

City, University of London Institutional Repository

Citation: Pino, L. & Spanoudakis, G. (2012). Constructing secure service compositions

with patterns. Paper presented at the 2012 IEEE 8th World Congress on Services,
SERVICES 2012, 24 -29 June 2012, Honolulu, Hawaii. doi: 10.1109/SERVICES.2012.61

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2468/

Link to published version: https://doi.org/10.1109/SERVICES.2012.61

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Constructing Secure Service Compositions with Patterns

Luca Pino
School of Informatics

City University London
London, United Kingdom

e-mail: Luca.Pino.1@city.ac.uk

George Spanoudakis
School of Informatics

City University London
London, United Kingdom

e-mail: G.E.Spanoudakis@city.ac.uk

Abstract— In service based applications, it is often necessary to
construct compositions of services in order to provide required
functionality in cases where this is not possible through the use of
a single service. Whilst creating service compositions, it is
necessary to ensure not only that the functionality required of the
composition is achieved but also that certain security properties
are preserved. In this paper, we describe an approach to
constructing secure service compositions. Our approach is based
on the use of composition patterns and rules that determine the
security properties that should be preserved by the individual
services that constitute a composition in order to ensure that
security properties of the overall composition are also satisfied.
Our approach extends a framework developed to support the
runtime service discovery.

Software service security; secure service composition

I. INTRODUCTION
The problem of constructing service compositions has

received considerable attention in the literature (e.g.
[25][26][27]). This is because service composition is necessary
when a functionality required by a service based application
(SBA) cannot be provided by any single service.

Existing approaches focus on the generation of compositions
that provide required functional and quality of service
properties, and/or on checks of the compatibility of the
behavioural models of services that are to be composed. The
satisfaction of required functional and QoS properties are
necessary conditions for generating usable service
compositions. However, they are not sufficient when a service
composition needs also to satisfy given security properties.
Addressing security properties in service composition has not
received significant attention in the literature and – to the best
of our knowledge – existing work (e.g., [9][10]) does not offer
adequate solutions to this problem. To address this gap, in this
paper, we describe our approach to constructing secure service
compositions.

Our approach is based on the use of composition patterns
and security implication rules to determine which security
properties the individual services that constitute a composition
should have in order to ensure that security properties required
of the overall composition are satisfied. More specifically, the
composition patterns provide abstract and parametric
specifications of service workflows. Pattern specifications

describe the flows of control and data within a workflow and
preconditions determining when a pattern can be applied. The
security rules express the consequences that, particular actions
of individual services and service compositions, have on
security properties. For example, one of the rules used in our
approach expresses that if the confidentiality of the inputs to a
given activity in a workflow must be preserved and this
activity is bound to a service that produces an output
containing information about the input, the confidentiality of
the service output must also be preserved. The security rules
express formally proven relations between security properties.

During the composition process, the security rules are used
to determine the security properties that need to be satisfied by
individual services, in order to guarantee the security
properties required of the entire composition. The security
properties identified for individual services are fed into a
discovery tool, which subsequently finds suitable candidate
services for the composition.

Our approach extends a discovery framework that has been
developed at City University to support the discovery of
services at runtime [16]. Originally, this framework supported
the discovery of single services based on criteria regarding the
interface, behaviour and quality of services, in a reactive or a
proactive mode, i.e., when a need for finding a service at arises
(reactive mode) or continually in order to maintain up-to-date
sets of candidate services that could be used to replace the
constituent services of an SBA when any of these services fails
(proactive mode). The work that we describe in this paper
extends the capabilities of this framework by enabling the
construction of secure service compositions.

The rest of this paper is structured as follows. Section II
outlines a scenario for service composition, which is used in
the rest of the paper to exemplify our approach. Section III
gives an overview of the overall service discovery framework
within which our approach is used. Section IV and V describe
the composition patterns and the security reasoning rules
underpinning our approach, respectively. Section VI describes
the service composition algorithm and gives an example of
applying it. Finally, Section VII overviews related work and
Section VIII provides some summarising remarks and outlines
directions for future work.

II. SCENARIO
A scenario that we use in the rest of the paper to exemplify

our approach involves a financial market SBA offered by a
stockbroker to stock investors wishing to buy and/or sell stocks
in different stock exchanges. Stock investors don’t have direct
access to exchanges and must rely on stockbrokers for carrying
trades. The stockbroker’s SBA provides a set of useful
operations to stock investors to enable trades. Some of these
operations are based on services available from third party
service providers (e.g., provision of financial data to enable
trading decisions). As some of these operations might become
unavailable at runtime, however, the stockbroker’s SBA
should incorporate mechanisms for searching and replacing
such services and operations, if the need arises at runtime.

Suppose, for example, that the stockbroker SBA uses an
operation called getStockHeadlines provided by a third-party
service S1. Given a stock symbol (Symbol) and some customer
details (CustData) as inputs, this operation returns a set of
recent news related to the identified stock and uses the
customer details to get paid for the offered service. The output
of getStockHeadlines is an array of StockNews, containing the
headline, time and source of each news item about the input
stock. The required security conditions for this service are that
CustData and Symbol should be confidential during the
transmission, to avoid external parties seeing who is requesting
information about particular stocks and the credentials used for
news payments.

When S1 becomes unavailable, the stockbroker SBA must
look for replacement services for it. If these are no such
individual services, an alternative could be to use the
composition C shown in Fig. 1. This composition uses service
S2 that provides a different operation to retrieve stock news,
called fetchNewsHeadlines. This operation returns an array of
MarketNews containing all the financial news, indexed by a
stock’s ISIN (i.e., a different ID from Symbol), after receiving
proof of prior payment by the requesting party (PaymToken).
In fact, to be able to use an operation of S2, a customer must
first pay through the operation Payment. This operation is
offered by S2 and generates a PaymToken (output) from
CustData (input) after a payment has been made.

The output MarketNews must, then, be filtered through the
Stock ID. For this reason the composition includes also a
getStockDetails operation that returns a StockMap, containing
the ISIN corresponding to Symbol.

getStock
Details

+" +"

fetchNews
Headlines Payment

I: Symbol*

Symbol*
CustData* MarketNews[]*

O: StockDetails*

O: MarketNews[]

MarketNews = <Headline, Time, Source, ISIN>
StockDetails = <CIK, CUSIP, ISIN, Name, Market, Category>

I: CustData*

O: PaymToken*

I: PaymToken*

Fig. 1. Composition C – Data marked with (*) should be confidential

The composition of Fig. 1 creates requirements for new
security properties that arise from the original security
conditions. In particular, since CustData must be confidential,
then its related payment token, PaymToken, must also be
confidential. Furthermore, to guarantee that Symbol remains
confidential, StockMap (and ISIN) should be confidential as
well, since they can also provide the same information about
the stock that the investor. Furthermore, the filtered news
should be pruned of the ISIN information, or the ISIN should
be confidential.

III. DISCOVERY FRAMEWORK

A. Overall Architecture
Our approach to secure service composition is part of the

discovery framework shown in Fig. 2. This framework accepts
service discovery queries from SBAs, and finds services in
external service registries that satisfy the conditions of the
queries. Queries can be submitted for execution in reactive
(PULL) or proactive (PUSH) mode.

Fig. 2. Discovery Framework

The framework includes a Discovery Engine that is

responsible for the retrieving individual service descriptions
data from external service registries and matching them with
the queries. It also includes Registry Watchers which poll
external registries periodically to check if there are new
services or amended service descriptions that would alter the
candidate sets of services that are maintained for queries
executed in proactive mode. The new component of the
framework that is based on the work of this paper is the
Composition Manager. This component is responsible for the
creation of secure service compositions to meet queries in
cases where the latter do not match with any single service.

B. Discovery process
The overall discovery process realised by the discovery

framework is shown in Fig. 3. The discovery process starts
when the Discovery Engine receives a query that should be
used for discovering replacement services for one of the
partner services of an SBA. Queries are expressed in an XML
based language, called A-SerDiQueL. Following the parsing of
a query, the parts of it that refer to security related discovery
criteria (referred to as Ce query in Fig. 3) are separated from
the parts referring to other functional and quality discovery
criteria (referred to as N query in the figure). This distinction is

necessary as the part of the query that refers to security related
discovery criteria is used in order to identify the composition
patterns that could be applied in identifying service
compositions that can ensure these criteria (cf. the activity
Identify CPatterns in the process).

Subsequently, the N query and the composition patterns are
either sent to the discovery engine for an one-off execution (if
the execution mode of the query is PULL) or are subscribed to
it, for continual executions if the execution mode of the query
is PUSH. In PUSH mode, multiple executions may be
triggered by changes in the descriptions of services already
identified as possible matches with a query or due to the
emergence of new services in registries fitting with the query.

In both the PUSH and the PULL mode of query execution,
the discovery engine executes the received query at least once
and returns any services and service compositions that match
the discovery criteria of the query (see the activity Execute N-
Query/Cpatterns). Any services and/or service compositions
that match with the discovery criteria of the query at this stage
are used to update a Candidate Service Set. This set is used as
a cache of replacement services for the partner service that was
associated with the query in the first place and any subsequent
service replacement request will retrieve the first service from
this set. In the case of candidate service compositions, the
framework generates a virtual service pointer that can be used
by the SBA to invoke the composition through the framework.

It should also be noted that the initial formation of the
Candidate Service Set is followed by ordering the elements of
this set in descending order of the degree of match that they
have with these criteria (see the activity OrderRS wrt Ce).
Following this stage in the overall process, any candidate
service/service composition that does satisfy the security
related criteria is removed from the Candidate Service Set and
a new discovery process is initiated in order to try to identify
further services that could meet first the non security criteria of
the query and then the security related criteria. The reason for
re-attempting to find services/service compositions meeting the
criteria of the query is because there is a possibility that new

services might have been published in the service registry
meanwhile.

Certain parts of the overall discovery process described in
Fig. 3 can be also triggered by events other than a request for
the execution of a query. These events are:
• service replacement requests resulting in removal of the

first service in the Candidate Service Set in order to use it
in the SBA;

• publications of new security descriptions (expressed by
certificates as we explain in Sect. III.C) for one of the
services in the candidate service set that should trigger the
re-evaluation of the security related criteria for a candidate
set that has been built for a query executed in PUSH mode
and possibly a re-ordering of this set; and

• changes in the descriptions of services in the service
registries or the publication of new services in them that
can lead to the execution of the non security related parts of
queries executed in the PUSH mode in the first place and
potentially the re-execution of the security related parts if
the candidate services set of the query would need to be
altered given the results produced by the non security
related part of the query.

C. Query language
The queries of the discovery framework are expressed in A-

SerDiQueL, an XML-based language that allows the
specification of interface, behavioural, QoS and security
conditions about the services to be discovered. A-SerDiQueL is
an extension of SerDiQueL (see [24] for a detailed account)
that we have developed to support the specification of security
conditions as part of service discovery queries.

The specification of security conditions in A-SerDiQueL
assumes that the security properties of services are described
by security certificates, called asserts. An assert certificate
certifies that a given security property is preserved by a
service. In addition to specifying the relevant security property,
certificates may include descriptions of the evidence justifying
the certification of the property, the authority that has issued
the certificate, and the validity period of the certificate.

Fig. 3. Overall Discovery Process

TABLE I
A-SERDIQUEL QUERY EXPRESSING A CONFIDENTIALITY CONDITION

<AssertQuery	
 name="A1"	
 type="HARD">	

	
 	
 <LogicalExpression>	

	
 	
 	
 	
 <Condition	
 relation="EQUAL-­‐TO">	

	
 	
 	
 	
 	
 	
 <Operand1>	

	
 	
 	
 	
 	
 	
 	
 	
 <AssertOperand	
 facetName="Assert"	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 facetType="Assert">	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //AbstractASSERTStructure/Property	

	
 	
 	
 	
 	
 	
 	
 	
 <AssertOperand>	

	
 	
 	
 	
 	
 	
 </Operand1>	

	
 	
 	
 	
 	
 	
 <Operand2>	

	
 	
 	
 	
 	
 	
 	
 	
 <Constant	
 type="STRING">	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Confidentiality(O,	
 X)	

	
 	
 	
 	
 	
 	
 	
 	
 </Constant>	

	
 	
 	
 	
 	
 	
 </Operand2>	

	
 	
 	
 	
 </Condition>	

	
 	
 </LogicalExpression>	

</AssertQuery>	

Certificates are represented in XML according to a specific

XML schema, and are published in service registries as a
special facet of service descriptions. An example of an A-
SerDiQueL query regarding the confidentiality of the input X
of an operation O of a service S is shown in Table I.

IV. SECURE COMPOSITION PATTERNS
Our approach to constructing secure compositions of

services is driven by secure composition patterns. A secure
composition pattern is a template specifying a service
orchestration workflow with activities that can be bound to
concrete service operations. Patterns describe the control and
data flows connecting the activities. For each activity
placeholder in a pattern, it is possible to automatically build a
service discovery query in order to find a service operation to
instantiate the activity. An example of a simple workflow is
the one obtained by invoking sequences of services in a chain
to transform an initial input into a required final output [1][2].

Two examples of secure composition patterns are provided
in Fig. 4. The first one is the Secure Sequence Pattern (SSP).
This pattern represents an elementary control flow with two
activities, A and B, that must be executed one after the other in
this specific order (the order of A and B is represented as a
solid arrow in the picture). The data flow of this pattern is
summarized in the IO dependencies of the pattern: the input
passed to A (inA) must be a subset of the available input (IN)
described in the query, the input to B (inB) should be a subset
of IN together with the output of the first activity (IN + outA)
and the final output (OUT) should be a subset of the output of
B (outB). Note that this is just one of the possible data flows for
this workflow; another one can require that the final output
should be a subset of the output of A and B. To represent
alternative data flows in this case, another variant of the SSP
pattern with the same control flow but different data flows
would be required in our approach.

The second example is the Secure Parallel Filter Pattern
(SPFP). This pattern specifies the execution of two activities,
A and B, in parallel, and filters their outputs by an attribute
value. The data flows of the pattern in Fig. 4 specify that the
output of A (outA) should be a list of some data type TypeX that

is to be filtered and B should return as output (outB) the value
used to filter through an attribute of TypeX. The final output of
the pattern (OUT) is then filtered from these two outputs by an
internal activity (filter) which is part of the pattern.

SECURE SEQUENCE PATTERN

<A>

inA

inB
outA outB

IN

OUT

IO DEPENDENCIES FOR A

inA ⊆ IN
IO DEPENDENCIES FOR B

inB ⊆ IN+outA
IO DEP. FOR THE REPLY

OUT ⊆ outB

SECURE PARALLEL FILTER
PATTERN

+" +" OUT

<A>

inA

inB

outA

outB

IN filter

IO DEPENDENCIES FOR A

inA ⊆ IN
outA isCollectionOf TypeX
IO DEPENDENCIES FOR B

inB ⊆ IN
outB isAttributeOf TypeX

IO DEP. FOR THE REPLY
OUT ⊆ filter(outA, outB)

Fig. 4. Examples of secure composition patterns

The composition patterns are expressed internally in OWL-
S [20]. Our pattern representation schema uses the Process
Model portion of OWL-S that allows to specify service
Inputs/Outputs, preconditions and results, as well as
compositions of services. Each pattern is described as a
CompositeProcess, and contains: (a) control flows
expressed by ControlConstructs (e.g. Sequence, Split-­‐
Join, Choice) that contain activity Perform elements, and (b)
data flows specified as Bindings between variables of
different activities. Note that in our specification if a Binding
has a variable X in the toVar element and a variable Y in the
valueSource/ValueOf, it implies that X is a subset of Y (X
⊆ Y) unlike standard OWL-S which assumes that X = Y).

Table II shows the specification of the SPFP pattern in
OWL-S. This specification describes the control flow of the
two activities (rows 18-27 for A and 28-37 for B) through the
Split-­‐Join element (rows 17-38) and the dependencies on
the inputs of A (rows 20-26) and B (rows 30-36). Furthermore,
it describes the final output OUT (i.e. ProcessOutput in row
6) as a subset of the output of a BasicFilter activity (rows
7-10). This activity is part of an internal library of available
data transformation services (or aggregators). These data
transformation services are basic pieces of code that are called
from a pattern as a form of data mediation. Since web services
data is transmitted in XML, a data transformation service can
usually be encoded in few XSLT lines, with some placeholders
that will be instantiated during the pattern instantiation.

Table III shows the encoding of the BasicFilter used in
the SPFP pattern. This is based on the XSLT identity transform
[22], and it is applied on the TypeX list to filter it. In particular
during the instantiation of the pattern, the $basicType in the
filter is instantiated to TypeX element name, $attribute to
the attribute path and $valueToFilter to a parameter that
receives the value from the ValueToFilter in the pattern. In

particular in the SPFP pattern the ValueToFilter is obtained
from outB, but it is also possible to use the BasicFilter in
different patterns with other mappings.

TABLE II
SECURE PARALLEL FILTER PATTERN SNIPPET

1 <p:CompositeProcess	
 rdf:ID="ParallelFilter">	

2 	
 <rdfs:label>Parallel	
 filter	
 pattern</rdfs:label>	

3 	
 <p:hasResult><p:Result>	

4 	
 	
 <p:inCondition	
 rdf:resource="&expr;#AlwaysTrue"	
 />	

5 	
 	
 <p:withOutput><p:OutputBinding>	

6 	
 	
 	
 <p:toVar	
 rdf:resource="#ProcessOutput"	
 />	

7 	
 	
 	
 <p:valueSource><p:ValueOf>	

8 	
 	
 	
 	
 <p:theVar	
 rdf:resource="&aggreg;#Output_BF"	
 />	

9 	
 	
 	
 	
 <p:fromProcess	
 rdf:resource="#PerformFilter"	
 />	

10 	
 	
 	
 </p:ValueOf></p:valueSource>	

11 	
 	
 </p:OutputBinding></p:withOutput>	

12 	
 </p:Result></p:hasResult>	

13 	
 <p:invocable	
 rdf:datatype="&xsd;#boolean">	

14 	
 	
 false	

15 	
 </p:invocable>	

16 	
 <p:composedOf><p:Sequence><p:components>	

17 	
 	
 <p:Split-­‐Join	
 rdf:parseType="Collection">	

18 	
 	
 	
 <p:Perform	
 rdf:ID="Perform_A">	

19 	
 	
 	
 	
 <p:process	
 rdf:resource="#A"	
 />	

20 	
 	
 	
 	
 <p:hasDataFrom><p:InputBinding>	

21 	
 	
 	
 	
 	
 <p:toVar	
 rdf:resource="#Input_A"	
 />	

22 	
 	
 	
 	
 	
 <p:valueSource><p:ValueOf>	

23 	
 	
 	
 	
 	
 	
 <p:theVar	
 rdf:resource="#ProcessInput"	
 />	

24 	
 	
 	
 	
 	
 	
 <p:fromProcess	
 	

	
 rdf:resource="&p;#TheParentPerform"	
 />	

25 	
 	
 	
 	
 	
 </p:ValueOf></p:valueSource>	

26 	
 	
 	
 	
 </p:InputBinding></p:hasDataFrom>	

27 	
 	
 	
 </p:Perform>	

28 	
 	
 	
 <p:Perform	
 rdf:ID="Perform_B">	

29 	
 	
 	
 	
 <p:process	
 rdf:resource="#B"	
 />	

30 	
 	
 	
 	
 <p:hasDataFrom><p:InputBinding>	

31 	
 	
 	
 	
 	
 <p:toVar	
 rdf:resource="#Input_B"	
 />	

32 	
 	
 	
 	
 	
 <p:valueSource><p:ValueOf>	

33 	
 	
 	
 	
 	
 	
 <p:theVar	
 rdf:resource="#ProcessInput"	
 />	

34 	
 	
 	
 	
 	
 	
 <p:fromProcess	
 	

	
 rdf:resource="&p;#TheParentPerform"	
 />	

35 	
 	
 	
 	
 	
 </p:ValueOf></p:valueSource>	

36 	
 	
 	
 	
 </p:InputBinding></p:hasDataFrom>	

37 	
 	
 	
 </p:Perform>	

38 	
 	
 </p:Split-­‐Join>	

39 	
 	
 <p:Perform	
 rdf:ID="PerformFilter">	

40 	
 	
 	
 <p:process	
 rdf:resource="&aggreg;#BasicFilter"	
 />	

41 	
 	
 	
 <p:hasDataFrom><p:InputBinding>	

42 	
 	
 	
 	
 <p:toVar	

	
 rdf:resource="&aggreg;#ListToFilter"	
 />	

43 	
 	
 	
 	
 <p:valueSource><p:ValueOf>	

44 	
 	
 	
 	
 	
 <p:theVar	
 rdf:resource="#Output_A"	
 />	

45 	
 	
 	
 	
 	
 <p:fromProcess	
 rdf:resource="#Perform_A"	
 />	

46 	
 	
 	
 	
 </p:ValueOf></p:valueSource>	

47 	
 	
 	
 </p:InputBinding><p:InputBinding>	

48 	
 	
 	
 	
 <p:toVar	

	
 rdf:resource="&aggreg;#ValueToFilter"	
 />	

49 	
 	
 	
 	
 <p:valueSource><p:ValueOf>	

50 	
 	
 	
 	
 	
 <p:theVar	
 rdf:resource="#Output_B"	
 />	

51 	
 	
 	
 	
 	
 <p:fromProcess	
 rdf:resource="#Perform_B"	
 />	

52 	
 	
 	
 	
 </p:ValueOf></p:valueSource>	

53 	
 	
 	
 </p:InputBinding></p:hasDataFrom>	

54 	
 	
 </p:Perform>	

55 	
 </p:components></p:Sequence></p:composedOf>	

56 </p:CompositeProcess>

V. SECURITY PROPERTIES
Security properties are represented in our approach as

relations on service operations and, in some cases, on the data

TABLE III
TEMPLATE FOR XSLT BASICFILTER

<stylesheet	
 version="2.0"	

	
 	
 	
 	
 xmlns="http://www.w3.org/1999/XSL/Transform">	

<template	
 match="@*|node()">	

	
 	
 <copy><apply-­‐templates	
 select="@*|node()"/></copy>	

</template>	

<template	
 match="{$basicType}">	

	
 	
 <if	
 test="{$attribute}	
 =	
 {$valueToFilter}">	

	
 	
 	
 	
 <copy><apply-­‐templates	
 select="@*|node()"/></copy>	

	
 	
 </if>	

</template>	

</stylesheet>

exchanged by them (i.e., the input, output and persistent
internal service data). These relations are expressed as
properties in the form <relation>(<operation>, <data>). The
relation that expresses the confidentiality of the customer detail
CustData of getStockHeadlines inputs, for example, is:

Confidentiality(CustData, getStockHeadlines).
A security property P is guaranteed by a service S if S can

provide a certificate from an appropriate certification authority
containing P. To be able to guarantee a security property in a
composition, it may be necessary to check and propagate
different properties. In particular, when there is some data
involved in a security property, any action that an activity may
perform on the secure data may lead to the need to check
further properties.

To ensure the confidentiality of some input data, for
example, it is necessary to ensure both the confidentiality of
data transmission and storage confidentiality. The
confidentiality in transmission is required on the input of an
activity. However, if the output of the same activity also
discloses any kind of information about the input, to preserve
confidentiality the output should be transmitted confidentially
as well. In a similar manner, if data that can disclose
information about the input is stored, the confidentiality of
storage should be assured. Such properties can be provided by
some encryption mechanism, or by a certified property that the
output/stored data doesn’t disclose any information about the
input (or that no data is being stored). Thus, the ability of a
composition to guarantee security properties depends on the
certified actions that the individual services perform. Such
dependencies between security properties and service actions
are expressed by security implication rules.

Back to the confidentiality example, suppose that we have
some data D used in an activity A as input or output. A
security implication rule can express that D should be
transmitted confidentially, if it is derived from some data D’
that are confidential for some activity A’, or otherwise it must
be certified that D does not disclose information about D’.

This can be specified by a rule (Rule-1) stating that if some
data D’, which is required to be confidential during
transmission for an activity A’, is used as input of another
activity A, then the output of A should be confidential on
transmission as well or there should be a certificate verifying
that A does not disclose information about its input D’.

The security implication rules should be formally proven
offline before used in our approach. This is required because

the process of constructing rules at runtime, or of deriving
dependencies between security properties of services, is
computationally expensive. The process of constructing proofs
of security implication rules is beyond the scope of this paper
but interested readers may find examples of such proofs in [4].

The security implication rules are specified in Situation
Calculus (SC) [5]1. SC is a first order logic language that
supports specifications and reasoning for domains that change
dynamically. SC uses predicates called “fluents” that describe
the state of a domain. Fluents are evaluated against sequences
of actions, called “situations”. In the SC model of the security
implication rules we use:
• the fluent next(A,A’) to specify that an activity A is

followed by an activity A’ in the workflow of a pattern
• the fluent input(A,D) (output(A,D)) to specify that D is an

input (output) of activity A
• the fluent known(P, S) to specify that the security property

P is already known to be satisfied (certified) in situation S
• the property confT(A,D) to specify that there is a certificate

for action A stating that data D is confidential on
transmission

• the property deriveND(D, D’) to specify that data D is
derived from D’ and there is a certificate stating that D
doesn’t disclose any information about D’.

The control and data flows of workflows created from
patterns, and descriptions of the services that instantiate the
activities in them are also mapped in SC as initial fluents for
the security implication rules. Furthermore, we represent the
traces of the workflow as situations, where currAct(A) is the
fluent describing that the reasoning step is on activity A. The
reasoner navigates stepwise the workflow and, at each step, it
collects the required security properties, expressed by the
fluent requires(P, S).

TABLE IV
EXAMPLE OF A SECURITY IMPLICATION RULE (RULE-1)

PRECONDITION AXIOMS
poss(step(A),S)↔ currAct(A’,S) ∧ next(A,A’)

SUCCESSOR STATE
currAct(A,do(α,S))↔ α = step(A)
requires(confT(A,D),do(α,S))↔[α = step(A) ∧ output(A,D) ∧ input(A,D’)

∧ known(confT(A’,D’), S) ∧ known(deriveND(D’,D)) ∧ A’ ≠ A]
∨ [α ≠ step(A) ∧ requires(confT (A,D), S)]

Table IV shows the specification of the security implication
rule Rule-1 that we introduce above in SC. The first two
formulae in the table are common rules enabling the SC
reasoner to take into account one step at time. The actual
formula for Rule-1 is the third formula (the only difference
from the previous explanation is the disjunctive condition in
the formula, which is required to solve the “frame problem” in
SC).

The instantiation of the activities in a composition pattern is
based not only on the IO dependencies of the pattern but also
on security properties. The security conditions are inferred
from: (a) the security conditions of the query, (b) the security

1 We don’t use the markup rule language for OWL (Semantic Web Rule

Language, SWRL) to specify the security implication rules because of the
limitation of this language wrt its decidability [23].

properties that the already instantiated services provide, and (c)
the security implication rules. The rules provide a list of the
security properties that must be certified for the single
activities to satisfy the given security property for the whole
composition.

VI. COMPOSITION PROCESS
Service compositions are obtained by constructing

workflows through a step-wise instantiation of the composition
patterns. When no single replacement service is found for a
service S that needs to be discovered, then the discovery query
that is associated with the service to be replaced (QS) is sent to
the Composition Algorithm shown in Table V.

TABLE V
COMPOSITION ALGORITHM

Algorithm: SecureComposition(QS)
Input: QS query for required service
Output: WFSet – set of instantiated workflows

1 for each pattern Patt such that applicable(Patt, QS)=true do
2 Create the workflow WF* from Patt and put it in WFQueue
3 while there are more workflows in WFQueue do
4 Get the first WF in the WFQueue
5 Take an unassigned activity α in the WF
6 Build a query Q* for α from:

 � the IO dependencies of Patt
 � the conditions inferred by the SecRules
 � any instantiated part of Patt and QS

7 Res = execute single service discovery of query Q*
8 if Res = ø then
9 Res = SecureComposition(α,Q*)
10 endif
11 Res’ = filter Res based on SecRules on the security properties

guaranteed by each candidate service
12 for service S* in Res’ do
13 WFS* = WF[α \ S*] //substitute S* for α in the workflow
14 if there is another unassigned activity in WFS* then
15 Put WFS* in WFQueue
16 else
17 Add WFS* to WFSet
18 endif
19 end
20 end
21 end
22 Return WFSet

Initially the algorithm identifies the applicable patterns
based on the applicability conditions expressed in them. For
each of the patterns that are applicable the algorithm attempts
to build a workflow by instantiating the activities of the
pattern. In particular, each activity in a pattern can be bounded
to a single service or, if no single services are found, to a
service composition generated recursively by the same process.

To instantiate an activity in a pattern, the algorithm builds a
query Q* based on the specification of the pattern and the input
service discovery query QS. Q* includes any IO dependencies
that have been specified in the pattern and security conditions
inferred by the security implication rules. The list of the
candidate services obtained by executing the query that is
constructed on-fly is then refined by analyzing the security
conditions thanks to the additional inferences that the security
implication rules can provide.

Consider, for example, the case where the confidentiality on

transmission of the input IN is required when the SSP pattern
is applied. If a candidate service S for the activity A in the
pattern is found, then S should already provide the requested
security conditions for its input inA as evidenced through a
certificate of S.

For the output data outA, however, there are three cases: (i) S
has a certificate that guarantees the confidentiality of the
transmission of outA, (ii) S has a certificate that guarantees that
outA doesn’t disclose any information about IN, or (iii) S
doesn’t have any of the two certificates descripted in (i) and
(ii). The first two cases guarantee the confidentiality of IN but
the third doesn’t, and, if this is the case, S will be discarded
from the list of candidate services.

Furthermore, if a confidentiality on storage, then S should
provide a certificate stating either that: (i) all the stored data
comply with the confidentiality on storage requirement, (ii) all
the stored data doesn’t disclose any information about IN or
(iii) there’s no data stored from the service. If none of these
certificates is provided, then S would not be a valid candidate.

D. Example
As an example of applying the algorithm of Table V

consider the scenario introduced in Sect. II. In this scenario
suppose that the original service getStockHeadlines becomes
unavailable and thus it becomes necessary to find a
replacement for it. As, however, no single replacement service
can be located, it becomes necessary to attempt to find a secure
composition of different services.

An applicable pattern in this scenario is the SPFP (Fig.
5(b)), since it can filter arrays and it provides the required
confidentiality for the stock Symbol and customer details
CustData given as input. The query QA to instantiate the first
activity (A in Fig. 5) of this pattern requires a service whose
input is a subset of {Symbol, CustData} and output a subtype
of StockNews[] containing at least the news related to the
Symbol (this last condition is the difference from the query for
S1). Furthermore the query contains the confidentiality
conditions about Symbol and CustData, which are specified by
the original query.

Fig. 5. Example of a complex workflow obtained through the recursive
application of composition patterns.

The alternative service, S2, doesn’t match the query, so the

algorithm is called recursively to find a composition satisfying
the query. A pattern that guarantees the security condition is
the SSP (Fig. 5(c)). The query for the last activity (D in Fig. 5)

of this pattern is similar to QA, except that it no longer
incorporates any condition about the input.

In this case the query matches the operation
fetchNewsHeadlines from S2 that provides an array of all the
MarketNews from a PaymToken. Up to this point, no security
conditions are involved.

After this instantiation, the query for the remaining activity
of the SSP (C in Fig. 5) is built. This query requires a service
that can derive the missing data. Thus, it requires a service that
given a subset of {Symbol, CustData}, returns a payment token
PaymToken, and would satisfy the security conditions about
Symbol and CustData confidentiality. An operation that
matches this query is the Payment from S2. This operation
consumes the CustData input and it guarantees confidentiality
for this data. Since this input is confidential, then the security
implication rules require that each output must be certified
unrelated to the input or confidential as well. In this case
PaymToken is confidential, so this new requirement is checked
also against the already instantiated activities. In particular
fetchNewsHeadlines must guarantee confidentiality on
PaymToken too, otherwise the instantiation of Payment in C
can’t take place and the algorithm discards this operation from
the candidate operations.

After C is instantiated, the workflow for the SSP is
complete, so the recursion is done and this sub-composition
instantiates the first activity A of the SPFP. At this point the
output of A is a subtype of StockNews[] that provides the
additional attribute ISIN and that can contain also news not
related with the requested stock.

The query for the second activity of the Parallel Filter
pattern (B in Fig. 5) requires a service whose input is a subset
of {Symbol, CustData}. The filter activity also requires that the
output of B is a subtype of the ID needed to filter the news for
the requested stock, in this case the ISIN. The query also
contains the security conditions about Symbol and CustData
being confidential.

A service that offers the operation getStockDetails is found.
Given a Symbol, this service returns the StockDetails, which
also contain ISIN. Since this service uses Symbol, it must
comply with the security condition related to it thus, it must
provide confidentiality for Symbol. The security inference rules
are then used to check if there are other security conditions that
are derived from the requested condition. Since the Symbol of a
stock should remain confidential, then all the data that can give
information about it should be confidential as well. The
outputs of this service, then, should have a certified property of
not being related to the Symbol or being confidential as well. In
our case the StockDetails are related to the Symbol so this
output needs to be confidential as well. Furthermore, the final
filtered news can give out information about the searched stock
through the ISIN attribute, so the output of the composition
must be confidential as well.

VII. RELATED WORK
Research dealing with security in service composition has

focused on the verification of the security of existing
compositions through model checking [6][7][8]. Our focus,

however, is different since we are looking into applying
composition patterns and security implication rules that are
proven to guarantee security properties as part of a runtime
service discovery and composition process.

A work that is more related to ours is [9], where planning
techniques are used to compose workflows that are compliant
with some lattice-based access control models (e.g. multi-level
secure systems). The focus of [9] is how to find efficient
algorithms for sequential workflow planning whilst our
approach is more general w.r.t both the types of workflows and
the security properties that it covers.

In [10] the authors describe an approach to security
conscious web service composition through matching security
constraints required for service provision and constraints
declared by service providers. The security constraints in this
approach are specified in SAML [11]. In [10], secure service
compositions are generated based upon some pre-defined
domain specific business workflows, whilst our approach
allows the generation of arbitrary workflows.

Other works on automatic service composition (e.g.
[2][12][13][14]) allow the expression of security properties in
discovery queries, usually as non-functional properties. These
approaches focus on specific types of security properties and
check them only against single services in compositions,
without addressing the overall security of a composition.

In literature [15][17][18][19], the security patterns are
usually defined as design patterns that guarantee some security
goal. These patterns are used to secure software during the
design and develop phase, which are usually human based. Our
approach, instead, is to dynamically compose services while
assuring security properties; this requires automated processing
of the patterns during the integration of the services.

Finally, our secure service composition patterns are similar
to the workflow patterns in [3] as they specify elementary
workflows that can be used to generate service compositions.
However, our patterns include additional data flow and
applicability specifications. In particular some of them also
include some data transformation activities.

VIII. CONCLUSION
In this paper, we have presented an approach that supports

the generation of secure compositions of services, as part of
runtime service discovery. Our approach is based on
composition patterns and security implication rules to
determine the security properties that need to be satisfied by
the individual services that participate in a composition in
order for the composition to satisfy global security properties.
The patterns are specified in OWL-S and describe the flows of
control and data within a workflow as well as preconditions
determining when a pattern can be applied. The security
implication rules are specified in Situation Calculus and
express the consequences that, particular actions of individual
services and service compositions, have on security properties.

Service compositions are built through a stepwise and
possibly recursive instantiation of patterns based on an
algorithm that we have introduced in the paper. In this process,
the logical connections between service and composition level

security properties are determined by reasoning based on the
security implication rules.

Currently, we are investigating the use of composition
patterns that are more complex than primitive service
workflows, and focus on an experimental evaluation of our
approach.

REFERENCES
[1] A. Zisman, K. Mahbub and G. Spanoudakis, “A service discovery

framework based on linear composition,” in Proc. IEEE Int. Service
Computing Conference (SCC 2007), pp.536-543, 2007

[2] F. Lécué, E. Silva and L. F. Pires, “A framework for dynamic web
services composition,” in Proc. 2nd Work. on Emerging Web Services
Technology (WEWST07), 2007.

[3] W. M. P. Van Der Aalst et al., “Workflow patterns,” Distrib. Parallel
Databases 12(1): 5-51, 2003.

[4] ASSERT4SOA Project, “D5.1– Formal models and model composition”.
Available: http://www.assert4soa.eu/deliverable/D5.1.pdf, 2011.

[5] J. McCarthy and P. Hayes, “Some philosophical problems from the
standpoint of artificial intelligence,” Machine Intelligence, 4:463–502,
1969.

[6] M. Deubler, et al., “Sound development of secure service-based
systems,” in Proc. of the 2nd Int. Conf. on Service oriented computing
(ICSOC '04), pp. 115-124, 2004.

[7] Jing Dong, Tu Peng and Yajing Zhao, “Automated verification of
security pattern compositions,” Inf. Softw. Techn. 52(3):274- 295, 2010.

[8] M. Bartoletti, P. Degano and G. L. Ferrari, “Enforcing secure service
composition,” 18th Work. on Computer Security Foundations, 2005.

[9] M. Lelarge, Z. Liu and A. Riabov, “Automatic composition of secure
workflows,” in Proc. of ATC'2006, 2006.

[10] B. Carminati, et al., “Security conscious web service composition,” in
Proc. of the Int. Conf. on Web Services (ICWS), 2006.

[11] OASIS. SAML 1.0 Specification Set [Online]. Available:
http://saml.xml.org/saml-specifications, 2002.

[12] Keita Fujii and Tatsuya Suda, “Semantics-based dynamic web service
composition,” IEEE J. Sel. Areas Commun, 23: 2361- 2372, Dec. 2005.

[13] B. Medjahed, A. Bouguettaya and A. K. Elmagarmid, “Composing web
services on the semantic web,” The VLDB Journal, 12(4):333-351, 2003.

[14] M. C. Jaeger, G. Rojec-Goldmann and G. Muhl, “QoS aggregation for
web service composition using workflow patterns,” in Proc. of the 8th Int.
Conf. on Enterprise Distributed Object Computing, 2004.

[15] Aniketos, “D3.1 – Design-time support techniques for secure
composition and adaptation”. Available: http://www.aniketos.eu/, 2011.

[16] A. Zisman, G. Spanoudakis, J. Dooley. “A framework for dynamic
service discovery”, In Proc. of 23rd Int. ACM/IEEE Conf. on Automated
Software Engineering, 2008

[17] J. W. Yoder and J. Barcalow, “Architectural patterns for enabling
application security,” in Proc. of Pattern Languages of Programs, 1997.

[18] E. B. Fernandez and R. Y. Pan, “A pattern language for security models,”
in Proc. of Pattern Language of Programs (PLoP'01), 2001.

[19] N. Yoshioka, H. Washizaki, K. Maruyama, “A survey on security
patterns,” Progress in Informatics, No. 5 pp. 35-47, 2008.

[20] OWL-S Coalition. OWL-S 1.2 Technical Overview [Online]. Available:
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/, 2008.

[21] W3C Web Ontology Working Group. OWL Web Ontology Language
Reference [Online]. Available: http://www.w3.org/TR/owl-ref/, 2004.

[22] W3C XSL Working Group. XSL Transformations (XSLT) Version 2.0
[Online]. Available: http://www.w3.org/TR/xslt20/, 2007.

[23] B. Motik, U. Sattler, and R. Studer. “Query Answering for OWL-DL
with rules,” J. Web Semant. 3, 1 41-60. 2005.

[24] G. Spanoudakis, and A. Zisman, “Designing and Adapting Service-based
Systems: A Service Discovery Framework,” In Service Engineering:
European Research Results, S. Dustdar, F. Li (eds), Springer, 2010

[25] B. Raman, et al. “The SAHARA model for service composition across
multiple providers.” In Proc. of the 1st Int. Conf. on Pervasive
Computing, LNCS 2414, 2002.

[26] Shankar R. et al. “SWORD: A developer toolkit for web service
composition.” In Proc. of the 11th Int. WWW Conference, 2002.

[27] S. Majithia, D. Walker and W. A. Gray. A Framework for Automated
Service Composition in Service-Oriented Architectures. In Proc of 1st
European Semantic Web Symposium, LNCS 3053, pp. 269-283, 2004.

