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Abstract -- A novel split-step finite difference method for 

wide-angle beam propagation is presented. The 

formulation allows solution of the second order scalar 

wave equation without having to make the slowly varying 

envelope and one-way propagation approximations. The 

method is highly accurate and numerically efficient 

requiring only simple matrix multiplication for 

propagation. The method can be used for bi-directional 

propagation as well. 

Index Terms -- Beam Propagation, Wide angle method, 

Finite Difference Method, Split-step method.   

I.  Introduction 

Modeling of practical guided-wave devices requires solution 

of the wave equation in a structure that may have complex 

refractive index distribution and/or several branches. In most 

such structures, the paraxial approximation for beam 

propagation is not valid and may lead to large error in 

simulations. Thus, non-paraxial solutions are required. Several 

schemes have been suggested for wide-angle and bi-

directional beam propagation through guided-wave devices 

[1]-[9]. All Most of the methods for non-paraxial beam 

propagation discussed in the literature approach this problem 

iteratively, in which a numerical effort equivalent to solving 

the paraxial equation several times is involved.  Most of these 

the wide angle (unidirectional) methods neglect the backward 

propagating components and solve the one-way wave 

equation. In all these methods, the square root of the 

propagation operator involved in the wave equation is 

approximated in various ways. One of the approximations 

used is based on the Padé approximants [1]-[8]. Recently, we 

have proposed a new method
.
 [10] based on symmetrized 

splitting of the operator for non-paraxial propagation using the 

collocation method [11]. In this paper, we show that the split-

step non-paraxial scheme can be implemented efficiently in 

the finite-difference based propagation method without 

resorting to the paraxial approximation. 

II. Formulation 

We consider, for simplicity, two-dimensional propagation; the 

scalar wave equation is then given by 
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We write this equation as 
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The operator H can be written as a sum of two operators, one 

representing the propagation through a uniform medium of 

index, say rn , and the other representing the effect of the 

index variation of the guiding structure; thus, 
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A formal solution of Eq. (2) after symmetrized splitting of 

operators can be written as 
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Q  represent the 

propagation in uniform space and effect of the refractive index 

variation of the guiding structure, respectively. Thus, the new 

field at zz   is simply the product )()( zz PΦPQ . The 

concept of splitting of operators is independent of the scheme 

used for propagation. In the finite-difference implementation, 

we have a set of Njzxz jj ,,2,1);,()(   specifying 

the field at different nodes jx , at which the refractive index is 

known as ),()( 22 zxnzn jj  . The evaluation of )(zQ  is 

straightforward, by expanding of the exponential and noting 

that 0)]([ 2 mzH  for 2m  due to the special form of 

)(2 zH . Thus,  
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where )(zR  is a diagonal matrix with 22 )()( rjj nznzR   as 

the diagonal elements. The evaluation of P , on the other 

hand, amounts to solving the wave equation, Eq. (2), for a 

medium with a constant refractive index, rn . Thus, we obtain 

[10] 
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where the operator S  is an F-D representation of 
2222
ro nkx  . In general, 22 x is represented by a 3-point 

central difference formula with a truncation error of 2x  as in 

the Crank-Nicholson (CN) scheme. However, this has been 



found to be a limitation and a better approximation with a 

truncation error of 4x  has been used in the Generalized 

Douglas (GD) scheme [3],[4]. The improvements are limited 

to this level since these methods being implicit require a 

solution of the system of simultaneous equations at each 

propagation step, and to keep the process computationally 

efficient the system must remain tridiagonal to enable 

application of the Thomas algorithm. On the other hand, our 

method is explicit in nature; hence, there is no such 

requirement and the accuracy of the F-D representation of 
22 x can be increased to an arbitrary order using the 

expansion [12]: 
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where 11
2 2   ppppx  , and the 2

x  operator can 

be represented by a tri-diagonal matrix. Use of the first term in 

the series given by Eq. 7, corresponds to the approximation 

made in the Crank-Nicholson (CN) scheme, and the first two 

terms to that in the Generalized Douglas (GD) scheme. As the 

number of terms in the series expansion is increased, the 

matrix becomes denser; however, the accuracy of the 

approximation for 22 x  increases. The increase in matrix 

density does not alter the computation speed or efficiency, as 

the number of matrix multiplications required for singe step 

propagation does not depend on the density of S . Physically, 

increasing the number of terms in the series in Eq. 7, 

corresponds to an increase in the number of nodal points 

which are used in approximating 22 x , leading to a better 

and better representation of the derivative with respect to x , 

without having to adopt an iterative, multi-step procedure 

required in the conventional Padé analysis. It may be also b e 

noted that the evaluation of P has to be done only once. Thus, 

the increase in number of terms in the series expansion leads 

only to increase in the one time computation of P and does not 

noticeably increase the overall computation time. 

III. Numerical Examples 

We consider the example of the propagation of the 

fundamental mode through a tilted graded-index waveguide 

[3], for a propagation distance of 100 m with a propagation 

step size of 0.05 m . As a measure of accuracy, we computed 

the overlap integral and an error (ERR), which includes the 

effects of both the dissipation in power as well as the loss of 

shape of the propagating mode [10]. We have used 900 

computation points for this calculation. 

Figure 1 shows the variation of error (ERR) as higher order 

terms in the series of Eq.7 are considered. It can be clearly 

seen that with increase in the number of terms (order 

corresponds to the exponent of the last term at which the series 

is truncated), the error in propagation decreases substantially. 

This improvement in accuracy is not accompanied by an 

increase in computation time for propagation. This fact is 

illustrated by the figure shown in the inset, (see Fig.1) which 

shows separately the time, TP, required for the one time 

computation of P  and the time, TPQP, required for the actual 

step-wise propagation (involving evaluation of Q as well as 

matrix multiplications as per Eq.4 at each step). The total time 

required for propagation would be Ttotal = TP + Nz TPQP, where 

Nz is the number of propagation steps. In the present case, 

Nz=2000. Ideally, TPQP should remain a constant independent 

of the order. However, for our calculations we have used a 

multi-user MATLAB and the computation speed varies 

marginally with the number of user logged in at any given 

instant. This may have been the reason for small variations in 

TPQP. 

The order that we have used is up to 40.  This may seem 

very high in comparison to the orders used in Padé based 

finite-difference schemes. One can understand this apparent 

difference in the following way. Our scheme is explicit while 

those based on Padé approximants are implicit. Generally, the 

order of an implicit scheme refers to the highest order in an 

explicit scheme with the same truncation error. However, in 

Padé approximant terminology, the zeroeth order refers to 

paraxial approximation which involves single use of the 

paraxial propagation operator, i.e., it is of order one in the 

explicit scheme. Thus, the third order Padé corresponds to 4
th

 

order in the paraxial propagation operator. Now, the paraxial 

operator, in the explicit form, corresponds the use of 2
x  for 

the CN scheme and 4
x  in the generalized GD scheme. Thus, 

the order in x  of a third-order  (3-step) Padé approximants 

based method with the CN scheme would be 8 and with the 

GD scheme would be 16. Shibayama et al. [3] have used the 

GD scheme for 1, 2 and 3-order Padé approximants based 

method. Figure 1, which includes their results for the GD 

scheme shows that the order of error obtained in the GD 

scheme and the FD-SSNP are comparable for a given order. 

           
 
 

Figure 1 Propagation error  (ERR) as a function of the order of 

approximation for the derivative (Eq. 7) for the graded-index 

waveguide [3] tilted at 50o. For the  FD-SSNP method, N=900, 

and step size 0.05 m . 
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The advantage of our method is that the order can be increased 

without any significant increase in the computational effort 

and with substantial increase in accuracy. 

Figure 2 shows variation of the error (ERR) as a function 

of the tilt angle of the waveguide. We have included in this 

figure the results for two cases: propagation of the 

fundamental mode in the graded-index waveguides [3] 

described above, and the propagation of the TE1 mode of step-

index waveguide described in [4]. The propagation distance in 

both cases is 100 m . We find that with only 900 

computation points and step size 1 m , the error for all angles 

from 0 to 50 degrees is less than 0.03 which is the best value 

reported by Shibayama et al. [3] for the 3-step method with a 

small step size, 0.05 m . Similarly, the results for the step-

index waveguide [4] show that the present method has much 

less error with several times larger step-sizes and only half the 

number of transverse grid points, 900. Note that the present 

method is non-iterative unlike the method of Yamauchi et 

al.[4]
 
which is a 3-step iterative method. Table I shows the 

stability performance of the method with respect to 

propagation step size for a large propagation distance 

(1000 m ) for the untilted step index waveguide [4]. The 

propagation remains stable and the error is low even for a 

large step size such as 0.4 m . These comparisons show the 

superiority of the method in terms of computational accuracy 

and efficiency. 

IV. Conclusions 

A finite difference solution of the second order wave equation 

implemented in the split step format has been presented for the 

first time. The formulation is non-iterative and allows arbitrary 

increase in accuracy in determining the transverse derivatives, 

without any significant increase in computation. The method 

is an explicit transfer matrix method involving only simple 

matrix multiplication for propagation, and is stable with larger 

step sizes than reported in other existing methods. The method 

has excellent efficiency in terms of increased accuracy, lower 

computation cost and easier implementation.  
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Figure 2  ERR as a function of waveguide tilt angle. The order 

used for graded-index waveguide is 35 and for the step-index 

waveguide is 30. 

 

 

Table I  ERR as a function of propagation distance. N=900, 

order=30, or kn  for the step index waveguide [4]. 
 

Step 

Size  
ERR after propagation for number of steps 

( m ) 250 500 750 1000 

0.10 2.54 10
-4

 6.40 10
-5

 1.44 10
-4

 2.47 10
-4

 

0.25 4.63 10
-4

 1.12 10
-4

 2.62 10
-4

 4.48 10
-4

 

0.40 4.34 10
-3

 1.03 10
-3

 2.50 10
-3

 4.16 10
-4

 

 


