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Modelling Interval Relations in Neural Music Language Models

Radha Kopparti' and Tillman Weyde

Abstract

In this study, we explore the use of modelling
of pitch intervals and interval relations in pitch
with neural networks. Intervals and their relations
are essential features of music, but in neural net-
works, the trend is to use raw data as input and
not to model any higher level aspects of the music.
We propose to use Relation Based Patterns (RBP)
to integrate intervals (early and mid fusion) and
interval relations (late fusion) into the network
structure. We observe significant improvements
in pitch prediction for the Essen Folk Song Col-
lection for RBP over standard networks, and for
mixed over unsigned and signed interval represen-
tation.

1. Introduction

Pitch relations in the form of melodic intervals are an essen-
tial feature of music, especially the structural understanding
of melody. Popular deep neural networks are typically used
with raw data and network structures are designed to be
generic and not specialised for a specific task. However,
small datasets, as common in symbolic music, and abstract
relations like repetitions or intervals are conditional where
neural networks fail to work well (Lake & Baroni, 2018;
Marcus, 2018)

In this work we extend the approach of designing networks
structures that facilitate the learning of abstract relations
as in (Weyde & Kopparti, 2018) and integrating them with
standard neural networks, in order to benefit from the pattern
recognition capabilities of neural networks and knowledge
based modelling.

The modelling of intervals in sequence prediction has been
done in earlier music prediction models since the 1990s in
(Conklin & Witten, 1995; Dubnov, 1998; Pearce & Wiggins,
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2004; 2012; Paiement et al., 2009; Paiement & Yves Grand-
valet, 2009). Related approaches have also been used in cog-
nitive modelling music learning (Saffran, 1999; Rohrmeier
& Rebuschat, 2012). In these models pitch intervals are
defined between adjacent notes. There are more general ap-
proaches, called combinatorial metrics by (Polansky, 1996),
but these have to our knowledge not been used in pitch
prediction models.

Connectionist models have been modelling per-note features
(Cherla et al., 2013; 2015) or more recently have focused
on relations between subsequences rather than notes within
sequences (Lattner et al., 2016; 2018). Skip-grams do model
non-adjacent relations as in (Sears et al., 2017; Herremans
& Chuan, 2017), but they haven’t been used to model the
relationships between pitch intervals.

In this work, we use Relation Based Patterns (RBP) (Weyde
& Kopparti, 2018) for modelling abstract interval relations
patterns within the neural network structure. In this work,
we used monophonic folk melodies (Schaffrath & Huron,
1995) to test the RBP models performance with different
input representations.

2. Interval Modelling

In RBP, DR units act as repetition detectors by comparing
every pair of input values using the absolute of the difference
of the inputs in one-hot encoding (Weyde & Kopparti, 2018;
Kopparti & Weyde, 2018). However, integer encoding as
MIDI pitch values is more efficient and encodes the structure
of higher and lower pitches. With integer encoding of pitch,
the DR units represent interval size. We now propose D
(difference) units, with activation f(z,y) = y — . We
integrate D units into LSTM networks in Early, Mid and
Late Fusion settings (Weyde & Kopparti, 2018). Early and
Mid Fusion involves intervals within the context as D(R)
units concatenated with the input (early) or first hidden layer
(mid fusion). In one-hot encoding, there is a D(R) unit for
every pitch value for every pair of notes. In integer encoding,
there is one D(R) unit per pair of notes.

Late fusion involves mapping from intervals within the con-
text to intervals between context notes and predicted note,
in parallel to a standard network. In this case, the output
contains for every note in the input context, a probability
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distribution over the possible intervals between each context
note and the predicted note. These distributions are added,
normalised, mapped back to the output pitch space and av-
eraged with the normal neural network prediction using a
trainable weighting. See (Weyde & Kopparti, 2018) for a
more detailed description.

3. Results

We compare performance of both forms of encoding and
note the overall performance of the LSTM model with and
without RBP below. We also tested standard RNN and GRU
networks, but do not report the results as they performed
similarly but consistently worse than LSTM networks.

The range of context lengths is [2,3,4,5,6,7,8,9], following
the idea that human short term memory stores up to 9 items
of information (Miller, 1956). The number of hidden units
and number of epochs is set to 20 and 30 after performing a
grid search over [10,20,30,50] for each parameter. We use 2
hidden layers in all the neural networks, as this gave the best
results out of [1,2,3]. We used ADAM optimisation with
a learning rate of 0.01. The loss function and evaluation
metric is cross entropy C' between the original distribution
p and predicted distribution ¢, defined as

C(p,q) = —Eses p(z) logg() (D
where S is the set of possible events, i.e. pitches.

Table 1 and 2 give the overall performance of the models for
different context lengths using one-hot and integer encoding
with D units in RBP Early, Mid and Late fusion.

Context | Without With RBP

Length RBP Early Fus | Mid Fus | Late Fus
n=2 2.9213 2.8534 2.8523 2.8056
n=3 2.8932 2.8456 2.8413 2.8023
n=4 2.8906 2.8502 2.8478 2.7959
n=>5 2.8712 2.8478 2.8432 2.7922
n=06 2.8676 2.8353 2.8321 2.7862
n="7 2.8612 2.8324 2.8236 2.7812
n=38§ 2.8527 2.8255 2.8224 2.7621
n=9 2.8514 2.8124 2.8105 2.7539

Table 1. Average cross entropy with different RBP variants for
various context lengths n using one-hot encoding.

The overall performance of the one-hot encoding with D
units is worse than with integer encoding for all the RBP
variants and worse than previous results with DR units,
that we have not reported here for space reasons. Late
fusion performs better than early and mid in all cases. All
differences are significant with p < .05 in a Wilcoxon
signed rank test over the context length. We also see that
models with greater context lengths perform better.

Context | Without With RBP

Length RBP Early Fus | Mid Fus | Late Fus
n=2 2.8512 2.7862 2.7623 2.7259
n=3 2.8503 2.7812 2.7689 2.7214
n=4 2.8467 2.7734 2.7632 2.7209
n=>5 2.8231 2.7423 2.7402 2.7062
n==6 2.8123 2.7384 2.7362 2.6927
n="7 2.7867 2.6925 2.6903 2.6767
n=38§ 2.7834 2.6916 2.6843 2.6621
n=9 2.7657 2.6826 2.6732 2.6527

Table 2. Average cross entropy with different variants of RBP vari-
ous context lengths n with integer encoding.

We also evaluated the model with a concatenation of DR and
D units (unsigned and signed interval representation). The
cross entropy results of D and DR units and their combina-
tion in late fusion are given in table 3. The combined D/DR
units perform best in terms of cross entropy (significantly)
and in prediction accuracy, where the performance is 29%,
33% and 35% for n = 9 respectively.

Context RBP Late Fusion

Length | D units | DR units | DR and D units
n=2 2.7259 | 2.6232 2.5984
n=3 2.7214 | 2.6254 2.5925
n=4 2.7209 | 2.6232 2.5864
n=>5 27062 | 2.6065 2.5802
n==6 2.6927 | 2.5878 2.5724
n="7 2.6767 | 2.5957 2.5714
n=38 2.6621 | 2.5868 2.5654
n=9 2.6527 | 2.5927 2.5658

Table 3. Average cross entropy with D units, DR units and DR
and D units combined for RBP in Late Fusion for various context
lengths n.

4. Conclusions

Integration of interval representations into neural music
language models improves pitch prediction. We find that
integer encoding of pitch is more effective and efficient than
one-hot encoding. Signed and unsigned interval represen-
tations with DR and D units are effective, at most when
combined. Late fusion, which models the relations between
intervals within the context and with the predicted note is
consistently more effective than early and mid fusion that
uses interval information only for input features that are
used directly to predict pitch. The approach of modelling
intervals in the network structure is overall successful and a
motivation for designing networks for other tasks, such as
modelling musical rhythm and dynamics or linguistic tasks
like word prediction based on embeddings.
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