −1 0 0 1 0 0 0 0

1 2 −1 −1 0 0 0 0 −1 0 0 0 0 0 0 0


(4.25)
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with kernel

Gt =

 r1 s1 s2 r2 p1 p2 s3 r3 s4 p3 s5 r4 r5 p4 s6 r6

1 0 0 1 1 0 0 1 0 −1 0 1 1 2 0 1

0 1 1 0 1 0 1 0 1 2 1 0 0 −1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.26)

From Gt, we can get the GLSM fields associated to each point as shown in (4.21), where

r = {r1, . . . , r6}, s = {s1, . . . , s6}. (4.27)

From Qt (and QF ), the mesonic symmetry reads SU(2)×U(1)×U(1)R and the baryonic

symmetry reads U(1)4h×U(1), where the subscripts “R” and “h” indicate R- and hidden

symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)(1− t1t2)
(

1− t3
t1t22

) +
1(

1− 1
t2

) (
1− t1t22

) (
1− t3

t1t2

)
+

1

(1− t2)
(

1− t1t22
t3

)(
1− t23

t1t32

) +
1(

1− 1
t2

)(
1− 1

t1t22

) (
1− t1t32t3

)
+

1(
1− 1

t2

)(
1− t23

t1

)(
1− t1t2

t3

) +
1

(1− t2)
(

1− 1
t1t2

)
(1− t1t3)

. (4.28)

The volume function is then

V =
81

(b1 − 6)(b1 + 3)(b1 + 3b2 − 6)(b1 + 3b2 + 3)
. (4.29)

Minimizing V yields Vmin = 16/81 at b1 = 3/2, b2 = 0. Thus, amax = 81/64. Together

with the superconformal conditions, we can solve for the R-charges of the bifundamentals,

which are XI = 1/2 for any I, viz, for all the bifundamentals. Hence, the R-charges of

GLSM fields are pi = 1/2 with others vanishing.

4.4 Polytope 9: SPP/(Z2 × Z2) (1,0,0,1)(0,1,1,0)

The polytope is
p3

rs

p1

p4p2 x

q

w

v u t

. (4.30)

The brane tiling and the corresponding quiver are
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. (4.31)
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The superpotential is

W = X1,3X3,2X2,1 +X2,4X4,1X1,2 +X6,7X7,5X5,3X3,6 +X5,8X8,6X6,4X4,5

+X8,9X9,7X7,8 +X7,10X10,8X8,7 +X12,2X2,11X11,9X9,12 +X10,11X11,1X1,12X12,10

−X2,4X4,5X5,3X3,2 −X1,3X3,6X6,4X4,1 −X7,5X5,8X8,7 −X8,6X6,7X7,8 (4.32)

−X7,10X10,11X11,9X9,7 −X8,9X9,12X12,10X10,8 −X2,11X11,1X1,2 −X1,12X12,2X2,1.

The number of perfect matchings is c = 84, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (4.30),

where

q = {q1, q2}, r = {r1, . . . , r30}, s = {s1, . . . , s30}, t = {t1, . . . , t4},
u = {u1, . . . , u6}, v = {v1, . . . , v4}, w = {w1, w2}, x = {x1, x2}. (4.33)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)7,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

) +
1

(1− t2t3)
(

1− t1t2
t23

)(
1− t23

t1t22

)
+

1(
1− 1

t2

)(
1− t23

t1

)(
1− t1t2

t3

) +
1(

1− t1
t23

)
(1− t2t3)

(
1− t23

t1t2

)
+

1

(1− t2)
(

1− 1
t1t2

)
(1− t1t3)

+
1(

1− 1
t1

)
(1− t1t2)

(
1− t3

t2

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1(

1− t1
t3

)
(1− t2t3)

(
1− t3

t1t2

) +
1(

1− 1
t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t1t3

)(
1− t3

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (4.34)

The volume function is then

V = − 2(b2 − 9)

(b2 − 3)(b2 + 3)(b1 + b2 + 3)(b1 + 2b2 − 6)
. (4.35)

Minimizing V yields Vmin =
√

3/18 at b1 = 3
√

3 − 3, b2 = 3 − 2
√

3. Thus, amax =

3
√

3/2. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields are

p1 = 0.557091, p2 = p3 = 0.5, p4 = 0.442909 (4.36)

with others vanishing.
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4.5 Polytope 10: L2,3,2/Z2 (1,0,0,1)

The polytope is

p3

sr

p1

p4p2

q

u t

v . (4.37)

The brane tiling and the corresponding quiver are
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. (4.38)

The superpotential is

W = X13X32X21 +X24X41X12 +X68X85X53X36

+X57X76X64X45 +X10,2X29X97X7,10 +X91X1,10X10,8X89

−X13X36X64X41 −X24X45X53X32 −X57X7,10X10,8X85

−X68X89X97X76 −X29X91X12 −X1,10X10,2X21. (4.39)
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The perfect matching matrix is

P =



u1 t1 s1 r1 r2 r3 t2 p1 s2 r4 p2 v1 r5 r6 r7 r8 r9 q1 s3 s4 s5 r8 s6

X12 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0

X13 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

X1,10 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

X21 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1

X24 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1

X29 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0

X32 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

X36 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1

X41 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0

X45 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0

X53 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0

X57 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1

X64 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0

X68 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

X76 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

X7,10 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0

X85 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

X89 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

X97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

X91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

X10,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X10,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

r10 r11 r12 s7 s8 s9 r13 p3 u2 u3 t3 r14 r15 r16 q2 v2 p4 s10 r17 r18 r19

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1

1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1



, (4.40)
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where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



u1 t1 s1 r1 r2 r3 t2 p1 s2 r4 p2 v1 r5 r6 r7 r8 r9 q1 s3 s4 s5 r8 s6

−1 1 1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 −1 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

−1 1 1 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

−1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

−2 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

1 0 0 −1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 −1 1 0 −1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0

1 0 0 0 1 0 −1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0

0 0 1 0 1 −1 0 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0

−1 1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 1

0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0

−1 1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0

−1 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0

1 0 0 −1 1 0 −1 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

1 0 −1 0 1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

1 0 0 −1 1 0 −1 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

2 −1 −1 0 1 0 −1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 1 −1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

−1 1 2 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 −2 0 0 0 0

2 −1 0 0 1 0 −1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 1 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0

0 0 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

−1 0 2 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
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r10 r11 r12 s7 s8 s9 r13 p3 u2 u3 t3 r14 r15 r16 q2 v2 p4 s10 r17 r18 r19

0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0

0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(4.41)

with kernel

Gt =

 u1 t1 s1 r1 r2 r3 t2 p1 s2 r4 p2 v1 r5 r6 r7 r8 r9 q1 s3 s4 s5 r8 s6

2 3 0 1 1 1 3 4 0 1 −2 −1 1 1 1 1 1 2 0 0 0 1 0

0 −1 1 0 0 0 −1 −2 1 0 2 1 0 0 0 0 0 −1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r10 r11 r12 s7 s8 s9 r13 p3 u2 u3 t3 r14 r15 r16 q2 v2 p4 s10 r17 r18 r19

1 1 1 0 0 0 1 1 2 2 3 1 1 1 2 −1 0 0 1 1 1

0 0 0 1 1 1 0 1 0 0 −1 0 0 0 −1 1 0 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.42)

From Gt, we can get the GLSM fields associated to each point as shown in (4.37), where

q = {q1, q2}, r = {r1, . . . , r19}, t = {t1, . . . , t3},
v = {v1, v2}, s = {s1, . . . , s10}, u = {u1, . . . , u3}. (4.43)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)5, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.
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The Hilbert series of the toric cone is

HS =
1(

1− t1t2
t3

)(
1− t1t22

t3

)(
1− t33

t21t
3
2

) +
1

(1− t2t3)
(

1− t1t2
t3

)(
1− t3

t1t22

)
+

1

(1− t2)
(

1− 1
t1t2

)
(1− t1t3)

+
1(

1− 1
t1

)
(1− t1t2)

(
1− t3

t2

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1(

1− t1
t3

)
(1− t2t3)

(
1− t3

t1t2

) +
1(

1− 1
t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t1t3

)(
1− t3

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (4.44)

The volume function is then

V = − 2(b2 − 15)

(b2 − 3)(b2 + 3)(b1 + b2 + 3)(2b1 + 3b2 − 9)
. (4.45)

Minimizing V yields Vmin = (10 + 7
√

7)/243 at b1 = (5
√

7 − 11)/2, b2 = 5 + 2
√

7. Thus,

amax = (−10 + 7
√

7)/4. Together with the superconformal conditions, we can solve for the

R-charges of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(81p2 + 81p4) p
2
3 +

(
81p22 + 162p4p2 − 162p2 + 81p24 − 162p4

)
p3

= −54p4p
2
2 − 54p24p2 + 108p4p2 − 28

√
7 + 40 (4.46)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.6 Polytope 11: dP1/Z2 (1,0,0,1)

The polytope is
p1

sr

p3

p4

p2

q

t

. (4.47)

The brane tiling and the corresponding quiver are
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The superpotential is

W = X83X32X28 +X12X24X
1
43X31 +X35X

1
54X

2
43

+X46X65X
2
54 +X58X87X75 +X67X71X18X86

−X18X83X31 −X32X24X
2
43 −X1

43X35X
2
54

−X65X58X86 −X1
54X46X67X75 −X87X71X12X28. (4.49)

The perfect matching matrix is

P =



r1 r2 s1 s2 s3 q1 r3 s4 s5 s6 t1 s7 p1 p2 s8 s9 s10 r4 p3 q2 p4 s11 r5 s12 s13 t2 r6 s14 s15

X12 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

X18 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X24 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1

X28 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

X31 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0

X32 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0

X35 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0

X1
43 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0

X2
43 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0

X46 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0

X1
54 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1

X2
54 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1

X58 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

X65 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0

X67 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0

X71 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

X75 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

X83 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1

X86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1

X87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1



,

(4.50)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 r2 s1 s2 s3 q1 r3 s4 s5 s6 t1 s7 p1 p2 s8 s9 s10 r4 p3 q2 p4 s11 r5 s12 s13 t2 r6 s14 s15

−2 1 1 0 0 1 0 0 1 0 0 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 1

−2 1 0 1 0 1 0 0 1 0 0 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 1 0

−3 1 1 1 0 1 0 0 1 0 0 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0 0 1 0 0

−1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 1 0 0 0

−2 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 1 0 0 0 0

−1 1 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

−2 1 1 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0

−1 0 1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0

1 1 −1 0 0 1 −1 0 −1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 −1 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 −1 0 1 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 1 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 2 1 1 0 1 −1 0 1 0 0 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0

2 1 −1 −1 0 1 −2 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 0 0 0 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 −1 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 −1 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


(4.51)
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with kernel

Gt =

 r1 r2 s1 s2 s3 q1 r3 s4 s5 s6 t1 s7 p1 p2 s8 s9 s10 r4 p3 q2 p4 s11 r5 s12 s13 t2 r6 s14 s15

0 0 1 1 1 3 0 1 1 1 2 1 2 −1 0 0 0 1 4 3 0 1 0 1 1 2 0 1 1

1 1 0 0 0 −1 1 0 0 0 −1 0 0 2 1 1 1 0 −2 −1 0 0 1 0 0 −1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 .

(4.52)

From Gt, we can get the GLSM fields associated to each point as shown in (4.47), where

q = {q1, q2}, r = {r1, . . . , r5}, s = {s1, . . . , s15}, t = {t1, t2}. (4.53)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

) +
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

)
+

1(
1− 1

t1

)
(1− t1t2)

(
1− t3

t2

) +
1

(1− t1)(1− t2)
(

1− t3
t1t2

)
+

1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− 1
t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t1t3

)(
1− t3

t2

)
(1− t1t2t3)

+
1

(1− t2)
(

1− 1
t1t2

)
(1− t1t3)

. (4.54)

The volume function is then

V =
2(b1 + 4(b2 − 6))

(b2 − 3)(b1 + b2 + 3)(b1 + 2b2 − 6)(b1 − 2(b2 + 3))
. (4.55)

Minimizing V yields Vmin = (46 + 13
√

13)/648 at b1 = 0, b2 = 4 −
√

13. Thus, amax =

−92+26
√

13. Together with the superconformal conditions, we can solve for the R-charges

of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(108p2 + 177p3) p
2
4 +

(
108p22 + 108p3p2 − 216p2 + 177p23 − 354p3

)
p4

= −54p3p
2
2 − 54p23p2 + 108p3p2 − 832

√
13 + 2921 (4.56)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.7 Polytope 12: L1,4,1/Z2 (1,0,0,1)

The polytope is
p1

sr

p3 p4

p2

q

ut v

. (4.57)
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The brane tiling and the corresponding quiver are
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. (4.58)

The superpotential is

W = X13X32X21 +X24X41X12 +X35X54X43 +X46X63X34

+X58X8,10X10,7X75 +X67X79X98X86 +X10,2X29X9,10 +X91X1,10X10,9

−X41X13X34 −X32X24X43 −X63X35X58X86 −X54X46X67X75

−X10,7X79X9,10 −X98X8,10X10,9 −X29X91X12 −X1,10X10,2X21. (4.59)

The number of perfect matchings is c = 50, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (4.57),

where

q = {q1, q2}, r = {r1, . . . , r20}, s = {s1, . . . , s10},
t = {t1, . . . , t4}, u = {u1, . . . , u6}, v = {v1, . . . , v4}. (4.60)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)5,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t1

)(
1− 1

t1t2

) (
1− t21t2t3

) +
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

)
+

1

(1− t2t3)
(

1− t1t2
t3

)(
1− t3

t1t22

) +
1(

1− 1
t2

)(
1− t1t32

t3

)(
1− t23

t1t22

)
+

1

(1− t2t3)
(

1− t1t22
t3

)(
1− t3

t1t32

) +
1(

1− 1
t1

)
(1− t1t2)

(
1− t3

t2

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1(

1− t1
t3

)
(1− t2t3)

(
1− t3

t1t2

) +
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (4.61)

The volume function is then

V = − 6(b2 − 5)

(b2 − 3)(b2 + 3)(2b1 + b2 + 3)(b1 + 2b2 − 6)
. (4.62)
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Minimizing V yields Vmin = (13
√

13 − 35)/108 at b1 = (5
√

13 + 1)/6, b2 = (5 − 2
√

13)/3.

Thus, amax = (13
√

13+35)/36. Together with the superconformal conditions, we can solve

for the R-charges of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(972p2 + 243p4) p
2
3 +

(
972p22 + 1944p4p2 − 1944p2 + 243p24 − 486p4

)
p3

= −972p4p
2
2 − 972p24p2 + 1944p4p2 − 52

√
13− 140 (4.63)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.8 Polytope 13: PdP2/Z2 (1,1,1,1)

The polytope is
p3

sr

p2

p4

p1

q

ut v

. (4.64)

The brane tiling and the corresponding quiver are
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. (4.65)

The superpotential is

W = X14X42X21 +X23X31X12 +X46X65X53X34 +X57X74X45

+X69X97X76 +X78X86X67 +X82X2,10X10,9X98 +X10,1X18X8,10

−X31X14X45X53 −X23X34X42 −X46X67X74 −X65X57X76

−X69X98X86 −X97X78X8,10X10,9 −X2,10X10,1X12 −X18X82X21. (4.66)

The number of perfect matchings is c = 53, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (4.64),

where

q = {q1, q2}, r = {r1, . . . , r21}, s = {s1, . . . , s12},
t = {t1, . . . , t4}, u = {u1, . . . , u6}, v = {v1, . . . , v4}. (4.67)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)5,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.
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The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

) +
1

(1− t2t3)
(

1− t1t2
t23

)(
1− t23

t1t22

)
+

1(
1− t23

t1

)
(1− t2t3)

(
1− t1

t2t23

) +
1(

1− t1
t23

)
(1− t2t3)

(
1− t23

t1t2

)
+

1(
1− 1

t2

)(
1− t1

t3

)(
1− t2t23

t1

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1(
1− t3

t1

)
(1− t2t3)

(
1− t1

t2t3

) +
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1

(1− t1)(1− t2)
(

1− t3
t1t2

) . (4.68)

The volume function is then

V =
2(2b1 + b2 + 15)

(b2 + 3)(−b1 + b2 − 3)(b1 + b2 + 3)(b1 + 2b2 − 6)
. (4.69)

Minimizing V yields Vmin = 0.112571 at b1 = 3.27464, b2 = −0.831239. Thus, amax =

2.220821. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy14

(6.75p3 + 1.6875p4) p
2
2 +

(
6.75p23 + 6.75p4p3 − 13.5p3 + 1.6875p24 − 3.375p4

)
p2

= −3.375p4p
2
3 − 3.375p24p3 + 6.75p4p3 − 2.22082 (4.70)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.9 Polytope 14: L1,3,1/Z2 (1,0,0,1)

The polytope is

p3

sr

p2 p4

p1

q t . (4.71)

14For these Sasaki-Einstein manifolds that are not (quasi-)regular, the minimized volumes, and hence the

following calculations, are solved numerically. However, we can actually use roots of some polynomials to

express the exact results. The case in this subsection is given as an example in appendix B.
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The brane tiling and the corresponding quiver are
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. (4.72)

The superpotential is

W = X61X15X56 +X52X26X65 +X23X31X12

+X14X42X21 +X38X86X67X73 +X47X75X58X84

−X15X52X21 −X26X61X12 −X23X38X84X42

−X14X47X73X31 −X75X56X67 −X86X65X58. (4.73)

The perfect matching matrix is

P =



r1 s1 p1 q1 p2 t1 q2 r2 s2 r3 r4 s3 s4 r5 s5 r6 r7 p3 s6 s7 t2 q3 p4 t3 r8 s8

X12 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1

X14 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1

X15 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0

X21 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0

X23 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0

X26 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0

X31 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0

X38 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

X42 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0

X47 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

X52 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

X56 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1

X58 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X61 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0

X65 0 0 1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

X67 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

X73 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

X75 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

X84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1

X86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1



, (4.74)
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where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 s1 p1 q1 p2 t1 q2 r2 s2 r3 r4 s3 s4 r5 s5 r6 r7 p3 s6 s7 t2 q3 p4 t3 r8 s8

0 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 1

−1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 1 0

0 0 1 2 −1 −1 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 1 0 0

0 0 1 1 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0 0

0 0 1 1 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 1 0 0 0 0 0

1 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0

−1 1 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 −1 0 0 0 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 −1 0 0 0 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 1 0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 2 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0

−1 1 1 2 0 −1 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 2 −1 1 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

−1 0 0 1 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 1 −1 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

−2 1 0 1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 2 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(4.75)

with kernel

Gt =

 r1 s1 p1 q1 p2 t1 q2 r2 s2 r3 r4 s3 s4 r5 s5 r6 r7 p3 s6 s7 t2 q3 p4 t3 r8 s8

0 1 2 −1 −2 0 −1 0 1 0 0 1 1 0 1 0 0 1 1 1 0 −1 1 0 0 1

1 0 0 1 2 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 −1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.76)

From Gt, we can get the GLSM fields associated to each point as shown in (4.71), where

q = {q1, . . . , q3}, r = {r1, . . . , r8}, s = {s1, . . . , s8}, t = {t1, . . . , t3}. (4.77)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t1t2
t3

)(
1− t1t22

t3

)(
1− t33

t21t
3
2

) +
1(

1− 1
t1

)(
1− 1

t1t2

) (
1− t21t2t3

)
+

1

(1− t2t3)
(

1− t1t2
t3

)(
1− t3

t1t22

) +
1

(1− t1)(1− t2)
(

1− t3
t1t2

)
+

1(
1− t3

t1

)
(1− t2t3)

(
1− t1

t2t3

) +
1(

1− t1
t3

)
(1− t2t3)

(
1− t3

t1t2

)
+

1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− 1
t1

)
(1− t1t2)

(
1− t3

t2

) . (4.78)

The volume function is then

V = − 8(b2 − 6)

(b2 − 3)(b2 + 3)(2b1 + b2 + 3)(2b1 + 3b2 − 9)
. (4.79)
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Minimizing V yields Vmin = 4
243(−10 + 7

√
7) at b1 = (2

√
7 − 1)/2, b2 = 2 −

√
7. Thus,

amax = (10 + 7
√

7)/16. Together with the superconformal conditions, we can solve for the

R-charges of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(27p2 + 27p4) p
2
3 +

(
27p22 + 54p4p2 − 54p2 + 27p24 − 54p4

)
p3

= −81p4p
2
2 − 81p24p2 + 162p4p2 − 7

√
7− 10 (4.80)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.10 Polytope 15: L3,5,2

The polytope is

p3

sr

p2

p4

p1q t . (4.81)

The brane tiling and the corresponding quiver are
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. (4.82)

The superpotential is

W = X24X41X12 +X13X32X21 +X47X75X53X34

+X56X64X45 +X61X18X87X76 +X82X26X68

−X13X34X41 −X24X45X53X32 −X47X76X64

−X56X68X87X75 −X26X61X12 −X18X82X21. (4.83)
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The perfect matching matrix is

P =



q1 t1 r1 r2 s1 s2 r3 s3 t2 p1 r4 s4 p2 s5 p3 q2 q3 t3 r5 r6 r7 s6 s7 p4 r8 s8 s9

X12 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1

X13 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1

X18 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X21 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0

X24 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0

X26 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0

X32 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0

X34 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0

X41 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0

X45 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0

X47 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0

X53 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

X56 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0

X61 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

X64 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1

X68 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X75 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0

X76 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0

X82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1

X87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1



, (4.84)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



q1 t1 r1 r2 s1 s2 r3 s3 t2 p1 r4 s4 p2 s5 p3 q2 q3 t3 r5 r6 r7 s6 s7 p4 r8 s8 s9

1 0 0 1 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 1

1 0 0 1 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 1 0

1 0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0 0

0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0

−1 1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0

3 −1 −2 1 1 0 0 0 −1 0 −1 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0

2 −1 −1 1 1 −1 0 0 0 0 −1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0

2 −1 −1 1 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0

2 −1 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0

2 −1 −1 0 1 0 0 0 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 1 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0

2 −1 0 −1 1 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

−1 1 2 −2 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 2 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 1 2 −2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



(4.85)

with kernel

Gt =

 q1 t1 r1 r2 s1 s2 r3 s3 t2 p1 r4 s4 p2 s5 p3 q2 q3 t3 r5 r6 r7 s6 s7 p4 r8 s8 s9

−1 0 0 0 1 1 0 1 0 1 0 1 1 1 −2 −1 −1 0 0 0 0 1 1 2 0 1 1

1 0 1 1 0 0 1 0 0 −1 1 0 1 0 2 1 1 0 1 1 1 0 0 −1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.86)

From Gt, we can get the GLSM fields associated to each point as shown in (4.81), where

q = {q1, . . . , q3}, r = {r1, . . . , r8}, s = {s1, . . . , s9}, t = {t1, . . . , t3}. (4.87)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.
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The Hilbert series of the toric cone is

HS =
1(

1− t1t2
t3

)(
1− t1t22

t3

)(
1− t33

t21t
3
2

) +
1

(1− t2t3)
(

1− t1t2
t3

)(
1− t3

t1t22

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1(

1− t1
t3

)
(1− t2t3)

(
1− t3

t1t2

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (4.88)

The volume function is then

V =
2(3b1 + 2b2 + 24)

(b2 + 3)(−b1 + b2 − 3)(b1 + b2 + 3)(2b1 + 3b2 − 9)
. (4.89)

Minimizing V yields Vmin = 0.142613 at b1 = 2.194882, b2 = −0.760489. Thus, amax =

1.752996. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(6.77917p3 + 2.25972p4) p
2
2 + (6.77917p23 + 6.77917p4p3 − 13.5583p3 (4.90)

+2.25972p24 − 4.51945p4)p2 = −3.38958p4p
2
3 − 3.38958p24p3 + 6.77917p4p3 − 2.34743

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.11 Polytope 16; L2,5,1

The polytope is

p3s r

p2

p4p1

q

. (4.91)

The brane tiling and the corresponding quiver are
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The superpotential is

W = X31X
1
12X

2
23 +X27X

1
71X

2
12 +X2

71X16X65X57

+X74X46X67 +X53X
1
34X45 +X42X

1
23X

2
34

−X1
12X27X

2
71 −X1

23X31X
2
12 −X1

71X16X67

−X57X74X45 −X46X65X53X
2
34 −X1

34X42X
2
23. (4.93)

The perfect matching matrix is

P =



s1 s2 r1 q1 s3 s4 s5 r2 s6 s7 r3 p1 p2 q2 s8 s9 r4 r5 r6 p3 p4 s10 s11 r7

X1
12 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0

X2
12 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0

X16 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

X1
23 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0

X2
23 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0

X27 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0

X31 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1

X1
34 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0

X2
34 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0

X42 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1

X45 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0

X46 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

X53 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1

X57 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

X65 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

X67 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

X1
71 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1

X2
71 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

X74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1



, (4.94)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



s1 s2 r1 q1 s3 s4 s5 r2 s6 s7 r3 p1 p2 q2 s8 s9 r4 r5 r6 p3 p4 s10 s11 r7

2 0 −1 2 0 −1 0 0 0 0 0 −1 −1 0 0 −1 0 0 0 0 0 0 0 1

1 0 0 2 0 −1 0 0 0 0 0 −1 −1 0 0 −1 0 0 0 0 0 0 1 0

1 1 −1 1 0 0 0 0 0 0 0 −1 −1 0 0 −1 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 −1 0 0 −1 0 0 0 −1 0 0 0 0 1 0 0 0

1 0 −1 1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

1 −1 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

1 0 −1 1 0 0 0 0 0 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 −1 −1 1 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 −1 3 0 0 0 0 0 0 0 −2 −2 0 0 −1 0 0 0 0 0 0 0 0

2 1 −1 1 0 0 0 0 −1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 1 0 −1 0 0 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 1 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0

1 2 −2 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0

0 2 −1 1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0



(4.95)

with kernel

Gt =

 s1 s2 r1 q1 s3 s4 s5 r2 s6 s7 r3 p1 p2 q2 s8 s9 r4 r5 r6 p3 p4 s10 s11 r7

0 0 1 −1 0 0 0 1 0 0 1 −1 −1 −1 0 0 1 1 1 2 0 0 0 1

1 1 0 2 1 1 1 0 1 1 0 1 3 2 1 1 0 0 0 −1 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.96)
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From Gt, we can get the GLSM fields associated to each point are shown in (4.91), where

q = {q1, q2}, r = {r1, . . . , r6}, s = {s1, . . . , s11}. (4.97)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)2, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− 1
t1t22

)
(1− t1t2t3)

+
1(

1− 1
t2

)(
1− t1

t2

)(
1− t22t3

t1

)
+

1

(1− t2)
(
1− t1t22

) (
1− t3

t1t32

) +
1

(1− t2)
(
1− t1t23

) (
1− 1

t1t2t3

)
+

1(
1− 1

t2

) (
1− t1t23

) (
1− t2

t1t3

) +
1(

1− 1
t1t3

)
(1− t2t3)

(
1− t1t3

t2

)
+

1(
1− 1

t2

)(
1− t2

t1

)
(1− t1t3)

. (4.98)

The volume function is then

V = − b1 − 12(b2 + 4)

(b1 + 6)(b2 + 3)(b1 − 2b2 − 3)(b1 + 3b2 − 3)
. (4.99)

Minimizing V yields Vmin = 0.156243 at b1 = −2.854659, b2 = −0.172760. Thus, amax =

1.600072. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(0.843750p2 + 0.421875p3) p
2
4 + (0.843750p22 + 1.6875p3p2 − 1.6875p2 (4.100)

+0.421875p23 − 0.843750p3)p4 = −2.53125p3p
2
2 − 2.53125p23p2 + 5.0625p3p2 − 0.800036

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.12 Polytope 17: L5,6,1

The polytope is

p3

sr

p2

p4

p1

q

t u v w . (4.101)
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The brane tiling and the corresponding quiver are
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. (4.102)

The superpotential is

W=X1,4X4,2X2,1+X2,3X3,1X1,2+X3,6X6,5X5,4X4,3+X5,7X7,3X3,5+X6,8X8,7X7,6 (4.103)

+X7,9X9,6X6,7+X9,10X10,8X8,9+X8,11X11,9X9,8+X11,1X1,10X10,11+X10,2X2,11X11,10

−X2,1X1,10X10,2−X3,1X1,4X4,3−X4,2X2,3X3,5X5,4−X7,3X3,6X6,7−X6,5X5,7X7,6

−X6,8X8,9X9,6−X8,7X7,9X9,8−X11,9X9,10X10,11−X10,8X8,11X11,10−X2,11X11,1X1,2.

The number of perfect matchings is c = 81, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (4.101),

where

q = {q1, q2}, t = {t1, . . . , t5}, r = {r1, . . . , r25}, s = {s1, . . . , s20},
u = {u1, . . . , u10}, v = {v1, . . . , v10}, w = {w1, . . . , w5}. (4.104)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)6,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

) +
1(

1− t23
t1

)
(1− t2t3)

(
1− t1

t2t23

)
+

1

(1− t2)
(

1− t1
t3

)(
1− t23

t1t2

) +
1(

1− t1
t23

)
(1− t2t3)

(
1− t23

t1t2

)
+

1(
1− 1

t2

)(
1− t1

t3

)(
1− t2t23

t1

) +
1(

1− 1
t2

)(
1− t2

t1

)
(1− t1t3)

+
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1(

1− 1
t1t3

)
(1− t2t3)

(
1− t1t3

t2

)
+

1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

)
+

1(
1− t3

t1

)
(1− t2t3)

(
1− t1

t2t3

) . (4.105)
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The volume function is then

V = − 5b1 − 7b2 + 24

(b2 + 3)(b1 − 2b2 + 3)(b1 − b2 + 3)(b1 + b2 − 6)
. (4.106)

Minimizing V yields Vmin = 0.0974795 at b1 = 1.8379935, b2 = −0.9546900. Thus, amax =

2.5646418. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(2.8125p2 + 0.46875p3) p
2
4 + (2.8125p22 + 0.9375p3p2 − 5.625p2 + 0.46875p23 − 0.9375p3)p4

= −2.34375p3p
2
2 − 2.34375p23p2 + 4.6875p3p2 − 1.4248 (4.107)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.13 Polytope 18: L2,4,1

The polytope is

p3

s r

p2

p4

p1

. (4.108)

The brane tiling and the corresponding quiver are
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. (4.109)

The superpotential is

W = X1
12X26X

2
61 +X1

61X15X
2
56 +X52X23X35 +X63X34X45X

1
56 +X41X

2
12X24 (4.110)

−X2
12X26X

1
61 −X2

61X15X
1
56 −X2

56X63X35 −X23X34X41X
1
12 −X45X52X24.
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The perfect matching matrix is

P =



r1 s1 r2 s2 s3 r3 p1 p2 p3 s4 s5 r4 r5 p4 s6 r6

X1
12 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0

X2
12 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0

X15 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0

X23 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0

X24 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0

X26 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0

X34 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

X35 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0

X41 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1

X45 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0

X52 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1

X1
56 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

X2
56 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0

X1
61 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1

X2
61 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1

X63 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1



, (4.111)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 s1 r2 s2 s3 r3 p1 p2 p3 s4 s5 r4 r5 p4 s6 r6

0 2 −1 2 −1 0 −1 −1 0 0 0 −1 0 0 0 1

0 1 0 1 0 0 −1 −1 0 0 0 −1 0 0 1 0

0 1 −1 1 −1 0 0 0 0 0 0 −1 0 1 0 0

0 0 0 1 −1 0 0 0 0 0 0 −1 1 0 0 0

0 1 −1 1 0 0 −1 −1 0 0 1 0 0 0 0 0

−1 1 0 1 0 0 −1 −1 0 1 0 0 0 0 0 0

−1 1 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0

0 1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0

0 3 −1 3 0 0 −2 −2 0 0 0 −1 0 0 0 0

0 3 −1 1 −1 0 −1 −1 0 0 0 0 0 0 0 0

1 2 −2 1 0 0 −1 −1 0 0 0 0 0 0 0 0

−1 2 −1 1 0 0 −1 −1 0 0 0 1 0 0 0 0

0 2 −1 0 1 0 −1 −1 0 0 0 0 0 0 0 0


(4.112)

with kernel

Gt =

 r1 s1 r2 s2 s3 r3 p1 p2 p3 s4 s5 r4 r5 p4 s6 r6

1 0 1 0 0 1 0 −1 0 0 0 1 1 2 0 1

0 1 0 1 1 0 2 1 0 1 1 0 0 −1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.113)

From Gt, we can get the GLSM fields associated to each point as shown in (4.108), where

r = {r1, . . . , r6}, s = {s1, . . . , s6}. (4.114)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1), where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t1

)(
1− 1

t1t2

) (
1− t21t2t3

) +
1

(1− t2)(1− t1t2)
(

1− t3
t1t22

)
+

1

(1− t2)
(

1− t1t22
t3

)(
1− t23

t1t32

) +
1(

1− 1
t2

)(
1− t1

t3

)(
1− t2t23

t1

)
+

1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (4.115)
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The volume function is then

V = − 2(b1 − 7b2 − 36)

(b2 + 3)(b1 − b2 − 6)(2b1 + b2 + 3)(b1 + 3b2 − 6)
. (4.116)

Minimizing V yields Vmin = 0.184633 at b1 = 1.260879, b2 = −0.213490. Thus, amax =

1.354027. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(1.6875p3 + 4.21875p4) p
2
2 + (1.6875p23 + 8.4375p4p3 − 3.375p3 (4.117)

+4.21875p24 − 8.4375p4)p2 = −3.375p4p
2
3 − 3.375p24p3 + 6.75p4p3 − 0.510277

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.14 Polytope 19: L5,4,1

The polytope is
p3

s r

p2

p4

p1q t u . (4.118)

The brane tiling and the corrresponding quiver are

2 2
5

6

7
8

9
1

2

3

4

5

6

7
8

9
1

2

3

4

5

6

7

5

6

7
8

9
1

2

3

4

5

6

7
8

9
1

2

3

4

5

6

7

7
8

9
1

2

3

4

5

6

7
8

9
1

2

3

4

5

6

7
8

9

8

9
1

3
5

6

7
8

9
1

3
5

6

7
8

9 ;

1

2

4

9

3

8

6

57

. (4.119)

The superpotential is

W = X12X23X31 +X21X14X42 +X43X36X64 +X34X45X53

+X56X68X87X75 +X79X96X67 +X81X19X98 +X92X28X89

−X31X14X43 −X42X23X34 −X64X45X56 −X53X36X67X75

−X96X68X89 −X87X79X98 −X19X92X21 −X28X81X12. (4.120)

The number of perfect matchings is c = 41, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (4.118),

where

q = {q1, . . . , q4}, t = {t1, . . . , t6}, r = {r1, . . . , r9},
s = {s1, . . . , s14}, u = {u1, . . . , u4}. (4.121)
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The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)4,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t1
t3

)(
1− t1t2

t3

)(
1− t33

t21t2

) +
1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

)
+

1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

)
+

1(
1− t1

t3

)
(1− t2t3)

(
1− t3

t1t2

) +
1(

1− 1
t1t3

)
(1− t2t3)

(
1− t1t3

t2

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

)
+

1(
1− 1

t2

)
(1− t1t2)

(
1− t3

t1

) . (4.122)

The volume function is then

V = − 8b1 − 11b2 + 39

(b2 + 3)(b1 − 2b2 + 3)(b1 − b2 + 3)(2b1 + b2 − 9)
. (4.123)

Minimizing V yields Vmin = 0.120498 at b1 = 0.834510, b2 = −0.936102. Thus, amax =

2.074723. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(6.75p2 + 4.21875p4) p
2
3 + (6.75p22 + 13.5p4p2 − 13.5p2 + 4.21875p24

−8.4375p4)p3 = −3.375p4p
2
2 − 3.375p24p2 + 6.75p4p2 − 1.35403 (4.124)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.15 Polytope 20: L1,5,1/Z2 (1,0,0,1)

The polytope is
p3

s r

p4 p2

p1

qt

uvwx . (4.125)

The brane tiling and the corrresponding quiver are
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. (4.126)
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The superpotential is

W=X1,4X4,2X2,11X11,1+X2,3X3,1X1,12X12,2+X3,5X5,4X4,3+X4,6X6,3X3,4+X5,7X7,6X6,5

+X6,8X8,5X5,6+X8,9X9,7X7,8+X7,10X10,8X8,7+X9,11X11,10X10,9+X10,12X12,9X9,10

−X11,10X10,12X12,2X2,11−X3,1X1,4X4,3−X4,2X2,3X3,4−X5,4X4,6X6,5−X6,3X3,5X5,6

−X8,5X5,7X7,8−X7,6X6,8X8,7−X9,7X7,10X10,9−X10,8X8,9X9,10

−X12,9X9,11X11,1X1,12. (4.127)

The number of perfect matchings is c = 98, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (4.125),

where

q = {q1, q2}, r = {r1, . . . , r30}, u = {u1, . . . , u5}, v = {v1, . . . , v10},
t = {t1, t2}, s = {s1, . . . , s30}, x = {x1, . . . , x5}, w = {w1, . . . , w10}. (4.128)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)7,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t23

t1

)(
1− t1t2

t3

) +
1

(1− t2)
(

1− t1
t3

)(
1− t23

t1t2

)
+

1(
1− t1

t23

)
(1− t2t3)

(
1− t23

t1t2

) +
1

(1− t1)(1− t2)
(

1− t3
t1t2

)
+

1(
1− 1

t1

)
(1− t2)

(
1− t1t3

t2

) +
1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

) +
1(

1− t1
t3

)
(1− t2t3)

(
1− t3

t1t2

)
+

1(
1− 1

t1t3

)
(1− t2t3)

(
1− t1t3

t2

) +
1(

1− 1
t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) +
1(

1− t3
t1

)(
1− t3

t2

)(
1− t1t2

t3

) . (4.129)

The volume function is then

V = − 18− 4b2
(b2 − 3)(b2 + 3)(−b1 + b2 − 3)(b1 + b2 − 6)

. (4.130)

Minimizing V yields Vmin = 4
225(−27 + 7

√
21) at b1 = 3/2, b2 = 1

2(3 −
√

21). Thus,

amax = (81 + 21
√

21)/64. Together with the superconformal conditions, we can solve for

the R-charges of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(36p3 + 180p4) p
2
2 +

(
36p23 + 72p4p3 − 72p3 + 180p24 − 360p4

)
p2

= −36p4p
2
3 − 36p24p3 + 72p4p3 − 7

√
21− 27 (4.131)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.
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4.16 Polytope 21: SPP/Z3 (1,0,0,2)

The polytope is
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q

t u . (4.132)

The brane tiling and the corrresponding quiver are
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. (4.133)

The superpotential is

W = X14X43X31 +X23X35X51X12 +X48X86X64 +X56X67X74X45

+X81X19X98 +X79X92X28X87 −X19X92X23X31 −X28X81X12

−X43X35X56X64 −X51X14X45 −X86X67X79X98 −X74X48X87. (4.134)

The number of perfect matchings is c = 36, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (4.132),

where

q = {q1, q2}, r = {r1, . . . , r15}, s = {s1, . . . , s9},
t = {t1, t3}, u = {u1, . . . , u3}. (4.135)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)4,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)(1− t1t2)
(

1− t3
t1t22

) +
1

(1− t2)
(

1− t1t22
t3

)(
1− t23

t1t32

)
+

1(
1− 1

t2

)(
1− t23

t1

)(
1− t1t2

t3

) +
1

(1− t2)
(

1− 1
t1t2

)
(1− t1t3)

+
1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

)
+

1(
1− t1

t3

)
(1− t2t3)

(
1− t3

t1t2

) +
1(

1− 1
t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (4.136)
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The volume function is then

V = − 3(b1 − 15)

(b1 − 6)(b1 + 3)(b2 + 3)(b1 + 3b2 − 6)
. (4.137)

Minimizing V yields Vmin = 2
√

3/27 at b1 = 3(2 −
√

3), b2 = (
√

3 − 3)/2. Thus, amax =

(9 +
√

3)/8. Together with the superconformal conditions, we can solve for the R-charges

of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(162p2 + 81p3) p
2
4 +

(
162p22 + 162p3p2 − 324p2 + 81p23 − 162p3

)
p4

= −81p3p
2
2 − 81p23p2 + 162p3p2 − 4

√
3− 36 (4.138)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.17 Polytope 22: C/(Z3 × Z2) (1,0,0,2)(0,1,1,0)

The polytope is

p2

s r

p4

p3 p1

q t

x

u v

w . (4.139)

The brane tiling and the corrresponding quiver are
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. (4.140)

The superpotential is

W = X12,1X1,11X11,10X10,12+X11,4X4,12X12,9X9,11+X3,5X5,2X2,1X1,3+X2,6X6,3X3,4X4,2

+X8,10X10,7X7,5X5,8+X7,9X9,8X8,6X6,7−X1,11X11,4X4,2X2,1−X4,12X12,1X1,3X3,4

−X5,2X2,6X6,7X7,5−X6,3X3,5X5,8X8,6−X10,7X7,9X9,11X11,10

−X9,8X8,10X10,12X12,9. (4.141)

The number of perfect matchings is c = 80, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (4.139),

where

q = {q1, q2}, r = {r1, . . . , r30}, u = {u1, . . . , u3}, v = {v1, . . . , v3},
t = {t1, t2}, s = {s1, . . . , s30}, w = {w1, . . . , w3}, x = {x1, . . . , x3}. (4.142)
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The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)7,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t23

t1

)(
1− t1t2

t3

) +
1(

1− t23
t1

)(
1− t3

t2

)(
1− t1t2

t23

)
+

1

(1− t2)
(

1− t1
t3

)(
1− t23

t1t2

) +
1

(1− t2)
(

1− 1
t1t2

)
(1− t1t3)

+
1(

1− 1
t1

)
(1− t1t2)

(
1− t3

t2

) +
1

(1− t1)(1− t2)
(

1− t3
t1t2

)
+

1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

)
+

1(
1− t1

t3

)
(1− t2t3)

(
1− t3

t1t2

) +
1(

1− 1
t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) +
1(

1− t3
t1

)(
1− t3

t2

)(
1− t1t2

t3

) . (4.143)

The volume function is then

V =
18

(b1 − 6)(b1 + 3)(b2 − 3)(b2 + 3)
. (4.144)

Minimizing V yields Vmin = 8/81 at b1 = 3/2, b2 = 0. Thus, amax = 81/32. Together

with the superconformal conditions, we can solve for the R-charges of the bifundamentals,

which are XI = 1/2 for any I, viz, for all the bifundamentals. Hence, the R-charges of

GLSM fields are pi = 1/2 with others vanishing.

4.18 Polytope 23: L1,3,2

The polytope is

p4

s r

p2
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q . (4.145)

The brane tiling and the corrresponding quiver are

5 5
6
7

5
6
7

6
7

1

2

3
4

5
6
7

1

2

3
4

5
6
7

1

2

3
4

5
6
7

6

2

3
4

5

1

2

3
4

5
6
7

1

2

3
4

5
6
7

1
4

6
7

3 3 3 ;

12

5

4

6

7

3

. (4.146)
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The superpotential is

W = X15X54X41+X24X43X31X
1
12+X36X67X75X53+X52X26X65+X71X

2
12X27 (4.147)

−X31X15X53−X2
12X24X41−X54X43X36X65−X75X52X27−X26X67X71X

1
12.

The perfect matching matrix is

P =



r1 s1 r2 s2 s3 s4 p1 p2 q1 r3 s5 p3 r4 r5 r6 q2 p4 s6 r7 s7

X1
12 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

X2
12 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0

X15 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0

X24 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0

X26 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

X27 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0

X31 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1

X36 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

X41 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1

X43 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0

X52 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0

X53 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

X54 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0

X65 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1

X67 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

X71 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1

X75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1



, (4.148)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 s1 r2 s2 s3 s4 p1 p2 q1 r3 s5 p3 r4 r5 r6 q2 p4 s6 r7 s7

1 −1 1 1 0 0 −1 0 0 0 0 −1 0 0 0 −1 0 0 0 1

0 0 1 1 0 0 −1 0 0 0 0 −1 0 0 0 −1 0 0 1 0

0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 −1 0 1 0 0

1 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0

1 0 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

1 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 −1 1 1 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0

−1 0 1 1 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0

1 −1 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 1 0 0 0 0 1 0 0 0 −2 0 0 0 −1 0 0 0 0

1 −1 2 1 0 0 −1 −1 0 0 0 −1 0 0 0 0 0 0 0 0

2 −1 0 −1 −1 0 1 0 0 0 0 −1 0 0 0 1 0 0 0 0

1 −1 1 −1 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

1 −2 1 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 −1 2 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0



(4.149)

with kernel

Gt =

 r1 s1 r2 s2 s3 s4 p1 p2 q1 r3 s5 p3 r4 r5 r6 q2 p4 s6 r7 s7

0 1 0 1 1 1 3 −2 −1 0 1 −1 0 0 0 −1 0 1 0 1

1 0 1 0 0 0 −1 2 1 1 0 2 1 1 1 1 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.150)

From Gt, we can get the GLSM fields associated to each point as shown in (4.145), where

q = {q1, q2}, r = {r1, . . . , r7}, s = {s1, . . . , s7}. (4.151)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)2, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.
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The Hilbert series of the toric cone is

HS =
1(

1− 1
t1

)(
1− t2

t1

)(
1− t21t3

t2

) +
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

)
+

1(
1− 1

t2

)(
1− t1

t3

)(
1− t2t23

t1

) +
1

(1− t1)(1− t2)
(

1− t3
t1t2

)
+

1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (4.152)

The volume function is then

V = − 4b1 − 7b2 − 69

(b2 + 3)(−2b1 + b2 − 3)(−b1 + b2 + 6)(b1 + 2b2 − 6)
. (4.153)

Minimizing V yields Vmin = 0.165004 at b1 = 1.201482, b2 = −0.491432. Thus, amax =

1.515115. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(0.50625p3 + 0.675p4) p
2
2 + (0.50625p23 + 1.6875p4p3 − 1.0125p3 + 0.675p24 − 1.35p4)p2

= −0.84375p4p
2
3 − 0.84375p24p3 + 1.6875p4p3 − 0.303023 (4.154)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

4.19 Polytope 24: C/Z4 (0,1,2,1)

The polytope is

p4

s r

p2

p3p1

q

t

. (4.155)

The brane tiling and the corrresponding quiver are
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. (4.156)
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The superpotential is

W = X23X31X18X82 +X14X42X27X71 +X57X76X63X35 +X68X85X54X46 (4.157)

−X31X14X46X63 −X42X23X35X54 −X85X57X71X18 −X76X68X82X27.

The perfect matching matrix is

P =



t1 r1 s1 p1 r2 p2 q1 s2 r3 r4 s3 s4 r5 s5 r6 r7 p3 t2 s6 s7 q2 p4 r8 s8

X14 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0

X18 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X23 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0

X27 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

X31 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

X35 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

X42 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1

X46 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0

X54 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0

X57 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

X63 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1

X68 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X71 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

X76 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0

X82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1

X85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1



, (4.158)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



t1 r1 s1 p1 r2 p2 q1 s2 r3 r4 s3 s4 r5 s5 r6 r7 p3 t2 s6 s7 q2 p4 r8 s8

1 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 1

1 0 0 0 −1 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 1 0 0

2 −1 0 0 −1 0 1 0 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0

1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0

1 0 0 −1 0 0 1 0 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0

1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 1 0 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 −1 0 1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 −1 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0

1 0 0 0 1 0 1 0 −2 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

−1 0 1 0 2 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 −1 1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0



(4.159)

with kernel

Gt =

 t1 r1 s1 p1 r2 p2 q1 s2 r3 r4 s3 s4 r5 s5 r6 r7 p3 t2 s6 s7 q2 p4 r8 s8

2 0 1 3 0 −2 −1 1 0 0 1 1 0 1 0 0 1 2 1 1 −1 0 0 1

0 1 0 −1 1 2 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (4.160)

From Gt, we can get the GLSM fields associated to each point as shown in (4.155), where

q = {q1, q2}, r = {r1, . . . , r8}, s = {s1, . . . , s8}, t = {t1, t2}. (4.161)
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From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t1
t3

)(
1− t1

t2t3

)(
1− t2t33

t21

) +
1(

1− 1
t1

)(
1− t2

t1

)(
1− t21t3

t2

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1(

1− t3
t1

)
(1− t2t3)

(
1− t1

t2t3

) +
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− t3

t1

)(
1− t3

t2

)(
1− t1t2

t3

) +
1(

1− t1
t3

)(
1− t3

t2

)(
1− t2t3

t1

) . (4.162)

The volume function is then

V =
48

(b2 − 3)(b2 + 3)(−2b1 + b2 − 3)(−2b1 + b2 + 9)
. (4.163)

Minimizing V yields Vmin = 4/27 at b1 = 3/2, b2 = 0. Thus, amax = 27/16. Together

with the superconformal conditions, we can solve for the R-charges of the bifundamentals,

which are XI = 1/2 for any I, viz, for all the bifundamentals. Hence, the R-charges of

GLSM fields are pi = 1/2 with others vanishing.

5 Sixteen pentagons

For brevity, we will use Ka,b,c,d to denote a special family of cones. In analogy to defining

Xp,q from unhiggsing Y p,q and Y p,q−1 in [35], Ka,b,c,d corresponds to the toric diagram

(−am, c)

(1,0)

(0,0)

(ak, b)(ak, b− d)

, (5.1)

where bm+ ck = 1 and b ≥ d, such that it can be blown down to La,b,c (and more if m =

0) [34]. Here, we will drop the condition that a, c ≤ b inherited from La,b,c since for instance,

if a > b, we could write Lb,a,c. Also, when m = 0, for simplicity, let us forget about the

condition that gcd(a, b, c, a+b−c)=1 (and so forth), which makes the baryonic U(1) action

specified by such GLSM charges effective, since we still have other higgsed singularities

among these L’s. Then in particular, for example, we have Kp+q−1,p−q+1,p,1 = Xp,q.
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5.1 Polytope 25: X3,2

The polytope is

p4 r s

p2p3

p1

p5

. (5.2)

The brane tiling and the corrresponding quiver are
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. (5.3)

The superpotential is

W = X17X74X
2
45X51 +X53X

2
34X

1
45 +X1

34X42X
2
23 +X36X67X72X

1
23

+X21X16X62 −X16X67X74X
1
45X51 −X2

45X53X
1
34 −X2

34X42X
1
23

−X2
23X36X62 −X72X21X17. (5.4)

The perfect matching matrix is

P =



r1 r2 s1 r3 r4 s2 r5 s3 p1 p2 r6 s4 p3 r7 p4 r8 s5 s6 p5 r9 s7

X16 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X17 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

X21 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0

X1
23 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0

X2
23 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0

X1
34 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0

X2
34 1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0

X36 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0

X42 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1

X1
45 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

X2
45 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0

X51 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

X53 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0 1

X62 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1

X67 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

X72 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1

X74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1



, (5.5)
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where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 r2 s1 r3 r4 s2 r5 s3 p1 p2 r6 s4 p3 r7 p4 r8 s5 s6 p5 r9 s7

2 2 −1 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 0 1

1 1 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 0 1 0

1 1 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0

1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0

2 2 −1 −1 −1 0 0 0 −1 0 0 0 −1 0 0 1 0 0 0 0 0

1 1 0 −1 0 0 0 0 −1 0 0 0 −1 0 1 0 0 0 0 0 0

1 1 −1 0 0 0 0 0 −1 0 0 0 −1 1 0 0 0 0 0 0 0

1 2 −1 0 −1 0 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 −1 −1 1 0 0 0 0 0 0 0 0 0 0

1 1 −1 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 −1 0 0 0 0 0 1 0 0 −1 0 0 0 −1 0 0 0 0

2 1 0 −1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0

2 1 0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 1 −1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0



(5.6)

with kernel

Gt =

 r1 r2 s1 r3 r4 s2 r5 s3 p1 p2 r6 s4 p3 r7 p4 r8 s5 s6 p5 r9 s7

0 0 1 0 0 1 0 1 −1 1 0 1 0 0 −1 0 1 1 2 0 1

1 1 0 1 1 0 1 0 3 −1 1 0 0 1 2 1 0 0 −1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (5.7)

From Gt, we can get the GLSM fields associated to each point as shown in (5.2), where

r = {r1, . . . , r9}, s = {s1, . . . , s7}. (5.8)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)2, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

) +
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

)
+

1(
1− 1

t1

)
(1− t2)

(
1− t1t3

t2

) +
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

)
+

1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− 1
t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1

(1− t1)(1− t2)
(

1− t3
t1t2

) . (5.9)

The volume function is then

V = −
b1

2 − 2b1(4b2 + 15) + 4
(
b2

2 − 6b2 − 45
)

(b1 + 3)(b2 + 3)(b1 − b2 + 3)(b1 + 2b2 − 6)(b1 − 2(b2 + 3))
. (5.10)

Minimizing V yields Vmin = 0.172260 at b1 = 0.746501, b2 = −0.198279. Thus, amax =

1.451295. Together with the superconformal conditions, we can solve for the R-charges of
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the bifundamentals. Then the R-charges of GLSM fields should satisfy

(3.75p2+1.875p4+9.375p5)p
2
3+(3.75p22+7.5p4p2+1.875p5p2−7.5p2+1.875p24

+9.375p25−3.75p4+11.25p4p5−18.75p5)p3 =−3.75p4p
2
2−7.5p5p

2
2−3.75p24p2 (5.11)

−7.5p25p2+7.5p4p2−11.25p4p5p2+15p5p2−5.625p4p
2
5−5.625p24p5+11.25p4p5−3.2251

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.2 Polytope 26: X3,1

The polytope is

p2 s r

p4p5

p3

p1

. (5.12)

The brane tiling and the corrresponding quiver are
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. (5.13)

The superpotential is

W = X61X12X23X37X
1
76 +X35X51X13 +X24X

2
45X52 +X57X

2
76X64X

1
45

−X23X35X52 −X51X12X24X
1
45 −X2

45X57X
1
76X64 −X2

76X61X13X37. (5.14)

The perfect matching matrix is

P =



s1 s2 r1 r2 r3 s3 r4 p1 r5 s4 s5 s6 p2 r6 s7 p3 p4 p5 r7 s8

X12 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

X13 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0

X23 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

X24 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0

X35 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 0

X37 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

X1
45 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

X2
45 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0

X51 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1

X52 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1

X57 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

X61 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0

X64 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

X1
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

X2
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1


, (5.15)
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where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



s1 s2 r1 r2 r3 s3 r4 p1 r5 s4 s5 s6 p2 r6 s7 p3 p4 p5 r7 s8

0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1

1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 1 0

−1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0

0 1 1 0 0 −1 −1 0 0 −1 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 −1 0 0 −1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 −1 0 0 0 −1 0 0 1 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 2 −1 −1 0 0 0 0 0 0 0 0 −1 −1 0 0 0

0 1 1 0 0 −1 −2 0 0 −1 0 0 0 0 0 1 1 0 0 0

0 2 0 0 1 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 0 1 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0



(5.16)

with kernel

Gt =

 s1 s2 r1 r2 r3 s3 r4 p1 r5 s4 s5 s6 p2 r6 s7 p3 p4 p5 r7 s8

1 1 0 0 0 1 0 −1 0 1 1 1 2 0 1 2 −1 0 0 1

0 0 1 1 1 0 1 2 1 0 0 0 −1 1 0 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (5.17)

From Gt, we can get the GLSM fields associated to each point as shown in (5.12), where

r = {r1, . . . , r7}, s = {s1, . . . , s8}. (5.18)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)2, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

) +
1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

)
+

1

(1− t2)
(

1− t1
t3

)(
1− t23

t1t2

) +
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

)
+

1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− 1
t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (5.19)

The volume function is then

V = − b1
2 − 4b1(b2 + 3) + 4b2

2 − 30b2 − 207

(b1 + 3)(b2 + 3)(b1 − 2b2 + 3)(b1 + b2 − 6)(b1 − 2(b2 + 3))
. (5.20)

Minimizing V yields Vmin = 0.178752 at b1 = 1.119414, b2 = −0.211974. Thus, amax =

1.398586. Together with the superconformal conditions, we can solve for the R-charges of
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the bifundamentals. Then the R-charges of GLSM fields should satisfy

(1.26563p2+1.26563p3+0.421875p5)p
2
4+(1.26563p22+2.53125p3p2+2.53125p5p2

−2.53125p2+1.26563p23+0.421875p25−2.53125p3+2.53125p3p5−0.84375p5)p4

=−1.26563p3p
2
2−1.26563p5p

2
2−1.26563p23p2−1.26563p25p2+2.53125p3p2−3.375p3p5p2

+2.53125p5p2−1.6875p3p
2
5−1.6875p23p5+3.375p3p5−0.699293 (5.21)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.3 Polytope 27: PdP4c (2)

The polytope is15

p3 s r

p1p4

p5

p2

q
. (5.22)

The brane tiling and the corrresponding quiver are
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;

1
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4

3

8

5

6

7

. (5.23)

The superpotential is

W = X23X35X51X
1
12 +X14X43X31 +X56X67X74X45 +X48X86X64

+X71X
2
12X28X87 −X2

12X23X31 −X43X35X56X64 −X51X14X45

−X86X67X71X
1
12X28 −X74X48X87. (5.24)

15For pseudo del Pezzos [37], our nomenclature follows the spirit of [13, 25, 26]. Hence, the labelling of

PdP4 starts from c in this paper. Moreover, by PdPn (m), we mean that this comes from dPm blown up

at (n−m) generic points where m is chosen to be the largest possible number.
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The perfect matching matrix is

P =



s1 s2 s3 r1 r2 s4 p1 q1 r3 r4 p2 r5 s5 s6 p3 r6 s7 q2 p4 p5 r7 s8 s9 s10 r8 s11

X1
12 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

X2
12 0 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0

X14 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0

X23 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0

X28 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

X31 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 0 1

X35 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

X43 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

X45 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0

X48 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X51 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

X56 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

X64 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0

X67 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

X71 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0

X74 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0

X86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1

X87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1



, (5.25)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



s1 s2 s3 r1 r2 s4 p1 q1 r3 r4 p2 r5 s5 s6 p3 r6 s7 q2 p4 p5 r7 s8 s9 s10 r8 s11

1 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 0 0 0 0 0 1

1 1 −1 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 0 0 0 0 1 0

1 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 −1 0 0 1 0 0 0

1 0 0 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0

1 1 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0

1 −1 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

1 0 0 1 0 −1 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0

1 1 −1 0 0 0 0 0 −1 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 −1 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 −1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 −1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 1 0 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 −1 0 0 −1 0 0 0 1 0 0 0 0 −1 0 −1 0 0 0 0 0 0

1 0 0 1 0 −1 1 0 −2 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 2 0 −1 −1 0 −1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0

2 0 0 1 0 −2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 1 0 −1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 1 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(5.26)

with kernel

Gt =

 s1 s2 s3 r1 r2 s4 p1 q1 r3 r4 p2 r5 s5 s6 p3 r6 s7 q2 p4 p5 r7 s8 s9 s10 r8 s11

1 1 1 0 0 1 1 2 0 0 −1 0 1 1 2 0 1 2 3 0 0 1 1 1 0 1

0 0 0 1 1 0 1 0 1 1 2 1 0 0 −1 1 0 0 −1 0 1 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (5.27)

From Gt, we can get the GLSM fields associated to each point as shown in (5.22), where

q = {q1, q2}, r = {r1, . . . , r8}, s = {s1, . . . , s11}. (5.28)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.
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The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

) +
1(

1− 1
t2

)(
1− t1

t3

)(
1− t2t23

t1

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1(
1− 1

t1

)(
1− t1

t2

)
(1− t2t3)

+
1(

1− t3
t1

)
(1− t2t3)

(
1− t1

t2t3

)
+

1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− 1
t2

)(
1− t2

t1

)
(1− t1t3)

. (5.29)

The volume function is then

V = − 2b1
2 − 4b1(b2 + 6) + 2b2

2 − 3b2 − 171

(b1 + 3)(b2 + 3)(b1 − b2 − 6)(b1 − b2 + 3)(b1 + 2b2 − 6)
. (5.30)

Minimizing V yields Vmin = 0.155420 at b1 = 0.933751, b2 = −0.449691. Thus, amax =

1.608545. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(0.50625p2 + 0.50625p3 + 0.675p4) p
2
5 + (0.50625p22 + 1.0125p3p2 + 0.675p4p2 − 1.0125p2

+0.50625p23 + 0.675p24 − 1.0125p3 + 1.35p3p4 − 1.35p4)p5 = −0.50625p3p
2
2 − 0.3375p4p

2
2

−0.50625p23p2 − 0.3375p24p2 + 1.0125p3p2 − 0.675p3p4p2 + 0.675p4p2 − 0.3375p3p
2
4

−0.3375p23p4 + 0.675p3p4 − 0.321709 (5.31)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.4 Polytope 28: PdP4d (2)

The polytope is

p3 s r

p2p1

p5

p2

q
. (5.32)

The brane tiling and the corrresponding quiver are
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The superpotential is

W = X23X31X12 +X14X42X21 +X35X
1
56X64X43 +X68X81X17X75X

2
56

+X72X28X87 −X31X14X43 −X42X23X35X
2
56X64 −X1

56X68X87X75

−X17X72X21 −X28X81X12. (5.34)

The perfect matching matrix is

P =



q1 p1 s1 r1 r2 s2 r3 p2 r4 r5 s3 s4 p3 r6 s5 s6 p4 q2 r7 s7 p5 s8 r8 r9 s9

X12 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0

X14 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0

X17 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

X21 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1

X23 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0

X28 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X31 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1

X35 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0

X42 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0

X43 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0

X1
56 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

X2
56 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

X64 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1

X68 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X72 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0

X75 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

X81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1

X87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1



, (5.35)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



q1 p1 s1 r1 r2 s2 r3 p2 r4 r5 s3 s4 p3 r6 s5 s6 p4 q2 r7 s7 p5 s8 r8 r9 s9

1 0 −1 1 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 1

1 0 −1 1 −1 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 1 0

1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 1 0 0

0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0

1 0 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0

1 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 1 1 0 −1 −1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 −1 1 1 −1 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 −1 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 1 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 −2 1 0 0 2 0 0 0 0 0 0 0 0 0 −2 0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0

1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

1 0 −2 0 0 0 1 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

2 −1 −1 0 −1 1 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

1 0 −1 −1 1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 1 −2 0 0 0 2 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0



(5.36)

with kernel

Gt =

 q1 p1 s1 r1 r2 s2 r3 p2 r4 r5 s3 s4 p3 r6 s5 s6 p4 q2 r7 s7 p5 s8 r8 r9 s9

1 2 1 0 0 1 0 −1 0 0 1 1 2 0 1 1 0 1 0 1 0 1 0 0 1

1 0 0 1 1 0 1 2 1 1 0 0 −1 1 0 0 2 1 1 0 0 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (5.37)

From Gt, we can get the GLSM fields associated to each point as shown in (5.32), where

q = {q1, q2}, r = {r1, . . . , r9}, s = {s1, . . . , s9}. (5.38)
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From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

) +
1

(1− t2)
(

1− t1
t3

)(
1− t23

t1t2

)
+

1(
1− 1

t2

)(
1− t1

t3

)(
1− t2t23

t1

) +
1(

1− 1
t2

)(
1− t2

t1

)
(1− t1t3)

+
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) +
1(

1− t3
t1

)
(1− t2t3)

(
1− t1

t2t3

) . (5.39)

The volume function is then

V = −
2
(
b1

2 − b1(b2 + 3) + b2
2 − 3b2 − 99

)
(b1 + 3)(b2 + 3)(b1 − 2b2 + 3)(b1 − b2 − 6)(b1 + b2 − 6)

. (5.40)

Minimizing V yields Vmin = 0.158756 at b1 = 1.266149, b2 = −0.467702. Thus, amax =

1.574744. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(1.26563p3+843750.p4+1.6875p5)p
2
2+(1.26563p23+1.6875p4p3+2.53125p5p3

−2.53125p3+0.84375p24+1.6875p25−1.6875p4+3.375p4p5−3.375p5)p2

=−0.84375p4p
2
3−0.84375p5p

2
3−0.84375p24p3−0.84375p25p3+1.6875p4p3−1.6875p4p5p3

+1.6875p5p3−1.6875p4p
2
5−1.6875p24p5+3.375p4p5−0.787372 (5.41)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.5 Polytope 29: PdP5b (2)

The polytope is16

p3 s r

p4p2

p5

p1

t q . (5.42)

16In [13, 25, 26], there is only one PdP5 (hence without a further alphabet subscript). We will regard it

as 5a, and this polygon is 5b.
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The brane tiling and the corrresponding quiver are
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The superpotential is

W = X13X32X21 +X24X41X12 +X58X86X65 +X67X75X54X43X36

+X81X19X98 +X92X28X87X79 −X41X13X36X65X54 −X32X24X43

−X75X58X87 −X86X67X79X98 −X28X81X12 −X19X92X21. (5.44)

The number of perfect matchings is c = 33, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.32),

where

q = {q1, . . . , q3}, r = {r1, . . . , r10}, s = {s1, . . . , s12}, t = {t1, . . . , t3}. (5.45)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)4,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

) +
1(

1− t23
t1

)
(1− t2t3)

(
1− t1

t2t23

)
+

1(
1− 1

t2

)(
1− t1

t3

)(
1− t2t23

t1

) +
1

(1− t1)(1− t2)
(

1− t3
t1t2

)
+

1(
1− 1

t1

)
(1− t2)

(
1− t1t3

t2

) +
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1(

1− t3
t1

)
(1− t2t3)

(
1− t1

t2t3

) +
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− 1

t2

)(
1− t2

t1

)
(1− t1t3)

. (5.46)

The volume function is then

V = −
3
(
b1

2 − 6b1 + 6(b2 − 9)
)

(b1 − 6)(b1 + 3)(b2 + 3)(b1 − b2 + 3)(b1 + 2b2 − 6)
. (5.47)

Minimizing V yields Vmin = 0.136079 at b1 = 1.322699, b2 = −0.700670. Thus, amax =

1.837168. Together with the superconformal conditions, we can solve for the R-charges of
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the bifundamentals. Then the R-charges of GLSM fields should satisfy

(1.26563p2 + 1.26563p4 + 1.26563p5) p
2
3 + (1.26563p22 + 2.53125p4p2 + 4.21875p5p2

−2.53125p2 + 1.26563p24 + 1.26563p25 − 2.53125p4 + 1.6875p4p5 − 2.53125p5)p3

= −1.26563p4p
2
2 − 2.10938p5p

2
2 − 1.26563p24p2 − 2.10938p25p2 + 2.53125p4p2 (5.48)

−1.6875p4p5p2 + 4.21875p5p2 − 0.84375p4p
2
5 − 0.84375p24p5 + 1.6875p4p5 − 0.918584

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.6 Polytope 30: PdP6a (2)

The polytope is

p5 s r

p2p3

p4

p1

u t q . (5.49)

The brane tiling and the corrresponding quiver are
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1 2

3 4
5

6 7

8
910

1

3

6

10

1 2

3 4
5

8
910

1 2
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1
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10 5

6

7

8

. (5.50)

The superpotential is

W = X13X32X21 +X24X41X12 +X36X65X54X43 +X57X73X35

+X68X87X76 +X7,10X10,6X67 +X10,1X19X9,10 +X92X2,10X10,8X89

−X2,10X10,1X12 −X41X13X35X54 −X32X24X43 −X65X57X76

−X73X36X67 −X87X7,10X10,8 −X10,6X68X89X9,10 −X19X92X21. (5.51)

The number of perfect matchings is c = 53, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.49),

where

q = {q1, . . . , q3}, r = {r1, . . . , r17}, t = {t1, . . . , t6}
u = {u1, . . . , u3}, s = {s1, . . . , s17}. (5.52)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)5,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.
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The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1t2
t3

)(
1− t23

t1t22

) +
1(

1− 1
t2

)(
1− t23

t1

)(
1− t1t2

t3

)
+

1(
1− t1

t23

)
(1− t2t3)

(
1− t23

t1t2

) +
1

(1− t1)(1− t2)
(

1− t3
t1t2

)
+

1(
1− 1

t1

)
(1− t2)

(
1− t1t3

t2

) +
1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

) +
1(

1− t1
t3

)
(1− t2t3)

(
1− t3

t1t2

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (5.53)

The volume function is then

V = − 4b1
2 + 4b1(b2 − 3)− 2b2

2 + 39b2 − 153

(b1 + 3)(b2 + 3)(b1 − b2 + 3)(b1 + b2 − 6)(b1 + 2b2 − 6)
. (5.54)

Minimizing V yields Vmin = 0.116367 at b1 = 1.939465, b2 = −0.878930. Thus, amax =

2.148375. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(2.25p2 + 11.25p3 + 6.75p5) p
2
4 + (2.25p22 + 4.5p3p2 + 4.5p5p2 − 4.5p2 + 11.25p23

+6.75p25 − 22.5p3 + 22.5p3p5 − 13.5p5)p4 = −9.p3p
2
2 − 6.75p5p

2
2 − 9p23p2 − 6.75p25p2

+18p3p2 − 13.5p3p5p2 + 13.5p5p2 − 6.75p3p
2
5 − 6.75p23p5 + 13.5p3p5 − 5.729 (5.55)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.7 Polytope 31: K2,5,1,4

The polytope is

p1 s r

p2

p4

p5

q

tu

p3

v

. (5.56)

The brane tiling and the corrresponding quiver are
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. (5.57)
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The superpotential is

W = X1,3X3,4X4,1 +X2,4X4,3X3,2 +X3,5X5,7X7,6X6,3 +X4,6X6,8X8,5X5,4

+X8,9X9,10X10,8 +X7,10X10,9X9,7 +X9,1X1,2X2,11X11,9 +X10,11X11,1X1,10

−X1,2X2,4X4,1 −X3,4X4,6X6,3 −X4,3X3,5X5,4 −X10,8X8,5X5,7X7,10 (5.58)

−X76X68X89X97 −X9,10X10,11X11,9 −X10,9X9,1X1,10 −X11,1X1,3X3,2X2,11.

The number of perfect matchings is c = 66, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.56),

where

q = {q1, q2}, r = {r1, . . . , r25}, s = {s1, . . . , s20}
t = {t1, . . . , t4}, u = {u1, . . . , u6}, v = {v1, . . . , v4}. (5.59)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)6,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

) +
1(

1− t3
t2

)(
1− t1

t2t23

)(
1− t22t

2
3

t1

)
+

1

(1− t2)
(

1− t23
t1

)(
1− t1

t2t3

) +
1(

1− t1
t23

)(
1− t3

t2

)(
1− t2t23

t1

)
+

1(
1− 1

t2

)(
1− t2

t1

)
(1− t1t3)

+
1

(1− t1)
(

1− t2
t1

)(
1− t3

t2

)
+

1(
1− 1

t1

)
(1− t2)

(
1− t1t3

t2

) +
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− t1
t3

)(
1− t3

t2

)(
1− t2t3

t1

)
+

1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (5.60)

The volume function is then

V = −
2
(
b2

2 − 3b2 − 36
)
− 3b1(b2 + 5)

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − b2 + 3)(b1 − 2(b2 + 3))
. (5.61)

Minimizing V yields Vmin = 0.106224 at b1 = 2.907158, b2 = 0.685037. Thus, amax =

2.353517. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(5.0625p2+0.84375p4+1.6875p5)p
2
3+(5.0625p22+8.4375p4p2+3.375p5p2

−10.125p2+0.84375p24+1.6875p25−1.6875p4+1.6875p4p5−3.375p5)p3 =−4.21875p4p
2
2

−3.375p5p
2
2−4.21875p24p2−3.375p25p2+8.4375p4p2−1.6875p4p5p2+6.75p5p2

−0.84375p4p
2
5−0.84375p24p5+1.6875p4p5−2.35352 (5.62)
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constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.8 Polytope 32: K2,5,1,3

The polytope is

p1 s r

p2

p4

q

tu

p3

p5

. (5.63)

The brane tiling and the corrresponding quiver are
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. (5.64)

The superpotential is

W = X12X2,10X10,8X81 +X14X43X31 +X23X35X54X42 +X56X68X87X75

+X37X79X96X63 +X9,10X10,1X19 −X10,1X14X42X2,10 −X12X23X31

−X43X37X75X54 −X35X56X63 −X96X68X81X19 −X87X79X9,10X10,8. (5.65)

The number of perfect matchings is c = 46, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.63),

where

q = {q1, q2}, r = {r1, . . . , r20}, s = {s1, . . . , s13}
t = {t1, . . . , t3}, u = {u1, . . . , u3}. (5.66)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)5,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.
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The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

) +
1(

1− t3
t2

)(
1− t1

t2t23

)(
1− t22t

2
3

t1

)
+

1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

) +
1(

1− t23
t1

)(
1− t3

t2

)(
1− t1t2

t23

)
+

1

(1− t2)
(

1− t1
t3

)(
1− t23

t1t2

) +
1(

1− t1
t23

)(
1− t3

t2

)(
1− t2t23

t1

)
+

1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

) +
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (5.67)

The volume function is then

V = − −2b1(b2 + 6) + 4b2
2 − 90

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − 2b2 + 3)(b1 − 2(b2 + 3))
. (5.68)

Minimizing V yields Vmin = 0.121782 at b1 = 3.092671, b2 = 0.479773. Thus, amax =

2.052849. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(1.6875p2+0.28125p4+0.84375p5)p
2
3+(1.6875p22+2.8125p4p2+1.6875p5p2

−3.375p2+0.28125p24+0.84375p25−0.5625p4+1.125p4p5−1.6875p5)p3 =−1.40625p4p
2
2

−0.84375p5p
2
2−1.40625p24p2−0.84375p25p2+2.8125p4p2−1.125p4p5p2+1.6875p5p2

−0.5625p4p
2
5−0.5625p24p5+1.125p4p5−0.684283 (5.69)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.9 Polytope 33: K2,5,1,2

The polytope is

p4 s r

p3

p5

q

tp2

p1 . (5.70)
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The brane tiling and the corrresponding quiver are
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. (5.71)

The superpotential is

W = X13X
1
35X54X41 +X24X43X32 +X2

35X57X76X63 +X56X69X95

+X78X82X27 +X89X92X21X18 −X82X24X41X18 −X21X13X32

−X43X
2
35X54 −X1

35X56X63 −X76X69X92X27 −X95X57X78X89. (5.72)

The number of perfect matchings is c = 36, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.70),

where

q = {q1, q2}, r = {r1, . . . , r17}, s = {s1, . . . , s10}, t = {t1, t2}. (5.73)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)4,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

) +
1(

1− t3
t2

)(
1− t1

t2t23

)(
1− t22t

2
3

t1

)
+

1

(1− t2)
(

1− t1
t22

)(
1− t2t3

t1

) +
1

(1− t2)
(

1− t22
t1

)(
1− t1t3

t32

)
+

1

(1− t2)
(

1− t23
t1

)(
1− t1

t2t3

) +
1(

1− t1
t23

)(
1− t3

t2

)(
1− t2t23

t1

)
+

1(
1− 1

t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− 1

t2

)(
1− t2

t1

)
(1− t1t3)

. (5.74)

The volume function is then

V = −
6
(
b2

2 + b2 − 18
)
− b1(b2 + 9)

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − 3b2 + 3)(b1 − 2(b2 + 3))
. (5.75)

Minimizing V yields Vmin = 0.135851 at b1 = 2.974853, b2 = 0.227507. Thus, amax =

1.840251. Together with the superconformal conditions, we can solve for the R-charges of
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the bifundamentals. Then the R-charges of GLSM fields should satisfy

(1.125p2 + 1.6875p4 + 0.5625p5) p
2
3 + (1.125p22 + 3.375p4p2 + 1.125p5p2

−2.25p2 + 1.6875p24 + 0.5625p25 − 3.375p4 + 1.125p4p5 − 1.125p5)p3 = −1.125p4p
2
2

−0.5625p5p
2
2 − 1.125p24p2 − 0.5625p25p2 + 2.25p4p2 − 1.125p4p5p2 + 1.125p5p2

−0.28125p4p
2
5 − 0.28125p24p5 + 0.5625p4p5 − 0.613417 (5.76)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.10 Polytope 34: K2,5,1,1

The polytope is

p4 s r

p2

p5

q

p3

p1 . (5.77)

The brane tiling and the corrresponding quiver are
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. (5.78)

The superpotential is

W = X1
12X

2
23X31 +X1

23X36X64X42 +X34X45X53 +X67X78X86

+X58X
2
81X17X75 +X1

81X
2
12X28 −X31X

2
12X

1
23 −X2

23X34X42

−X64X45X58X86 −X53X36X67X75 −X78X
1
81X17 −X2

81X
1
12X28. (5.79)
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The perfect matching matrix is

P =



r1 r2 s1 r3 s2 q1 r4 r5 r6 s3 r7 r8 s4 r9 s5 p1 p2 p3 q2 r10 r11 r12 s6 s7 s8 p4 p5 r13 r14 s9

X1
12 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0

X2
12 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0

X17 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0

X1
23 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0

X2
23 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0

X28 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

X31 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1

X34 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0

X36 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0

X42 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1

X45 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

X53 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1

X58 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X64 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

X67 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0

X75 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

X78 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X1
81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1

X2
81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1

X1
86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1



,

(5.80)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 r2 s1 r3 s2 q1 r4 r5 r6 s3 r7 r8 s4 r9 s5 p1 p2 p3 q2 r10 r11 r12 s6 s7 s8 p4 p5 r13 r14 s9

2 0 −1 0 0 2 0 −1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 −1 0 0 0 0 0 0 0 1

1 0 0 0 0 2 0 −1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 −1 0 0 0 0 0 0 1 0

1 1 −1 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 −1 0 0 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 1 0 0 0

1 0 −1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0

1 −1 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

1 1 −1 −1 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 1 0 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 −1 0 0 3 0 0 0 0 0 0 0 0 0 −2 −2 0 0 0 0 −1 0 0 0 0 0 0 0 0

2 1 −1 0 0 1 0 0 0 0 −1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 −1 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 −1 0 0 1 0 −1 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 1 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 −2 0 0 0 0 1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 −1 0 0 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0


(5.81)

with kernel

Gt =

 r1 r2 s1 r3 s2 q1 r4 r5 r6 s3 r7 r8 s4 r9 s5 p1 p2 p3 q2 r10 r11 r12 s6 s7 s8 p4 p5 r13 r14 s9

0 0 1 0 1 −1 0 0 0 1 0 0 1 0 1 −1 −1 0 −1 0 0 0 1 1 1 2 0 0 0 1

1 1 0 1 0 2 1 1 1 0 1 1 0 1 0 1 3 2 2 1 1 1 0 0 0 −1 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 .

(5.82)

From Gt, we can get the GLSM fields associated to each point as shown in (5.77), where

q = {q1, q2}, r = {r1, . . . , r14}, s = {s1, . . . , s9}. (5.83)
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From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t1
t22t3

)(
1− t2t23

t1

) +
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

)
+

1(
1− t3

t2

)(
1− t1

t2t23

)(
1− t22t

2
3

t1

) +
1

(1− t2)
(

1− t32
t1

)(
1− t1t3

t42

)
+

1

(1− t2)
(

1− t1
t32

)(
1− t22t3

t1

) +
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− 1
t2

)(
1− t2

t1

)
(1− t1t3)

. (5.84)

The volume function is then

V =
2
(
3b1 − 4b2

2 − 6b2 + 63
)

(b1 + 3)(b2 − 3)(b− 2 + 3)(b1 − 4b2 + 3)(b1 − 2(b2 + 3))
. (5.85)

Minimizing V yields Vmin = (143 + 19
√

57)/1944 at b1 = (9
√

57 − 57)/4, b2 = 0. Thus,

amax = (−34749 + 4617
√

57)/64. Together with the superconformal conditions, we can

solve for the R-charges of the bifundamentals. Then the R-charges of GLSM fields should

satisfy

(4p2 + 4p3 + 2p4) p
2
5 + (4p22 + 8p3p2 + 8p4p2 − 8p2 + 4p23 + 2p24 − 8p3 + 8p3p4 − 4p4)p5

= −4p3p
2
2 − 12p4p

2
2 − 4p23p2 − 12p24p2 + 8p3p2 − 24p3p4p2 + 24p4p2 − 10p3p

2
4

−10p23p4 + 20p3p4 − 171
√

57 + 1287 (5.86)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.11 Polytope 35: K4,4,2,4

The polytope is

p1 s r

p4

q

p2

t

uvp5

p3 . (5.87)
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The brane tiling and the corrresponding quiver are
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. (5.88)

The superpotential is

W = X1,4X4,5X5,3X3,1+X2,3X3,6X6,4X4,2+X5,8X8,10X10,7X7,5+X6,7X7,9X9,8X8,6

+X10,11X11,1X1,10+X9,1X1,2X2,11X11,9−X1,2X2,3X3,1−X2,11X11,1X1,4X4,2 (5.89)

−X5,3X3,6X6,7X7,5−X6,4X4,5X5,8X8,6−X9,8X8,10X10,11X11,9−X10,7X7,9X9,1X1,10.

The number of perfect matchings is c = 60, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.87),

where

q = {q1, q2}, r = {r1, . . . , r25}, u = {u1, . . . , u3},
t = {t1, t2}, s = {s1, . . . , s20}, v = {v1, . . . , v3}. (5.90)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)6,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t23
t1

)(
1− t3

t2

)(
1− t1t2

t23

) +
1

(1− t2)
(

1− t1
t3

)(
1− t23

t1t2

)
+

1(
1− 1

t2

)(
1− t1

t3

)(
1− t2t23

t1

) +
1(

1− t1
t23

)(
1− t3

t2

)(
1− t2t23

t1

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

)
+

1(
1− t3

t1

)(
1− t3

t2

)(
1− t1t2

t3

) . (5.91)

The volume function is then

V = − −b1(b2 + 15) + b2
2 + 3b2 − 72

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − b2 − 6)(b1 − b2 + 3)
. (5.92)
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Minimizing V yields Vmin = 0.112411 at b1 = 2.224267, b2 = 0.261487. Thus, amax =

2.223982. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(12.1849p2+4.06163p4+6.09245p5)p
2
3+(12.1849p22+16.2465p4p2+12.1849p5p2

−24.3698p2+4.06163p24+6.09245p25−8.12326p4+4.06163p4p5−12.1849p5)p3

=−8.12326p4p
2
2−6.09245p5p

2
2−8.12326p24p2−6.09245p25p2+16.2465p4p2−4.06163p4p5p2

+12.1849p5p2−2.03082p4p
2
5−2.03082p24p5+4.06163p4p5−5.35289 (5.93)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.12 Polytope 36: K4,4,2,2

The polytope is

p1 s r

p4

q

p2

u

tp5

p3 . (5.94)

The brane tiling and the corrresponding quiver are
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. (5.95)

The superpotential is

W = X1
12X23X31 +X25X56X64X42 +X47X75X53X34 +X69X9,10X10,8X86

+X78X81X19X97 +X10,1X
2
12X2,10 −X2

12X25X53X31 −X23X34X42 (5.96)

−X75X56X69X97 −X64X47X78X86 −X10,8X81X
1
12X2,10 −X19X9,10X10,1.

The number of perfect matchings is c = 48, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.94),

where

q = {q1, q2}, r = {r1, . . . , r21}, u = {u1, u2},
t = {t1, t2}, s = {s1, . . . , s16}. (5.97)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)5,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.
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The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

) +
1

(1− t2)
(

1− t23
t1

)(
1− t1

t2t3

)
+

1(
1− 1

t2

)(
1− t1

t3

)(
1− t2t23

t1

) +
1(

1− t1
t23

)(
1− t3

t2

)(
1− t2t23

t1

)
+

1(
1− 1

t2

)(
1− t2

t1

)
(1− t1t3)

+
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− t1
t3

)(
1− t3

t2

)(
1− t2t3

t1

)
+

1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) +
1(

1− t3
t1

)
(1− t2t3)

(
1− t1

t2t3

) . (5.98)

The volume function is then

V = −
2
(
−6b1 + b2

2 + 6b2 − 45
)

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − 2b2 + 3)(b1 − b2 − 6)
. (5.99)

Minimizing V yields Vmin = (59 + 11
√

33)/972 at b1 = (9
√

33 − 33)/8, b2 = 0. Thus,

amax = 243
512(11

√
33 − 59). Together with the superconformal conditions, we can solve for

the R-charges of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(19683p2 + 6561p4 + 13122p5) p
2
3 + (19683p22 + 26244p4p2 + 26244p5p2 − 39366p2

+6561p24 + 13122p25 − 13122p4 + 13122p4p5 − 26244p5)p3 = −13122p4p
2
2 − 6561p5p

2
2

−13122p24p2 − 6561p25p2 + 26244p4p2 − 13122p4p5p2 + 13122p5p2 − 6561p4p
2
5 − 6561p24p5

+13122p4p5 − 4
√

33− 236 (5.100)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.13 Polytope 37: K2,4,1,3

The polytope is

p4 s r

p5

p3

p2

qtp1

. (5.101)
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The brane tiling and the corrresponding quiver are
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. (5.102)

The superpotential is

W = X23X34X42 +X14X45X53X31 +X47X78X86X64 +X56X69X97X75

+X82X21X18 +X91X12X29 −X12X23X31 −X21X14X42

−X34X47X75X53 −X45X56X64 −X97X78X82X29 −X86X69X91X18. (5.103)

The number of perfect matchings is c = 34, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.101),

where

q = {q1, . . . , q3}, r = {r1, . . . , r9}, s = {s1, . . . , s14}, t = {t1, . . . , t3}. (5.104)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)4,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t1
t22t3

)(
1− t1

t2t3

)(
1− t32t

3
3

t21

) +
1(

1− t3
t2

)(
1− t1

t2t3

)(
1− t22t3

t1

)
+

1

(1− t1)(1− t2)
(

1− t3
t1t2

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

) +
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1(

1− t3
t1

)(
1− t3

t2

)(
1− t1t2

t3

)
+

1(
1− t1

t3

)(
1− t3

t2

)(
1− t2t3

t1

) . (5.105)

The volume function is then

V = −
3
(
b2

2 − 2b2 − 39
)
− 4b1(b2 + 6)

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − b2 + 3)(2b1 − 3(b2 + 3))
. (5.106)

Minimizing V yields Vmin = 0.133134 at b1 = 1.844031, b2 = 0.575732. Thus, amax =

1.877807. Together with the superconformal conditions, we can solve for the R-charges of
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the bifundamentals. Then the R-charges of GLSM fields should satisfy

(9.05965p3+3.01988p4+3.01988p5)p
2
2+(9.05965p23+9.05965p4p3+18.1193p5p3

−8.1193p3+3.01988p24+3.01988p25−6.03977p4+6.03977p4p5−6.03977p5)p2

=−4.52983p4p
2
3−9.05965p5p

2
3−4.52983p24p3−9.05965p25p3+9.05965p4p3−9.05965p4p5p3

+18.1193p5p3−1.50994p4p
2
5−1.50994p24p5+3.01988p4p5−3.36045 (5.107)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.14 Polytope 38: K2,4,1,2

The polytope is

p3 s r
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. (5.108)

The brane tiling and the corrresponding quiver are
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. (5.109)

The superpotential is

W = X12X23X31 +X24X45X52 +X35X56X64X43 +X58X81X17X75

+X67X72X28X86 −X17X72X24X43X31 −X23X35X52 −X45X58X86X64

−X56X67X75 −X28X81X12. (5.110)
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The perfect matching matrix is

P =



p1 r1 s1 r2 p2 q1 s2 r3 s3 s4 s5 p3 r4 s6 r5 r6 r7 s7 p4 s8 q2 p5 r8 s9

X12 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0

X17 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

X23 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 0

X24 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0

X28 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X31 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1

X35 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0

X43 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

X45 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 0

X52 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1

X56 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

X58 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X64 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0

X67 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

X72 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

X75 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0

X81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1

X86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1



, (5.111)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



p1 r1 s1 r2 p2 q1 s2 r3 s3 s4 s5 p3 r4 s6 r5 r6 r7 s7 p4 s8 q2 p5 r8 s9

0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 1

0 −1 1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 1 0

0 0 1 1 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0

1 −1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0

−1 0 1 1 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 −1 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

0 −1 1 1 0 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0

−1 0 1 1 0 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 −1 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 −1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 1 1 0 0 −1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 1 1 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 2 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 −1 0 0 0 0

0 0 1 2 0 0 0 −1 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0

0 0 −1 1 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

−1 1 0 1 0 −1 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 −1 0 1 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0



(5.112)

with kernel

Gt =

 p1 r1 s1 r2 p2 q1 s2 r3 s3 s4 s5 p3 r4 s6 r5 r6 r7 s7 p4 s8 q2 p5 r8 s9

2 0 1 0 −2 −1 1 0 1 1 1 2 0 1 0 0 0 1 1 1 −1 0 0 1

0 1 0 1 2 1 0 1 0 0 0 −1 1 0 1 1 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (5.113)

From Gt, we can get the GLSM fields associated to each point as shown in (5.108), where

q = {q1, q2}, r = {r1, . . . , r8}, s = {s1, . . . , s9}. (5.114)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.
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The Hilbert series of the toric cone is

HS =
1(

1− t1
t22t3

)(
1− t1

t2t3

)(
1− t32t

3
3

t21

) +
1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

)
+

1(
1− t3

t2

)(
1− t1

t2t3

)(
1− t22t3

t1

) +
1

(1− t1t3)(1− t2t3)
(

1− 1
t1t2t3

)
+

1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− t1
t3

)(
1− t3

t2

)(
1− t2t3

t1

)
+

1(
1− 1

t1

)(
1− 1

t2

)
(1− t1t2t3)

+
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (5.115)

The volume function is then

V =
6
(
b2

2 + b2 − 24
)
− 2b1(b2 + 9)

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − 2b2 + 3)(2b1 − 3(b2 + 3))
. (5.116)

Minimizing V yields Vmin = 0.154554 at b1 = 1.904961, b2 = 0.289299. Thus, amax =

1.617558. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(0.5625p3+0.28125p4+0.5625p5)p
2
2+(0.5625p23+0.28125p4p3+1.125p5p3

−1.125p3+0.28125p24+0.5625p25−0.5625p4+0.5625p4p5−1.125p5)p2 =−0.140625p4p
2
3

−0.28125p5p
2
3−0.140625p24p3−0.28125p25p3+0.28125p4p3−0.28125p4p5p3+0.5625p5p3

−0.28125p4p
2
5−0.28125p24p5+0.5625p4p5−0.269593 (5.117)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.15 Polytope 39: K2,4,1,1

The polytope is

p4 s r

p1

p2

p3

p5

. (5.118)

The brane tiling and the corrresponding quiver are
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. (5.119)
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The superpotential is

W = X12X
1
23X31 +X2

23X
1
34X42 +X2

34X45X53 +X57X72X26X65

+X46X61X17X74 −X17X72X
2
23X31 −X1

23X
2
34X42 −X1

34X46X65X53

−X45X57X74 −X26X61X12. (5.120)

The perfect matching matrix is

P =



p1 r1 s1 r2 p2 s2 r3 r4 s3 s4 r5 s5 r6 p3 s6 s7 p4 p5 r7 s8

X12 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1

X17 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

X1
23 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0

X2
23 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0

X26 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

X31 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0

X1
34 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0

X2
34 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0

X42 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 1

X45 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

X46 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

X53 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1

X57 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

X61 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0

X65 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0

X72 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

X74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1



, (5.121)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



p1 r1 s1 r2 p2 s2 r3 r4 s3 s4 r5 s5 r6 p3 s6 s7 p4 p5 r7 s8

0 0 1 1 0 −1 0 0 0 0 0 0 −1 0 −1 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 1 0

1 −1 1 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 1 0 0

0 0 0 1 0 −1 0 0 0 0 0 0 0 0 −1 0 1 0 0 0

0 −1 1 1 0 −1 0 0 0 0 0 0 0 0 −1 1 0 0 0 0

−1 0 1 1 0 0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 1 0 0 −1 0 0 −1 0 1 0 0 0 0 0 0 0 0

0 −1 1 1 0 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 −1 1 1 0 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 2 0 0 −1 0 0 0 0 0 −1 0 −1 0 0 0 0 0

0 0 1 2 0 0 −2 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 −1 1 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 1 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0



(5.122)

with kernel

Gt =

 p1 r1 s1 r2 p2 s2 r3 r4 s3 s4 r5 s5 r6 p3 s6 s7 p4 p5 r7 s8

1 0 1 0 −1 1 0 0 1 1 0 1 0 0 1 1 2 0 0 1

1 1 0 1 1 0 1 1 0 0 1 0 1 2 0 0 −1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (5.123)

From Gt, we can get the GLSM fields associated to each point as shown in (5.118), where

r = {r1, . . . , r7}, s = {s1, . . . , s8}. (5.124)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)2, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

– 88 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
1

The Hilbert series of the toric cone is

HS =
1(

1− t1
t22t3

)(
1− t1

t2t3

)(
1− t32t

3
3

t21

) +
1

(1− t2)
(

1− t1
t22

)(
1− t2t3

t1

)
+

1(
1− t3

t2

)(
1− t1

t2t3

)(
1− t22t3

t1

) +
1

(1− t2)
(

1− t22
t1

)(
1− t1t3

t32

)
+

1(
1− 1

t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− 1

t2

)(
1− t2

t1

)
(1− t1t3)

. (5.125)

The volume function is then

V =
3
(
4b1 − 3b2

2 − 6b2 + 57
)

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − 3b2 + 3)(2b1 − 3(b2 + 3))
. (5.126)

Minimizing V yields Vmin = (347 + 29
√

145)/4050 at b1 = (15
√

145 − 153)/16, b2 = 0.

Thus, amax = 675
1024(29

√
145 − 347). Together with the superconformal conditions, we can

solve for the R-charges of the bifundamentals. Then the R-charges of GLSM fields should

satisfy

(64p3 + 128p4 + 64p5) p
2
2 + (64p23 + 64p4p3 + 128p5p3 − 128p3 + 128p24 + 64p25

−256p4 + 256p4p5 − 128p5)p2 = −32p4p
2
3 − 64p5p

2
3 − 32p24p3 − 64p25p3 + 64p4p3

−64p4p5p3 + 128p5p3 − 96p4p
2
5 − 96p24p5 + 192p4p5 − 725

√
145 + 8675 (5.127)

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

5.16 Polytope 40: K4,3,2,2

The polytope is

p1 s r

p4 t

p2qp5

p3 . (5.128)

The brane tiling and the corrresponding quiver are
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. (5.129)

– 89 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
1

The superpotential is

W = X13X32X21 +X24X41X19X97X72 +X35X57X76X63 +X46X68X85X54

+X89X92X28 −X41X13X35X54 −X32X24X46X63 −X85X57X72X28

−X76X68X89X97 −X92X21X19. (5.130)

The number of perfect matchings is c = 32, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (5.128),

where

q = {q1, q2}, r = {r1, . . . , r9}, s = {s1, . . . , s14}, t = {t1, t2}. (5.131)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)4,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− t1
t3

)(
1− t1

t2t3

)(
1− t2t33

t21

) +
1(

1− 1
t2

)(
1− t2

t1

)
(1− t1t3)

+
1

(1− t1)
(

1− t2
t1

)(
1− t3

t2

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1(
1− 1

t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− t1

t3

)(
1− t3

t2

)(
1− t2t3

t1

) +
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

)
+

1(
1− t3

t1

)
(1− t2t3)

(
1− t1

t2t3

) . (5.132)

The volume function is then

V = − −24b1 + b2
2 + 12b2 − 117

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − b2 + 3)(2b1 − b2 − 9)
. (5.133)

Minimizing V yields Vmin = (83 + 13
√

65)/1350 at b1 = (15
√

65 − 81)/32, b2 = 0. Thus,

amax = 675
8192(13

√
65 − 83). Together with the superconformal conditions, we can solve for

the R-charges of the bifundamentals. Then the R-charges of GLSM fields should satisfy

(1280p2+512p4+768p5)p
2
3+(1280p22+1536p4p2+1536p5p2−2560p2+512p24 (5.134)

+768p25−1024p4+512p4p5−1536p5)p3 =−768p4p
2
2−512p5p

2
2−768p24p2−512p25p2

+1536p4p2−512p4p5p2+1024p5p2−256p4p
2
5−256p24p5+512p4p5−325

√
65+2075

constrained by
5∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.
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6 Five hexagons

6.1 Polytope 41: PdP4e (3)

The polytope is

p4 s r

p1 p2

p6p3

p5

. (6.1)

The brane tiling and the corrresponding quiver are
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. (6.2)

The superpotential is

W = X72X
1
21X18X87 +X13X32X

2
21 +X25X54X42 +X46X67X75X53X34 +X58X86X65

−X86X67X72X
2
21X18 −X1

21X13X34X42 −X32X25X53 −X54X46X65

−X75X58X87. (6.3)

The perfect matching matrix is

P =



r1 r2 s1 s2 s3 s4 p1 p2 r3 r4 r5 s5 s6 p3 r6 s7 p4 p5 p6 r7 s8 r8 s9 s10 s11

X13 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1

X18 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

X1
21 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

X2
21 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

X25 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0

X32 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0

X34 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

X42 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0

X46 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

X53 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1

X54 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

X58 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X65 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0

X67 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

X72 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0

X75 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

X86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1

X87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1



, (6.4)
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where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 r2 s1 s2 s3 s4 p1 p2 r3 r4 r5 s5 s6 p3 r6 s7 p4 p5 p6 r7 s8 r8 s9 s10 s11

−1 1 0 1 −1 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 1

−1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0 1 0

−1 1 −1 1 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0 1 0 0

−2 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 1 0 0 0

0 1 −1 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

−1 1 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0

1 0 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

2 0 −1 0 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 −1 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0

3 −2 0 −1 0 0 1 −1 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0

2 −1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0

1 −1 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(6.5)

with kernel

Gt =

 r1 r2 s1 s2 s3 s4 p1 p2 r3 r4 r5 s5 s6 p3 r6 s7 p4 p5 p6 r7 s8 r8 s9 s10 s11

0 0 1 1 1 1 2 −1 0 0 0 1 1 2 0 1 3 −1 0 0 1 0 1 1 1

1 1 0 0 0 0 0 2 1 1 1 0 0 −1 1 0 −1 1 0 1 0 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (6.6)

From Gt, we can get the GLSM fields associated to each point as shown in (6.1), where

r = {r1, . . . , r7}, s = {s1, . . . , s11}. (6.7)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

) +
1

(1− t2)
(

1− t1
t3

)(
1− t23

t1t2

)
+

1(
1− 1

t2

)(
1− t2

t1

)
(1− t1t3)

+
1

(1− t1)
(

1− t2
t1

)(
1− t3

t2

)
+

1(
1− 1

t1

)
(1− t2)

(
1− t1t3

t2

) +
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (6.8)

The volume function is then

V =
6b1

2 − b1
(
6b2 +−4b2

2 + 72
)
− 2b2

3 + 27b2
2 + 36b2 − 513

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − b2 + 3)(b1 + b2 − 6)(b1 − 2(b2 + 3))
. (6.9)
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Minimizing V yields Vmin = 0.160827 at b1 = 0.979128, b2 = 0. Thus, amax = 1.554465.

Together with the superconformal conditions, we can solve for the R-charges of the bifun-

damentals. Then the R-charges of GLSM fields should satisfy

p2(3.375p3p6+1.125p4p6+4.5p5p6+1.6875p23+0.5625p24+1.6875p25−3.375p3

+1.125p3p4−1.125p4+3.375p3p5+1.125p4p5−3.375p5+2.25p26−4.5p6)+p22(1.6875p3

+0.5625p4+1.6875p5+2.25p6) =−1.125p3p
2
6−1.125p4p

2
6−1.125p5p

2
6−1.125p23p6

−1.125p24p6−1.125p25p6+2.25p3p6−2.25p3p4p6+2.25p4p6−3.375p3p5p6

−2.25p4p5p6+2.25p5p6−0.5625p3p
2
4−1.6875p3p

2
5−1.125p4p

2
5−0.5625p23p4 (6.10)

+1.125p3p4−1.6875p23p5−1.125p24p5+3.375p3p5−2.25p3p4p5+2.25p4p5−1.03631

constrained by
6∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

6.2 Polytope 42: PdP5c (3)

The polytope is

p1 s r

p1 p4

qp5

p3

p2

. (6.11)

The brane tiling and the corrresponding quiver are
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. (6.12)

The superpotential is

W = X21X14X43X32 +X36X65X53 +X45X57X76X64 +X69X91X18X86

+X78X82X29X97 −X18X82X21 −X29X91X14X45X53X32 −X43X36X64

−X65X57X78X86 −X76X69X97. (6.13)
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The perfect matching matrix is

P =



r1 s1 p1 p2 q1 r2 s2 s3 p3 r3 r4 r5 r6 s4 s5 r7 s6 s7 r8 p4 r9 s8 s9 s10 s11 p5 q2 p6 r10 s12

X14 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

X18 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

X21 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1

X29 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X32 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0

X36 1 0 0 1 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0

X43 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0

X45 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

X53 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

X57 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0

X64 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1

X65 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1

X69 1 1 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X76 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

X78 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

X82 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

X86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0

X91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1

X97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1



,

(6.14)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 s1 p1 p2 q1 r2 s2 s3 p3 r3 r4 r5 r6 s4 s5 r7 s6 s7 r8 p4 r9 s8 s9 s10 s11 p5 q2 p6 r10 s12

1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 1 0

1 0 0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0

1 0 0 −1 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0

1 −1 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0

1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

0 1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0

1 0 −1 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

1 1 −1 0 −1 1 0 0 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 −1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 1 −1 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 −1 0 1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 −1 1 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 −1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 −1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 2 0 0 −1 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

−1 1 0 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 −1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 −1 1 0 1 1 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0


(6.15)

with kernel

Gt =

 r1 s1 p1 p2 q1 r2 s2 s3 p3 r3 r4 r5 r6 s4 s5 r7 s6 s7 r8 p4 r9 s8 s9 s10 s11 p5 q2 p6 r10 s12

0 1 3 −2 −1 0 1 1 −1 0 0 0 0 1 1 0 1 1 0 2 0 1 1 1 1 2 −1 0 0 1

1 0 −1 2 1 1 0 0 2 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 −1 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 .

(6.16)

From Gt, we can get the GLSM fields associated to each point as shown in (6.11), where

q = {q1, q2}, r = {r1, . . . , r10}, s = {s1, . . . , s12}. (6.17)

– 94 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
1

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)4, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

) +
1

(1− t2)
(

1− t23
t1

)(
1− t1

t2t3

)
+

1(
1− 1

t2

)(
1− t2

t3

)
(1− t1t3)

+
1

(1− t1)
(

1− t2
t1

)(
1− t3

t2

)
+

1(
1− 1

t1

)
(1− t2)

(
1− t1t3

t2

) +
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

) +
1(

1− t1
t3

)(
1− t3

t2

)(
1− t2t3

t1

)
+

1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (6.18)

The volume function is then

V =
b1

2((b2 + 9))− 18b1(b2 + 3) + 18
(
b2

2 − 2b2 − 27
)

(b1 − 6)(b1 + 3)(b2 − 3)(b2 + 3)(b1 − b2 + 3)(b1 − 2(b2 + 3))
. (6.19)

Minimizing V yields Vmin = 0.145643 at b1 = 1.383054, b2 = 0.258873. Thus, amax =

1.716526. Together with the superconformal conditions, we can solve for the R-charges of

the bifundamentals. Then the R-charges of GLSM fields should satisfy

(1.26563p2+0.421875p4+1.26563p5+2.10938p6)p
2
3+(1.26563p22+1.6875p4p2

+2.53125p5p2+4.21875p6p2−2.53125p2+0.421875p24+1.26563p25+2.10938p26

−0.84375p4+0.84375p4p5−2.53125p5+1.6875p4p6+2.53125p5p6−4.21875p6)p3

=−0.84375p4p
2
2−1.26563p5p

2
2−1.6875p6p

2
2−0.84375p24p2−1.26563p25p2−1.6875p26p2

+1.6875p4p2−0.84375p4p5p2+2.53125p5p2−1.6875p4p6p2−2.53125p5p6p2+3.375p6p2

−0.421875p4p
2
5−0.84375p4p

2
6−0.421875p5p

2
6−0.421875p24p5+0.84375p4p5 (6.20)

−0.84375p24p6−0.421875p25p6+1.6875p4p6−0.84375p4p5p6+0.84375p5p6−0.858263

constrained by
6∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

6.3 Polytope 43: PdP6b (3)

The polytope is

p4 s r

p1 p5

tp6

p3

q p2

. (6.21)
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The brane tiling and the corrresponding quiver are
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. (6.22)

The superpotential is

W = X14X43X31 +X23X35X54X42 +X46X67X74 +X57X78X86X65

×X7,10X10,1X19X97 +X92X2,10X10,8X89 −X19X92X23X31 −X2,10X10,1X1,4X4,2

×X43X35X57X74 −X54X46X65 −X67X7,10X10,8X86 −X78X89X97. (6.23)

The number of perfect matchings is c = 46, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (6.21),

where

q = {q1, . . . , q3}, r = {r1, . . . , r18}, s = {s1, . . . , s16}, t = {t1, . . . , t3}. (6.24)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)5,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

) +
1

(1− t2)
(

1− t23
t1

)(
1− t1

t2t3

)
+

1(
1− t1

t23

)(
1− t3

t2

)(
1− t2t23

t1

) +
1(

1− 1
t2

)(
1− t2

t1

)
(1− t1t3)

+
1

(1− t1)
(

1− t2
t1

)(
1− t3

t2

) +
1(

1− 1
t1

)
(1− t2)

(
1− t1t3

t2

)
+

1(
1− 1

t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− t1

t3

)(
1− t3

t2

)(
1− t2t3

t1

) +
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (6.25)

The volume function is then

V =
2b1

2(b2 + 6)− 2b1
(
2b2

2 + 15b2 + 18
)

+ 2b2
3 + 9b2

2 − 108b2 − 459

(b1 + 3)(b2 − 3)(b2 + 3)(b1 − b2 − 6)(b1 − b2 + 3)(b1 − 2(b2 + 3))
. (6.26)

Minimizing V yields Vmin = 0.126977 at b1 = 2.020709, b2 = 0.520709. Thus, amax =

1.968861. Together with the superconformal conditions, we can solve for the R-charges of
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the bifundamentals. Then the R-charges of GLSM fields should satisfy

(0.5625p3 + 1.125p4 + 0.5625p5 + 1.6875p6)p
2
2 + (0.5625p23 + 1.6875p4p3 + 1.125p5p3

+2.8125p6p3 − 1.125p3 + 1.125p24 + 0.5625p25 + 1.6875p26 − 2.25p4 + 0.5625p4p5 − 1.125p5

+2.25p4p6 + 1.125p5p6 − 3.375p6)p2 = −0.84375p4p
2
3 − 0.28125p5p

2
3 − 1.40625p6p

2
3

−0.84375p24p3 − 0.28125p25p3 − 1.40625p26p3 + 1.6875p4p3 − 0.5625p4p5p3 + 0.5625p5p3

−1.6875p4p6p3 − 1.125p5p6p3 + 2.8125p6p3 − 0.28125p4p
2
5 − 0.28125p4p

2
6 − 0.5625p5p

2
6

−0.28125p24p5 + 0.5625p4p5 − 0.28125p24p6 − 0.5625p25p6 + 0.5625p4p6 − 0.5625p4p5p6

+1.125p5p6 − 0.656287 (6.27)

constrained by
6∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

6.4 Polytope 44: PdP4f (2)

The polytope is

p3 s r

p4 p1

p6
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p5

. (6.28)

The brane tiling and the corrresponding quiver are

5
78

5
78

5
78

5
8

1

3

12

34

5

6

78

12

34

5

6

78

12

34

5

6

78
5
8

12

34

7

12

34

5

6

78

12

34

5

6

78

2

34

5

6

78
5 ;

1

3

8

2

4

6 5

7

. (6.29)

The superpotential is

W = X13X36X64X42X
1
21 +X45X53X34 +X68X87X76 +X72X

2
21X18X85X57

−X2
21X13X34X42 −X53X36X68X85 −X64X45X57X76 −X87X72X

1
21X18. (6.30)
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The perfect matching matrix is

P =



r1 r2 s1 p1 s2 p2 r3 r4 s3 s4 s5 p3 r5 r6 s6 p4 p5 r7 r8 s7 p6 r9 s8 s9

X13 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0

X18 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

X1
21 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

X2
21 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

X34 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1

X36 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

X42 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0

X45 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

X53 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0

X57 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

X64 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

X68 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X72 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

X76 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

X85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1

X87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1



, (6.31)

where the relations between bifundamentals and GLSM fields can be directly read off.

Then we can get the total charge matrix:

Qt =



r1 r2 s1 p1 s2 p2 r3 r4 s3 s4 s5 p3 r5 r6 s6 p4 p5 r7 r8 s7 p6 r9 s8 s9

0 1 0 0 −1 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 1

0 1 −1 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 1 0

−1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 1 0 0

1 0 0 0 −1 0 0 0 1 −1 0 0 0 0 0 0 −1 0 0 0 1 0 0 0

1 1 −1 −1 0 0 0 0 1 −1 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

0 1 0 −1 0 0 0 0 1 −1 0 0 0 0 0 0 −1 0 1 0 0 0 0 0

0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

2 0 −1 0 0 −1 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 −1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0

2 −2 0 1 0 −1 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 −1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 −1 0 −1 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(6.32)

with kernel

Gt =

 r1 r2 s1 p1 s2 p2 r3 r4 s3 s4 s5 p3 r5 r6 s6 p4 p5 r7 r8 s7 p6 r9 s8 s9

0 0 1 1 1 −1 0 0 1 1 1 2 0 0 1 2 −1 0 0 1 0 0 1 1

1 1 0 1 0 2 1 1 0 0 0 −1 1 1 0 0 1 1 1 0 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 . (6.33)

From Gt, we can get the GLSM fields associated to each point as shown in (6.28), where

r = {r1, . . . , r9}, s = {s1, . . . , s9}. (6.34)

From Qt (and QF ), the mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry

reads U(1)4h×U(1)3, where the subscripts “R” and “h” indicate R- and hidden symmetries

respectively.
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The Hilbert series of the toric cone is

HS =
1(

1− 1
t2

)(
1− t1

t2t3

)(
1− t22t

2
3

t1

) +
1

(1− t2)
(

1− t2
t1

)(
1− t1t3

t22

)
+

1

(1− t2)
(

1− t23
t1

)(
1− t1

t2t3

) +
1(

1− 1
t2

)(
1− t2

t1

)
(1− t1t3)

+
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1

(1− t1)
(

1− 1
t2

)(
1− t2t3

t1

)
+

1(
1− t1

t3

)(
1− t3

t2

)(
1− t2t3

t1

) +
1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) . (6.35)

The volume function is then

V =
6
(
b1

2 − 2b1b2 − 3b1 + 6b2
2 + 3b2 − 99

)
(b1 − 6)(b1 + 3)(b2 − 3)(b2 + 3)(b1 − 2b2 + 3)(b1 − 2(b2 + 3))

. (6.36)

Minimizing V yields Vmin = 40/243 at b1 = 3/2, b2 = 0. Thus, amax = 243/160. Together

with the superconformal conditions, we can solve for the R-charges of the bifundamentals.

Then the R-charges of GLSM fields should satisfy

(15p3 + 5p4 + 10p5 + 15p6)p
2
2 + (15p23 + 10p4p3 + 30p5p3 + 30p6p3 − 30p3 + 5p24 + 10p25

+15p26 − 10p4 + 10p4p5 − 20p5 + 10p4p6 + 30p5p6 − 30p6)p2 = −5p4p
2
3 − 20p5p

2
3 − 15p6p

2
3

−5p24p3 − 20p25p3 − 15p26p3 + 10p4p3 − 20p4p5p3 + 40p5p3 − 20p4p6p3 − 40p5p6p3

+30p6p3 − 10p4p
2
5 − 10p4p

2
6 − 10p5p

2
6 − 10p24p5 + 20p4p5 − 10p24p6 − 10p25p6 + 20p4p6

−20p4p5p6 + 20p5p6 − 9 (6.37)

constrained by
6∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

6.5 Polytope 45: PdP6c (3)

The polytope is

p5 s r

p1 t

qp6

p3

p2

p4 . (6.38)

The brane tiling and the corrresponding quiver are
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. (6.39)

– 99 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
1

The superpotential is

W = X13X35X54X41 +X46X63X32X24 +X68X87X75X56 +X89X91X1,10X10,8

+X10,2X29X97X7,10 −X29X91X13X32 −X1,10X10,2X24X41 −X63X35X56

×X54X46X68X89X97X75 −X87X7,10X10,8. (6.40)

The number of perfect matchings is c = 40, which leads to gigantic P , Qt and Gt. Hence,

we will not list them here. The GLSM fields associated to each point are shown in (6.38),

where

q = {q1, q2}, r = {r1, . . . , r15}, s = {s1, . . . , s15}, t = {t1, t2}. (6.41)

The mesonic symmetry reads U(1)2×U(1)R and the baryonic symmetry reads U(1)4h×U(1)5,

where the subscripts “R” and “h” indicate R- and hidden symmetries respectively.

The Hilbert series of the toric cone is

HS =
1

(1− t2)
(

1− t23
t1

)(
1− t1

t2t3

) +
1(

1− 1
t2

)(
1− t1

t3

)(
1− t2t23

t1

)
+

1(
1− 1

t2

)(
1− t2

t1

)
(1− t1t3)

+
1

(1− t1)
(

1− t2
t1

)(
1− t3

t2

)
+

1(
1− 1

t1

)
(1− t2)

(
1− t1t3

t2

) +
1

(1− t1)
(

1− 1
t1t2

)
(1− t2t3)

+
1(

1− 1
t1

)(
1− t1

t2

)
(1− t2t3)

+
1(

1− t1
t3

)(
1− t3

t2

)(
1− t2t3

t1

)
+

1

(1− t2)
(

1− t1
t2

)(
1− t3

t1

) +
1(

1− 1
t2

)
(1− t1t2)

(
1− t3

t1

) . (6.42)

The volume function is then

V =
3
(
4b1

2 − 4b1(b2 + 3) + 3
(
b2

2 + 2b2 − 51
))

(b1 − 6)(b1 + 3)(b2 − 3)(b2 + 3)(b1 − b2 − 6)(b1 − b2 + 3)
. (6.43)

Minimizing V yields Vmin = 32/243 at b1 = 3/2, b2 = 0. Thus, amax = 243/128. Together

with the superconformal conditions, we can solve for the R-charges of the bifundamentals.

Then the R-charges of GLSM fields should satisfy

(12p3 + 16p4 + 12p5 + 16p6)p
2
2 + (12p23 + 32p4p3 + 24p5p3 + 40p6p3 − 24p3 + 16p24 + 12p25

+16p26 − 32p4 + 16p4p5 − 24p5 + 32p4p6 + 24p5p6 − 32p6)p2 = −8p4p
2
3 − 12p5p

2
3 − 20p6p

2
3

−8p24p3 − 12p25p3 − 20p26p3 + 16p4p3 − 16p4p5p3 + 24p5p3 − 32p4p6p3 − 24p5p6p3

+40p6p3 − 8p4p
2
5 − 16p4p

2
6 − 4p5p

2
6 − 8p24p5 + 16p4p5 − 16p24p6 − 4p25p6 + 32p4p6

−16p4p5p6 + 8p5p6 − 9 (6.44)

constrained by
6∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.
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7 The toric variety X̃(∆)

Given a lattice polytope ∆ of (complex) dimension n, besides the (n + 1)-dimensional

Calabi-Yau cone which is non-compact, we can also get a compact toric variety X(∆)

under the construction of inner normal fan Σ(∆). Here, we give a quick review on the

compact toric variety X(∆). A detailed treatment can be found in [46, 47].

To build X(∆), we choose one interior point as the origin, then the fan Σ(∆) is

constructed out of cones having rays going through the vertices of each face with origin as

the apex, viz,

Σ(∆) = {pos(F ) : F ∈ Faces(∆)} , (7.1)

where

pos(F ) =

{∑
i

λivi : vi ∈ F, λi ≥ 0

}
(7.2)

is the positive hull of the n-cone over face F . For instance, choosing the left interior point

as the origin, the polygon (4.139) in section 4.17, C/(Z3 × Z2) (1,0,0,2)(0,1,1,0), has the

toric variety

u0

u1

u2

u3

σ0

σ1σ2

σ3

(7.3)

with the cones σi as affine patches.

However, such X(∆) may not be smooth. In fact, the toric variety built from (7.3) is

not smooth. This is solved by the following definition:

Definition 7.1. The polytope and the corresponding fan are regular if every cone in the

fan has generators that form part of a Z-basis.

The regularity can be determined by the determinant of all n-tuple vectors of each

cone. If all the determinants are ±1, then we have a regular polytope and a regular fan.

With regularity, we have [47]

Theorem 7.1. The toric variety X(∆) is smooth iff ∆ is regular.

For example, in (7.3), det(u0,u2)=−2, and therefore the corresponding toric variety

is singular. Nevertheless, we can always resolve the singularities via triangulations of the

polytope. For reflexive polytopes, FRS triangulations are considered [13, 71], where

• “Fine” stands for all the lattice points of the polytope involved in the triangulation;
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• “Regular” stands for the polytope being regular;

• “Star” stands for the origin being the apex of all the triangulated cones.

Now that we are dealing with polygons having two interior points, F and S can not be

simultaneously satisfied. Hence, we will drop the condition F, and contemplate RS trian-

gulations. Under such triangulations, we get a complete resolution, X̃(∆), of X(∆). For

instance, (7.3) can be resolved to

u0

u1

u2

u3

u4u5

u6

u7

u8

u9

σ0

σ1σ2

σ3

σ4
σ5

σ6

σ7

σ8

σ9

, (7.4)

which is complete and smooth.

7.1 The two interior points as origins

From [72], we know that X(∆)’s constructed from reflexive polytopes are Gorenstein Fano,

i.e., its anticanonical divisor KX is Cartier and ample. However, as we have two interior

points here, X(∆) does not hold this property any more. Actually, since we have two

choices of the origin, we can build two compact toric varieties, which may or may not be

the same.17

For the two X̃(∆)’s built from ∆ to coincide, it is necessary for them to have the same

Euler number. As we will discuss in section 7.2, the Euler number of X̃(∆) equals to the

number of triangles under the triangulation, viz, the number of two-dimensional cones.

Hence, this can be checked by counting the numbers of triangles under triangulations.

After complete resolutions, we find that there are only 12 polygons that have X̃(∆)’s with

different Euler numbers. In terms of the ordering in appendix A, they are (2), (4), (10),

(12), (15), (18), (19), (23), (37), (38), (39) and (40).

As the two interior points is connected by a straight line, now for simplicity, let us call

this line the “spine” of the polygon. Since the Euler number is related to triangulation, it is

not hard to see that when we have zero or two perimeter points lying on the spine, the two

Euler numbers are equal.18 On the other hand, if there is only one perimeter point on the

spine, the two complete resolutions would yield different Euler numbers. This is because

17Notice that even though we have this choice on the level of the toric 2-fold, the affine 3-fold is the same

and hence the gauge theories are the same.
18Hence, none of the hexagons belongs to the 12 polygons as it has been proven in [27] that the two

interior points of a hexagon must lie on the same diagonal.
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u0

u1

u2

u3

σ0

σ1 σ2

σ3

(a)

u0

u1

u2

σ0

σ1

σ2

(b)

u0

u1

u2

u3

σ0

σ1 σ2

σ3

(c)

Figure 1. (a) The complete resolution X̃0 is constructed from the zeroth-grade point. The Euler

number χ0 is 4. (b) The toric variety X1 is already smooth, viz, X1 = X̃1. The Euler number χ1

is 3. (c) We make a further blow-up on X1 by adding the ray u3 = (1, 0). The new variety X̃ ′1 has

Euler number χ′1 = 4.

for these three points on the spine, if the interior point is in the middle (which we will refer

to as the “zeroth-grade” point), the fan will have rays extending to both of the other two

points on the spine. For the other interior point (which we will refer to as the “first-grade”

point), the fan will only have one ray on the spine. Thus, the zeroth-/first-grade Euler

numbers will differ by 1:

χ0 − χ1 = 1. (7.5)

As will be discussed in section 7.2, the first Chern numbers will then satisfy C1,1−C1,0 = 1

where C1,i denotes the first Chern number of X̃i(∆) from the ith-grade point.19

For the remanining 33 polygons who have two zeroth-grade points, it turns out that

not only the corresponding Chern numbers of X̃(∆)’s, but also the two Chern classes

(and hence the two Euler numbers) are equal. For the 12 polygons with first-grade points,

consider the complete resolution whose fan has the first-grade point as the apex. If we add

another ray opposite to the original ray on the spine, i.e., we further resolve the complete

smooth surface, then we will reach a new variety with Euler number χ′1 = χ1 + 1 = χ0. As

a matter of fact, we find that the total Chern classes of X̃0(∆) and X̃ ′1(∆) are equal:

c
(
X̃ ′1

)
= c

(
X̃0

)
. (7.6)

As an example, the different resolutions of (3.10) in section 3.2 is depicted in figure 1.

It is worth noting that all the 12 polygons with first-grade points can be higgsed from

a minimal parent theory which also has a first-grade point (and two zeroth-grade points).

This minimal parent theory is

, (7.7)

19For polytopes with arbitrarily many interior points, the zeroth-grade points will be those which give

the largest possible Euler number n while the mth-grade points will give Euler number (n−m).
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(7.7)

(3.28) (4.37)(4.57)

(4.81)

(4.118)
(5.101)

(5.128)

(4.11) (5.118)

(4.108)

(3.10)

(5.108)

Figure 2. Each point in the Hasse diagram corresponds to a toric diagram, with the corresponding

equation number as indicated. Going down along the lines in the Hasse diagram corresponds to the

process of higgsing.

where the blue lines indicate three of the higgsed polygons each from blowing down three

points. The remaining 9 can be obtained from these three polygons. Notice that the

first-grade point in (7.7) is always higgsed away, and one zeroth-grade point becomes a

first-grade point after higgsing. Since these polygons form a poset, we can arrange them

into a Hasse diagram20 as in figure 2.

As the first-grade point trivially yields a different X̃1(∆) from X̃0(∆), we will consider

X̃ ′1(∆) which has an extra step of resolution when comparing the two compact smooth

complete varieties built from each toric diagram. Since the characteristic classes are always

the same for the two varieties, we need a new approach to distinguish them. Our strategy

is the same as classifying inequivalent lattice polygons, that is, checking whether the two

fans are related by SL(2,Z) transformations (along with translations and reflections).21 One

way to see this is to tell whether the vectors ending on the each row/column are properly

shifted. Another way is to consider the determinants since all the transformations have

determinant ±1 and all the 2×2 matrices with determinant ±1 is such a transformation.

Then if we pick out any corresponding pairs of vectors from the two fans, the matrices they

form should have the same determinant up to a sign.

20It is worth noting that recently Hasse diagrams has become a powerful tool to study various geometric

spaces, along with magnetic quivers, in theories with 8 supercharges. See, for example, [73–78].
21More precisely, as the origin is always the apex of the cones, we have no translations here, and thus the

transformations lie in SL(2,Z)×Z2.
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It turns out that this can be directly read off from the symmetries of the toric diagrams

since we only have one spine (which is a result of always having two interior points). Due to

the existence of the unique spine, the vectors above and below the spine should be shifted

along opposite directions. However, as we are moving from one interior point to the other

along the spine, the vectors above and below the spine would always be shifted along the

same direction. An example is illustrated in figure 1(a,c).

Hence, reflection or rotation22 is necessary to make the two varieties coincide. As a

result, the two X̃(∆)’s are the same iff the lattice polygon (under certain SL(2,Z) trans-

formations) satisfies either of the following two: (1) axially symmetric with respect to the

perpendicular bisector of the two interior points; (2) centrosymmetric.23 Therefore, only

8 out of the 45 toric diagrams give rise to two same X̃(∆)’s. In terms of the ordering in

appendix A, they are (14), (20), (22), (24), (26), (43), (44) and (45).

Before moving on to the next subsection, let us briefly discuss the smoothness of

X(∆). Although it is not always the case, some ∆’s still lead to smooth X(∆). There

are 9 such polygons. In terms of the ordering in appendix A, they are (2), (6), (7), (8),

(18), (25), (26), (41) and (42). In particular, since (2) and (18) (that is, the toric diagrams

in (3.10) and (4.108), the bottom two points in figure 2) have both zeroth- and first-grade

points, only the first-grade points in both of the cases can give smooth varieties directly.

The other 7 toric diagrams can all give rise to two smooth complete surfaces without any

further resolutions. It is straightforward that all the perimeter points need to be corner

points for X(∆) to be smooth. If the toric diagram has a first-grade point as well, then

the zeroth-grade point cannot yield a smooth X(∆).

7.2 Minimized volumes and topological quantities

As we have obtained the volume data of the 45 cases in section 3–6, we plot 1/Vmin against

the number of lattice points N in figure 3.

Now we would like to relate the minimized volume functions of Sasaki-Einstein mani-

folds to the topological quantities of X̃(∆)’s. From [46, 47], we have

Theorem 7.2. For the smooth projective variety X̃(∆) of (complex) dimension n, the

Betti numbers satisfy

b2k−1 = 0, b2k =

n∑
i=k

(−1)i−k
(
i

k

)
dn−i, (7.8)

where k = 0, 1, . . . , n and dj is the number of j-dimensional cones in ∆̃. As the Euler

number χ =
∑n

i=0(−1)ibi, then

χ = dn. (7.9)

This verifies our statement that the Euler number is the number of triangles under the

triangulation used in section 7.1. Then

22Due to reflection, without loss of generality, rotation can be restricted to inversion, viz, rotation by π.
23These two properties then rule out all the toric diagrams with a first-grade point. Even though we

further resolve them to make the Chern classes match, we still cannot have same toric varieties.
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Quadrilaterals

Pentagons
Hexagons

Figure 3. The reciprocals of minimized volumes against the number of lattice points N . This is

bounded by the straight line 1/Vmin = N where the triangles live.

Corollary 7.2.1. For the lattice polygons, we have

b0 = b4 = 1, b1 = b3 = 0, b2 = d1 − 2d0 = d1 − 2 = χ− 2. (7.10)

Since bk =
∑k

i=0 h
i,k−i, we get

χ =
∑
r,s

(−1)r+shr,s

= h2,2 + h2,0 + h1,1 + h0,2 + h0,0

= 2 + 2h2,0 + h1,1. (7.11)

In fact, we find that the dimension of the Kähler cone over X̃(∆) is always χ − 2.

Thus,

h2,2 = h0,0 = 1, h2,0 = h0,2 = 0, h1,1 = χ− 2. (7.12)

The vanishing h2,0(h0,2) shows that there is no global sections to the (anti-)canonical

bundle. Then the only remaining interesting Hodge number h1,1 is determined by the

Euler number. As we are now going to see, the (first) Chern number is also determined by

the Euler number.

For surfaces, we have two Chern numbers: C1 =
∫
X̃
c21 and C2 =

∫
X̃
c2 = χ. In

figure 4, we plot 1/Vmin against the first and second Chern numbers respectively, following

the strategy of [13]. First of all, putting the two graphs together, we can see that the two

sets of points are symmetric with respect to x = 6. Indeed, we find

Proposition 7.3. For a smooth complete toric surface X̃, we have

C1 + χ = 12. (7.13)

To prove this, we need the Hirzebruch-Riemann-Roch (HRR) theorem [47]:
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Figure 4. The green points correspond to X̃(∆) built from first-grade points. The varieties (from

zeroth-grade points) of triangles are in orange.

Theorem 7.4. Let D be a divisor of X̃ and O
X̃

(D) denote the sheaf of it, then

χ
(
O
X̃

(D)
)

=

∫
X̃

ch
(
O
X̃

(D)
)

Td
(
X̃
)
. (7.14)

Therefore, we are able to prove (7.13):

Proof. Take D = 0 such that ch
(
O
X̃

)
= 1. Then by HRR theorem,

χ
(
O
X̃

)
=

∫
X̃

Td
(
X̃
)

=

∫
X̃

(
1 +

1

2
c1 +

1

12
(c21 + c2)

)
= 0 +

∫
X̃

(
1

12
(c21 + c2)

)
=

1

12
(C1 + χ) . (7.15)
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Since X is smooth and complete, by Demazure vanishing [47],

χ
(
O
X̃

)
= dimH0

(
X̃,O

X̃

)
−dimH1

(
X̃,O

X̃

)
+ dimH2

(
X̃,O

X̃

)
= 1− 0 + 0 = 1. (7.16)

Thus, C1 + χ = 12.

This would yield many other interesting identities. For instance,

Corollary 7.4.1. For a smooth complete toric surface X̃, we have

C1 − χ+ 2 =

∫
X̃

ch
(
X̃
)

Td
(
X̃
)
. (7.17)

Proof. We start from the r.h.s. :∫
X̃

ch
(
X̃
)

Td
(
X̃
)

=

∫
X̃

(
2 + c1 +

1

2
c21 − c2

)(
1 +

1

2
c1 +

1

12
(c21 + c2)

)
=

7

6
C1 −

5

6
χ

= C1 +
1

6
C1 − χ+

1

6
χ

= C1 − χ+ 2, (7.18)

where in the last equality, we have used C1 + χ = 12.

Henceforth, we will solely plot the graph of minimized volumes with Euler numbers as

all the other topological quantities discussed here give no new information.

It is conjectured in [13] that the lower bound of minimized volumes is 1/χ, and the

bound is saturated when X is an abelian orbifold of C3 for reflexive polytopes in any

dimensions. However, as we can see from figure 4, 1/Vmin can be greater than the Euler

number. Furthermore, the volumes of triangles do not form a lower bound any more.24

There are two cases (13 and 17) that are above the orange curve even if we ignore the

green points. Nevertheless, we still find the orange curve seems to follow some pattern.

For reflexive cases, such curve would be χ = 1/Vmin as this is the bound mentioned above.

For the cases with two interior points, the curve is

χ =
1

8

(
14− 1

Vmin

)(
12− 1

Vmin

)
+ 2. (7.19)

We suspect that for polygons with arbitrarily many interior points, such curves would

follow some specific pattern.

On the other hand, the upper bounds of minimized volumes for reflexive cases in any

dimensions are fibrations of dP3 [13]. Here, for polygons with two interior points, we find

that the upper bound is C3/Z5 (1,2,2), which is the only C3 orbifold not on the orange curve.

24However, we should emphasize that such bound may still be true for reflexive polytopes in any dimen-

sion, though we do not have available data to test this.
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Figure 5. The reciprocal of minimized volumes against the Euler numbers. Here, the points that

live much closer to the upper bound in the diagram are labelled red.

It is conjectured in [13] that the bounds of the minimized volumes for toric CY n-folds

X with reflexive (n− 1)-dimensional polytopes as the toric diagrams are

1

χ
≤ Vmin ≤ mn

∫
cn−11 , (7.20)

where m3 ∼ 3−3, m4 ∼ 4−4 and mn > mn+1. We have already seen that the first inequality

does not hold for non-reflexive cases (while the second one still holds here). In figure 5, we

plot the χ-1/Vmin diagram again. It is obvious that the area bounded by 1/Vmin = χ/m3

and 1/Vmin = (12 − χ)/m3 is much larger than the region where our data points live.

Hence, it is possible that we may extend the above conjecture to

1

χ
≤ Vmin/mn ≤

∫
cn−11 (7.21)

for non-reflexive polytopes.25

As aforementioned, we have two polytopes (13 and 17) that go beyond the bound of C3

orbifolds.26 In fact, we find that the red points in figure 5, including the four C3 orbifolds

and (13) and (17), live much closer to the upper bound in the diagram (lower bound of

volumes) than to the other points.

Finally, we would also like to know whether the minimized volume of Y with an

arbitrary polytope ∆ can be arbitrarily close to 0, viz, unbounded from above in the χ-

1/Vmin diagram. The answer is yes and can be seen from considering the orbifolds. We

know that the volume of an orbifold is the volume of its parent divided by the order of the

25Since the bounded region here is too large, one may consider that we can refine such bounds. However,

as mn grows for larger n’s, this might be the best bound for any dimensions. Anyway, the bounds of

minimized volumes involving non-reflexive polytopes still require further study.
26We will still ignore the green points as they can be turned into non-green points with an extra blow-up.

– 109 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
1

quotient group, regardless of the action:

vol(M/Γ) =
vol(M)

|Γ|
. (7.22)

From [62], we know that the volume of a (finite) cone is proportional to the volume of the

Sasaki-Einstein manifold. Then the minimized volume function should also follow27

V (M/Γ) =
V (M)

|Γ|
. (7.23)

For instance, this provides a quick way to see that Vmin(Cn/Zn) = 1/n as we have shown

in section 2.4. For the conifold C, we have Vmin(C) = 16/27. Then we would expect the

generalized conifolds (4.21), (4.139) and (4.155) to give Vmin(C)/3, Vmin(C)/6 and Vmin(C)/4
respectively. These are indeed the results we get in section 4. Also, this does not depend

on the orbifold action. The lattice rectangle of size 2 × 1 and the toric diagram of F0 are

both C quotiented by Z2, but with different actions. However, they both have Vmin = 8/27.

8 Conclusions and outlook

In this paper, we focused on polygons with two interior points, which serve as the toric

diagrams of certain toric CY3 cones, as well as those of compact base surfaces. Using

brane tilings, we found the quiver gauge theories associated to D3-branes probing these

geometries. The volume functions of Sasaki-Einstein base manifolds were computed so as to

get the R-charges of the fields via volume minimization. Compared to reflexive cases, there

are much more quivers in the toric phases corresponding to one toric diagram. However,

there is always one toric quiver which arises from each orbifold of C3.

We have also analyzed the minimized volumes in terms of the topological quantities of

the compact toric varieties constructed from the polygons. To obtain the compact varieties,

we made fans over the polytope followed by complete resolutions. However, unlike reflexive

cases, we have two choices of origins here, which we called zeroth-grade and first-grade

points. It turns out for most of the cases, the Chern numbers and even the Chern classes

coincide for the two compact varieties. For those with first-grade points, they obviously do

not have such property, but if we further resolve the smooth surface with a ray opposite

to the existed ray along the spine, we found that the Chern numbers and classes are again

the same for the two varieties. We have also argued that whether the two varieties are the

same surface is completely determined by the symmetries of the polygon, namely whether

it is axial symmetric or centrosymmetric.

We showed that all the relevant topological invariants, including Chern numbers, Betti

numbers and Hodge numbers, are dependent to each other. Hence, all the non-trivial

quantities can be expressed with Euler numbers, such as C1+χ = 12 and b1 = h1,1 = χ−2.

Thus, we only need to consider the relation between Vmin and χ. We plotted the diagram of

1/Vmin against χ. It turns out that the volume bounds relation from the reflexive cases does

27Since it should be clear, we will use the corresponding orbifold to denote the volume function of Y in

our notation.
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not hold for non-reflexive ones, and we have hinted at a generalized conjecture. Moreover,

the minimized volumes of Sasaki-Einstein manifolds of C3 orbifolds do not form a lower

bound anymore. However, the upper bound is still safe. Besides, by tracking the orbifold

relation, we saw that the volumes coming from any polytopes can only be bounded by 0,

viz, we can have toric diagrams giving as small volumes as we want.

There is still a lot to study for future works. First of all, we have solely considered 2d

polygons with two interior points. This is quite a strict constraint which only gives us 45

inequivalent toric diagrams. However, as we can see, there are already a sea of toric quivers

that we cannot even list all of them in this paper. If we wish to study the gauge theories from

polytopes with more interior points and higher dimensions, we cannot search them one by

one. For instance, the classification of 3d lattice polytopes with two interior points has been

done in [79], which gives 22673449 of them up to unimodular equivalence. Instead, a general

method needs to be found to get a more detailed understanding of the theories. It would also

be interesting to randomize over the space of toric diagrams and try volume-topolgy plots.

Besides, even just for the 45 polygons, not everything is studied. For instance, the

specular duality for reflexive polygons is studied in [26]. For reflexive cases, the specular

dual of a reflexive toric diagram is still reflexive. Their brane tilings are both on the torus.

However, for non-reflexive cases, although the brane tiling is still on the torus, the dual

brane tiling is not on T2 anymore. If we go further, there are also cases that neither of the

specular duals have brane tiling on T2. We wish to explore these in future.

On the geometry side, the study of compact toric varieties could also be extended

to polytopes with more interior points and higher dimensions. We wish to understand

minimized volumes via topological invariants for more general cases. In particular, we

proposed an enlarged bound for volumes. Whether this is really a bound and whether this

is the best bound still requires tests for general cases. However, as it would be impossible

to deal with them case by case, new techniques may be necessary.

For reflexive polytopes of dimension n, besides the affine CYn+1 cone which is non-

compact, we know that compact smooth CYn−1 can be constructed as hypersurfaces in

X(∆) from [80–85]. However, for non-reflexive ploytopes, we do not have the defining

polynomials any more. It would be interesting to study the hypersurfaces for such cases.
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A The 45 lattice polygons with two interior points

5 Triangles:

(1) (2) (3) (4) (5)

19 Quadrilaterals

(6) (7) (8) (9) (10) (11)

(12) (13) (14) (15) (16) (17)

(18) (19) (20) (21) (22) (23) (24)

16 Pentagons

(25) (26) (27) (28) (29) (30) (31)

(32) (33) (34) (35) (36) (37)

(38) (39) (40)
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5 Hexagons

(41) (42) (43) (44) (45)

B Volume functions

For reference, we list all the 45 volume functions and their minima in table 3.

Section V b∗1 b∗2 Vmin [L :Q]

3.1 − 18
(b2+3)(−3b1+2b2+6)(−3b1+4b2−6)

0 0 1
6

1

3.2 − 25
(b1−2b2+3)(2b1+b2−9)(b1+3b2+3)

2 0 1
5

1

3.3 16
(b2+3)(−2b1+b2−3)(2b1+3b2−9)

2 -1 1
8

1

3.4 10
(b2+3)(−b1+b2−3)(2b1+3b2−9)

1 -1 1
10

1

3.5 6
(b2+3)(−b1+b2−3)(b1+2b2−6)

2 -1 1
12

1

4.1
3(4b1+2b2+21)

(b1+3)(b1+b2+3)(b1+3b2−6)(b1−2(b2+3))
1
2
(−6+3

√
6) 0 4

405
(9+4

√
6) 2

4.2
6(b1+b2+12)

(b1+3)(b1−b2−6)(b1+2b2+3)(b1+3b2−6)
3
2

(√
33−5

)
0 1

648

(
63+11

√
33

)
2

4.3 81
(b1−6)(b1+3)(b1+3b2−6)(b1+3b2+3)

3
2

0 16
81

1

4.4 − 2(b2−9)
(b2−3)(b2+3)(b1+b2+3)(b1+2b2−6)

3
(√

3−1
)

3−2
√
3

√
3

18
2

4.5 − 2(b2−15)
(b2−3)(b2+3)(b1+b2+3)(2b1+3b2−9)

1
2

(
5
√
7−11

)
5+2
√
7 1

243
(10+7

√
7) 2

4.6
2(b1+4(b2−6))

(b2−3)(b1+b2+3)(b1+2b2−6)(b1−2(b2+3))
0 4−

√
13 1

648
(46+13

√
13) 2

4.7
6(b2−5)

(b2−3)(b2+3)(2b1+b2+3)(b1+2b2−6)
1
6

(
1+5
√

13
)

1
3

(
5−2

√
13

)
− 1

108
(35−13

√
13) 2

4.8
2(2b1+b2+15)

(b2+3)(−b1+b2−3)(b1+b2+3)(b1+2b2−6)
3.27464 −0.831239 0.112571 4

4.9 − 8(b2−6)
(b2−3)(b2+3)(2b1+b2+3)(2b1+3b2−9)

1
2

(
2
√
7−1

)
2−
√
7 4

243
(−10+7

√
7) 2

4.10
2(3b1+2b2+24)

(b2+3)(−b1+b2−3)(b1+b2+3)(2b1+3b2−9)
2.19488194 −0.760489 0.142613 4

4.11 − b1−12(b2+4)
(b1+6)(b2+3)(b1−2b2−3)(b1+3b2−3)

−2.8546585 −0.17276 0.156243 4

4.12 − 5b1−7b2+24
(b2+3)(b1−2b2+3)(b1−b2+3)(b1+b2−6)

1.8379935 −0.95469 0.0974795 4

4.13 − 2(b1−7b2−36)
(b2+3)(b1−b2−6)(2b1+b2+3)(b1+3b2−6)

1.2608787 −0.21349 0.184633 4

4.14 − 8b1−11b2+39
(b2+3)(b1−2b2+3)(b1−b2+3)(2b1+b2−9)

0.8345102 −0.93610217 0.120498 4

4.15 − 18−4b2
(b2−3)(b2+3)(−b1+b2−3)(b1+b2−6)

3
2

1
2

(
3−
√
21

)
4

225
(−27+7

√
21) 2

4.16 − 3(b1−15)
(b1−6)(b1+3)(b2+3)(b1+3b2−6)

3(2−
√

3) 1
2

(√
3−3

)
2

9
√

3
2

4.17 18
(b1−6)(b1+3)(b2−3)(b2+3)

3
2

0 8
81

1

4.18 − 4b1−7b2−69
(b2+3)(−2b1+b2−3)(−b1+b2+6)(b1+2b2−6)

1.20148202 −0.4914321 0.165004 4

4.19 48
(b2−3)(b2+3)(−2b1+b2−3)(−2b1+b2+9)

3
2

0 4
27

1

5.1 −
b1

2−2b1(4b2+15)+4
(
b2

2−6b2−45
)

(b1+3)(b2+3)(b1−b2+3)(b1+2b2−6)(b1−2(b2+3))
0.746501345 −0.1982794 0.17226 11

5.2 − b1
2−4b1(b2+3)+4b2

2−30b2−207
(b1+3)(b2+3)(b1−2b2+3)(b1+b2−6)(b1−2(b2+3))

1.11941442 −0.21197378 0.178752 8

5.3 − 2b1
2−4b1(b2+6)+2b2

2−3b2−171
(b1+3)(b2+3)(b1−b2−6)(b1−b2+3)(b1+2b2−6)

0.9337514 −0.449691462 0.15542 8

5.4 −
2
(
b1

2−b1(b2+3)+b2
2−3b2−99

)
(b1+3)(b2+3)(b1−2b2+3)(b1−b2−6)(b1+b2−6)

1.26614895 −0.4677020986 0.158756 3

5.5 −
3
(
b1

2−6b1+6(b2−9)
)

(b1−6)(b1+3)(b2+3)(b1−b2+3)(b1+2b2−6)
1.32269853 −0.70067002 0.136079 8

5.6 − 4b1
2+4b1(b2−3)−2b2

2+39b2−153
(b1+3)(b2+3)(b1−b2+3)(b1+b2−6)(b1+2b2−6)

1.939465 −0.8789301 0.116367 3

5.7 −
2
(
b2

2−3b2−36
)
−3b1(b2+5)

(b1+3)(b2−3)(b2+3)(b1−b2+3)(b1−2(b2+3))
2.9071583 0.6850367 0.106224 9

5.8 − −2b1(b2+6)+4b2
2−90

(b1+3)(b2−3)(b2+3)(b1−2b2+3)(b1−2(b2+3))
3.0926707 0.479773042 0.121782 7

5.9 −
6
(
b2

2+b2−18
)
−b1(b2+9)

(b1+3)(b2−3)(b2+3)(b1−3b2+3)(b1−2(b2+3))
2.97485275 0.22750743 0.135851 9

5.10 −
2
(
3b1−4b2

2−6b2+63
)

(b1+3)(b2−3)(b−2+3)(b1−4b2+3)(b1−2(b2+3))
1
4

(
9
√
57−57

)
0 143+19

√
57

1944
2

5.11 − −b1(b2+15)+b2
2+3b2−72

(b1+3)(b2−3)(b2+3)(b1−b2−6)(b1−b2+3)
2.2242667 0.26148655 0.112411 7

5.12 −
2
(
−6b1+b2

2+6b2−45
)

(b1+3)(b2−3)(b2+3)(b1−2b2+3)(b1−b2−6)
1
8

(
9
√
33−33

)
0 1

972

(
59+11

√
33

)
2

5.13 −
3
(
b2

2−2b2−39
)
−4b1(b2+6)

(b1+3)(b2−3)(b2+3)(b1−b2+3)(2b1−3(b2+3))
1.84403082 0.57573193 0.133134 9

5.14 −
6
(
b2

2+b2−24
)
−2b1(b2+9)

(b1+3)(b2−3)(b2+3)(b1−2b2+3)(2b1−3(b2+3))
1.9049613 0.28929897 0.154554 9
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5.15
3
(
4b1−3b2

2−6b2+57
)

(b1+3)(b2−3)(b2+3)(b1−3b2+3)(2b1−3(b2+3))
1
16

(
15
√
145−153

)
0 347+29

√
145

4050
2

5.16 − −24b1+b2
2+12b2−117

(b1+3)(b2−3)(b2+3)(b1−b2+3)(2b1−b2−9)
1
32

(
15
√
65−81

)
0 83+13

√
65

1350
2

6.1
6b1

2−b1

(
−4b2

2+6b2+72
)
−2b2

3+27b2
2+36b2−513

(b1+3)(b2−3)(b2+3)(b1−b2+3)(b1+b2−6)(b1−2(b2+3))
0.97912771 0 0.160827 3

6.2
b1

2((b2+9))−18b1(b2+3)+18
(
b2

2−2b2−27
)

(b1−6)(b1+3)(b2−3)(b2+3)(b1−b2+3)(b1−2(b2+3))
1.3830544 0.2588732 0.145643 17

6.3
2b1

2(b2+6)−2b1

(
2b2

2+15b2+18
)
+2b2

3+9b2
2−108b2−459

(b1+3)(b2−3)(b2+3)(b1−b2−6)(b1−b2+3)(b1−2(b2+3))
2.02070885 0.52070885 0.126977 3

6.4
6
(
b1

2−2b1b2−3b1+6b2
2+3b2−99

)
(b1−6)(b1+3)(b2−3)(b2+3)(b1−2b2+3)(b1−2(b2+3))

3
2

0 40
243

1

6.5
3
(
4b1

2−4b1(b2+3)+3
(
b2

2+2b2−51
))

(b1−6)(b1+3)(b2−3)(b2+3)(b1−b2−6)(b1−b2+3)
3
2

0 32
243

1

Table 3. Volume functions V , critical Reeb vectors b∗i and their corresponding volume minima

Vmin, with b3 = 3. In the last column, we list the degree of the extension L (of Q), where L =

Q(b∗1, b
∗
2) =Q(b∗1).

4 5 6 7 8 9 10
4

6

8

10

12

χ

1/
V
m
in

Figure 6. The red points correspond to regular Sasaki-Einstein manifolds while the quasi-regular

ones are in orange. We omit the first-grade points in the plot.

As a matter of fact, all the minimized volume functions of Sasaki-Einstein manifolds

Y are algebraic. When Vmin ∈ Q, Y is said to be regular. If Vmin ∈ Q(
√
c) (c ∈ N), viz,

quadratic irrationals, then Y is quasi-regular. In figure 6, we plot the 1/Vmin against χ,

with regular and quasi-regular Y ’s highlighted.

Fine-tuning R-charges. There are 22 Sasaki-Einstein manifolds that are neither regular

nor quasi-regular. As a result, the expressions/equations to solve the R-charges in the

main text are also in decimals which are not exact. Nevertheless, we can express the exact

R-charges in terms of roots of some polynomials. As an example, the volume function

discussed in section 4.8 is reproduced here:

V =
2(2b1 + b2 + 15)

(b2 + 3)(−b1 + b2 − 3)(b1 + b2 + 3)(b1 + 2b2 − 6)
. (B.1)

This reaches the minimum when b1 = x0 and b2 = y0, where x0 is the only positive root of

the equation

− 1296− 192x+ 100x2 + 21x3 + x4 = 0 (B.2)
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and

y0 =
−86345699328 + 342641664x0 + 4796983296x20 + 342641664x30

20558499840 + 1713208320x0
. (B.3)

Then the R-charges of the GLSM fields should satisfy

351 + 432p3p4 − 216p3p
2
4 + 171y0 − 3y20 − 7y30 − 90x0 − 12x0y0 + 6x0y

2
0 + 12x20 + 4x20y0

+
−6561− 2916y0 + 162y20 + 108y30 − 9y40

15 + 2x0 + y0
= p22(432p3 + 108p4) + p2(−864p3 + 432p23

−216p4 + 432p3p4 + 108p24) (B.4)

constrained by
4∑
i=1

pi = 2 and 0 < pi < 2, with others vanishing.

C Higgsing the parent theory

The Higgs mechanism states that by turning on a non-zero vev of a bifundamental and

integrating out the quadratic mass terms in superpotential, we would get a theory with

a different moduli space. This corresponds to removal of an edge in the brane tiling and

merger of two gauge nodes in the quiver. In terms of toric diagrams, it is easy to identify

the parent theories by blowing up/down points. For instance, (3.37) is the parent of all

the triangles and the pentagon (5.87) is the parent of all the hexagons here. As a simple

example, we consider higgsing (3.10) to the theory of dP0:

. (C.1)

The superpotential of the parent theory is

W = X1
12X25X

2
51 +X2

12X
1
23X31 +X2

23X
1
34X42 +X2

34X
1
45X53 +X2

45X
1
51X14

−X2
12X25X

1
51 −X1

12X
2
23X31 −X1

23X
2
34X42 −X1

34X
2
45X53 −X1

45X
2
51X14. (C.2)

We first give a non-zero vev to X53, viz, 〈X53〉 = 1:

W = X1
12X25X

2
51 +X2

12X
1
23X31 +X2

23X
1
34X42 +X2

34X
1
45 +X2

45X
1
51X14

−X2
12X25X

1
51 −X1

12X
2
23X31 −X1

23X
2
34X42 −X1

34X
2
45 −X1

45X
2
51X14. (C.3)

Integrating our the quadratic terms yields

W = X1
12X

3
23X

2
31 +X2

12X
1
23X

3
31 +X42X

2
23X

1
31X14

−X2
12X

3
23X

1
31 −X1

12X
2
23X

3
31 −X42X

1
23X

2
31X14. (C.4)

Finally, by turning on a vev of X42 such that 〈X42〉 = 1, the superpotential becomes

W = X1
12X

3
23X

2
31 +X2

12X
1
23X

3
31 +X2

23X
1
31X

3
12

−X2
12X

3
23X

1
31 −X1

12X
2
23X

3
31 −X1

23X
2
31X

3
12, (C.5)
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which is exactly the superpotential of the dP0 theory. In terms of quivers, we have

1

2

34

5

Merge

nodes

3&5

1

2

34

Merge

nodes

2&4

1

2

3 . (C.6)

As a matter of fact, the 45 polygons can be higgsed from a same parent theory. This

theory can be C3/(Z6×Z6) (1,0,5)(0,1,5) such that there is only one corresponding quiver

in the toric phase. It is a huge quiver with 36 nodes and 108 bifundamentals. The R-

charges of the bifundamentals are all 2/3, and hence the three GLSM fields corresponding

to the extremal points all have R-charge 2/3, with others vanishing. If we only want the

minimal parent toric diagram, then we would have C/(Z6 × Z2) (1,0,0,5)(0,1,1,0).

D More toric phases

Here, we list the toric quivers (other than those appeared in section 3–6) and the corre-
sponding superpotentials for some of the polytopes. Notice that we are not listing all the
toric quivers here (especially for those in section 5–6) as this is exhaustive. These quivers
can be obtained via Seiberg duality as discussed in section 2.2. All the triangles only have
one quiver in the toric phase (up to permutation equivalence). Different quivers of all the
quadrilaterals are tabulated in table 4.

Polytope-Phase Quiver & Superpotential

7-2 (section 4.2)

1

2

4

5

3

6

(D.1)

W = X1
12X26X

2
61 +X2

12X
1
23X31−X1

15X
2
54X41 +X2

15X56X
1
61

−X2
35X

1
54X43 +X1

35X52X
2
23−X2

12X26X
1
61−X1

12X
2
23X31

+X1
15X

2
54X41−X1

15X56X
2
61 +X1

35X
2
54X43−X2

35X52X
1
23
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8-2 (section 4.3)

2

1

35

4

6

(D.2)

W = −X1
42X

2
21X14 +X2

42X23X
2
34 +X63X

1
34X45X

2
56 +X25X

1
56X

2
62

−X1
21X16X

1
62 +X2

42X
1
21X14−X1

42X23X
1
34−X1

56X63X
2
34X45

−X25X
2
56X

1
62 +X2

21X16X
2
62

8-3 (section 4.3)

2

1

35

4

6

(D.3)

W = −X1
43X32X

2
21X14−X2

64X
1
43X36 +X1

64X45X
2
56 +X25X

1
56X

2
62

−X1
21X16X

1
62 +X2

43X32X
1
21X14 +X1

64X
2
43X36−X2

64X45X
1
56

−X25X
2
56X

1
62 +X2

21X16X
2
62

9-2 (section 4.4)

1

2

3

6

4

5

7

89

10

11

12

(D.4)

W = X2,4X4,1X1,2 +X6,7X7,5X5,6−X6,3X3,5X5,6 +X5,8X8,6X6,4X4,5

+X8,9X9,7X7,8 +X7,10X10,8X8,7 +X12,2X2,11X11,9X9,12

+X10,11X11,1X1,12X12,10−X2,4X4,5X5,2 +X2,3X3,5X5,2 +

X1,6X6,3X3,1−X1,6X6,4X4,1−X7,5X5,8X8,7−X8,6X6,7X7,8

−X7,10X10,11X11,9X9,7−X8,9X9,12X12,10X10,8−X2,11X11,1X1,2

−X1,12X12,2X2,3X3,1
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9-3 (section 4.4)

1

2

3

6

4

5

7 8

9

10

11

12

(D.5)

W = X2,4X4,1X1,2 +X6,7X7,5X5,6−X6,3X3,5X5,6 +X5,8X8,6X6,4X4,5

−X8,6X6,7X7,9X9,8 +X7,10X10,8X8,7 +X12,2X2,11X11,12

−X12,9X9,11X9,12 +X10,11X11,1X1,12X12,10−X2,4X4,5X5,2

+X2,3X3,5X5,2 +X1,6X6,3X3,1−X1,6X6,4X4,1

−X7,5X5,8X8,7−X7,10X10,11X11,7 +X7,9X9,11X11,7

+X8,12X12,9X9,8−X8,12X12,10X10,8−X2,11X11,1X1,2

−X1,12X12,2X2,3X3,1

10-2 (section 4.5)

1

2

3

10

4

9

6

5

7

8

(D.6)

W = X24X41X12 +X68X85X56−X63X35X56 +X57X76X64X45

+X10,2X29X97X7,10 +X91X1,10X10,8X89 +X16X63X31

−X16X64X41−X24X45X52 +X23X35X52−X57X7,10X10,8X85

−X68X89X97X76−X29X91X12−X1,10X10,2X23X31

10-3 (section 4.5)

1

6

2

7

3

104

9

5

8

(D.7)

W = X24X41X19X92 +X68X85X56−X63X35X56 +X57X76X64X45

+X7,10X10,2X27−X79X92X27−X19X98X81 +X1,10X10,8X81

+X16X63X31−X16X64X41−X24X45X52 +X23X35X52

−X57X7,10X10,8X85−X76X68X87 +X79X98X87

−X1,10X10,2X23X31
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10-4 (section 4.5)

1

2

6

8

3

4

9

5

7

10

(D.8)

W = X24X41X
1
12 +X68X85X56−X63X35X56 +X57X76X64X45

−X2,10X10,7X72 +X29X97X72 +X89X91X18−X8,10X10,1X18

+X16X63X31−X16X64X41−X24X45X52 +X23X35X52

−X85X57X78 +X8,10X10,7X78−X68X89X97X76−X29X91X
1
12

+X2
12X2,10X10,1−X2

12X23X31

11-2 (section 4.6)

1

2

8

4

3

5

6

7

(D.9)

W = X83X32X28 +X12X24X
1
43X31 +X35X54X

2
43−X1

43X35X56X64

−X76X68X
2
87 +X71X18X

2
87−X18X83X31−X32X24X

2
43

+X56X68X
1
87X75−X47X75X54 +X47X76X64−X1

87X71X12X28

11-3 (section 4.6)

1

2

4

8

3

5

6

7

(D.10)

W = X83X32X28 +X12X24X
1
43X31 +X35X

1
54X

2
43

+X46X
1
65X

2
54−X57X78X86X

1
65−X61X17X76 +X61X18X86

−X18X83X31−X32X24X
2
43−X1

43X35X
2
54

−X1
54X46X

2
65 +X57X76X

2
65 +X81X17X78−X81X12X28
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12-2 (section 4.7)

1

2

3

10

4

9

5

6

8

7

(D.11)

W = X13X32X21 +X24X41X12−X32X24X45X53 +X46X63X34

−X85X57X78 +X8,10X10,7X78 +X67X79X98X86

+X10,2X29X9,10 +X91X1,10X10,9−X41X13X34−X86X63X38

+X85X53X38 +X45X57X74−X46X67X74−X10,7X79X9,10

−X98X8,10X10,9−X29X91X19−X1,10X10,2X21

13-2 (section 4.8)

1

4

8

2

3

10

5

6

7

9

(D.12)

W = −X2,10X10,1X13X32 +X46X65X54−X43X35X54 +X57X74X45

+X69X97X76 +X78X86X67 +X82X2,10X10,9X98

+X10,1X18X8,10 +X13X35X51−X14X45X51 +X21X14X43X32

−X46X67X74−X65X57X76−X69X98X86−X97X78X8,10X10,9

−X18X82X21
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13-3 (section 4.8)

1

4

2

3

10 5

6

7

9

8

(D.13)

W = X10,2X23X3,10−X10,1X13X3,10 +X46X65X54−X43X35X54

+X57X74X45 +X69X97X76 +X78X86X67−X10,2X28X
2
8,10

+X10,9X98X
2
8,10 +X13X35X51−X14X45X51−X12X23X31

+X14X43X31−X46X67X74−X65X57X76−X69X98X86

−X97X78X
1
8,10X10,9 +X12X28X

1
8,10X10,1

14-2 (section 4.9)

1

4

5

23

6

8

7

(D.14)

W = X61X15X56 +X52X26X65−X26X61X13X32

+X14X42X21−X83X37X78 +X86X67X78 +X47X75X58X84

−X15X52X21 +X28X83X32−X28X84X42

−X14X47X71 +X13X37X71−X75X56X67−X86X65X58
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20-2 (section 4.15)

12

1
4

2

3

11

5

6

78

10

9

(D.15)

W = −X4,1X1,11X11,4 +X4,2X2,11X11,4 +X12,2X2,3X3,12

−X12,1X1,3X3,12 +X4,6X6,3X3,4 +X5,7X7,6X6,5

+X6,8X8,5X5,6 +X8,9X9,7X7,8 +X7,10X10,8X8,7

+X9,11X11,10X10,9 +X10,12X12,9X9,10−X11,10X10,12X12,2X2,11

+X3,5X5,4X4,1X1,3−X4,2X2,3X3,4−X5,4X4,6X6,5

−X6,3X3,5X5,6−X8,5X5,7X7,8−X7,6X6,8X8,7

−X9,7X7,10X10,9−X10,8X8,9X9,10−X12,9X9,11X11,12

+X12,1X1,11X11,12

21-2 (section 4.16)

2

1

4

9

3

8 5

6

7

(D.16)

W = X14X43X31−X32X21X13 +X35X51X13 +X48X86X64

+X56X67X74X45 +X87X79X
2
98−X82X29X

2
98−X31X19X93

+X32X29X93 +X82X21X19X
1
98−X43X35X56X64−X51X14X45

−X86X67X79X
1
98−X74X48X87

21-3 (section 4.16)

2

1

4

9

3

8

5

6

7

(D.17)

W = X14X43X31−X32X21X13 +X35X51X13 +X45X56X
2
64

−X47X76X
2
64−X82X29X97X78−X31X19X93 +X32X29X93

+X82X21X19X98−X43X35X56X
1
64−X51X14X45−X98X86X69

+X97X76X69 +X47X78X86X
1
64
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21-4 (section 4.16)

2 1

4

9 3

8 5

6

7

(D.18)

W = X14X43X31−X32X21X13 +X35X51X13 +X45X56X
2
64

−X47X
1
76X

2
64 +X28X87X72−X29X97X72−X31X19X93

+X32X29X93−X28X89X92 +X21X19X92−X43X35X56X
1
64

−X51X14X45 +X97X
1
76X68X89 +X1

64X47X
2
76 +X68X87X

2
76

22-2 (section 4.17)

3
1

11

2

6

4

5

12

8

7

9

10

(D.19)

W = −X12,11X11,1X1,12 +X12,11X11,10X10,12 +X11,4X4,12X12,9X9,11

+X3,5X5,2X2,3−X3,1X1,2X2,3 +X2,6X6,3X3,4X4,2

+X8,10X10,7X7,5X5,8 +X7,9X9,8X8,6X6,7 +X11,1X1,2X2,11

−X11,4X4,2X2,11−X3,4X4,12X12,3 +X3,1X1,12X12,3

−X5,2X2,6X6,7X7,5−X6,3X3,5X5,8X8,6−X10,7X7,9X9,11X11,10

−X9,8X8,10X10,12X12,9

22-3 (section 4.17)

3

1

11

2

6

45

12

8

7

9

10

(D.20)

W = −X12,11X11,1X1,12 +X12,11X11,10X10,12 +X11,4X4,12X12,9X9,11

+X3,5X5,2X
1
2,3−X3,1X1,2X

1
2,3 +X3,4X4,2X

2
2,3

−X3,6X6,2X
2
2,3 +X8,10X10,7X7,5X5,8 +X7,9X9,8X8,7

−X7,6X6,8X8,7 +X11,1X1,2X2,11−X11,4X4,2X2,11

−X3,4X4,12X12,3 +X3,1X1,12X12,3−X7,5X5,2X2,7

+X7,6X6,2X2,7 +X3,6X6,8X8,3−X3,5X5,8X8,3

−X10,7X7,9X9,11X11,10−X9,8X8,10X10,12X12,9
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22-4 (section 4.17)

3

1

11

2

6

45

12

8

7

910

(D.21)

W = −X1
12,11X11,1X1,12 +X1

12,11X11,10X10,12 +X11,4X4,12X
2
12,11

−X11,9X9,12X
2
12,11 +X3,5X5,2X

1
2,3−X3,1X1,2X

1
2,3

+X3,4X4,2X
2
2,3−X3,6X6,2X

2
2,3 +X8,10X10,7X7,5X5,8

−X7,6X6,8X8,9X9,7 +X11,1X1,2X2,11−X11,4X4,2X2,11

−X3,4X4,12X12,3 +X3,1X1,12X12,3−X7,5X5,2X2,7

+X7,6X6,2X2,7 +X3,6X6,8X8,3−X3,5X5,8X8,3

−X11,10X10,7X7,11 +X11,9X9,7X7,11 +X8,9X9,12X12,8

−X8,10X10,12X12,8

22-5 (section 4.17)

3

1

11

2

6

4

5

12

87

9

10

(D.22)

W = −X12,11X11,1X1,12 +X12,11X11,10X10,12 +X11,4X4,12X12,9X9,11

+X3,5X5,2X2,3−X3,1X1,2X2,3 +X2,6X6,3X3,4X4,2

+X5,8X8,10X10,5−X5,7X7,10X10,5−X9,7X7,6X6,9

+X9,8X8,6X6,9 +X11,1X1,2X2,11−X11,4X4,2X2,11

−X3,4X4,12X12,3 +X3,1X1,12X12,3−X5,2X2,6X6,5

+X5,7X7,6X6,5−X6,3X3,5X5,8X8,6 +X10,9X9,7X7,10

−X10,9X9,11X11,10−X9,8X8,10X10,12X12,9

– 124 –



J
H
E
P
0
6
(
2
0
2
0
)
1
6
1

22-6 (section 4.17)

3

1

11

2

6

4

5

12

8

7

910

(D.23)

W = −X12,10X10,11X11,1X1,12 +X11,4X4,12X12,9X9,11 +X3,5X5,2X2,3

−X3,1X1,2X2,3 +X2,6X6,3X3,4X4,2−X8,7X7,10X10,8

+X8,7X7,5X5,8 +X7,9X9,8X8,6X6,7 +X11,1X1,2X2,11

−X11,4X4,2X2,11−X3,4X4,12X12,3 +X3,1X1,12X12,3

−X5,2X2,6X6,7X7,5−X6,3X3,5X5,8X8,6 +X7,10X10,11X11,7

−X7,9X9,11X11,7 +X12,9X9,8X8,12−X12,10X10,8X8,12

22-7 (section 4.17)

3

1

11 2

6

4

512

8

7

910

(D.24)

W = −X12,10X10,11X11,1X1,12 +X11,4X4,12X12,9X9,11

−X3,1X1,2X2,5X5,3 +X2,6X6,3X3,4X4,2−X8,5X5,7X7,10X10,8

+X7,9X9,8X8,6X6,7 +X11,1X1,2X2,11−X11,4X4,2X2,11

−X3,4X4,12X12,3 +X3,1X1,12X12,3 +X2,5X5,7X7,2

−X2,6X6,7X7,2−X8,6X6,3X3,8 +X8,5X5,3X3,8

+X7,10X10,11X11,7−X7,9X9,11X11,7 +X12,9X9,8X8,12

−X12,10X10,8X8,12
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23-2 (section 4.18)

1

2

5

4 6

7

3

(D.25)

W = X15X54X41 +X24X43X31X
1
12−X37X76X63

+X37X75X53−X1
27X75X56X62 +X71X

2
12X

1
27

−X31X15X53−X2
12X24X41−X54X43X35

+X56X63X35 +X2
27X76X62−X2

27X71X
1
12

24-2 (section 4.19)

4

1

8

2

3

7

5

6

(D.26)

W = −X82X23X38 +X81X13X38−X41X17X74 +X42X27X74

+X57X76X63X35 +X68X85X54X46 +X34X41X13−X34X46X63

−X42X23X35X54−X85X57X78 +X81X17X78−X76X68X82X27

24-3 (section 4.19)

4

1

8

2

3

7

5

6

(D.27)

W = −X82X23X38 +X81X13X38−X41X17X74 +X42X27X74

−X75X53X37 +X76X63X37 +X46X68X84−X45X58X84

+X34X41X13−X34X46X63−X42X23X34 +X45X53X34

+X81X17X75X58−X76X68X82X27

Table 4. The remaining toric phases of quadrilaterals.
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We also give three examples of pentagons in table 5–7.

Quiver & Superpotential

6

1

7

2

3

4 5

(D.28)

W = X71X15X57 −X74X
2
45X57 +X53X

2
34X

1
45 +X1

34X42X
2
23

+X71X12X
1
23X36X67 −X2

23X36X61X12 +X61X15X56

−X67X74X
1
45X56 −X2

45X53X
1
34 −X2

34X42X
1
23

1

6

72 3

4

5

(D.29)

W = −X74X
2
45X

1
57 +X53X

2
34X

1
45 +X1

34X42X
2
23 +X71X12X

1
23X37

−X76X63X37 −X12X
2
23X31 +X16X63X31 −X16X65X

1
57X71

+X76X65X
2
57 −X74X

1
45X

2
57 −X2

45X53X
1
34 −X2

34X42X
1
23

1

6

7

2

3

4

5

(D.30)

W = X17X74X
2
41 −X15X

2
54X

2
41 −X35X

1
54X42X

1
23 +X36X67X72X

1
23

+X21X16X62 −X16X67X74X
1
41 +X15X

1
54X

1
41 +X42X

2
23X35X

2
54

−X2
23X36X62 −X72X21X17
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6

1

7

23

4 5

(D.31)

W = X1
17X74X

2
45X51 +X53X

2
34X

1
45 +X37X76X63 −X37X72X

1
23

−X26X61X
1
17X72 +X2

17X76X61 −X2
17X74X

1
45X51 −X2

45X53X
1
34

−X2
34X42X

1
23 +X26X63X

1
34X42

1

6

7

2

3

4 5

(D.32)

W = −X14X47X71 +X14X
2
45X51 +X53X

2
34X

1
45 +X1

34X42X
2
23

+X2
62X

1
23X36 −X2

62X27X76 −X1
45X51X16X64 +X47X76X64

−X2
45X53X

1
34 −X2

34X42X
1
23 −X2

23X36X
1
62 +X27X71X16X

1
62

Table 5. The remaining toric phases of (5.2) in section 5.1.

Quiver & Superpotential

2

1

3

4

75

6

(D.33)

W = −X62X21X16 +X62X23X37X
1
76 −X31X15X

1
52X23 +X24X

2
45X

1
52

+X57X
2
76X64X

1
45 +X2

52X21X15 −X2
52X24X

1
45 −X2

45X57X
1
76X64

−X37X
2
76X63 +X31X16X63
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4

57

6

(D.34)

W = X61X12X27 −X73X32X27X
1
76 −X12X24X

1
45X53X31

+X24X
2
45X53X32 +X57X

2
76X64X

1
45 −X2

45X57X
1
76X64

−X2
76X61X17 +X73X31X17

1

2

3

4

5

7 6

(D.35)

W = X61X12X23X37X
1
76 +X35X51X13 −X23X35X

2
54X

2
42

+X57X
2
76X

1
65 +X1

54X46X
1
65 −X51X12X25 +X1

54X42X25

+X2
54X46X

2
65 −X57X

1
76X

2
65 −X2

76X61X13X37

1

2

3

4

5

7

6

(D.36)

W = −X16X
1
67X

1
71 +X12X23X37X

1
71 +X35X51X13 +X24X

2
45X52

+X1
45X57X

2
74 −X46X

2
67X

2
74 −X23X35X52 −X51X12X24X

1
45

−X2
45X57X

1
74 +X46X

1
67X

1
74 −X13X37X

2
71 +X16X

2
67X

2
71
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6
1

2 1

3

47

5 6

(D.37)

W = −X16X
1
67X

1
71 +X2

13X32X21 −X2
13X37X

1
71 −X42X25X57X

1
74

+X45X57X
2
74 −X46X

2
67X

2
74 +X32X25X51X

1
13 −X45X51X14

+X42X21X14 +X46X
1
67X

1
74 −X1

13X37X
2
71 +X16X

2
67X

2
71

1

2

3

4

5

7

6

(D.38)

W = −X16X
1
67X71 +X71X12X27 −X73X32X27 −X53X31X12X24X

1
45

+X1
45X57X

2
74 −X46X

2
67X

2
74 +X24X

2
45X53X32 −X2

45X57X
1
74

+X46X
1
67X

1
74 +X16X

2
67X73X31

1

2

3 4

5

76

(D.39)

W = X61X12X23X
1
36 −X1

67X73X
1
36 +X35X51X13 +X24X

2
45X52

−X2
56X

2
67X75 +X2

56X64X
1
45 −X23X35X52 −X51X12X24X

1
45

−X64X
2
45X

1
56 +X1

67X75X
1
56 +X2

67X73X
2
36 −X61X13X

2
36
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(D.40)

W = X1
36X61X

2
13 −X32X21X

2
13 −X1

67X73X
1
36 −X42X25X

1
56X64

−X2
56X

2
67X75 +X2

56X64X
1
45 +X32X25X51X

1
13 −X1

45X51X14

+X42X21X14 +X1
67X75X

1
56 +X2

67X73X
2
36 −X61X

1
13X

2
36

1

2

3

4

5

76

(D.41)

W = X61X12X23X
1
36 −X1

67X73X
1
36 +X35X51X13 +X23X35X

2
54X42

−X54X46X
2
67X75 −X51X12X25 +X54X

1
42X25 +X1

67X75X54X46

+X2
67X73X

2
36 −X61X13X

2
36

Table 6. The remaining toric phases of (5.12) in section 5.2.

Quiver & Superpotential

2

1

4

3

8

5

6

7

(D.42)

W = −X32X
1
21X13 +X35X51X13 +X56X67X74X45 +X48X86X64

+X87X71X
2
18 −X82X

2
21X

2
18 +X14X43X32X

2
21 −X43X35X56X64

−X51X14X45 −X86X67X71X
1
18 +X82X

1
21X

1
18 −X74X48X87
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(D.43)

W = −X32X
1
21X15X53 −X65X54X46 +X67X74X46 +X48X86X64

+X87X71X
2
18 −X82X

2
21X

2
18 −X64X43X36 +X65X53X36

+X15X54X43X32X
2
21 −X86X67X71X

1
18 +X82X

1
21X

1
18

−X74X48X87

2

1

4

3

8

5

6

7

(D.44)

W = −X32X
1
21X13 +X35X51X13 −X57X76X65 +X57X74X45

−X46X68X
1
87X74 +X1

87X71X
2
18 −X82X

2
21X

2
18 +X14X43X32X

2
21

−X43X35X54 +X46X65X54 −X51X14X45 +X2
87X76X68

−X2
87X71X

1
18 +X82X

1
21X

1
18

2

1

4

3

8

5

6

7

(D.45)

W = −X32X
1
21X13 +X35X51X13 +X45X56X

2
64 −X47X76X

2
64

−X82X
2
21X17X78 +X14X43X32X

2
21 −X43X35X56X

1
64

−X51X14X45 −X18X86X61 +X17X76X61 +X82X
1
21X18

+X47X78X86X
1
64
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85

4
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7

(D.46)

W = X1
12X23X

2
31 −X15X53X

2
31 −X65X54X46 +X67X74X46

+X48X86X64 +X71X
2
12X28X87 −X2

12X23X
1
31 −X43X35X54

+X46X65X54 +X15X54X43X
1
31 −X86X67X71X

1
12X28

−X74X48X87

1

2

4

3

8

5

6 7

(D.47)

W = X23X35X51X
1
12 +X14X43X31 −X57X76X65 +X57X74X45

−X1
87X74X46X68 +X71X

2
12X28X

1
87 −X2

12X23X31 −X43X35X54

+X46X65X54 −X51X14X45 +X2
87X76X68 −X2

87X71X
1
12X28

1

2

3

8

5

4

6

7

(D.48)

W = −X25X53X32 +X25X51X12 −X13X34X45X51 −X57X76X65

+X57X74X45 −X1
87X74X46X68 +X13X32X28X

1
87X71

+X46X65X53X34 +X2
87X76X68 −X2

87X71X12X28
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(D.49)

W = X23X35X51X
1
12 +X14X43X31 +X57X74X45 +X1

78X86X67

−X74X46X67 +X71X
2
12X27 −X1

78X82X27 −X2
12X23X31

−X43X35X54 +X46X65X54 −X51X14X45 −X2
78X86X65X57

+X81X17X
2
78 −X81X

1
12X28

1

2

4

3

8

5

6

7

(D.50)

W = X23X35X51X
1
12 +X14X43X31 +X45X56X

2
64 −X47X76X

2
64

−X17X78X81 +X2
12X28X81 −X2

12X23X31 −X43X35X56X
1
64

−X51X14X45 −X1
12X28X86X61 +X17X76X61 +X47X78X86X

1
64

1

2

3

8

5

4

6

7

(D.51)

W = −X25X53X32 +X25X51X12 −X13X34X
1
45X51 +X1

45X56X
2
64

−X47X76X
2
64 −X17X78X81 +X13X32X28X81 +X45X53X34

−X45X56X
1
64 −X12X28X86X61 +X17X76X61 +X47X78X86X

1
64
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(D.52)

W = X1
12X23X

2
31 −X15X53X

2
31 −X47X76X65X54 −X17X78X81

+X2
12X28X81 −X2

12X23X
1
31 −X64X43X36 +X63X53X36

+X15X54X43X
1
31 −X1

12X28X86X61 +X17X76X61

+X47X78X86X64

1

2

3

8

5

4

6

7

(D.53)

W = X23X35X51X
1
12 +X14X43X31 −X43X35X56X68X84

+X71X
2
12X27 −X78X82X27 −X2

12X23X31 −X51X14X45

+X68X82X26 −X67X71X
1
12X26 +X78X84X45X56X67

Table 7. The remaining toric phases of (5.22) in section 5.3.
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