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ABSTRACT 1In this paper, a new recursive structure based on the convolution model of discrete cosine
transform (DCT) for designing of a finite impulse response (FIR) digital filter is proposed. In our derivation,
we start with the convolution model of DCT-II to use its Z-transform for the proposed filter structure
perspective. Moreover, using the same algorithm, a filter base implementation of the inverse DCT (IDCT) for
image reconstruction is developed. The computational time experiments of the proposed DCT/IDCT filter(s)
demonstrate that the proposed filters achieve faster elapsed CPU time compared to the direct recursive
structures and recursive algorithms for the DCT/IDCT with Arbitrary Length. Experimental results on
clinical ultrasound images and comparisons with classical Wiener filter, non-local mean (NLM) filter and
total variation (TV) algorithms are used to validate the improvements of the proposed approaches in both
noise reduction and reconstruction performance for ultrasound images.

INDEX TERMS Discrete cosine transform (DCT), inverse discrete cosine transform (IDCT), discrete
convolution, finite-impulse filter (FIR), Z-transform, ultrasound images, noise.

I. INTRODUCTION components of signals or images separately) and therefore

The DCT has found wide applications in signal and image
processing in general, and in data compression, filtering
and feature extraction in particular. The DCT has been
proved successful at decorrelating and correlating the energy
of image data. After decorrelation, each DCT coefficient
can be encoded independently without losing compression
efficiency since it has a strong ‘energy compaction’ property
in typical applications [1], [2]. In comparison to discrete
Fourier transform (DFT), DCT is a transform commonly
applied to real valued data (although there are applications
and methods where DCT is applied to real and imaginary

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Kamrul Hasan

141342

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

avoids the problem of redundancy. Also, as DCT is derived
from DFT, all the desirable properties of DFT (such as the
fast algorithm) are preserved. To reduce DCT computational
complexities, the development of fast and efficient algorithms
for computing 2-D DCT/IDCT becomes increasingly impor-
tant. Various fast algorithms for computing 2-D DCT were
proposed to minimize the computational complexity [3]-[7].
Numerous 1-/2-/3-D DCT architectures have been suggested
in the literature [8], [9]. Exploiting the separability principle
of the transform, 2-D DCT cores based on the 1-D DCT
Row-Column approach are suggested in [10]; yet very
few architectures that implement the 3-D DCT can be
found. However, there are a variety of DCT of which
four are common (DCT-1, DCT-1I, DCT-III, and DCT-1V).
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Each differs by only a bit, and each has its own usage in
particular field. For image reconstruction, DCT II is used to
decompose and DCT III is used to reconstruct. Each DCT
has its cosine basis kernel which is orthogonal. The most
common variant of discrete cosine transform is the type-II
DCT, which is often called simply ‘“‘the DCT”. Its inverse is
correspondingly often called simply “the inverse DCT” or
“the IDCT”’. The N-point DCT-II of a discrete signal, x(n) is
given by

N-1
b4 1
X = c(k) Zx(n) cos |:ﬁ (n + 5) kj| , @))
n=0
fork=0,1,...,N — 1, where
1

c(k) = VN

[2
—, otherwise.
N

The above scale factor can be rewritten in terms
of the unit impulse and step functions as c(k) =

8(k) + 2u(k — 1) /+/N. The inverse 1-D discrete cosine
transform (IDCT)-II can be defined as

1

N-1 .
x(n) = k;) c(k)Xj cos [N <n + 2) k} : )
forn=0,1,...,N — 1.

Medical ultrasound images are usually corrupted by noise
in its acquisition and transmission. Hand-held ultrasound
scanners are increasingly being employed at the point of care
and used in telemedicine to serve rural population limited
access to hospitals [11]. However, image quality of these
portable systems are in general poorer than those of standard
scanners. They are also often used in scans by physicians
rather than by expert sonographers. Thus, the poor image
quality is one of the major drawbacks of the ultrasound image
due to speckle noise.

There are many despeckling algorithms that consider a
log-compression rule and assume the B-mode data which
can be modeled by a particular type of double exponential
distribution [12]. In general, ultrasound images have two
main noise components - electronic noise, modeled as an
additive white Gaussian noise, and speckle noise. In raw RF
data, speckle noise is multiplicative but in the B-mode image
we consider it as an additive noise due to the log transform.
Speckle noise is correlated with the signal and is not
Gaussian [13]. However, the proposed denoising suppresses
up to some extent all additive components regardless of their
probability distribution. On the other hand, multiplicative
speckle noise is generally more difficult to remove than
additive noise, because the intensity of the noise varies with
the image intensity [14]. Image noise is usually random,
but ultrasound speckle is not random and results from some
patterns of constructive and destructive interference shown
as bright and dark dots in the image. Sometimes speckle
helps to identify the boundaries better in ultrasound images
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than without speckle. In addition to speckle, there is thermal
noise in ultrasound images arising due to electronics. In this
research, the proposed method deals with the additive noise
which is pertinent to addressing the image quality of low cost
scanners in which noise performance of amplifiers may be
low compared to high end scanners. The proposed method
also allows for reconstruction after compression which may
be necessary in telemedicine (when images will need to
be transmitted over limited band widths). Moreover, there
is a multiplicative correlated speckle noise in ultrasound
images and the main challenge is to reduce it without any
loss of finer details of image. The model of the ultrasound
images is considered to be the result of the convolution
of the point spread function (PSF) of the imaging system
with the fetus image function plus additive noise. On the
other hand, the fetus image function could be modeled as
the multiplication of the original image and speckle noise.
Taking this two complex models for PSF and speckle noise
into account with the proposed DCT-filter design is a very
difficult task and needs more research to be done. However,
our proposed DCT filter design is independent as its current
form.

As mentioned earlier, the main drawback of ultrasound
imaging is related to the low contrast resolution in ultrasound
images due to the presence of speckle, which is a form of
locally correlated multiplicative noise and generated by the
interference of the acoustic energy from randomly distributed
structure scatters. Several despeckling methods have been
proposed in literature [15], [16]. Different filter families have
been defined, each one with peculiar characteristics [17].
One of the most effective methods is commonly referred to
as non-local mean (NLM), and has been proposed in [18].
This approach assumes the presence of several similar regions
across the image (patches), that can be jointly exploited
for regularizing the acquired data [19]. Another successful
tool for ultrasound despeckling is the total variation (TV)
minimization model [20]. Due to its anisotropy, this technique
allows coherent structure enhancement while the dynamic
smoothing is controlled by the local behavior of the images.
According to this algorithm, reducing the total variation of the
image subject to it being a close match to the original image,
removes unwanted detail whilst preserving important details
such as edges.

The presence of speckle noise affects difficulties on
features extraction and quantitative measurement of ultra-
sound images. Some algorithms would suppress the speckle
noise while attempting to preserve the image content using
combination of Gaussian filter and DCT approach [21]. Fur-
thermore, the main challenge in image denoising techniques
is to remove such noises while preserving the important
features and details. Therefore, the reduction of noise is
necessary to improve the quality of echographic images
and to facilitate its interpretation. A number of methods
have been made to reduce noise using various types of
filtering. Filtering techniques can be classified as single scale
spatial filtering (linear, nonlinear, adaptive methods, etc.) and
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multiscale filtering (anisotropic diffusion-based methods,
DCT, Wiener, wavelet, curvelet, contourlet, etc.). Mean filter-
ing and Gaussian filtering are the examples of linear methods
which blur the sharp edges, destroy lines and suppress the
details [22]-[24]. A multiscale approach that aggregates the
outputs of DCT filters having different overlapped block sizes
is proposed by Pogrebnyak and Lukin [24]. They proposed a
two-stage denoising procedure that presumes the use of the
multiscale DCT-based filtering with hard thresholding at the
first stage and a multiscale Wiener DCT-based filtering at
the second stage. They also showed that filtering efficiency
depends considerably on DCT coefficient statistics.

In this paper, our approach toward deriving an FIR filter
structure is as follows. First, we consider a convolution
equation to simplify 1-D DCT based on the flipped input
signal as discussed in Theorem 1. Next, we obtain the transfer
function of the FIR filter in Z-domain to find a simple
filter structure of DCT coefficients generation [25], [26].
This stage of our design paves way for deriving a new and
fast algorithm to find a recursive formula to generate the
DCT coefficients. Finally, using the orthogonality property
of cosine function, we derive the IDCT-II FIR filter structure
to recover the original signal based on its limited DCT-II
coefficients by applying the same method of transfer function
design. Another recursion is proposed for IDCT from transfer
function to compute the original signal from its DCT features.
Moreover, the proposed FIR filters make an automatic system
to accelerate the generated DCT coefficients to apply it for
the proposed DCT-based ultrasound image filtering. This
paper considers the application in ultrasound images as
an example which is motivated by demanding of noise
removal from specific fetal images. The developed approach
is not applicable only to the context of ultrasound. The
context is intentionally selected to serve as an example for
a highly complex scenario, where image quality issues are
experienced due to speckle noise. This ultimately affects
the feature extraction and the quantitative measurement of
images. We acknowledge that the developed approach has
potential to be applied in a number of other areas including
engineering (e.g. nondestructive testing (NDT) inspections
for instance, in welded joints) and medical (e.g. abdominal
organs, heart, breast, muscles, tendons, arteries and veins and
tissue characterization).

The remainder of this paper is organized as follows.
In section II, a derivation of a recursive algorithm for
1-D DCT are provided. Section III presents the generalized
algorithms for 2-D DCT/IDCT implementation based on FIR
filter theory. The experimental results in terms of recent
DCT-based algorithms for image filtering and reconstruction
are discussed in section IV and conclusions are given in
section V.

Il. DERIVATION OF A RECURSIVE ALGORITHM FOR 1-D
DCT AND IDCT

Before deriving a recursive algorithm for 1-D DCT based
on FIR digital filter structure, we show how to get a 1-D
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signal transform based on any kernel function using a simple
discrete convolution in the following Theorem.

Theorem 1: A discrete transformation of a discrete signal,
f(n) of length N, over a kernel function of g(n, k) can be
derived by the discrete convolution of the kernel and the
flipped signal which is evaluated at N — 1.

Proof: The discrete transform for a 1-D signal f(n) of
length N with any kernel function of g(n, k), can be written
as:

N-1
Fi =) f(n)g(n, k). 3)
n=0
By changing n to N — 1 —n, the above equation can be written
as:
N-1
F = Zf(N—l—n)g(N— 1—n,k)
n=0
N-1
= > e —1-nk)

n=0

= fF(n) x gn, k) : 4

n=N-—1

where f7 (n) is the flipped version of the input signal. Using

the definition of 1-D discrete convolution for the above

equation, we end up with Zln\:ol fmgn, k) = fF (n) *

g(n, k)‘ Nt which completes the proof of Theorem 1. O
=N —

A. FIR FILTER IMPLEMENTATION FOR 1-D DCT-lI

By applying Theorem 1 to DCT-II definition in (1) and
considering the kernel function as a cosine signal, g(n, k) =
cos [zlv (n + %) k], we get:

N-1
X = c(k) Z x(n) cos I:JZV (n + %) k]

n=0
} , %)
n=N-1

where hi(n) = cos [Ilv n+ % k]. The function hg(n) is
called the digital filter impulse response [27] which is the
same as kernel function g(n, k). Such a system is shown
in Fig. 1. The system feeds by a flipped signal and generates
the DCT-II coefficients which are sampled at N — 1.

c(k) {xF (n) * hy (n)

n=N-1

xF(n) Xk
he(m) p——

Y

FIGURE 1. A simple FIR filter structure with impulse response hy (n) for
generating DCT-11 coefficients from a flipped input signal.

To find the FIR filter structure of the above system,
it is easy to obtain the transfer function of the system in
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Z-domain (H(z)). We start to expand the cosine function of
hy(n) as follow:

mnk wk
hi(n) = cos <_N ) cos (ﬁ)
) (nnk) : (nk)
—sin| — ) sin| —
N 2N
_ nnk) B . (7nk 6
= oy cos (_N B sin N~ ) 6)

where o = cos (%) and By = sin (%)
By taking the Z-transform of (6), we can find the transfer

function of the FIR filter as:
<[z — cos (3)] o — zsin (3) £y
72 — 2z cos (jfv—k) +1

Let g = ’va—k, then o = cos (%) and B = sin (%). Eq. (7)

can be rewritten as:

g — (a cos g + Brsingy) 77! @)
1—2z"lcosgy +z72 '

On the other hand, ok cos ¢ + Bk sin gx = o, then Eq. (8)

can be simplified as:

Hi(2) = )

Hi(z) =

(07" (1 — Z_l)

1 -2z 'cosgp + 2~

The transfer function in Eq. (9) can be implemented as an
FIR filter in Fig. 2. This filter contains three delay units and
three adders. Moreover, the filter uses three multipliers and
two negative feedback. The outputs of filter are sampled at
N — 1 to generate DCT coefficients for each different values
of k. The FIR system is quite simple since we have used the
flipped version of the original signal as system input unlike
the existing algorithms [3], [28].

Hi(z) =

- ©)

xF(n) ety Xg

2 cos gy
o
km _

Pe=N

- _ -1
[c(k) _ 5(k) + \/\/Zﬁu(n 1) z

FIGURE 2. DCT network: Recursive FIR filter structure to generate DCT-II
coefficients fork =0,1,...,N - 1.

B. FIR FILTER IMPLEMENTATION FOR 1-D IDCT-1I

For IDCT-II which is described in (2), it is possible to apply
the same theorem and consider the same kernel function with
respect to k as the independent variable to get the following
convolution:

N—-1

x(n) = Y (k)X cos [zzv <n + %) k}

n=0

= YF (k) x hy (k)

, (10)
k=N—1
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where hy(k) = cos [,lv ntl k] and Y(k) = c(b)X;.
Note that here, the impulse response h,(k) is different with
the earlier impulse response (1) because of the concept of
the independent variable in signals theory [29]. Taking the
Z-transform of Ay (n) with respect to the independent variable
k and using the Z-transform of the cosine function [29],
the FIR filter transfer function can be written as:

1—ztcos Wy

Hy(2) = (1)

1—2z"lcosw, +z772’
where w, = § (n + %) The transfer function in (11) can be
implemented as an FIR filter which is shown in Fig. 3. This
filter also contains three delay units and two adders as well
as two multipliers and two negative feedback. The outputs of
filter are sampled at N — 1 to recover the original signal for
each different values of n. The structure also has the flipped
version of the DCT coefficients which is multiplied by the
scale factor c(k).

Cos Wy,

Z—1
Y7 (k) r C Xn
) .

. @ !

-1

. 1 4

{w"_ﬁ<n+i> 2 cos wy,
YE(k) = {c(k) X} C-D(_(_"

— A

z

I

FIGURE 3. IDCT network: Recursive FIR filter structure to reconstruct the
original signal from its DCT-II coefficients forn =0,1,...,N - 1.

C. RECURSIVE FORMULAS FOR DCT AND IDCT BASED ON
THE PROPOSED ALGORITHMS

The obtained transfer functions in (9) and (11) are in the form
of Yyur(2)/Xin(2). Therefore, by knowing that each delay term
in Z-domain such as z7"Q(z), provides a difference form of
q(n — m) for all integer m and assumed signal, g(n), we can
find a difference relation of the aforementioned equations
which are the same as a recurrence formula of the system.
For the first transfer function in (9) which is shown as an FIR
filter in Fig. 2, we have the following recurrence relation:

Xi(n) = C(k){ [xF(n) —xFn— 1)] cos (%)

+ 2 cos g Xy (n — 1)—Xk(n—2)}, (12)

where k = 0,1,...,N — 1 and Xz(—1) = Xx(—2) = 0.
The second transfer function in (11) that is shown in Fig. 3,
can be converted to a recursive formula for reconstructing the
original signal as:
xn(k) = YF (k) — (coswp) YE(k — 1) + 2 cos w,

X xp(k — 1) = xo(k —2),  (13)
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where n = 0,1,...,N — 1 and x,(—1) = x,(—2) = 0.
Equation (12) uses n as the independent variable while
Eq. (13) presents k as the independent variable for our derived
recursive formulas.

Ill. GENERALIZED ALGORITHMS FOR 2-D DCT/IDCT
IMPLEMENTATION

The 2-D DCT-II of an image or a matrix of size N x M can
be defined by

N—-1M-1

T 1
Xiy by = c1(kn)caka) Y > x(n, m)cos [ﬁ <n + E) kl}
n=0 m=0
Ly (14)
X cos|—|m+ = s
M 2"
for ki, = 0,1,....N — 1 and kr», = 0,1,.... M — 1

where ¢ (k) = [S(kl) + 2tk — 1)] /YN and (k) =
[8(ka) + V2utkz = )| /M.
The 2-D IDCT-II can be formulated as

N—-1M-1

1
xnom) =Y 3 erlkeaka)X, i, cos []ZV (n + 5) kl]

k1=0 k=0
x ) (U AW (15)
cos| — | m+ = ,
M 2 )"

wheren=0,1,...,N—landm=0,1,...,M — 1. Since
the kernels of 2-D DCT/IDCT are separable in (14) and (15),
it is easy to design FIR filter for both case based on the 2-D
convolution theory and 2-D transfer function (Hk1 Ko (21, Zz)).
z1 and zp are the complex numbers which represent the 2-D
Z-transform.

A. 2-D FIR FILTER IMPLEMENTATION FOR 2-D DCT-1l

The 2-D DCT-II in (14) can be implemented as a 2-D FIR
filter by using the following 2-D convolution:

Xiy 1o = c1(ky )Cz(kz){xF (n, m)

* hyy k, (n, m)

}, (16)

(nm)=(N—1,M—1)

where hiy, x,(n, m) = cos [Ilv(n + %)kl] cos [Al,l(m + %)kz].
This 2-D function is the filter impulse response and the
system with this impulse response generates the 2-D DCT-1I
coefficients which are sampled at (N — 1, M — 1).

The same implementation could be applied for (15)
to reconstruct the original image from its 2-D DCT-II
coefficients. The following convolution is expressed in terms
of (k1, k2) which are the independent variables here.

x(n,m) = Y" ki, ko) % by (k1 k2) QY
(ki k)=(N—1,M —1)

where hy, m(k1, kz) = cos [F(n+ %)kl] cos [ (m+ %)kz] and
Y(ky, ko) = c1(kr)c2(k2)Xp i, -
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B. RECURSIVE FORMULAS FOR THE GENERALIZED 2-D
DCT AND IDCT BASED ON THE PROPOSED ALGORITHMS
Based on the kernel separation of 2-D DCT/IDCT, the trans-
fer functions of 2-D FIR filter can be obtained from
multiplication of two transfer function described in (9)
and (11). Taking the 2-D inverse Z-transform of them, lead us
to find the following recurrence relation for computing 2-D
DCT:

Xio o (n, m) = c1(k1)02(k2){ [x 1, m) = X2 = 1,m)
—xFm=D+xFn—1,m— 1)]
(5) s (5)
X COS|{ — )coS| —
2 2
+2cos g, [Xkl,kz(n —1,m)
+ Xk i (n—1,m—2)
+ 2 cos ¢, [Xk.,kz(”, m—1)

+Xk1‘k2(n - 27 m — 1)
—4cos @k, €OS Y, Xi ko (n — 1, m — 1)
_Xkl,kz(n’ m— 2) - Xk|,k2(n - 2, m)

— Xk o(n—2,m—2)¢, (18)

Fig. 4 shows the implementation of 2D FIR filter to generate
2D DCT coefficients in terms of the original flipped image,
xF(n, m). In this figure, we used zl_l and z, ! to show the
delay operators for image pixels n and m in time domain,
respectively [26]. The circles with a cross symbol inside them
() represent a multiplier of two signals.

Reconstructing the original image via 2-D IDCT can be
found in the following recurrence relation:

Xum(k1, ko) = YT (k1 ko) — 2 cos a)n[YF k1 — 1, ky)
Yy =1,k — 2)] — 2c0S &y,
x [YF (ko = D+ YE G = 1k = 1)
+ (4coswycoswp) YE (ki — 1,k — 1)
+YF ke =2, k) + Y (ki ko — 2)
+YF ki — 2, ko — 2) + (cos wp)

X xn,m(kl — 1, kp)+(cos wy,) xn,m(kl, ky—1)
— (cos @y, €OS W) Xp.m(ky — 1, ka—1), (19)

where ¢, = wki/N, ¢p, = Thko/M, w, = %(n—i—%),

on = (m+ %), Xiy ko (o)) = 0 and Xy m(i,j) = O for
ij=—1,-2.

IV. EXPERIMENTAL RESULTS

The simulations have been performed using a wide set of
captured images based on different fetal scans (normal and
anomaly). These scans were performed in a trajectory (axially
from head to toe or toe to head followed by sagittally in
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z;l
A

zgl
A

xR(n,m) c1(ky) iz(kz) \X,%k2

A 4

z{l

+ 2cos @y,

— \4

A 4 P, = ﬂ[(/i Z—l

_1 K,

Z o, =T 1

FIGURE 4. Condensed recursive structure for 2-D DCT.

the opposite direction) in a display-less mode. All images
were extracted from different sets of videos. Since data are
noisy and blurred, we have decided to obtain and present
such data for the proposed DCT/IDCT filtering techniques.
Fig. 5 shows some of the fetus ultrasound images that we
used for our experiments. Note that because of the nature of
the ultrasound images according to mean intensity of pixel
values, a big part of these data-sets has lower mean intensity.
However, the proposed approach can also be applied for any
kind of images with different mean intensities.

A. COMPUTATIONAL TIME

In DCT calculation, the time is a critical issue because in
general the calculation of DCT coefficients is time expensive
and fast algorithms may help a lot. Their importance is even
more apparent if we are aware that a typical application of
DCT is in image compression where a close-to-real time
performance is desirable. There are several properties of
DCT have laid the foundation for a faster DCT computation
algorithm. We tested the time complexity of the proposed
methods (Egs. (18) and (19)) and compared it to two reference
algorithms: the direct recursive structure method [3] and
the fast discrete cosine transform (FDCT) algorithm that
utilizes the energy compactness and matrix sparseness prop-
erties in frequency domain to achieve higher computation
performance [30]. The computational complexity of the
proposed recursive structures is compared with those of
the existing ones [3], [30]. For the fast algorithms of the
2-D DCT, the recursive structures for computing radix-r
technique is applied in [3] and the number of additions is
reduced to at least 30% of method [31]. The number of
multiplications has no reduction and is increased more than
100% which is a drawback of this method. For the second
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fast DCT method described in [30], the authors achieved
a 40% of reduction in the number of multiplications with
no improvement for decreasing of the additions number.
To compare those algorithms with the proposed method
using digital filter technique, we obtained a 71% and
34% decrement in the number of multiplications comparing
to [3] and [30], respectively. In terms of the number of
additions, the proposed method has almost a 79% reduction
in comparison with [3]. Table 1 shows a comparison of the
number of multiplications and additions for computation of
DCT coefficients based on three different fast algorithms
applied to all test images (size of 400 x 400) which are
presented in Fig. 5. Since the proposed algorithm is developed
based on the DCT filter structure, there are many reductions
in the number of additions and multiplications. The advantage
of the proposed technique is in decreasing the number
of additions while in [3] by decreasing the number of
multiplications, the number of additions starts to increase
which is a big drawback of the existing algorithms.

TABLE 1. Number of multiplication and addition operations for
computation of DCT coefficients based on three different methods for all
fetus ultrasound test images shown in Fig. 5 with size 400 x 400.

Fast algorithms

Operation Proposed algorithm
(3] [30]
Multiplication 560 245 162
Addition 2450 N/A 520

The experiments were performed on a PC equipped with
3.20 GHz CPU and 64 GB RAM. As can be seen from
Fig. 6, the average elapsed time for calculation the full DCT
coefficients of ultrasound images shown in Fig. 5 using
proposed method is much better than [3] and [30]. One of
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FIGURE 5. Some examples of fetus ultrasound data-set images used for experiments. The size of all images is 400 x 400.

the most important advantage of the proposed method is
eliminating the pre-addition blocks of the existing algorithms.
Furthermore, our proposed recursive method gives a direct
relationship between the original image as system input and
the derived DCT coefficients as the output of the designed
FIR filter. We run the same speed test for the average elapsed
time of computing original image using its DCT coefficients
through IDCT filter structure. Fig. 7 clearly shows that the
speed performance of the IDCT recursive method using
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Eq. (19) for image reconstruction from a set of finite DCT
coefficients is significantly faster than the other mentioned
methods.

B. DCT-BASED ULTRASOUND IMAGE FILTERING

The state-of-the-art filters including the DCT-based denois-
ing [22], [24], [32] and the Wiener-based techniques [33]
provide filtering performances for complex structure images
and large noise variance. Performance characteristics of the
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FIGURE 6. Average elapsed CPU times in seconds: full set of DCT
coefficients extraction for ultrasound data-sets shown in Fig. 5 using
different methods.
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FIGURE 7. Average elapsed CPU times in seconds: full set of IDCT image
reconstruction for ultrasound data-sets shown in Fig. 5 using different
methods.

state-of-the-art block-matching three-dimensional filter [34]
and the Wiener DCT-based filter are very close while the
latter filter is simpler and faster.

In this paper, we use the Wiener DCT-based image filtering
with hard threshold. As discussed earlier, the speckle noise of
medical ultrasound image is modeled as multiplicative noise
and non-Gaussian distributed [35] and defined by:

gn, m) = x(n, mjv(n, m) + n(n, m), (20)

where g(n, m) is an observed noisy image, n and m are
the image pixel values, x(n, m) denotes a noise-free image,
v(n,m) and n(n,m) are multiplicative noise and white
Gaussian noise not correlated with x(n, m), respectively.
It is suggested that the additive noise has weaker effect
than the multiplicative noise of medical ultrasound image.
Consequently, (20) can be written as:

g(n, m) = x(n, m)v(n, m). 21)
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Laplace and Rayleigh distribution have been used to model
the multiplicative noise distribution. For the B-Scan ultra-
sound images, the logarithmic compression is applied and
then (21) is rewritten as:

log g(n, m) =~ log x(n, m) + log v(n, m). (22)

Then, the multiplicative noise becomes the additive noise and
is approximated as an additive zero mean Gaussian noise [35].
It means, we could consider g(n, m) ~ x(n, m)-+v(n, m) as the
new model of ultrasound images in our coming experiments
in logarithmic mode. Similar to Wiener filter, the target is to
find an estimate of the noise-free image X(n, m) such that it
minimizes the mean square error (MSE). Thus, the Wiener
DCT-based filter in the DCT domain can be formulated as:

Po(ky, k)
P (k1. ko) + Ak, ko)’

Hy (k1, k2) = (23)
where ﬁw (k1, k2) is an estimate of the frequency response
of the Wiener filter and /st (k1, ko) is power spectral density
estimates of the noise-free image and o2 is noise variance
since A(ky, k2) is proportional to the image size, and 1(0, 0) =
0 because we assume the Gaussian noise to have zero mean.

We use the DCT instead of the Fourier transform for spec-
trum calculation in standard Wiener filter, i.e., ﬁx (k1, ky) =
szl’ ky? where X, k, is the DCT of a noise-free image.
In practice the noise-free image is not accessible to obtain
X}, k,. For this reason, the estimate of image power spectral
density, ﬁx(kl, k>), should be calculated using an observed
noisy image. Therefore, the image data has to be pre-filtered
to obtain some rough estimate of a noise-free image S(\k],kz
and then to calculate Fx (k1, ko) to implement the Wiener filter
in (23).

The last expression for the Wiener DCT-based filter trans-
fer function, Eq. (23), could be simplified assigning the unit
gain for all spatial DCT coefficients where |U (k1, kz)| > Bo
and zero gain otherwise. This results in a hard thresholding
technique:

1, Uy, k)| =
Hr ok = |11 100 RE= B o)
0; otherwise,

where f is a control parameter. For our second experiment
which is denoising of ultrasound images based on the
proposed DCT filter structure, § can be varied from 0 to
1 based on its quasi-optimal value [36]. Fig. 8 illustrates DCT
filtering efficiency for three sets of data: first and second
rows are the normal fetus, third and fourth rows are the
fetal cystis hygroma and the fifth and sixth rows show the
fetal hydronephrosis. The sizes of all images are 400 x
400 pixels. Each image was denoised using a DCT-based
Wiener filter led by the proposed FIR filter structure with
different level of thresholds (8 = 0.1, 0.5, 0.8). To show the
quality of filtered images, we use the statistical-normalization
image reconstruction error (SNIRE) in [37] to measure the
difference between the original image and the enhanced
image by using pixel values. This metric measures the
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Threshold level (#)

0.8

0.5

Original image DCT-based denoised image Wiener filter
(proposed method) denoised image
=
=]
= Threshold level () 0.8 0.5 0.1 N/A
o SNIRE 20.6797 17.0367 6.7440 10.1939
1) BRISQUE 53.0698 50.2022 45.4849 48.667
o
c
{7/]
Threshold level () 0.8 0.5 0.1 N/A
SNIRE 19.8847 16.6770 6.6088 9.4221
BRISQUE 59.2062 58.5306 44.5435 49,2863
-
®
—
o -
() Threshold level () 0.8 0.5 0.1
ﬁ SNIRE 16.5777 13.5651 4,5613 8.5121
g, BRISQUE 59.9236 59.5926 54.4380 55.4829
=Te
<
[{=]
-
(=]
=
o
Trshold level (8) 0.8 0.5 0.1 N/A
SNIRE 15.9925 13.1133 4.3818 7.3997
BRISQUE 54.5599 53.8146 52.1289 57.1425

0.1

N/A

SNIRE

19.2214

15.2223

6.3865

8.5244

BRISQUE

59.6799

>

53.8941

49.1410

56.6273

Threshold level (f) 0.8 0.5 0.1 N/A
SNIRE 19.5019 15.4862 6.1922 8.4277
BRISQUE 66.3734 63.0046 45.1998 50.2517

FIGURE 8. DCT Filtering results for the clinical fetal ultrasound images captured for normal/abnormal fetuses using DCT-based
proposed method compared to classical Wiener filter. The last two columns show that the proposed method is performing
denoising process better than the Wiener filter.
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g § Original image Rl Senen Rt TV method D:ltrha::d
& @ = . Method method
(proposed)
F 4
SNR/CNR (dB) 14.54/1.87 14.58/1.23 14.83/0.86 15.12/0.62
SNIRE 16.3294 10.4270 8.9243 7.3005
BRISQUE 41.2454 40.3757 31.3567 26.4126
F, £
SNR/CNR (dB) 16.25/1.52 16.33/1.37 16.52/1.19 16.93/0.84
SNIRE 14.0771 8.7692 7.9925 6.9443
BRISQUE 42.9926 38.5410 31.5207 28.7231
Fs
SNR/CNR (dB) 15.75/1.63 15.82/1.42 15.95/1.25 16.28/0.93
SNIRE 14.6895 9.2463 8.0031 5.7281
BRISQUE 44.1930 36.0996 32.1947 29.0726
Fa
SNR/CNR (dB) 13.73/2.12. 13.95/1.88
SNIRE 12.2814 7.9684 7.0111
BRISQUE 50.2615 42.9909 35.0320
: E E
- -— -— =
SNR/CNR (dB) 15.93/1.95 16.24/1.74 16.85/1.42 17.07/1.20
SNIRE 155811 10.2384 9.2318 7.1829
BRISQUE 43.3879 39.0791 32.4214 26.7166
Fs
SNR/CNR (dB) 15.71/2.43 15.95/2.19 16.27/1.76 16.58/1.55
SNIRE 141961 8.8572 7.8544 6.7248
BRISQUE 44.7239 36.7465 33.4985 29.1415

FIGURE 9. Filtering results of the clinical fetus images using four various algorithms: The proposed DCT-based filter is
compared with the existing NLM filter, Wiener filter and TV methods. SNR, CNR, SNIRE and BRISQUE as quantitative
measurements scores are calculated to show the capability of the proposed method.

141351



IEEE Access

B. Honarvar Shakibaei Asli et al.: Ultrasound Image Filtering and Reconstruction Using DCT/IDCT Filter Structure

average of the squares of the errors which is the average
squared difference between the estimated values and the
actual value. Moreover, the blind/referenceless image spatial
quality evaluator (BRISQUE) is applied to get a score for
image measurement from a natural image model [38]-[40].
The score measures the image quality by using the locally
normalized luminance coefficients, which were used to
calculate the image features. BRISQUE has very low
computational complexity, making it well suited for real
time applications. BRISQUE features may be used for
distortion-identification as well. For this score, a lower value
indicates a better subjective quality. These scores show that
the quality of enhanced images are improved after DCT
filtering processes. Furthermore, we compare the proposed
algorithm with classical image denoising method followed
by conventional Wiener filter. The last column in Fig. 8
shows the results for the denoised image of the original
image illustrated in the first column of the figure by using
Wiener filter. The second, third and fourth columns show the
proposed DCT-based method to denoise the original images
with different level of hard thresholds. It can be seen from
the forth and last columns of the figure, when 8 = 0.1 the
proposed algorithm has better performance and quite good
improvements than the classical Wiener filter method. Both
SNIRE and BRISQUE criterion confirm the effectiveness of
the proposed algorithm.

To show the performance of the proposed filter, we con-
duct another experiment to compare our method with
two well-known denoising algorithms which have been
developed for ultrasound despeckling and already mentioned
in introduction: NLM filter and the TV method. It should be
noted that in the previous experiment, we only compared the
proposed method with Wiener filter to obtain an acceptable
threshold level for control parameter, 8. From the second
experiment, it is clear by setting 8 = 0.1, we could
get a better denoising result for the DCT-based Wiener
filter method. However, the third experiment presents a
comparison of the proposed method with three different
existing algorithms (NLM filter, Wiener filter and TV
method) while the threshold level is fixed according to
the second experiment (8 = 0.1). Six test images have
selected from the fetus ultrasound images shown in Fig. 5
and marked by codes F; to Fe. In addition to the computed
SNIRE and BRISQUE values for test images, we use signal-
to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in dB
to evaluate the capability of the proposed filter against of the
existing methods. CNR is a measure used to determine image
quality and very similar to SNR. Notice that the image with
a high SNR metric might have a low CNR metric. Fig. 9
illustrates the results of the third experiment for ultrasound
image denoising based on four various approaches. As can
be seen from this figure, the denoising process is improving
by SNR increment or reduction of CNR/SNIRE/BRISQUE.
The computed image quality metrics in the last column of
Fig. 9 confirm that the DCT-based method is performing
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significantly better than the existing NLM, Wiener and TV
methods.

Another representations of Fig. 9 are shown in Figs. 10, 11,
12 and 13. These four plots show the values of computed
SNR, CNR, SNIRE and BRISQUE for the same images as
marked by codes F to Fg. In other words, there are a uniform
increment of SNR and a uniform reduction of CNR, SNIRE
and BRISQUE for the practical approaches of tested images.
The higher SNR values present good quality of the denoised
images and the lower CNR, SNIRE and BRISQUE values
display a better subjective image quality.

—O— NLM filter

=& Wiener filter
TV method

—©— DCT (proposed)

13.5 :
@‘( N e‘( L2 @‘( ) e‘( x @Q © QQ [
) > ) O ) O
« «® « & & &

Selected images (by image code)

FIGURE 10. Graph of the computed SNR for six images from Fig. 9.

T
—O— NLM filter

=& Wiener filter
TV method
=—©— DCT (proposed)

<N < ) <> & o <o
’b(fl ’bq ’b(fl
N &

& N N N

Selected images (by image code)

FIGURE 11. Graph of the computed CNR for six images from Fig. 9.

Generally, image quality measures are classified depend-
ing on the amount of information available from an original
reference image. While full-reference approaches have
access to the full-reference image, no information about it
is available to no-reference approaches. Besides, there are
some standard metrics for measuring image quality as peak
signal-to-noise ratio (PSNR) or mean squared error (MSE).
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FIGURE 12. Graph of the computed SNIRE for six images from Fig. 9.

50l —O— NLM filter 1
=& Wiener filter
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BRISQUE

Selected images (by image code)

FIGURE 13. Graph of the computed BRISQUE for six images from Fig. 9.

The last experiment of this subsection reports the calculated
image quality metrics. We have chosen both PSNR and MSE
scores as standard metrics to show image denoising process
for NLM, Wiener filter, TV and DCT-based methods. Fur-
thermore, the structural similarity index (SSIM) or the feature
similarity index (FSIM) are two perceptual metrics that
quantify image quality degradation caused by noise or blur
which are taken into account for this experiment [41], [42].
On the other hand, SSIM and FSIM are perception-based
models that consider image degradation as perceived change
in structural information, while also incorporating important
perceptual phenomena, including both luminance masking
and contrast masking terms. They are full reference metrics
that require two images: a reference image and a processed
image. Finally, BRISQUE as the no-reference metric is used
to measure the quality of denoised images. Tables 2 and 3
summarize the aforementioned scenario to clarify that the
proposed DCT-based filter satisfies the image quality in terms
of all three standards, full-reference and no-reference metrics.
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TABLE 2. Comparison of the image quality metrics for image F, (from
Fig. 9) to characterize denoising efficiency using various algorithms.

Image quality NLM Wiener TV DCT
scores filter filter method (proposed)
PSNR 33.4976 35.7800 36.7516 38.1106

MSE 0.000447  0.000264  0.000211 0.000178
FSIM 0.871123  0.883305 0.912467  0.941743
SSIM 0.853645  0.866198  0.889654  0.919882
BRISQUE 42.9926 38.5410 31.5207 28.7231

TABLE 3. Comparison of the image quality metrics for image F5 (from
Fig. 9) to characterize denoising efficiency using various algorithms.

Image quality NLM Wiener TV DCT
scores filter filter method (proposed)
PSNR 32.6476 34.8108 36.1171 39.8124
MSE 0.000544  0.000331  0.000245  0.000109
FSIM 0.854725  0.892770  0.920056  0.960298
SSIM 0.822118  0.851338  0.897116  0.934201

BRISQUE 43.3879 39.0791 32.4214 26.7166

The results in the first and second tables are based on the test
images F» and F’5, respectively (from Fig. 9). For every one
of these criteria, DCT-based filter performs better than all of
the other existing approaches being compared.

C. ULTRASOUND IMAGE RECONSTRUCTION USING
PROPOSED FILTER STRUCTURE

To show different reconstruction and recognition abilities
of the proposed IDCT filter, we carried out the following
experiment. Fig.14 shows the same ultrasound images that
we used for the second experiment for denoising algorithms.
We calculated DCT coefficients using the recursive proposed
method by applying Eq. (18) up to order 400 which should
theoretically provide a possibility of loss-less reconstruc-
tion. We reconstructed the original image by means of
Eq. (19) using various DCT coefficients orders (maximum
reconstruction orders are 50, 100, 200, 300 and 400 for all
images). We used the SNIRE to measure the performance
of the proposed IDCT filtering. Lower values of SNIRE
means a better reconstruction with less error. As can be
seen from Fig.14, by decreasing the DCT reconstruction
orders, the SNIRE starts to increase. Besides using SNIRE
to measure the error between the original and reconstructed
images, the SSIM index is also used to quantify the similarity
of images which is a metric to consider image degradation
as perceived change in structural information. Higher SSIM
matches with a better image reconstruction. The obtained
results for SSIM in Fig.14 illustrates that for lower orders the
precision quickly decreased.

Fig. 15 shows the image reconstruction error analysis
with increasing rate of the DCT orders. This figure also
illustrates that an optimal trade-off between the accuracy and
complexity is provided by the maximum DCT order between
50 and 100, depending on the data.
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Original image Reconstructed images based on the proposed IDCT filter
=
2 Max. Order 50 100 200 300 400
g SNIRE 17.2746 11.4128 6.43499 3.97367 0.765523
- SSIM 0.967772 0.986241 0.995663 0.998343 0.999935
M
)
—
c
7
Max. Order 50 100 200 300 400
SNIRE 15.5357 11.0797 6.6417 4,16901 119042
SSIM 0.980865 0.990384 0.996564 0.998643 0.999883
-
)
—t
=
o Max. Order 50 100 200 300 400
ﬁ SNIRE 12.2475 5.42537 2.4452 1.43111 0.394929
- SSIM 0.983393 0.996762 0.999324 0.999761 0.999988
o
=5
<
«Q
-
(o]
3
O
Max. Order 400
SNIRE 10.6938 5.50489 2.42483 1.29721 0.311768
SSIM 0.988511 0.996958 0.999395 0.999821 0.999994

Max. Order

50

100

200

300

400

SNIRE

16.1456

10.6017

5.34303

3.34015

1.5707

SSIM

0.949098

0.978773

0.994671

g

0.997909

0.999525

Max. Order 50 100 200 300 400
SNIRE 15.7917 10.7213 5.55523 3.33236 0.920456
SSIM 0.954312 0.979496 0.994569 0.998042 0.999844

FIGURE 14. Image reconstruction of ultrasound fetus images with different orders with their reconstruction errors using the proposed IDCT filter

structure.
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FIGURE 15. Image reconstruction error analysis by increasing DCT orders.
In the legend of graph, Images 1 and 6 refer to the original images in the
first and last rows of Fig. 14.

V. CONCLUSION

In this paper, a new approach has been proposed for
DCT/IDCT calculation based on FIR filter structures and
presented its performance on ultrasound image filtering and
reconstruction. This approach has been developed using con-
volution model of DCT to use its Z-transform for designing
an FIR digital filter network. The same approach has been
used to find a recursive filter to reconstruct ultrasound images
using IDCT structure. In order to evaluate the performance
of the new filters, a set of normal/abnormal fetus ultrasound
images have been applied to test the validity of the proposed
algorithms. It has also been shown that filtering efficiency
depends considerably on hard thresholding. By choosing
a correct threshold level, the denoising results using our
method is better than the classical Wiener filter, NLM
filter and TV method while the proposed filter is simpler
and faster. Additionally, to illustrate the proposed method
accuracy, BRISQUE, SNIRE (or MSE/PSNR) and SSIM (or
FSIM) indexes showed the image quality scores, the error
measurement and the structural similarity in our analysis,
respectively. The main advantage of our method is the
speed and the ability to perform both lossy and loss-less
reconstruction.
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