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ABSTRACT
The linear equations of thermal convection in a compressible fluid
with non-constant transport coefficients are derived. The criterion
for the onset of convection is established, based on linear stability
analysis, for a range of different temperature-dependent profiles of
thermal conductivity and viscosity. Temperature-dependent trans-
port coefficients are shown to lead toamore complexbehaviour than
their constant counterparts, and modifies the stability condition of
the fluid. When the Rayleigh number is defined in terms of the mid-
layer physical properties and the temperature gradient at the top is
held constant, increasing the temperature-dependence of thermal
conductivity is found to raise the critical Rayleigh number dramati-
cally, as the convective disturbance is then concentrated mainly at
the top of the layer. In contrast, for viscosity a more subtle effect on
stability is identified.
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1. Introduction

High-resolution observations of the solar surface are continually revealing a variety of
multi-scale magnetic features (e.g. Harrison 2008, Wiegelmann et al. 2014). In order
to explain these observed structures and activities, research has been conducted over
many years, and it is known that the dynamics in the convection zone significantly con-
tribute to what is observed on, and above, the surface of the Sun (e.g. Galloway and
Weiss 1981, Cattaneo et al. 2003, Weiss and Proctor 2014).

In order to understand convection in stellar interiors, such as in the Sun, extensive stud-
ies have been carried out to explore convective instabilities (see, e.g. Goody 1956, Chan-
drasekhar 1961, Jones and Moore 1978, Zappoli et al. 2014). However, the formalism
of most models introduced simplifying mathematical assumptions to reduce the com-
plexity of the problem considerably and employ analytical methods, in order to provide
a preliminary exploration of the physical processes. Many have utilised the Boussinesq
approximation, in which density variations are neglected in the governing equations,
except when the gravitational force is considered (see particularly Boussinesq 1903, Spiegel
and Veronis 1960).
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In some astrophysical and geophysical systems, particularly in stars like the Sun, the
inevitable large length-scales result in substantial density variations through the deep con-
vective layer. Therefore, the Boussinesq approach is an oversimplication to explore the
many scale heights of solar convection. Spiegel (1965) constructed the linearised system for
a fully compressible medium, to determine the onset of steady convection, and provide an
insight into the non-linear evolution of compressible convection. However despite incor-
porating compressibility, simplifying assumptions regarding the transport coefficients still
remained. In this paper, as in others (see, e.g. Gough et al. 1976, Calkins et al. 2014, Liu
and Sun 2019), the thermal conductivity and viscosity are taken spatially uniform, and
independent of the thermodynamic variables. In some situations, it may be acceptable to
consider such approximations, e.g. if the vertical extent of temperature is sufficiently small.
But generally, the transport coefficients are not constant and depend on both the magnetic
field and temperature (Priest 1982, Spitzer 2006). For a fully ionised plasma, both viscosity
and thermal conductivity are dominantly proportional to T5/2. Thus, dependency will be
important for calculations where there is a large temperature difference between the top
and bottom of the domain as in the solar convection zone, and there is the potential for
complex local dynamics.

Few attempts have been undertaken in order to understand the effect of non-constant
transport coefficients in linear studies of convection, in a compressible atmosphere. Vick-
ers (1971) considered a position-dependent viscosity and a conductivity thatwas a function
of temperature, which was later extended by Graham andMoore (1978). Appropriate non-
constant transport coefficients have been shown in some contexts to significantly alter the
stability threshold of a convecting fluid (Glatzmaier and Gilman 1981, Drew et al. 1995).
Here we will explore the effect of non-constant transport coefficients for a fully compress-
ible fluid by deriving the hydrodynamic equations for marginal stability to incorporate the
temperature-dependent thermal conductivity and viscosity in an arbitrary form that will
allow employing the temperature relations outlined in Spitzer (2006). Linear stability anal-
ysis will be conducted to investigate the stability threshold of a fully compressible stratified
system.

This paper will proceed as follows: Sections 2 and 3 outline the model, numerical
approach, and parameter selection. Section 4 discusses the results and this is followed by
the conclusions in section 5.

2. Derivation of linear stability equations

A three-dimensional domain in a Cartesian geometry is considered, with the x and y
coordinates representing the horizontal directions, and the z-axis pointing vertically down-
wards, parallel to the constant gravitational force, g. In dimensional form, the set of
equations for the evolution of a compressible hydrodynamic system are

∂ρ

∂t
+ ∇ · (ρu) = 0, (1a)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + ρgẑ + ∇ · (μτ ), (1b)

ρcv
(

∂T
∂t

+ (u · ∇)T
)

= −p∇ · u + ∇ · (
K∇T

) + 1
2μτ 2. (1c)
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We also have

p = R∗ρT, (2a)

where R∗ is the gas constant, and the viscous stress tensor

τij = ∂ui
∂xj

+ ∂uj
∂xi

− 2
3

∂uk
∂xk

δij. (2b)

In the above equations, ρ is the fluid density, p is the pressure, and T is the temperature.
The transport coefficients, K and μ are assumed functions of temperature, and take the
following form

K = K0
(
T/T∗

)q, μ = μ0
(
T/T∗

)r, (3a,b)

where T∗, K0, and μ0 are the reference temperature, thermal conductivity, and viscosity
respectively, taken to be the value at the top of the domain. The indices q and r for a fully
ionised hydrogen plasma are q = 2.5 and r = 2.5 (Priest 1982, Spitzer 2006). Here, the
indices are assumed constants that will be varied.

Let ρ = ρ0 + ρ′, T = T0 + T′, u = u0 + u′, and p = p0 + p′, where ρ0, T0, u0, and p0
are the static solutions of the governing equations and ρ ′,T′, u′, and p′ are to have infinites-
imal amplitudes. Assuming a basic state where u0 = 0, T = T0(z), and ρ = ρ0(z), we
obtain

dp0
dz

= gρ0, K
dT0

dz
= const., p0 = R∗ρ0T0. (4a–c)

The evolution equations for the perturbed quantities are derived by inserting the decom-
posed variables and linearising. Hence, we obtain

∂ρ′

∂t
+ ρ0∇ · u′ + w′ ∂ρ0

∂z
= 0, (5a)

ρ0
∂u′

∂t
= −R∗ρ′∇T0 − R∗ρ0∇T′ − R∗T′∇ρ0 − R∗T0∇ρ′

+ ρ′gẑ + μ0

Tr∗
∇ · (Tr

0τ
′), (5b)

ρ0cv
∂T′

∂t
+ ρ0cvw′ dT0

dz
= −R∗ρ0T0∇ · u′ + K0

Tq
∗
∇2(Tq

0T
′), (5c)

where τ ′ is the stress tensor for the perturbed component of the velocity.
To obtain non-dimensional form of the equations, the unit of length is scaled by the

depth of the layer, d, density and temperature are scaled by their initial values at the upper
surface, ρ∗ and T∗ respectively. Velocity is scaled by the sound travel time across the layer
in terms of the isothermal sound speed,

√
R∗T∗, and is related to the unit of time d/

√
R∗T∗.
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Thus,

∂ρ′

∂t
+ ρ0∇ · u′ + w′ ∂ρ0

∂z
= 0, (6a)

ρ0
∂u′

∂t
= −ρ′∇T0 − ρ0∇T′ − T′∇ρ0 − T0∇ρ′

+ ρ′ dT0

dz
∣∣∗(m + 1)ẑ + σCk∇ · (Tr

0τ
′), (6b)

ρ0
∂T′

∂t
+ ρ0w′ ∂T0

∂z
= −(γs − 1)ρ0T0∇ · u′ + γsCk∇2(Tq

0T
′), (6c)

where m = −1 + g/R∗(dT0/dz)|∗ is the polytropic index, σ = μ0cp/K0 is the Prandtl
number, Ck = K0/ρ∗cpd

√
R∗T∗ is the dimensionless thermal diffusivity, and γs = cp/cv

is the ratio of specific heats.
Each perturbed quantity can be expressed in the form f (z) exp(ikx + ily + st), where

k, l ∈ R are the horizontal wavenumbers, s = sr + isi ∈ C with sr being the growth
rate of the instability, and f describes the variation of the disturbances across the
layer. To simplify the problem further, Squire’s transformation can be applied to
reduce the three-dimensional problem to an equivalent two-dimensional problem (see,
e.g. Squire 1933, Drazin and Reid 2004). Thus, (6a–c) are reduced to an equivalent
two-dimensional problem

sρ′ = −iku′ρ0 − D(w′ρ0), (7a)

ρ0su′ = −ρ0ikT′ − T0ikρ′

+ σCkTr
0
(
D2u′ + 1

3 ikDw
′ − 4

3k
2u′) + rσCkTr−1

0 DT0(Du′ + ikw′), (7b)

ρ0sw′ = −D(T0ρ
′) − D(ρ0T′) + ρ′DT0|∗(m + 1)

+ σCkTr
0
( 4
3D

2w′ + 1
3 ikDu

′ − w′k2
) + rσCkTr−1

0 DT0
( 4
3Dw

′ − 2
3 iku

′), (7c)

ρ0sT′ = −ρ0w′DT0 − (γs − 1)ρ0T0(iku′ + Dw′) + γsCk(−k2 + D2)(Tq
0T

′), (7d)

in which D ≡ d/dz. The system (7a–d) can be written in the form sf = Af, where the
vector f = [ρ′, u′,w′,T′]T is the solution vector containing the eigenfunctions, and A is a
4 × 4 matrix that consists of linear differential operators in z. Equations (7a–d) are solved
numerically by dividing the layer depth 0 ≤ z ≤ d into n uniformly distributed points,
and the differential operators are approximated using a central fourth-order finite differ-
ence approximation. The method we use is adapted from the general method discussed
in Favier et al. (2012) and Witzke et al. (2015), where the Schur factorisation is utilised to
determine the eigenvalues and eigenvectors.

3. Boundary conditions, initial conditions, and parameter choices

We will employ impermeable, stress-free velocity and constant temperature boundary
conditions on the top and bottom boundaries

∂u′

∂z
= ∂v′

∂z
= w′ = 0 at z = 0 and z = d, (8a)
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Figure 1. The background thermal profile (left) and density profile (right) for q = 0.5 (top panel) and
q = 2 (bottom panel), when θ = m = d = 1.

T0 = T∗, T′ =0 at z = 0, (8b)

T0 = T∗(1 + θ), T′ =0 at z = d, (8c)

where θ = 	T/T∗ is the temperature stratification. The equilibrium temperature and
density distributions are given by

T0(z) = T∗
((

(1 + θ)q+1 − 1
) z
d

+ 1
)1/(q+1)

, (9a)

ρ0(z) = ρ∗
((

(1 + θ)q+1 − 1
) z
d

+ 1
)−1/(q+1)

× exp
{
d(m + 1)

qT∗

[((
(1 + θ)q+1 − 1

) z
d

+ 1
)q/(q+1)

− 1
]}

, (9b)

respectively. The background density and temperature profiles vary depending on the val-
ues of q and is unaffected by r since viscosity, in this case, does not modify the basic state.
Figure 1 illustrates the differences in the initial temperature and density profiles for two q
values.
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Table 1. Parameter values.

Parameter Description Value

σ Prandtl number 1.0
Ck Thermal diffusivity Variable
θ Thermal stratification 1.0
γs Ratio of specific heats 5/3
m Polytropic index Variable
q Thermal conductivity index Variable
r Viscosity index Variable
d Vertical depth of layer 1.0

For this preliminary investigation, our principal objective is to understand the gen-
eral influence of non-constant transport coefficients on stability. We choose to present our
survey of critical values of instability by setting the thermal diffusivity, Ck, as the control
parameter and fixing the thermal stratification, θ , and the Prandtl number, σ , to unity in
all cases while the variable parameters are the polytropic index, m, thermal conductivity
index, q, and viscosity index, r. A summary of the input parameters is shown in table 1.

The resolution for this problem has been carefully selected and tested for the results
quoted in this work. Due to the large density contrast, as q increases, we are limited by
our choices of q since it requires more n-points than computational resources allow. For
example, for q = 2.5 andm = 1.0, the system remains under-resolved for n = 3000.

4. Results

Here we focus attention on the stability threshold while we vary the characteristics of the
transport coefficients. Equations (7a–d) are solved numerically for a range of wavenum-
bers, with stability threshold solutions discussed in terms of the critical Rayleigh number,
in addition to the thermal diffusivity, for varying polytropic index, thermal conductivity
index, and viscosity index. The definition of Vickers (1971) for the Rayleigh number is

Ra =
(
dT1

dz

)
ρ2
1gcpd

4

T1K1μ1
, (10)

where the subscript 1 refers to the value of the variable evaluated at a level within the
layer. Note that the form (10) of the Rayleigh number differs slightly from Spiegel (1965),
where constant transport coefficients are considered. However, to enable direct compar-
isons between constant and non-constant transport coefficients, through varying q and r,
the definition (10) of the Rayleigh number is modified to

Ra =
(
dT1

dz
− g

cp

)
ρ2
1gcpd

4

T1K1μ1
, (11)

as in Spiegel’s definition of the Rayleigh number, such that the superadiabatic tempera-
ture gradient is included. The Rayleigh number is depth-dependent and so, we follow the
common convention of expressing Ra in terms of the mid-layer value for all cases (see,
e.g. Brandenburg et al. 1990, Hurlburt et al. 1994).

To determine the critical Rayleigh number, Rac, the eigenvalue problem is solved, such
that the most unstable mode is found for each parameter regime. By setting the indices of
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Table 2. The critical Rayleigh number, Rac , and critical wavenumber, kc , for a range of q andm, for fixed
r = 0.

Rac (kc)

q m = 0.1 m = 0.25 m = 0.5 m = 1.0 m = 1.3

0 664.90 (2.20) 674.79 (2.20) 690.30 (2.20) 728.40 (2.20) 747.56 (2.20)
0.001 665.22 (2.20) 674.65 (2.20) 691.20 (2.20) 729.00 (2.20) 751.56 (2.20)
0.01 669.31 (2.20) 679.45 (2.20) 697.60 (2.20) 744.20 (2.20) 789.82 (2.20)
0.1 712.77 (2.20) 731.00 (2.20) 770.00 (2.20) 916.80 (2.20) 1554.72 (2.20)
0.5 994.67 (2.20) 1086.25 (2.20) 1347.20 (2.20) 12350.20 (2.89) 1884433.52 (10.10)
1.0 1828.40 (2.20) 2429.00 (2.20) 6980.80 (2.39) 854356.80 (8.40) 97909022.64 (26.00)
1.5 6166.16 (2.39) 20463.50 (3.39) 140300.80 (5.59) 14391648.84 (16.39) *
2.0 66514.00 (4.59) 207128.00 (6.09) 1466010.40 (9.59) 162759215.00 (28.00) *
2.5 518030.24 (7.59) 1704571.50 (10.00) 12956050.00 (16.00) * *

Notes: Values presented here are rounded to two decimal places. The asterisk (*) represents unachieved values due to
computational limitations.

Table 3. The critical Rayleigh number, Rac , and critical wavenumber, kc , for a range of r andm, for fixed
q = 0.

Rac (kc)

r m = 0.1 m = 0.25 m = 0.5 m = 1.0 m = 1.3

0 664.90 (2.20) 674.79 (2.20) 690.30 (2.20) 728.40 (2.20) 747.56 (2.20)
0.001 664.93 (2.20) 674.79 (2.20) 690.86 (2.20) 728.43 (2.20) 748.25 (2.20)
0.01 666.80 (2.20) 676.27 (2.20) 692.74 (2.20) 728.43 (2.20) 750.32 (2.20)
0.1 690.30 (2.20) 700.01 (2.20) 718.38 (2.20) 750.76 (2.20) 773.72 (2.20)
0.5 795.57 (2.20) 806.14 (2.20) 823.66 (2.20) 862.84 (2.20) 888.91 (2.20)
1.0 958.10 (2.20) 969.72 (2.20) 991.47 (2.20) 1033.04 (2.20) 1060.16 (2.20)
1.5 1160.48 (2.20) 1172.75 (2.20) 1195.79 (2.20) 1241.93 (2.20) 1272.86 (2.39)
2.0 1421.55 (2.20) 1428.60 (2.20) 1451.70 (2.20) 1502.70 (2.39) 1535.72 (2.39)
2.5 1739.67 (2.20) 1749.28 (2.20) 1774.14 (2.20) 1829.30 (2.20) 1864.62 (2.39)

Note: Values presented here are rounded to two decimal places.

the transport coefficients to zero, we reduce the problem to the constant thermal conductiv-
ity and viscosity case. Therefore, part of our results can be compared toGough et al. (1976).
For each fixedm, the critical Rayleigh number Rac and associated critical wavenumber kc
are found and presented in table 2 for varying q and fixed r = 0, and in table 3 for varying
r and fixed q = 0, such that for Ra > Rac convection will ensue. As values of Ra become
larger than Rac, the band of wavenumbers k, in which perturbation grows, expand. Note,
the system initiates close to the Boussinesq limit for stability of Rac = 27π4/4, since the
density variation is minimal for smallm, q, and r.

Here we are focused on discovering how Rac behaves with varying q and r. The quan-
titative indication of our results reveals the stabilisation of the compressible medium as
both q reaches the Spitzer q value, 2.5, in table 2, and r reaches the Spitzer r value, 2.5,
in table 3. However, stabilisation is more effective as q is increased. This remark mainly
lies in the effect of the large density stratifications created by increasing q. In other words,
the substantial increase in Ra is primarily due to changes in the depth-varying back-
ground temperature profile as the exponent q is varied. Increasing q greatly reduces the
superadiabatic gradient near the bottom boundary which consequently enhances density
stratification. In agreement with the results of Gough et al. (1976) and Calkins et al. (2014),
increasing stratification is found to lead to a growth in the critical Rayleigh number.
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Althoughwe chose to fix the thermal stratification to unity as we first and foremost want
to focus on q and r variation, we have conducted some additional cases to examine how
varying the thermal stratification influences the onset of convection. Given the particu-
lar choice of m = 0.5, q = 0.1, and r = 0, the critical Rayleigh numbers (wavenumbers)
are 708.47 (2.2), 896.33 (2.2), 1267.54 (2.39), and 1826.57 (2.39) for θ = 0.5, 2, 5, and 10,
respectively and so we find that increasing the thermal stratification is found to enhance
the stability of the system.

The plots in figure 2 illustrates how variations in q (for fixed r) and r (for fixed q) influ-
ence themarginal stability for convection in terms of the thermal diffusivity,Ck, for a range
of polytropic indices,m. By employing a logarithmic scale, we notice a decrease in Ck with
increasing q. The onset of instability becomes significantly smaller as q grows, which leads
to an increase in the critical Rayleigh values (as shown in table 2). It was not possible to
determine the critical Ra values for large q at largem due to computational limitations.

When varying viscosity through the parameter r, an almost linear decrease in the value
of Ck for onset of instability was found in figure 2 for different values of the polytropic
index. Generally, as the polytropic index reaches the adiabatic limit, the system becomes
more stable, and so the thermal diffusivity required for onset of the instability is expected to
decrease. Interestingly, this is not true untilm reaches 0.7. This behaviour in the polytropic
index was also observed for varying thermal conductivity when q � 0.5. The thermal dif-
fusivity transition, with respect to the polytropic index, cannot be extracted directly from
tables 2 and 3, given our definition of the Rayleigh number. This is because both the
reduction of Ck and the increase of the polytropic index promotes system stability.

Profiles of the marginal eigenfunctions for the vertical velocity, temperature, and den-
sity are shown in figure 3, to provide a better insight of the local dynamical properties. The
eigenfunctions displayed in this figure are for two values of the polytropic index,m = 0.1
and m = 1, for different values of q. In the constant transport coefficient regime, where
q = 0, the shape of the temperature eigenfunctions can be seen to be parabolic in nature
with a symmetry around z = 0.5 for both m = 0.1 and m = 1. However, by increasing
q, changes in the general form of the eigenfunctions are revealed. The symmetry of the
eigenfunctions breaks and becomes skewed towards the upper boundary. This is because
the temperature gradient, as q increases, becomes steeper near the top of the layer which
therefore is prone convective instability and produces this deviation in the eigenfunctions.
Convection is driven in superadiabatic regions though it can penetrate to some extent
into the subadiabatic regions below. Using our expression for the equilibrium temperature
(equation (9a)) we can write the superadiabatic temperature gradient as

dT0

dz
− g

cp
= dT0

dz

∣∣∣∣∗
[((

(1 + θ)q+1 − 1
) z
d

+ 1
)−q/(q+1)

− 2(m + 1)
5

]
. (12)

From this expression we see that at m = 1 and q = 2 (recall θ = 1) the superadiabatic
region is confined to a thin layer near z = 0, but that for lower m and lower q it reaches
deeper into the layer. Generally, growth in temperature produces a decline in density,
which consequently causes fluid motion due to pressure and other forces when differ-
ences in density occur under the influence of gravity (Böhm-Vitense 1992, Subramanian
and Balasubramaniam 2001). This pattern can be seen in both eigenfunctions for density
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Figure 2. Onset of instability expressed in terms of the thermal diffusivity, Ck , for varying q and fixed
r = 0 (top panel) and for varying r and fixed q = 0 (bottom panel).

and velocity, where the peak height increases with increasing q. By comparing the eigen-
functions form = 0.1 andm = 1, we examine that the skewness to the top boundary has
sharper peaks for largem. Further, the eigenfunctions are zero at the bottom, and the onset
of convection takes place at a sublayer near the upper domain. This is again due to the
nature of the background density, where the system is less dense at the upper boundary
(as imposed by the boundary conditions). As the fluid becomes more dense when moving
downwards, the effect of buoyancy braking overtakes as the dominant mechanism driving
the flow, where buoyancy forces act as a brake (see, e.g. Hurlburt et al. 1986), and so lead-
ing to enhanced stability. Massaguer and Zahn (1980) and Hurlburt (1983) have reported
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Figure 3. Eigenfunctions of the perturbed temperature field (top panel), density (middle panel), and
vertical velocity (bottom panel) for polytropic indices m = 0.1 (left) and m = 1 (right), for several q
values and fixed r = 0.

that buoyancy braking is responsible for the enhancing effect of stabilisation in layers with
large density.

The perturbed temperature, density, and vertical velocity eigenfunctions for constant
and temperature-dependent viscosities, for various values of r, are depicted in figure 4. As
r is varied, the symmetry is largely maintained with increasing r and is only mildly skewed.
This is predominantly because the basic state remains almost unchanged for varying
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Figure 4. Eigenfunctions of the perturbed temperature field (top panel), density (middle panel), and
vertical velocity (bottom panel) for polytropic indices m = 0.1 (left) and m = 1 (right), for several r
values and fixed q = 0.

r, as opposed to varying q. The eigenfunctions at onset indicate that the temperature-
dependancy of viscosity through varying r enhances the temperature perturbation about
the midpoint of the layer, which accordingly attenuates density perturbations. However,
as the viscosity increases with temperature, the effect on convective instability becomes
evident. The vertical velocity eigenfunction reveals that increasing r is to inhibit the fluid
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flow, which therefore contributes to delaying the onset of convection. For largerm, a qual-
itatively comparable behaviour is observed, with the addition of the enhanced impact of
stabilisation due to density stratification.

5. Conclusions

The form of transport coefficients, dynamic viscosity and thermal conductivity, are often
simplified to be constant in stellar modelling. To explore the impact of non-constant trans-
port coefficients in themodelling of convective instabilities, a general form of the equations
governing thermal convection in a compressible polytropic atmosphere, using the Spitzer
relations for temperature-varying thermal conductivity and viscosity, were derived for the
first time and the stability of the systemwas examined using linear stability analysis for each
non-constant transport coefficient separately. The linear equations were solved numeri-
cally to determine the nature of the unstable modes, together with the structure of the
eigenfunctions.

Our investigation provides insight into the complexity introduced by non-constant
transport coefficients. Here, we focused on the conditions for instability. In all cases, the
calculated values of the critical Rayleigh number for marginal stability was found to be
consistently higher as the indices q and r were increased. For large q, the onset of con-
vection was found to require huge computational efforts, which restricted the parameter
space. Nevertheless, given that the structure of the static atmosphere was to a large extent
determined by q, increasing q was found to lead to large density stratifications, which led
to stabilising the onset of convection significantly.

For fluids with high viscosity, resulting from increasing the parameter r, the stabilising
effect was found to be weaker, in comparison to varying q. This is due to the small changes
in the distribution of the basic temperature and density profiles, as r was varied. The poly-
tropic index in all of the cases investigated in this study was shown to stabilise the system
as it reached the adiabatic limit. An interesting result is the behaviour of the thermal diffu-
sivity form<0.7, where the thermal diffusivity was observed to increase as the polytropic
index increases.

The general behaviour of the eigenfunctions for the temperature-dependent transport
coefficients revealed a far more interesting impact on the convecting fluid. This reinforces
the notion that the choice of transport coefficients can have a great influence on the over-
all dynamics of convection, and thus appropriate form of coefficients should be carefully
selected when modelling stellar interiors.
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