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Abstract Computational modelling of music similarity is an increasingly impor-
tant task for personalisation and optimisation in Music Information Retrieval and
for research in music perception and cognition. Relative similarity ratings provide
a new and promising approach to this task as they avoid problems associated with
absolute ratings. In this article, we use relative ratings from the MagnaTagATune
dataset to develop a complete learning and evaluation process with state-of-the-
art algorithms and provide the first comprehensive and rigorous evaluation of this
approach. We compare different high and low level audio features, genre data, di-
mensionality effects, weighted similarity ratings, and different sampling methods.
For model adaptation, we compare SVM-based metric learning, Metric-Learning-
to-Rank (MLR), including a diagonal and a novel weighted MLR variant, and
similarity learning with Neural Networks. Our results show that music similarity
measures learnt on relative ratings are significantly better than a standard metric,
depending on the choice of learning algorithm, feature set and application sce-
nario. We implemented a testing framework in Matlab R©, which we made publicly
available1 to ensure reproducibility of our results.2
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extended extended rationale and discussion of the proposed approach, providing the first com-
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1 Introduction

Similarity plays a central role in music retrieval and recommendation as well as
musicology. As means of storing recordings and scores of music digitally have
become less expensive, increasing amounts data are available for algorithmic mu-
sic analysis and comparison today. Many applications and a growing number of
portable multimedia computing devices encourage the development of elaborate
techniques to automatically analyse, classify, index, and retrieve music.

Most commercial approaches to music recommendation use collaborative filtering,
the quasi-standard approach for online recommendation. The drawbacks of collab-
orative filtering are that it relies on user behaviour data, as has been pointed out
by Celma [13], and that it fails when there is little data available, as for new or
less popular music.

Content-based approaches avoid these issues by directly using the audio data.
They have been shown to work well in some scenarios, and are now being used on
a wider scale in web services like The Echo Nest [24] or The Freesound Project [2].
Music comparison based on audio content needs to incorporate the extraction of
acoustic, psychoacoustic and music theoretic features derived from audio informa-
tion. The applicability of such features and distance measures is highly dependent
on the context of the music, the application, and the user. Learning models can
help ensure that the system is appropriate for the users’ needs and the designers’
intentions.

The users of music exploration and recommendation systems have often been ne-
glected by assuming a general consensus on music similarity perception and re-
trieval criteria. Besides the disappointment of users who do not fit this assumption,
fixed retrieval approaches can also impose a cultural influence, especially where
the factors involved in the comparison are not transparent. On the other hand,
user-adapted retrieval has the potential to provide personalised search results that
are better suited to the user’s needs than a standardised suggestion.

For computational musicology, personal ratings or usage data concerning music
support the development of new, automatically adapted models of music percep-
tion and analysis of cultural characteristics in the use of music. Efforts have been
increased recently to adapt retrieval methods to specific contexts and individual
users, as in the CompMusic project [41] or the work of Ricci et al. [38]. Context-
based and user-adapted retrieval have become popular research goals, following
and fostering developments in machine learning to provide algorithms applicable
to accumulated user data. Especially in social networks new opportunities are be-
ing explored using “games with a purpose” (GWAP), where data is collected while
the subjects are playing a game. To optimise distance measures according to data
has been tried, mostly using tags or class information, such as genre labels.

This study is part of a project on culture-dependent modelling of similarity of mu-
sic audio clips. As part of this work, we evaluate modelling approaches for adapting
similarity to user ratings based on audio content-based features and genre-tags. In
this study we address the question whether and how machine learning can be used
to learn optimised similarity measures based on ratings from the only publicly
available dataset with audio music similarity data, the MagnaTagATune dataset.
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We provide the first comprehensive and rigorous study of the dataset and state-
of-the art methods for similarity modelling. The presented methods support the
full process chain from feature design up to learning evaluation.

The relative nature of the similarity ratings supports the design of an easy game
interface and avoids problems with the consistency in subjective numeric ratings.
However, the relative approach complicates the learning of the similarity measure,
where problems are the feature definition and the data structure for representing
the relative ratings. For the learning itself we have evaluated two types of models
for learning similarity measures: Mahalanobis metrics optimised with a Support
Vector Machine (SVM) and Metric Learning to Rank, including a novel weighted
variant, as well as a non-metric distance measure based on Neural Networks.

We provide an extensive evaluation of the models’ performances using cross-
validation to assess the training and generalisation success of each modelling and
learning approach. This includes the influence of the feature sets representing the
music in the model, as well as feature dimensionality. We have developed sam-
pling methods corresponding to different application scenarios. Our experiments
show that learning can have a significant positive effect on the performance of sys-
tems addressed in this study. The effect depends on the feature set, preprocessing,
sampling method, and the learning algorithm which can all produce significant
performance differences.

The remainder of this article is organised as follows: Section 2 reports on related
work and Section 3 introduces our methods for this study. We present our experi-
ments in Section 5 and discuss the results in Section 6. Section 7 closes this article
with conclusions and perspectives for future work.

2 Related Work

Our context is Music Information Retrieval, where a standard architecture for
adaptive systems as sketched in Figure 1 has become prevalent for information
retrieval involving audio [12,35,9]. In this architecture, an audio clip is analysed
with regards to a number of features using a diverse range of signal processing
methods. The features are presented as a single vector per audio clip, representing
a range from low-level features like zero-crossings to higher level properties like
dancability. The audio features can be complemented with professional metadata
and user annotations. When a query is processed, a matching process takes place,
that typically involves classification or similarity. In adaptive systems the matching
process is optimised, typically using supervised machine learning techniques. Here,
ground truth consists of information on actual class membership or similarity
values, against which the the adapted system is evaluated, typically with cross-
validation. From this perspective we discuss in the following general and music
specific work on similarity models, methods for collecting similarity data, and
computational methods to learn from the data.
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Fig. 1 Schematic architecture of an adaptive Music Information Retrieval system.

2.1 Modelling Similarity

Most similarity models are based on features, as proposed by Tversky [47]. A
common mathematical approach is nowadays to view the features as dimensions
of a vector space and model dissimilarity as a distance measure, e.g. using the
Euclidian or other metrics. Distance measures normally treat the dimensions uni-
formly, which ignores the different natures of features and their relations, e.g. the
aspect of systematicity as pointed out by Gentner and Markman [20]. This can be
addressed to some degree by using a Mahalanobis distance [26] (see Section 3.3),
which models correlations between features.

Distances in vector spaces are normally symmetric, and metrics are symmetric by
definition. However, Tversky [47] already pointed out that similarity perception
may be asymmetric. In music perception, asymmetry can be expected, because two
comparable clips are presented sequentially and order may play a role. Gentner and
Markman [20] relate asymmetry to prototype-instance relationship of objects to
compare. Yet, most mathematical and computational similarity models so far are
symmetric. This is due to the simplification that symmetry brings to practical and
theoretical aspects of the model. Considerations of the mode of data collection and
the information available in the data also make a symmetric model a reasonable
choice.

2.2 Adaptive Similarity Models

There is a considerable variety of computational approaches which can be con-
sidered for learning similarity measures. In most cases, the dual problem of a
distance measure, which is inversely related to similarity, is addressed using su-
pervised learning methods.

2.2.1 Feature Selection and Weighting

The simplest form of a adapting a distance measure is by applying a feature
selection. Feature selection is used in information retrieval for optimising efficiency
by only considering relevant data features. E.g. Dash and Liu [14] provided a
systematic approach for feature selection in generic classification tasks.

For music information retrieval, Pickens [37] categorised features for use with
symbolic score data into “shallow-structure” and “deep-structure” features. In
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his paper, most of the features suitable for automatic extraction belong to the
shallow-structure group.

In distance learning, a set of features defines the dimensions of vector space, where
a measure, normally a metric, is adapted to a set of training examples. Yang [55]
has listed a considerable range of distance learning methods, including Linear
Discriminant Analysis, nearest-neighbour-based optimisation, and kernelised ap-
proaches such as Support Vector Machines (SVM).

2.2.2 Class-based Similarity Learning

Class information is a standard part of many datasets, so it is interesting to use
class information to adapt similarity ratings. The general assumption here is that
distances within classes should be smaller than distances between classes. Wein-
berger et al. [49] present a method for Large Margin Nearest-Neighbour classifi-
cation (LMNN), using semidefinite programming. A common evaluation method
is to test if the k nearest neighbours of a clip are in the same class as the clip.
This optimisation maximises a large margin in the trained metric between points
belonging to different classes.

Davis et al. [15] developed the Information Theoretic Metric Learning (ITML)
algorithm, which optimises a fully parametrised Mahalanobis metric allowing for
regularisation with respect to a predefined Mahalanobis metric. An online version
of the algorithm is described as well. The results of their experiments with several
standard classification datasets show a similar or slightly superior performance of
ITML compared to a standard Mahalanobis metric (see Section 3.3), Maximally
Collapsing Metric Learning (MCML)[21], and LMNN.

2.2.3 Similarity Learning from User Ratings

Class labels and data which have been used with the above algorithms are of-
ten not similarity-based. Furthermore, depending on the number of classes, class-
based data contains relatively little information. Often, genre labels are used in
such tasks, and some evidence for a correlation to similarity perception exists as
discussed in Section 2.3.1. However, the general considerations of class labels still
apply, and there is no openly available dataset containing music similarity class
labels which have been assigned by humans.

As increasing amounts of non-class data sets are available from crowd-sourcing and
other online resources, distance-learning algorithms using such data have become
more popular. Using the hypertext structure of university homepages, Schultz
and Joachims [40] presented a method to train a weighted Euclidean distance to
relative distance constraints, which we call SVM-Light in the following. As we show
in Section 3.4.4, this approach can be also applied to music similarity adaptation.
The following section discusses algorithms that have been applied and the data
available for music similarity learning.
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2.3 Modelling Music Similarity from Data

A number of different methods have been used for collecting similarity data. In
MIR research, the development of similarity models has been standing alongside
the collection of datasets individually fit to the purpose of the task or training
algorithm used. unklar The next section will discuss such work where similarity
data from subjects has been used for training, stating three typical paradigms for
collecting similarity data.

2.3.1 Expert and Survey Annotations

Many surveys collect absolute similarity data by asking for similarity ratings of
two clips on a fixed scale, e.g. in the MIREX similarity evaluation3 or in Ferrer and
Eerola [17]. Here, it is left to the subject ensure that their similarity statements
over time are consistent.

A promising approach is the use of relative similarity data that describe the sim-
ilarity constraints between pairs of clips, specifying one pair to be more similar
than the other. A typical setup for collecting relative similarity data is given by
the “odd-one-out” scheme. Here, usually three objects are presented to the par-
ticipants, who are asked to choose the one which least fits into the triplet. This
indicates a relatively higher similarity between the two remaining clips than to the
selected one. Due to the simplicity of the user interface and the voting task, we
decided to develop and evaluate the use of this kind of similarity data as described
specifically in Section 3.

Allan et al. [3] discuss the challenges of gathering consistent similarity data via
surveys. Besides introducing an interface for the interactive collection of song sim-
ilarity data, they tackle the problem of subjects’ coverage of survey examples. As
already pointed out by Novello et al. [34], it is usually infeasible for triplets of
music clips in an odd-one-out constellation to present all triplet permutations for
even a medium-sized dataset to a single subject. Their approach of a balanced
complete block design guarantees a balanced number of occurrences for individual
clips and also accomplishes a balancing of the positioning of the clips within the
triplets presented to a particular subject.

Ellis and Whitman [16] use data from a comparative survey on artist similar-
ity to evaluate similarity metrics based on similar artist lists from the All Music
Guide4 to define their ERDÖS distance. Their artist similarity data covers 412
popular musicians, for whom they gathered 16385 relative comparisons. Moreover,
they compare crowd-sourced similarity measures based on listening patterns and
text analysis of web pages. The distance measures are regularised using Multidi-
mensional Scaling (MDS) to fit metric requirements of symmetry and transitivity.
They find that the unregularised ERDÖS distance outperforms the cultural crowd-
sourced similarity measures. Furthermore, regularisation does not improve results
in most cases.

3 http://www.music-ir.org/mirex/wiki/2011:Evalutron6000 Walkthrough
4 http://www.allmusic.com/
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McFee et al. [32] introduced a multiple-kernel learning technique for constructing
an artist similarity measure given MFCC audio features, based on tags annotated
by users and via an auto-tagging algorithm, biographical information, and collab-
orative filtering data. An artist similarity function is learnt as a weighted combi-
nation of several kernels, also using Ellis and Whitman’s [16] already mentioned
artist similarity data.

For gathering class-based similarity data, subjects are asked to classify clips by
assigning them to one of a fixed number of unlabelled classes (e.g. [33]). This
type of experiment typically requires choosing an appropriate number of classes
beforehand. The similarity of clips within one class is then assumed to be higher
than between different classes, which is of course only valid as a trend, but not
in every instance. This approach has also been applied genre data, as they pro-
vide a classification and are widely available. E.g. Novello et al. [34] follow this
assumption in a “perceptual evaluation of music similarity”. They collected rel-
ative similarity judgements from 36 participants on triplets of songs, and found
a positive correlation of users similarity ratings with musical genres. Similarly, in
Pampalk’s [36] experiments with different acoustic features’ appropriateness for
similarity prediction, their performance is evaluated using a metric based on the
nearest-neighbour genres as ground truth.

Bade et al. [4] use expert classifications of folk song melodies for training localised
similarity measures on folk songs. Pairs of clips from the same and from different
classes are used for learning a linear weighting of similarity measures for a folk
song database containing symbolic music data and metadata.

2.3.2 Crowd-Sourcing Music Data

Crowd-sourcing makes use of the large numbers of people that can be reached
through the Internet. Based on users’ playlists, liking data, music purchase history
and tag annotations, substantial datasets can be collected and used for machine
learning.

Barrington et al. [7] present a method for automatic tagging, based on their model
of tag affinity using linear combinations of four SVM kernels relating to different
feature similarity measurements. Apart from acoustic and web-mined features,
they use crowd-sourced tag data from Last.fm to predict tags from a different
dataset. For the individual tag classifiers, they also analyse the contribution of the
different feature kernels to the final distance measure.

Bodganov et al., in [8] use preference sets of songs to adapt a content-based rel-
evance measure for music recommendation. After a preliminary feature selection,
they use support vector regression to locate songs in a semantic descriptor space.
By weighting different distance measures within this space, the songs are then
compared to retrieve a recommendation distance.

Instead of weighting feature kernels, McFee et al. [27] parametrise a music sim-
ilarity metric using collaborative filtering data. The distance function allows for
a parametrised linear combination of content-based features. Such user listening
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and “liking” data has proved highly effective for providing relevant music recom-
mendations. Unfortunately, the availability of the collaborative user data depends
on the popularity of the music. Exploiting correlations of the audio feature data
and the users listening behaviour, the adapted metric approximates the user data
whilst only requiring acoustic feature information and available tag data on the
music. They present the MLR algorithm (see Section 3.4.1), which performs the
adaptation of a Mahalanobis metric to given ranking data. Post-training analy-
sis of feature weights revealed that tags relating to genre or radio stations were
assigned greater weights than those related to music theoretical terms. In our ex-
periments in Section 5, we use MLR to adapt a music similarity metric to user
ratings.

Slaney et al. [43] also presented a general method for learning a Mahalanobis
distance metric. They adapt similarity on user “like” data covering jazz music
from Yahoo! Music. Their experiments evaluate the effectiveness of the similarity
metrics by comparing it to songs’s nearest neighbours in terms of artist names.
They find that the collaborative-filtering based measure outperforms a content-
based metric. The authors discuss two drawbacks associated with using artist
identity as similarity ground truth: Firstly they note the wide range of musical
styles any artist may have. Secondly an imbalance of distribution of collaborative-
filtering information in their data with respect to artists and albums is discussed.
Users may listen to and “like” all songs of an artist because their playlist is artist-
based. The same problem applies to musical genre or any other categories typically
used to organise music.

Slaney and White [42] extend the variety of similarity models by comparing six
approaches of adapting content-based similarity on the same ground truth (un-
modified, whitening, LDA, NCA, LMNN and RCA). As above, the similarity data
is derived from metadata classification, but the authors broaden their range of
data by adding experiments with the kNN performance measure based on album
and blog matches. Here, the content-based features are gathered using the The
Echo Nest API.

The Million Song Dataset, containing audio and tag features for 1,000,000 songs,
has recently been enhanced by a set of collaborative filtering data for music rel-
evance. This dataset is now used in the Million Song Dataset challenge run by
McFee and Bertin-Mahieux [28], a competition for the best prediction of user lis-
tening history data given a public training set. McFee and Lanchriet [31] recently
also presented a new hypergraph model for playlist generation. This scenario is
related to music similarity estimation, as songs played in close succession are of-
ten found similar. But, like with collaborative filtering data, other factors also
influence the data and model design. The experiments in [31] show that modelling
genre sequences also plays a significant role for designing a playlist generator.

2.3.3 Gathering Data via Musical Games With A Purpose

Games With A Purpose (GWAP) are intended to gather data, often similar to
traditional questionnaires, in large quantities from online users. In GWAPs the
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users are motivated to participate by an enjoyable game experience and the in-
centive to provide accurate data lies in rewards for agreement across users. Ellis
et al [16] use a game to complement their survey data described in the previous
section. The game results somewhat supports the survey, but different sampling
methods prohibit a direct comparison. More recently, HerdIt, a GWAP based on
the social network Facebook R© was presented by Barrington et al. [5]. The tagging
data collected with HerdIt was evaluated in [6] but no user data from the game
has been published yet.

The TagATune game collects tagging and similarity data for a large number of song
excerpts from the Magnatune online label.5 The resulting data, was published as
the MagnaTagATune dataset, which we use in part in this article. In [52,51], we
used the MagnaTagATune dataset to adapt similarity measures based on the sim-
ilarity data and music features contained in this set. For a simplified version of the
similarity data, our experiments showed that the similarity data acquired via the
human computation game can be modelled to some extent using SVM-based ap-
proaches for metric learning. Stober and Nürnberger [44] have worked on the same
dataset but with different feature and similarity extraction methods, comparing
algorithms for linear and quadratic optimisation of a similarity measure based on
feature weighting. They analyse the training methods on two different subsets of
the similarity constraints (see Section 4.1). The smaller of which is designed to be
solvable by all of the optimisation approaches, showing the learnability of a large
subset of the data. For the other, slightly larger set, where not all constraints
can be learned, the LIBLINEAR method achieves better results than the other
methods. However, in that study only the learning performance is tested, not the
generalisation, which is more relevant for most application scenarios.

The results for learning distance metrics from collaborative filtering and the avail-
ability of data from GWAPs motivate a systematic evaluation of such methods for
similarity learning. The psychological view of similarity perception including asym-
metry and triangle inequality, made clear that care is necessary when interpreting
the results of learning similarity from data, as they depend on the information in
the data and the limitations of the preprocessing and the learning method. In the
following, we introduce and develop the analysis and learning methods for ground
truth similarity data as given in the MagnaTagATune dataset.

3 Modelling Music Similarity from Relative User Ratings

The last section already mentioned the MagnaTagATune dataset, which we use
in this study. It consists in part of data from an odd-one-out game, and in the
following we describe data structures and algorithms for using this data to optimise
similarity measures.

5 See http://www.tagatune.org/.

http://www.tagatune.org/
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3.1 Relative Ratings from Odd-One-Out Games

This section describes how data from an odd-one-out setting can be used and pre-
processed to train music similarity models. We consider relative similarity data in
the form of relations between two pairs of clips. For example, given the clips Ci,
Cj , Ck and Cl, we can express a similarity relation using the following:

(Ci, Cj)
sim
> (Ck, Cl), (1)

where the relation
sim
> denotes “more similar than”. This can easily be applied

to an odd-one-out survey: Given three clips Ci, Cj and Ck, a vote for Ck as the
odd-one-out can be interpreted using the following two relations:

(Ci, Cj)
sim
> (Ci, Ck)

∧ (Ci, Cj)
sim
> (Cj , Ck). (2)

3.2 Similarity Graphs

Relative similarity relations can be represented as edges in a directed weighted
graph of pairs of clips (McFee et al. [29], Stober et al. [45]): Given the clip index
I for all clips Ci, i ∈ I and similarity information Q̂ containing constraints in
form (1), our Graph G = (V,E) consists of vertices representing clip pairs

V = {(Ci, Cj) | i, j ∈ I}

and edges

E =
{(

(Ci, Cj), (Ci, Ck), αi,j,k
)
| (i, j, k) ∈ Q̂, αi,j,k ∈ N \ 0

}
representing the pairs’ similarity relations. The weights αi,j,k assigned to the edges
represent the number of occurrences of a particular constraint (i, j, k). Such a graph
as corresponding to Equation 2 is shown in Figure 2.

Fig. 2 Graph induced by a single “odd-one-out” statement, as in Equation 2

(Ci, Cj)

(Ci, Ck) (Cj , Ck)

αj,i,k = 11

The induced graph can include inconsistent similarity information, for instance
from users directly disagreeing on the outlying clip in a triplet, or multiple votes
leading to a contradiction when considering the transitivity of the induced simi-
larity metric. Contradictions appear as cycles in the graph as shown in Figures 3
and 4. Such cycles can be found and analysed using standard methods for extract-
ing strongly connected components in directed graphs.
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Fig. 3 Graph containing a length-2 cycle

(Ci, Cj)

(Ci, Ck) (Cj , Ck)

32
1

Fig. 4 Graph containing a length-3 cycle. Edge weights have been hidden.

(Ci, Cj)

(Ci, Ck) (Cj , Ck)

(Cl, Cm)

(Cl, Cn) (Cm, Cn)

3.2.1 Removing Cycles

The SVM and MLR training algorithms we use here require the similarity data to
be consistent. For removing direct contradictions we remove cycles of length 2 by
removing the edge (i, j, k) with the smaller weight αi,j,k and subtracting its weight
from the weight αi,k,j of the edge in the opposite direction. If two contradicting
edges have equal weight, both are deleted, possibly leaving a vertex disconnected
from the graph.

Removing cycles of greater length and finding the maximal acyclic subgraph of
G is an NP-hard problem [25]. McFee et al. [29] use a randomised algorithm by
Aho et al. [1] to extract an acyclic subgraph for this application. The graph is
created by iteratively adding edges to a new graph and testing for cycles. Edges
that complete a cycle are omitted. Depending on the similarity data, different
means of finding an acyclic subgraph may give better or even optimal results. See
Section 4.1 for the structure of the MagnaTagATune similarity data.

The resulting acyclic weighted graph provides the similarity constraints (i, j, k) ∈
Q that we use to train the similarity measures. The analysis of the adjacent com-
ponents in this graph gives information on transitive similarity relations expressed
by the constraints (see Section 4.1).

3.3 Mahalanobis Distance

The MLR algorithm, which we introduce in the next section, adapts a metric that
was introduced by Mahalanobis in 1936 [26]. The Mahalanobis metric dW , which
can be seen as a generalisation of the Euclidian metric, is defined as

dW (xi, xj) =
√

(xi − xj)TW (xi − xj), (3)
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where xi, xj ∈ RN represent our feature vectors and W ∈ RN×N is a Mahalanobis
matrix, parametrising the similarity space. If W is the identity matrix, dW is the
Euclidean metric. If W is diagonal the feature dimensions are separately weighted
within the distance function, as it is use with the SVM-Light and the DMLR
algorithms introduced in the next section. If the full matrix W is positive definite,
dW satisfies all conditions of a metric (symmetry, non-negativity and the triangle
inequality). We require W only to be positive semidefinite, so that dW (xi, xj) = 0
for xi 6= xj is possible, which makes the distance function a pseudometric [48].

As described by Davis et al. [15], each Mahalanobis matrix W induces a multi-
variate Gaussian distribution

P (xi;W ) =
1

β
exp

(
−1

2
dW (xi, µ)

)
. (4)

Here, as in the standard definition [26] of the Mahalanobis distance, W−1 repre-
sents the covariance of the distribution, β represents a normalising factor and µ
the mean of the feature data. With W derived from data covariances, the Maha-
lanobis distance can be used to calculate the distance from the data average or
any another point in relation to the distribution of the data.

3.4 Metric Learning

In this study we evaluate two state-of-the-art methods for learning a Mahalanobis
distance from relative similarity data. (D)MLR and SVM-Light are applicable to
a multitude of data sources, with relatively little pre-processing and conversion
required. They are both based on Support Vector Machines, and thus work effec-
tively with high-dimensional feature vectors that are commonly used for describing
the music clips (see Section 4.2). Implementations of both algorithms are available
as open source. Thus, modifications can be applied to the code as described in the
following sections and comparisons of experiment results can be made easily by
other researchers.

Using these algorithms, a parametrised Mahalanobis distance is learnt from sim-
ilarity constraints. Instead of using the covariance of the feature data data, the
Mahalanobis matrix W is adapted to satisfy similarity constraints as derived in
Section 4.1. Thus, not the feature data of the clip but the human similarity votes
determine the similarity space. The resulting Mahalanobis matrix transforms the
feature space when calculating similarity, allowing for dilations, rotations and
translations to match the given similarity constraints. The rest of this section
introduces different algorithms used for optimising W .

3.4.1 Metric Learning to Rank (MLR)

McFee and Lanckriet[30] describe the MLR algorithm for learning a fully parame-
trised Mahalanobis distance based on the SVMstruct framework of Tsochantaridis
et al. [46]. Specifically well-suited for employment in retrieval environments, this
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method utilises rankings for the specification of training data as well as for the
in-training evaluation of candidates for distance metrics. Such rankings assign a
ranking position to each of the clips in our dataset given one of these as query

item. For all constraints (i, j, k) ∈ Q, referring to (Ci, Cj)
sim
> (Ci, Ck), the final

metric is supposed to rank Cj before Ck, when the query is Ci.

During the optimisation, ranking losses resulting from suboptimal metrics are
determined using standard information retrieval performance measures. In our
application we use the area under the ROC curve as the measure for ranking loss.
Violations of constraints are allowed for, but penalised using a single slack variable.
Apart from the minimisation of the shared slack penalty, a regularisation term
based on the trace tr(W ) of the Mahalanobis matrix is used in the optimisation.

In this study, we use a Matlab R© implementation of the MLR algorithm, which
McFee has published online6.

3.4.2 DMLR

A variant of the MLR algorithm (DMLR) restrains W to a diagonal matrix W with
Wij = 0 for i 6= j. Whilst still allowing for the weighting of different feature dimen-
sions, rotations and translations in features space are ruled out by this restriction.
For feature vectors xi ∈ Rn, this reduces the number of training parameters from
n2 to n.

3.4.3 Weighted Learning with MLR

For MLR, to our knowledge, no experiments or methods for weighted training have
been published. MLR uses a 1-slack approach, prohibiting the weighting of indi-
vidual constraints via their slack penalty. Instead we implemented the weighting
by repeating individual constraints according to their weight. During slack aggre-
gation, performed by averaging error along the training constraints, the repeated
constraints gain their respective weight. This approach is obviously not efficient,
but for the MagnaTagATune similarity dataset it is feasible. Experiments with
quantised constraint weights showed similar performance with using only frac-
tions (10%) of data overhead, which improves the scalability to larger datasets.
The effects of weighted learning with MLR and DMLR are explored in Section 5.4.

3.4.4 Metric Learning with SVM-Light

In [40], Schultz and Joachims present a metric learning strategy based on their
SVM-Light framework7. Here, the matrix W , as introduced in Equation 3 is fac-
torised into a linear kernel transformation A and a diagonal matrix W . We use
the identity transform as kernel A = I. Thus, dW describes the Euclidean metric
based on weighted features.

6 http://cseweb.ucsd.edu/˜bmcfee/code/mlr/
7 http://svmlight.joachims.org/
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The proposed algorithm optimises the distance measure by representing it as the

hyperplane dividing triplets (i, j, k), referring to (Ci, Cj)
sim
> (Ci, Ck), from triplets

representing the contrary information (i, k, j). Clip pairs (Ci, Cj) are represented
by the clips’ feature difference: for each constraint triplet (i, j, k), we consider the
component-wise squared difference of the involved clip pairs’ features: ∆xi,xj =(
(xi1 − xj1)2, ..., (xiN − xjN )2

)
. The differences of the pairs

∆∆(i,j,k) = (∆xi,xk −∆xi,xj ) (5)

are then used as constraints for the following optimisation problem:

min
w,ξ

1

2
||W ||2F + cSC03 ·

∑
(i,j,k)∈Qtrain

ξ(i,j,k) (6)

s.t. ∀(i, j, k) ∈ Qtrain :
〈

diag(W ),∆∆(i,j,k)

〉
≥ 1− ξabc

wi,j ≥ 0, ξabc ≥ 0.

This minimises the loss defined by the sum of the per-constraint slack variables
ξ(i,j,k) and regularises W using the squared Frobenius norm ‖W‖2F = tr(WT ·W ).
Here, cSC03 > 0 determines the tradeoff between regularisation and slack loss. The
implementation calculates the diagonal in W in its dual form on the basis of the
support vectors. Given the support vectors ∆∆(i,j,k) and their weights aiyi, W can
be easily retrieved using

diag(W ) =
∑

(i,j,k)

a(i,j,k)y(i,j,k)∆
∆
(i,j,k). (7)

The resulting dW normally turns out positive semidefinite, but this is not guar-
anteed. Cases occur where some of the Wii < 0 are slightly below zero. This
behaviour has also been reported for the LIBLINEAR framework by Stober et al.
[45]. In these cases, the measure does not qualify as a metric or pseudometric but
may still perform well in terms of training error and generalisation.

The SVM-Light toolbox allows for weights associated to constraints to be di-
rectly applied during training, by effectively weighting the individual slack vari-
ables ξ(i,j,k) in the penalty term of Equation 6.

3.5 Distance Learning using Neural Networks

Unlike the previous models, Neural Networks, specifically Multi Layer Perceptrons
(MLP), are capable of approximating arbitrary functions (cf. Hornik et al.[23]).
This means that more complex interactions of the features can be modelled than
with a metric. This includes the distances measures where the triangle inequality
doesn’t hold or asymmetrical distance functions as discussed in Section 2.1. We
don’t do the latter in this study, as order information is not available in our dataset.

For our experiments, we have adapted a strategy presented by Hörnel [22], based
on earlier work by Braun et al. [11], for making a neural network learn an absolute
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rating from relative information. This strategy is based on a combined network
sketched in Figure 5 with two MLP networks, net1 and net2, that have the same
structure and share their weights. The input of each net is the vector of absolute
differences a pair of feature vectors. From a similarity constraint, net1 gets the
vector of the most similar pair, and should thus output a higher distance value
than net2. The outputs of net1 and net2 are connected to a comparator neuron
c with negative fixed weight −/ + v for net1/net2 respectively. Thus c outputs a
higher value if the correct input has not been achieved. The activation function
of c is chosen to produce non-negative values, and the whole network can now be
trained with target values of 0 for every training example.

Fig. 5 Scheme for neural network learning from relative ratings.

Hörnel used a comparator neuron with sigmoid activation function, and a weight
fixed with a negative sign for the ‘left’ network and a negative sign for the ’right’
network. An alternative suggested by Braun [10] is the use of a semi-linear activa-
tion function fc for the comparator neuron, which we use as indicated in Figure
5. We also introduce a margin between the higher and the lower ratings with a
variable γ.

We developed an implementation of this scheme using a single network. This is
based on the observation that the derivatives of the sum-of-squares error (SSE(P ))

on a set of inputs P with regards to the output n
(p)
1 and n

(p)
2 of net1 and net2 for

input p are

∂sse(P )

∂n
(p)
1

= v(n
(p)
2 − n(p)

1 + γ) and
∂sse(P )

∂n
(p)
2

= v(n
(p)
1 − n(p)

2 + γ). (8)

This is equivalent to defining the target values of each net in terms of output of
the other net:

t1 = (n2 − n1 + γ) and t2 = (n1 − n2 + γ). (9)

We used this to implement training on a single network with γ = 0.5 with re-
silient backpropagation (cf. Riedmiller and Braun [39]) with regularisation. The
procedure is described in listing 1.

The resulting MLP calculates a distance measure between two clips Ci, Cj , given
the vector δxi,xj := |xi − xj | of absolute differences of the two clips’ features:

dMLP(xi, xj) = MLP(δxi,xj ). (10)
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Algorithm 1 Training of an MLP with relative constraints
Require: Constraints Qtrain, features xi ∀i ∈ I, # of cycles k
Ensure:

Define D := {(δxi,xj , δxi,xk ) | ∃(i, j, k) ∈ Q∗} . training data
Define T :=

{
(ti,j , ti,k) | ∃(i, j, k) ∈ Q∗

}
. training targets

MLP = initRandomMLP() . initialise MLP with random weights
Q∗ = {(i, j, k) ∈ Qtrain | dMLP(xi, xj) + 2γ > dMLP(xi, xk)} . violated constraints
cycles = 0
while cycles ≤ k ∧Q∗ 6= ∅ do

for all (i, j, k) ∈ Q∗ do
d̄i,j,k = 1

2
∗ (MLP(δxi,xj ) + MLP(δxi,xk )) . update training targets

ti,j = d̄i,j,k − γ . decrease distance for more similar pair by margin γ

ti,k = d̄i,j,k + γ . add margin for less similar pair
MLP = trainRp(MLP, Q∗, D, T, r) . Train MLP with new targets

Q∗ = {(i, j, k) ∈ Qtrain | dMLP(xi, xj) + 2γ > dMLP(xi, xk)} . update train set
cycles++

end for
end while

4 The MagnaTagATune Dataset

As mentioned in Section 2.3.1, existing datasets for similarity statements of users
are small and rarely accessible. The MagnaTagATune dataset is to our knowl-
edge the only similarity dataset that is freely available8 with the corresponding
music data. Our experiments are therefore based on this set to make our results
reproducible and comparable.

4.1 Similarity Data

In the bonus mode of the TagATune game, a team of two players is asked to agree
on the odd-one-out of three audio clips. This is a typical instance of an output-
agreement game with a purpose. Regardless of the success of the team, both of
the users’ votings are saved into a histogram for this triplet. The MagnaTagATune
dataset contains 7650 such votings for a total 346 of triplets, referring to 1019 clips.
Some of the triplets have been presented as permutations, and the order of display
is in the dataset, as well, but not the order of listening. On average, each instance
of a triplet permutation counts 14 votings. In our experiments, the information of
each player’s vote, e.g. Ck being the outlier in (Ci, Cj , Ck) is used to derive two
relative similarity constraints as stated in Equation 2.

The induced weighted graph, derived from 2 · 7650 =
∑

(i,j,k)∈Q̂ αi,j,k votes, in-
cludes cycles of length 2, but no cycles of greater length. Thus, removing the
cycles of length 2, thereby removing 8402 weight points, resolves all cycles exist-
ing in the initial graph. The resulting directed acyclic weighted graph consists of
337 connected subgraphs Gisub, each containing three vertices or clip pairs. The
6898 weight points for 860 unique connections contain the remaining similarity
information Q. 27 vertices are isolated by the above process, indicating equal vote

8 http://www.tagatune.org/Magnatagatune.html

http://www.tagatune.org/Magnatagatune.html
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counts for contradictory statements including 27 songs. 26 of those songs are not
referenced by any remaining similarity constraints, thus reducing the number of
referenced clips to 993.

A retrieval of the connected components in the graph shows the largest connected
subgraph to be containing 3 vertices. In fact, when excluding the 27 isolated ver-
tices with no associated similarity information, the remaining triplets correspond
to triplets in the initial dataset, now associated with modified weights. This is
due to the similarity triplets presented to the users, as explained above, and thus
no information about interrelations of the different clip triplets can be directly
extracted from the similarity data.

4.1.1 Genre Distribution over Triplets

In Section 2.1 we discussed the role of genre regarding the perceived similarity of
music. Unfortunately, with this dataset, genre-specific similarity measures cannot
be studied, as the datasets per genre are too small for similarity learning. To give
an impression of the dataset’s structure, we divided the genre groups using the
most frequently annotated genres:

Table 1 Number of triplets with n clips sharing the same genre tag.

Genres n = 3 of 3 2 of 3 1 of 3
Electronica, New Age, Ambient 43 159 447

Classical, Baroque 8 65 257
Rock, Alt Rock, Hard Rock, Metal 6 59 251

4.1.2 Similarity Weights

For the MagnaTagATune dataset, the numbers of votes (see Section 4.1) per con-
straint varies. Since the weights of the edges are determined as the differences of
conflicting votes as in Stober et al.[45], there is a compensation between total vote
number and vote proportion: constraints with a small proportional majority of
votes but many votes in total can get the same weight as songs with a large rela-
tive majority but fewer total votes. We view this compensation as useful, because
either factor can contribute to the confidence in the constraint. The separate use
of proportion and vote count could be interesting, e.g. in a probabilistic model,
but is not explored in this study.

4.1.3 Sampling Methods

In our experiments, the performance of the learnt metrics regarding the similarity
data is evaluated using cross-validation. In k-fold cross-validation, the complete
constraint set is divided into k disjoint subsets of approximately equal size. One
of the subsets is held out during training and used for testing the performance.



18 Daniel Wolff, Tillman Weyde

Since our training data consist of three layers: the clips, the clip pairs, and the
similarity constraints on the pairs. Disjoint sets of constraints can be based on the
same pairs or individual clips, and disjoint sets of pairs can be based on the same
clips.

Sampling for Transduction: In the odd-one-out dataset, the constraints are de-
fined on triplets of clip pairs, and each pair of constraints on a triplet has one
referenced pair of clips in common and references all clips in the triplet. Thus,
when constraints from one triplet are divided between the test and training set,
the two sets both reference one pair of clips and all individual clips in common.
In our experiments presented in Section 5.3, the similarity constraints Q are ran-
domly sampled subsets of constraints for 10-fold cross-validation, so that clips and
clip pairs appear in several sets. One of these subsets is used as the test set Qktest
of 86 constraints, while the remaining 9 subsets are combined to the training set
Qktrain of 774 constraints. Because of the random sampling of constraints, a triplet
with 2 constraints, where one of the constraints is in the test set, has a chance of
90% of the other constraint being in the training set. If the triplet has 3 constraints
and one of them is in the test set, the chance of one of the other 2 being in the
training set is 99%. In our tests, the training sets referenced on average 989 clips
out of the 993 total referenced clips.

We call this method transductive sampling (TD-sampling) because it enables trans-
ductive learning (cf. Gammerman et al.[19]). As our results in Section 5.3 show, the
SVM-based approaches achieve better results with TD-sampling. TD-sampling can
be an appropriate method for evaluation, e.g. for recommendation within a static
database, but it does not support accurate performance predictions for unseen clip
data.

Sampling for Induction: For assessing the capacity of a model to generalise over
unknown pairs or individual items, another method is needed. In Wolff et al. [50] we
introduced and tested a sampling method, which separates similarity data the clip
pair level. Rather than defining the subsets on the basis of constraints (i, j, j) ∈ Q,
we use the disjoint subgraphs Gisub of the full similarity graph G (see Section 3.2).
Choosing disjoint sets on the basis of these 337 disjoint subgraphs guarantees the
sets to be disjoint with regards to the clip pairs (the vertices of G). We call this
method inductive sampling (ID-sampling). In the MagnaTagATune dataset, after
removing contradicting edges, the subgraphs are also disjoint in terms of clips.

The Gisub differ in their number of edges because of unanimous votes or edge
cancellation. Therefore the cross-validation sets vary slightly in their size. For
the experiments in Section 5, 337 subgraphs have been divided into 10 subsets,
each corresponding to 33 or 34 subgraphs. This results in subsets containing 85
constraints on average. The maximal training set size varies from 771 to 779 con-
straints referencing on average 896 clips, about 10% less than in the TD-sampling,
as expected. We use ID-sampling throughout this study, except where we explicitly
test TD-sampling.
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4.2 Content-Based Feature Data

In this paper we use three types of features: low-level and higher level audio fea-
tures, which we introduce in this section, and genre features that will be explained
in the next section.

4.2.1 Low-Level Audio Features

For our initial experiments in [52,51], we only used the precomputed chroma and
timbre vectors provided with the dataset. These were extracted with The Echo
Nest API, version 1.0. This information as the basis for our features allows more
reliable reconstruction of audio features compared to the web-based and regularly
updated API of The Echo Nest.

The chroma and timbre vectors are provided on a per-segment basis, with the
clips divided into segments of relatively stable frequency distribution (details can
be found in [24]). For each of these segments, the MagnaTagATune dataset contains
a single chroma and timbre vector, each ∈ R12. We used two modes of aggregation,
averaging and clustering, which we compare in Section 5.2.

Aggregation by Averaging In most of our experiments, we aggregate this informa-
tion to the 30 seconds time scale of a clip. Like in [44], a straightforward approach
is to take the mean and variance of the features over time and use these values
for representing the clip. We conducted experiments with the variance of chroma
and timbre, but found them not to be helpful features. Thus, in Section 5.2 we
only evaluate features based on the means of chroma and timbre values, i.e. for
each clip Ci, i ∈ {1, · · · 1019}, a single timbre average t1i and chroma average c1i ,
t1i ∈ R12 and c1i ∈ R12

≥0, are extracted.

Aggregation by Clustering In the previous experiments [52,51,54], we did not use
a single average but 4 cluster centroids tji ∈ R12, cji ∈ R12

≥0, j ∈ {1, · · · 4} for
each feature and clip Ci, i ∈ {1, · · · 1019}. The idea of this approach is to preserve
some of the variety of harmony and timbre in the clips. The centroids are extracted
with a weighted k-means variant, which accounts for the differing durations of the
individual segments: centroids are influenced more strongly by feature data from
longer segments. The final relative temporal weights of the cluster centroids are
saved in scalars λ(cji ), λ(tji ) ∈ [0, 1].

Normalisation and Clipping Following aggregation, the centroids or averages of
the chroma features are normalised to fit the interval [0, 1] using

c̃ji =
cji

maxk(cji (k))
. (11)

The timbre data is provided in an open numerical range [−∞,∞] by The Echo
Nest. This also applies to the extracted centroids and averages. In order to adapt
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the timbre feature data’s range to those of the chroma and other features, the
values are clipped to a maximum threshold. The clipping threshold was chosen
such that 85% of the timbre data values for the similarity dataset are preserved.
Afterwards, the timbre data is shifted and scaled to fit tji ∈ [0, 1].

4.2.2 Higher-Level Audio Features

In [52,51] we restricted the set of features to the easily extractable low-level fea-
tures mentioned above. Slaney et al. [42] introduced a complementary feature set
to facilitate the adaptation of music similarity measures to ground truth based
on annotations. In their experiments, the segment-based chroma and timbre fea-
tures were not used. Instead, they use those features from the The Echo Nest API
which are already given on the clip level, as well as statistics for segment and beat
locations and their frequencies. These features are the result of different classifi-
cation, structure analysis and optimisation algorithms for music, which have been
described in detail in Tristan Jehan’s PhD thesis [24].

In the experiments presented in this paper, we complement the low-level features
with higher-level features by reproducing the features by Slaney et al. [42], as far
as the required information is available in the MagnaTagATune dataset. Features
where this was not the case have been omitted to ensure reproducibility of the
experiments. Table 2 shows a list of the features used in this study.

Table 2 Features from [42] used in our experiments.

segmentDurationMean tempo
segmentDurationVariance tempoConfidence
timeLoudnessMaxMean beatVariance
loudness tatum
loudnessMaxMean tatumConfidence
loudnessMaxVariance numTatumsPerBeat
loudnessBeginMean timeSignature
loudnessBeginVariance timeSignatureStability

Most of the features in Table 2 are directly based on the dataset. The “-Mean”
and“-Variance” features represent the respective statistical operation on the pro-
vided feature data, with no further processing apart from a final normalisation,
as explained in the following paragraph. The beatVariance feature represents the
variance of the time between detected beats. If no beats are detected, the variance
is set to zero. The tatum feature contains the median length of the inter-tatum
intervals. Analogously, the numTatumsPerBeat feature results from the division
of the median inter-beat interval by the tatum length as described above. If no
tatum positions are detected, the tatum and tatumConfidence features are set to
zero, while the numTatumsPerBeat feature is set to a default of 2.

Finally, each of these features is separately normalised over the values for the clips
in the whole similarity dataset: The values are scaled and their minimal value
subtracted to result in a one-dimensional sji ∈ [0, 1], for clips Ci. The features are
not whitened as described by Slaney et al [42], as we are interested in keeping
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the features’ original associations to properties in music theory. Note that some
of the features allocate only a small number of actual values. For example, the
timeSignature feature uses only the values {07 ,

1
7 , · · · ,

7
7}.

4.3 Genre Features

In addition to the audio features explained above, we use contextual information
on the clips via tag-based features. We employ genre tags from the Magnatune
label’s catalogue, which is available online9. It contains descriptions of the songs
present the MagnaTagATune dataset’s clips: Each song is annotated with 2 to
4 genre descriptions, which are also ordered from the most general to the most
specific associated genre. We assign these genres as one binary vector ci ∈ {0, 1}44
per clip, setting positions j to 1 for each genre cji and 0 otherwise.

5 Experiments

In the following, we present results from experiments we conducted to study the
feasibility of similarity learning from relative ratings and to compare the effect of
different algorithms, training parameters, features, and evaluation approaches on
the training and generalisation results. This includes training on All performances
are evaluated with cross-validation based on the percentage of unique distance
constraints being satisfied by the learnt distance function. The distance constraints
used below are extracted as described in Section 4.1.3. Following the strategy from
[50], we start from a set of 13 constraints on average and increase the training set
size |Qvtrain(p)| for each cross-validation by extending the subsets.

Because the sampling and the choice of starting set have an influence on the result
we extend the strategy here by repeating the procedure 4 times and averaging the
results. We also use the 4 · 10 cross validation test sets for significance testing, ap-
plying a non-parametric approach. We use a Wilcoxon two-tailed signed rank test
to compare the model trained on the full training set with the standard Euclidian
metric – or another model as indicated – on each test set.

The following section compares the algorithms described above using the full fea-
ture set. The different feature types will be compared individually and in combined
form in Section 4.2. Section 5.4 explores the use of weight information in the simi-
larity graph. Finally, Section 5.3 compares the ID-sampling, which was used in all
other experiments, to TD-sampling.

9 http://magnatune.com/info/api.html
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5.1 Algorithms Compared

We compare MLR, DMLR, SVM-Light and MLP neural network. DMLR and
SVM-Light learn a weighted Euclidean distance, while MLR is adapting a Maha-
lanobis distance with a full matrix W .

We use regularisation trade-off factors that have been determined using a grid-
based search for the optimal configuration evaluated by cross-validation. The
trade-off factors c were set to cmlr = 1012 for MLR, cdmlr = 102 for the diag-
onally restricted DMLR (Section 3.4.1), and cSC03 = 3 for the SVM-Light algo-
rithm (Section 3.4.4). The MLP is set up with two hidden layers, containing 20
and 5 neurons, respectively. The MLP is trained in up to 38 training cycles or until
all constraints are satisfied, which was not achieved. We tried longer training, but
achieved no improvement of results.
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Fig. 6 Overall test set performance for combined features with averaged low-level information:
SVM, MLR, DMLR and MLP performance for full features, with increasing training set size.
The dotted line shows the baseline performance of an unweighted Euclidean distance.

Figure 6 shows the different algorithms using the combined features containing
averaged audio and timbre features, Slaney08 features and genre features. This
combination was chosen for showing relatively good results for all of the algorithms.
Considering the training with the maximum size training sets, both MLR and
SVM achieve similar performance on the unknown test set. DMLR and MLP do
not generalise well from the training set onto the test set (see Figure 7) .

In this experiment the test for the largest subsets results by MLR and SVM-Light
are approximately 2% and 1.5% above the baseline of 66.86%. At 5% significance
level only the MLR results are significantly better than the Euclidian metric (p =
0.0007). Both DMLR and the MLP network remain below the baseline performance
by 1% on the test sets.

The generalisation results for small training sets Qvtrain(p) depend highly on the
algorithm used, and for SVM-Light, DMLR and MLP lie considerably below the



Learning Music Similarity from Relative User Ratings 23

0 100 200 300 400 500 600 700
65

70

75

80

85

90

95

100

77.74

100.00

70.37
71.18

avg. number of training constraints

%
 o

f t
ra

in
in

g 
co

ns
tr

ai
nt

s 
fu

lfi
lle

d

 

 

SVMLIGHT

MLR

DMLR

MLPNET

Fig. 7 Overall training performance: SVM, MLR, DMLR and MLP performance for full
features, with increasing training set size. The dotted line shows the baseline performance of
an unweighted Euclidean distance on the training set.

baseline. For SVM-Light, this is an effect of overfitting on small datasets, as we
optimised the parameters for larger training sets. In [50] we suggest adaptive reg-
ularisation which could improve generalisation on small trainings sets if that is
desired. MLR and SVM-Light exhibit different performance over different training
set sizes: MLR starts around the baseline and reaches almost maximal performance
within the first 100 training examples, while reaching almost 100% on any train-
ing set, which may well be a sign of overfitting. While SVM-Light starts with very
low generalisation for small training sets and reaches the baseline performance at
500 training constraints. However, the results of SVM-Light continue to improve
with the size of the dataset until the full number of training constraints is reached
and are still clearly below the test results. This could also indicate overfitting,
but again increased regularisation yielded no improvement and more data was not
available.

The training set performance curves in Figure 7 exhibit several particular types
of learning behaviour. Note that the baseline (dotted line) slightly varies as the
training sets grows. In each of the four samplings, the baseline can vary up to
10% depending on the training subset. Like in earlier studies [52,54], MLR learns
to fulfil all of the training constraints. The training performance of SVM-Light
shows a continuous regularisation tradeoff, allowing for additional constraints to
be learnt, whilst preserving good generalisation at the final full training set size.
DMLR and the MLP show overfitting to the training examples for small training
sets with a consistently inferior performance when compared to SVM-Light and
MLR. With these algorithms, no gain is achieved on unknown test sets.

5.1.1 Training speed and efficiency

We measured running times of the different algorithms as showing in Table 3.
Comparison of these absolute runtimes does not necessarily reflect algorithmic



24 Daniel Wolff, Tillman Weyde

efficiency, as SVM-Light is used in a compiled windows executable, while MLR,
DMLR and the MLP net run within the MATLAB interpreter. Especially for the
large feature spaces used with MLR and SVM-Light, the MLP method (see 1)
is still by far the slowest of the approaches described in this paper, using large
amounts of time even for the small training sets.

Table 3 Average training time per dataset in minutes, accumulated over all 20 subset sizes

SVM MLR DMLR MLP
5 40 30 60

5.2 Influence of Feature Type

As has been shown in [52] both feature type and feature dimensionality have an
influence on the algorithms’ adaptation performances. We now present an evalu-
ation of these parameters on the complete similarity data as described above. To
this end, we compare the performances of SVM-Light using

– acoustic-only features

– single chroma via average or 4 cluster centroids

– single timbre via average or 4 cluster centroids

– genre-only features,

– slaney-only features,

– combined acoustic features and

– complete combined features.

The results for the different feature sets should be comparable without changing
the algorithm’s parametrisation. As we wanted to avoid an additional validation
step for selecting cmlr (see discussion in Section 7), we use SVM-Light as the most
robust method for the examination of feature influence. For MLR the optimal
regularisation tradeoff parameter cmlr can vary by several orders of magnitude.
We use again the unweighted Euclidean distance metric as baseline for all of the
feature configurations, the baseline values are plotted on the left vertical axis in
Figure 8 and 9.

Table 4 shows the performance of SVM-Light using different parts of the complete
feature set available. The combined features achieve the greatest performance, fol-
lowed by the Slaney08, timbre and genre features. The Slaney08 features (relatively
high-level summary information), support particularly good generalisation (differ-
ence test vs. training set only 2.06%). On the other hand, the chroma features are
least effective on test set (difference to training set above 5%).

Table 5 shows that the differences between the Chroma features the others are sta-
tistically significant at the 5% level. Most of the differences between the Slaney08,
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Table 4 SVM Single features test set performance. Values for single average audio features
and 4-cluster audio features are separated by slashes (average / 4-cluster).

Features Chroma(1/4) Timbre(1/4) Slaney08 Genre
Test 56.44 / 52.08 64.70 / 65.80 65.80 63.32

Training 61.60 / 59.48 68.97 / 66.27 68.06 68.91
Baseline 56.86 / 56.87 60.84 / 59.33 60.52 47.79

Features Combined Acoustic(1/4) Combined All(1/4)
Test 66.03 / 61.50 68.41 / 66.26

Training 71.53 / 76.08 77.74 / 83.92
Baseline 61.07 / 59.44 66.86 / 64.68

Table 5 Significance of performance differences between feature types (Wilcoxon signed rank
p values). Significant values at 5% level are set in bold type.

Features Chroma(1/4) Timbre(1/4) Slaney08 Genre Acoustic (1/4)
Comb. All(4) 0.000 / 0.000 0.001 / 0.000 0.000 0.000 0.000 / 0.002
Comb. All(1) 0.000 / 0.000 0.015 / 0.002 0.008 0.000 0.000 / 0.013

Acoustic(4) 0.000 / 0.008 0.002 / 0.006 0.000 0.145 0.000 / –
Acoustic(1) 0.000 / 0.000 0.753 / 0.179 0.823 0.116 – / 0.000

Genre 0.000 / 0.000 0.076 / 0.244 0.037 –
Slaney08 0.000 / 0.000 0.751 / 0.505 0.000 / 0.000 –

Timbre(4) 0.000 / 0.000 0.251 / –
Timbre(1) 0.000 / 0.000

Chroma(4) 0.000 / –

Features Comb. All (1/4)
Comb. All(4) 0.086 / –

genre and timbre are not significant. However, the combined feature sets are sig-
nificantly better than any individual feature set. Clustering vs. averaging makes a
significant difference only for chroma but not for Timbre or Combined features.

Specifically notable is the low baseline of the genre features, which is probably due
to the sparsely populated feature space. As each song is assigned 2-3 genres, only a
few different distance values actually occur on the binary vectors. Therefore many
constraints are not satisfied because of equal distance (dW (Ci, Cj) = d(Ci, Ck)).
A number of songs are annotated with exactly the same genres, so training on
these constraints is not possible and degrades performance significantly (see [54]).

5.2.1 PCA and Impact of Dimensionality

A common approach in MIR is to reduce the feature space dimensionality, which
can help to make the learning task simpler and more tractable. For this experiment
we use Principal Component Analysis (PCA) to reduce feature vectors to the same
dimensionality. This serves also to explore whether the performance differences of
the feature types is dependent on the dimensionality of the features. E.g. the
combined features might give best performance, because the input feature vector
has more dimensions.

We compare two sets of dimension-reduced features to explore the effect of dimen-
sionality on learning: PCA12 and PCA52. PCA12 reduces the PCA-transformed
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information to the 12 dimensions carrying most of the variance. In PCA12 we
used for single chroma mean features, timbre mean features, Slaney08 features,
audio features combined, and all features combined. The chroma and timbre mean
features already have 12 dimensions, the others are reduced. In the same manner,
PCA52 features are built from 4-cluster chroma and timbre features, genre fea-
tures, audio features combined, and all features combined. The 4-cluster chroma
and timbre already have 52 dimensions (4 12-dimensional chroma or timbre vectors
with 1 weight value each). The Slaney08 features do not have enough dimensions
to build a single high-dimensional PCA feature, but they are still included in the
combined audio and combined all features. As above, SVM-Light is used for com-
paring the effectiveness of the different feature types and the results are shown in
Figure 8 and in Figure 9.
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Fig. 8 SVM performance with 12-dimensional features: chroma (mean), timbre (mean),
Slaney08, genre, combined features with increasing training set size.

Figure 8 shows that learning on the PCA12 chroma features has very little effect.
The Slaney08 and timbre features both provide significant performance increase
over chroma data. The combined features further improve the performance, with
PCA12 all-features-combined reaching better result than the original features (see
Figure 6).

All pairwise differences in test performance between feature types are significant
at p < 5%, except timbre vs. Slaney08 and Slaney08 vs. genre. indicating that the
reduced dimensionality makes learning more effective, at least with SVM-Light.
It also provides evidence that the combination of different feature types is still
effective, even when the dimensionality is reduced. As above, most of the training
success is achieved with small training set sizes, up to 100 constraints.

PCA52 features are compared in Figure 9. The results are mostly similar to
PCA12, but the performance is generally lower for the single features. Interestingly
the performance of timbre features drops by 7% in comparison to both the raw and



Learning Music Similarity from Relative User Ratings 27

0 100 200 300 400 500 600 700
50

55

60

65

70

75

51.71

57.41

61.46

63.73

69.50

avg. number of training constraints

%
 o

f t
es

t c
on

st
ra

in
ts

 fu
lfi

lle
d

 

 Chroma

Timbre

Genre

Acoustic

All

Fig. 9 SVM performance with 52-dimensional features: chroma (4 clusters), timbre (4 clus-
ters), combined audio, genre, combined features with increasing training set size.

the PCA12 features. Similar to the 12-dimenstional case, all pairwise differences
are significant except timbre vs. genre.
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Fig. 10 SVM feature training performance at 12(l) and 52 (r) dimensions: Increasing training
set size.

The training performance, as depicted in Figure 10, indicates that the bad gener-
alisation of 52-dimensional features is a result of overfitting: The training perfor-
mance of 52-dimensional PCA features, also presented in Table 6, is considerably
(3-5%) higher than the performance of 12-dimensional PCA feature, while the
baseline of the 52-dimensional features is much lower (-5% for all except genre fea-
tures). Thus, the performance gained is thus far greater (by factor 2-3) than for the
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12-dimensional features. This indicates increased learning capacity of the model
based on the 52-dimensional data. The generalisation does not improve, however,
indicating that quantity or quality of the MagnaTagATune similarity data is not
sufficient to support generalisation with more flexible models.

For both PCA12 and PCA52, the combined features achieve a very similar perfor-
mance to the raw features in Table 4. It has been suggested that results, especially
generalisation for SVM-Light can be increased using appropriate dimension re-
duction. However, the generalisation performance between PCA12, PCS52 and
unreduced all-combined features on the maximal training set is not significantly
different. With increasing dimensionality, maximal performance needs more data.
The increased number of parameters allows for more specific optimisation whilst
delaying the generalisation resulting from larger training sets. So the higher dimen-
sional data might lead to better results if more data were available. On the other
hand, the differences between the different feature types are all significant, indicat-
ing that the choice of features is important. In particular combining information
sources can lead to improved performance.

Table 6 SVM Single features training set performance. The Slaney08 features are not available
to 52-dimensional PCA features.

Features Chroma Timbre Slaney08 Genre Audio Comb. Combined
Training12 59.43 66.74 63.03 62.77 69.324 71.18
Baseline12 55.81 61.40 59.42 60.12 58.37 66.86

Gain12 3.61 5.35 3.61 2.65 10.94 4.32
Training52 64.41 68.03 / 65.43 71.50 75.78
Baseline52 50.70 51.28 / 58.26 53.02 55.93

Gain52 13.71 16.75 / 07.18 18.48 19.85

5.3 Sampling: Effects of Transductive Learning

As detailed in Section 4.1.3, sampling for cross-validation can be realised as ID-
sampling, like in the experiments so far, or as TD-sampling, where pairs and
individual clips (but not constraints) can appear in both training and test set.
Figure 11 shows the results for the SVM-Light, MLR and DMLR algorithms. The
baseline shows the performance of an unweighted Euclidean distance measure for
the test sets. During cross-validation, baseline results are averaged over all test
sets and the average performance is calculated for the whole dataset. With TD-
sampling, both MLR and SVM-Light performance are significantly better than
the baseline (both p < 0.001).

The training performance of all algorithms displayed is similar to the performance
with ID-sampling as plotted in Figure 7. In contrast, the performance on the test
sets, as in Figure 11, shows a considerable increase of performance (6%) for MLR
and a slight increase for SVM-Light. This reproduces the findings of Wolff et al.
[50]. Involving almost all the feature vectors of the test set in training allows for
MLR to make better decisions when the separation oracle selects the instances
of the constraints to involve in the optimisation process (see Section 3.4.1). For
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Fig. 11 Transductive sampling: SVM, MLR, DMLR and MLP test set performance for full
features. The training set size increases from left to right.

the Support Vector Machine SVM-Light, the set of possible support vectors is
increased with the number of feature vectors, increasing by 10% (93 clips, see
Section 4.1.3) due to the TD-sampling referencing more feature vectors during
training.

5.4 Weighting Constraints by Vote Differences

As described in Section 4.1, the 860 unique similarity constraints represent differ-
ences of 6898 votes after cancellation in the similarity graph. The vote difference
for each edge can be used as an indicator for the reliability of the constraints. In
the following experiment each constraint (i, j, k) is weighted in proportion to its
weight αi,j,k > 0, using the weighted MLR training introduced in Section 3.4.3
and weighted SVM-Light (see Section 3.4.4).

In the figures below, two methods of evaluation are used:

– (E:UW) refers to the unweighted evaluation considering the unique constraints
satisfied, as used above.

– (E:W) measures the weighted performance of a metric as sum of the weights∑
αi,j,k of (i, j, k) ∈ Qtest or (i, j, k) ∈ Qtrain satisfied by the metric divided

by the total sum of weights in the respective set.

Figure 12 shows the weighted performances (E:W) on the training sets of weighted
training (T:W) with MLR, DMLR, and SVM-Light. We compare these to weighted
performance (E:W) of the unweighted training and an Euclidean metric. For the
Euclidian metric, the weighted evaluation (E:W) is yields about 6% better per-
formance than (E:UW), indicating a correlation of the weighted constraints with
the Euclidean distance in feature space. For MLR, satisfying 100% of the unique
training constraints, the weighting makes no performance difference. The results
of the other algorithms improve by similar amounts as the baseline.

Figure 13 shows the weighted (E:W) and unweighted (E:UW) test results of
weighted training (T:W) for MLR, DMLR, and SVM-Light. At the top of the
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Fig. 12 Overall training performance, weighted evaluation (E:W) for weighted (T:W,–) and
unweighted (T:UW,·− ·) training: SVM, MLR, DMLR. The bottom dashed curve displays the
weighted baseline performance.
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Fig. 13 Overall weighted(E:W, –) / unweighted (E:UW, · − ·) generalisation performance
for weighted training: SVM, MLR, DMLR. The dotted and dashed horizontal lines shows the
unweighted and weighted baseline, respectively.

figure, the three continuous lines represent the weighted test-set performance of
the algorithms. Here, only DMLR exceeds the baseline performance for weighted
evaluation (E:W), which is also the only significant result on test sets in this
comparison. Given that the DMLR training performance was lower than for the
other algorithms, this seems to indicate that the lower model complexity of DMLR
allows more effective learning on this dataset.

The unweighted performance (E:UW) of the models learnt from weighted con-
straints (T:W) is plotted in the lower part of Figure 13 as dotted (· − ·) lines.
Results for MLR and DMLR are slightly lower compared to those in Figure 6
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obtained with unweighted training, but the still signnificantly better than the
baseline.

We also compared the generalisation results of unweighted (T:UW) and weighted
(T:W) training using weighted evaluation (E:W). Interestingly, MLR reaches 75.5%
and SVM-Light 74.2% performance in the (T:UW)(E:W) case, slightly exceeding
the (T:W)(E:W) case (see Figure 13), and the difference is significant only for
SVM-Light (p = 0.0248). Conversely for DMLR the weighted training performs
slightly but significantly better (p = 0.0042).

Overall, the weighted training is effective on the training data but on test sets
only DMLR can reach significant improvement above the baseline. The raised
performance of the Euclidean baseline shows that the features chosen for our tests
correspond well to the weightings. However, as the distribution of weights depends
on both the number of votes and the ratio of conflicting vote (see Section 4.1.2),
there is no straightforward interpretation of these results.

6 Discussion

In this section we discuss and contextualise the results of the dataset analysis and
experiments.

6.1 Learning Results

The experiments presented here have shown, that learning similarity measures
from relative user ratings can achieve significant improvements over a standard
Euclidian metric. However, the size of the improvement is small and the accuracy
on test constraints remains below 70%. The results are better when transductive
learning is included by using TD-sampling, reaching 75.5%. TD-sampling can be
useful, e.g. in a closed database scenario, but depends on the training set covering
a large proportion of the clips in the database.

The results are in a similar range as in earlier studies by ourselves [54,52,51], by
Stober and Nürnberger [44] and a joint study [54]. The method of Stober et al.
differs from ours in that it applies early fusion or feature data into intermediate
similarity measures and then applies learning of a linear combinations of those,
with the SVM-Light method. This approach can support better user understanding
and interaction, but it yields no improvement of the learning result.

These results leave room for improvement, and we discuss possible potential op-
tions for further development. A relevant question is whether we can expect better
results from improving the algorithms and procedures, acquiring more or better
data, or from changes in the approach.
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6.2 Choice of algorithms

The tested algorithms show different behaviour, on different features and different
similarity data. The choice of algorithm clearly depends on the scenario: for ID-
sampling both MLR and SVM-Light achieve significant improvements over the
Euclidian metric. MLR results are better, but SVM-Light is more efficient in the
implementation we used and thus the resulting metric can be calculated more
efficiently. For TD-sampling, only MLR achieves significantly better results than
the Euclidian metric and the improvement is smaller than for ID-sampling. DMLR
is the most effective when using weighted training, but performs much worse than
MLR and SVM-Light in all other tasks.

The experiments with Multi Layer Perceptrons (MLP) show low performance in all
tasks despite the potentially higher flexibility of the model. However, the near per-
fect training performance of the MLR shows that the flexibility of the Mahalanobis
matrix is already sufficient. There are alternatives for network architectures and
parameterisations that we have not yet explored, so that there may be potential
for improvement.

All algorithms showed high differences in performance between training and test
sets, even with optimised regularisation. This indicates that improving the amount
of data may lead to either improved results or to a high level of noise in the data.

6.3 Input Features and Preprocessing

The reduction of the input dimensionality with PCA (Section 5.2.1) has no signif-
icant effect on the generalisation with either the 12- or the 52-dimensional feature
sets, although the training results differ considerably. These results show that the
SVM-Light algorithm is robust and extracts relevant information from input data
in high and low dimensions.

On the other hand, the choice of input features has significant effects in almost all
experiments, even if the input dimensionality is normalised as in the PCA12 and
PCA52 datasets. Chroma features generally perform poorly, while genre, timbre
and the music-structural features defined by Slaney et al. [42] provide useful ad-
ditional information. The calculation of clusters for chroma and timbre features
provides additional information to the system. Although earlier experiments with
MLR show small improvements for 4-cluster features, the simpler averaging fea-
tures show more stable results while there was no significant difference in the
overall performance. The single most effective way to improve the performance is
to combine different types of features, which yields significant improvements over
all individual features, regardless of whether clustering or dimension reduction is
applied or not.
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6.4 Data quality and quantity

The MagnaTagATune similarity dataset is the only available dataset of its kind and
therefore worth studying. However, the analysis reveals that there several issues
that impede effective learning and interpretation of results. When compared to
psychological studies, the weighting data does not fulfil criteria of balancedness
to allow for any conclusions. Even for the general MagnaTagATune similarity
dataset, we found that the data has an unsystematic distribution of genres over
the test triplets. In informal tests on the MagnaTagATune dataset, subjects found
it difficult to make a decision in the odd-one-out scenario, because each of the clips
came from a different genre. The lack of reappearance of songs in between triplets
(see Section 4.1) also prevents the study of learning transitivity.

The results consistently support the interpretation that the learning performance
is limited by the size and the quality of the dataset. Thus, collecting more data in
a more balanced way is a promising way to potentially improve results.

6.5 Approaches for Improvement

One possible approach for improvement is the selection of the stimuli and feature
extraction process. The 30 second clips may introduce artefacts or uncertainties
that might prevent reliable similarity judgements. However, subjects in informal
tests reported no issues with the length of the stimuli. The features tested here
are already of different types, but it seems interesting to develop new features
that model more aspects of musical structure. However, the low ratings of chroma
values, which are associated with the distribution of pitch classes, suggests this is
not a straightforward task.

Another approach is the use of user data and more cultural context information.
As discussed in Section 2.1, perceived similarity can depend on context of the ob-
jects and the subject, especially cultural terms of reference. Both music metadata
and user related information could help improve the learning results by enabling
selective training set for multiple models or incorporating contextual information
into the model. In addition to user information, multiple models or contextual
models will require more and more balanced data than currently available. Both
approaches can enable personalised and contextualised music information retrieval,
providing not only improved machine learning, but also improved services for users.
In addition, such models could provide information to researchers on cultural as-
pects of music perception.

7 Conclusions and Future Work

In this study we addressed learning music similarity measures from relative user
ratings. To this end we analysed the MagnaTagATune similarity dataset and ap-
plied a number feature extraction and machine learning techniques. We evaluated
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the learning success in relation to a number of user choices, regarding features,
algorithms and scenarios. The main findings can be summarised as follows:

– Learning of metrics based on relative user ratings is possible with the tested
features and algorithms. The performance on unseen test data can be signif-
icantly improved, depending on the application, the choice of algorithm, and
features used.

– Mahalanobis metrics, and often weighted Euclidian metrics, are sufficiently
flexible to model similarity relations in the given data, as the more flexible
model.

– For SVM learning on the given dataset, chroma features are least effective,
and combinations of different feature types are most effective, independent of
dimensionality reduction and clustering vs. averaging of timbre and chroma
data.

– The test performance leaves considerable room for improvement, which we
attribute mostly to the dataset used.

As the results show, using machine learning is a good choice on a static dataset.
For a dynamic MIR scenario and a small data set like the MagnaTagATune for
training, the results are not yet on the level needed for many applications.

Given the successful application of the MLR and SVM-Light algorithms in other
contexts [30,18,40] the main areas for work towards improved performance on
new data are the quantity and quality of the training data. Another approach is
the extraction of features that capture more of the musical structure. Generally, a
better understanding of music perception and cognition and its cultural dimensions
can help improve the development of MIR systems that meet user needs.

7.1 Future Work

As discussed in Section 5, setting the regularisation parameters is a difficult but
crucial step for reaching optimal training performance. Particularly for compu-
tationally expensive algorithms like MLR, optimisation can be very costly. For
learning with growing training sets, plans are to adapt regularisation dynamically,
proportional to the number of training examples.

The drawbacks of MagnaTagATune dataset are being addressed in a similarity
data collection framework which is currently being tested at City University. It
allows for a controlled presentation of same and different-genre triplets as well
as for a balancing of triplet permutation and recurrence of songs across different
triplets. Ultimately, we are interested in researching and modelling the impact
of cultural factors on reported clip similarity. To this end, the user similarity
votes are being annotated with user-provided information, the cultural indicators.
By correlating these indicators with parameterisations of learnt similarity models
we hope to establish better user models. These user models can then be used for
further research and should enable better learning success to support group-specific
or personalised music recommendation and retrieval.
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