IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Cutrona, V., Bianchi, F., Jimenez-Ruiz, E. & Palmonari, M. (2020). Tough Tables:
Carefully Evaluating Entity Linking for Tabular Data. In: The Semantic Web — ISWC 2020.
Lecture Notes in Computer Science. (pp. 328-343). Springer International Publishing. ISBN
978-3-030-62465-1 doi: 10.1007/978-3-030-62466-8_21

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/24776/

Link to published version: https://doi.org/10.1007/978-3-030-62466-8_21

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Tough Tables: Carefully Evaluating Entity
Linking for Tabular Data

0000—0001—7830—7596 :
I, Federico

, Ernesto JirnéneZ_PdliZBA[0000700027908374599]7

and Matteo Palmonari![0000—0002—1801-5118]

Vincenzo Cutronall

Bianchi2 [0000—0003—0776—361.X]

L University of Milano - Bicocca, Milan, Ttaly
{vincenzo.cutrona, matteo.palmonari}@unimib.it
2 Bocconi University, Milan, Italy
f.bianchi@unibocconi.it
3 City, University of London, London, United Kingdom
ernesto. jimenez-ruiz@city.ac.uk
4 University of Oslo, Oslo, Norway

Abstract. Table annotation is a key task to improve querying the Web
and support the Knowledge Graph population from legacy sources (ta-
bles). Last year, the SemTab challenge was introduced to unify different
efforts to evaluate table annotation algorithms by providing a common
interface and several general-purpose datasets as a ground truth. The
SemTab dataset is useful to have a general understanding of how these
algorithms work, and the organizers of the challenge included some ar-
tificial noise to the data to make the annotation trickier. However, it is
hard to analyze specific aspects in an automatic way. For example, the
ambiguity of names at the entity-level can largely affect the quality of
the annotation. In this paper, we propose a novel dataset to complement
the datasets proposed by SemTab. The dataset consists of a set of high-
quality manually-curated tables with non-obviously linkable cells, i.e.,
where values are ambiguous names, typos, and misspelled entity names
not appearing in the current version of the SemTab dataset. These chal-
lenges are particularly relevant for the ingestion of structured legacy
sources into existing knowledge graphs. Evaluations run on this dataset
show that ambiguity is a key problem for entity linking algorithms and
encourage a promising direction for future work in the field.

Keywords: Entity Linking - Instance-level matching - Cell Entity An-
notation - Semantic Labeling - Table annotation

1 Introduction

Tables are one of the most used formats to organize data. Every day, both data
practitioners and business people have to handle tables that have been extracted
from databases of sales, pricing, and more. Using these tables to build a new
knowledge graph (KG), populate an existing one [10], or enrich the data in
the table with additional information available in existing KGs [3] requires the

2 V. Cutrona et al.

source data to be manipulated, interpreted within a graph-based schema (e.g.,
an ontology), transformed and linked to a reference or to existing KGs. The
latter step, in particular, consists in an entity linking task, that is, in connecting
cells to reference identifiers (e.g., URIs) that are used to describe, in larger KGs,
the entity referred to the cell.

The task of interpreting the table under a graph-based schema and link cells
to entities described in a reference KG is referred in the literature to as Table
Annotation, Table Interpretation, or Semantic Labeling. It requires the introduc-
tion of semantic algorithms, namely semantic table interpreters, that link cells
to elements in a KG. Recently, the SemTab 2019 [7] challenge was introduced to
unify the community efforts towards the development of performing annotations.
The challenge consists of different rounds in which tables of various difficulties
have to be annotated. However, it is often difficult to understand what are the
shortcoming of each algorithm and how difficult the tables are. For example, are
algorithms able to correctly annotate tables that contain homonymic names of
people? In Figure 1, we show a case of ambiguity. In the Semantic Web commu-
nity, this issue has already been highlighted, and it becomes necessary to have
tables that resemble real use-cases [7].

Neil McCarthy Lincoln
(actor) (England)
Name City Country Date of Birth ?
Neil McCarthy | Lincoln England 1932-07-26 ®
Neil McCarthy | Slough England 1974-11-29
Neil McCarthy Slough
(rugby player) (England)

Fig. 1. Ambiguities make table annotation more difficult.

In this paper, we propose a manually curated dataset for table annotation
useful for evaluating specific aspects of the annotation task, and, in particular, of
the entity linking task in table interpretation. This dataset is complementary to
the datasets already introduced in the SemTab challenge. We manually checked
the tables with the following question in mind: “Would a human annotator
be able to disambiguate this table?”. Considering the intrinsic ambiguity of
references appearing in tables, we want to ensure that the dataset includes those
tables that can be effectively disambiguated, based on the information available
in the table by a human annotator. In fact, we report some cases where the
human annotators found very hard to match cells of some tables, due to the
high ambiguity of their content; when the correct link was hard to be decided
based on the table content (the context supporting the disambiguation), we
opted for the conservative approach and decided to not annotate the cell (e.g.,

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data 3

for the table with the list of bank failures since 2,000, it was not always clear
who acquired the bank: whether it was a bank or its holding company).

A good table interpretation algorithm should be able to balance different
aspects that need to be considered in the linking process: if the algorithm weights
too much the evidence provided by string matching, it will fail to recognize
nicknames and different names for things; if it expects clean text, it will fail to
identify misspelled entities; if it relies on popularity for disambiguation entities,
it will give more weight to popular cities than to the homonymic cities with
the same name; if it allows too much fuzziness in the search of the candidate
entities, i.e., a pool of entities that are selected as potential links usually based
on string matching criteria, it will generate a considerable amount of possible
candidates, making the search for the correct one more difficult and prone to
errors. We believe that it is helpful to consider these aspects separately in order
to evaluate the real power of different entity linking methods in handling the
different challenges that data in the tables present. Creating a dataset that
features all the aforementioned aspects requires to collect non-artificial tables;
in fact, building a dataset via generators (e.g., tables created by querying a
SPARQL endpoint) has the advantage of creating a multitude of different tables
quickly, but for example it is not possible to create tables with new content (i.e.,
with facts missing in the reference KG).

Compared to previous benchmarks, this new dataset has the following dis-
tinguishing features, which make it a very valuable resource for the fundamental
task of table interpretation:

1. Real Tables - useful for testing how the table interpretation algorithms
deal with the knowledge gap due to novel facts. It can be often the case that
some cells in a table refer to entities that are described in the reference KG,
for which the algorithm is expected to link the correct entity, and some cells
refer to entities not described in the reference KG, for which the algorithm
should decide not to link any of the existing entities.

2. Tables with Ambiguous Mentions - useful to test the algorithms’ ca-
pability to handle the ambiguity and link also to non-popular entities (tail
entities).

3. Tables with Misspelled Mentions - useful for testing the weight of lexical
features used by the algorithms. We used the misspelled words as a generator
to add controlled noise to other tables.

4. Tables from Various Sources - useful to understand which are the most
difficult tables to deal with for an algorithm.

5. Manually Verified Tables - useful to prevent false positives while evalu-
ating the algorithms; the dataset is of high quality and all the annotations
have been manually verified.

2 Background

In this section we define more precisely the terminology we use along the paper.
We refer to table annotation as the task of linking cells of a table to elements of

4 V. Cutrona et al.

a KG. We distinguish from instance-level matching and schema-level matching:
the first aims at linking mentions in the table to entities of the KG (e.g., “10.
Alex Del Piero” and “Juventus” can be mapped to dbr:Alessandro_Del_Piero and
dbr:Juventus_F.C. in DBpedia), while the latter is dedicated to the columns and
their headers, i.e., the table schema, linking the heading cells to elements of the
ontology provided by the KG (e.g., the columns “Name” and “Team” could be
mapped to types dbo:SoccerPlayer and dbo:Team, and they can be linked with
the property “dbo:team”). While the instance-level matching can always rely on
the cell content, which represents a mention of the entity to be linked, sometimes
the schema-level matching must deal with more challenging tables where the first
row is empty (no headers cells), or contains meaningless cells (e.g., codes from the
legacy sources). Recently, the SemTab challenge introduced a new terminology,
splitting the table annotation task into three sub-tasks:

— CTA (Column-Type Annotation), that is the schema-level matching focused
only on linking columns to ontology types;

— CEA (Cell-Entity Annotation), that is the instance-level matching; this is
what is also referred to as entity linking, as we do in this paper.

— CPA (Columns-Property Annotation), that is the schema-level matching
focused only on linking columns of the table through ontology properties.

Even if the challenge evaluates these three tasks separately, they are usually
solved together, possibly, iteratively. A fully-automated table annotation ap-
proach can start by solving the CEA task, e.g., by finding some entities linked
with a certain confidence, then it can use these entities to find the right type
for the column, solving CTA, and finally it may go back to refine CEA, e.g., by
using the inferred type to filter irrelevant entities and support the disambigua-
tion. Finally, the CPA task is typically solved by combining the information
collected during the other two tasks and selecting the properties that fit the
pairs of types/entities that have been found. Due to the importance of the CEA
task, and to the fact that this task is useful for data enrichment even if a full
table to graph transformation is not required, we decided to focus our dataset
on the evalation of the entity linking (CEA). By using these annotations then
we have also derived type-level annotations of the table headers, thus providing
also ground truth for the CTA task (further details in the Appendix A.2). We
left the ground truth for the CPA task as future work.

3 Limitations in Related Datasets

In the last decade different benchmark datasets have been proposed in the lit-
erature. The most important and used are T2Dv2! (also referred to as T2D in
this paper), Limaye [8] and W2D [4]. They come with different capabilities. As
an example, while T2D provides tables with properties for the CPA task, W2D
does not cover this task very well. We can then observe that, even if the above

! T2Dv2: http://webdatacommons.org/webtables/goldstandardV2.html

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data 5

datasets differ in size (T2D has 200 tables, while W2D counts more than 485k),
all of them are focused on web tables, i.e., small tables scraped from the web;
these datasets are particularly suitable to benchmark table interpretation algo-
rithms whose objective is to support query answering over the large amount of
tables published on the web [11]. However, tables considered for the population
of KGs are usually quite different from web tables, e.g., they are much larger,
and these kind of tables are not representated in the available datasets. We can
shortly summarize the difference between these two kinds of tables as follows:

— Legacy tables usually have many rows, while tables in existing benchmark
datasets are small (the average number of rows per table is 123 for T2D, 29
for Limaye and only 15 for W2D, according to [4]). Large tables may prevent
algorithms from using heuristics that consider the full table (e.g., infer the
column type by looking at the whole column).

— Legacy tables, especially CSVs, usually contain de-normalised tables with
several columns; this aspect is not well represented in the considered datasets
(each table contains on average ~1.77 columns with entities).

— Because of the usual de-normalization, legacy tables contain many columns
with entity matches, but tables in existing benchmarks are mostly focused
on “entity tables”, i.e., tables where each row represents only one entity; in
such a table, one column refers to the entity (it is also called subject column),
and all the other contain attributes of the main entity; this scenario does
not fit the case of de-normalised tables. We also report that in some cases
(e.g., T2D), if the table contains more than one entity column, they are
disregarded and not annotated.

— Entities in web tables are usually mentioned using their canonical name (e.g.,
Barack Obama is mentioned as “Barack Obama” - it is very unusual to see
“B. Obama”); in legacy sources, we find acronyms, abbreviations, misspelled
words that considerably increase the ambiguity of the table. For example,
the misspelling of drug names is a very important problem in the health
domain [5, 6].

A recent study reported that many of the approaches tested on such datasets are
focused on “obviously linkable” cells [14], showing that a tool like T2K [10] man-
ages to match only 2.85% of a large corpus of Web tables to DBpedia. However,
the performance of T2K evaluated on T2D relatively to the CEA task is very
high (F1: 0.82, Precision: 0.90, Recall: 0.76). This suggests that many tables in
T2D are easy to annotate. The authors themselves specify that the entity linking
can be wrong sometimes, especially when the mention is ambiguous, spotlighting
that there are a few ambiguous mentions in T2D. Recently, SemTab (Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching) was created
to conduct a systematic evaluation of table annotation algorithms [7]. The or-
ganizers presented new datasets built by automatically generating tables from
the results of SPARQL queries. The first rounds of SemTab 2019 also included
tables from T2D and W2D datasets. The success of the challenge and the analy-
sis of the results achieved by different competing approaches have revealed some
challenges that should be addressed in future work:

6 V. Cutrona et al.

— Wikipedia and DBpedia lookup mechanisms are effective for candidate se-
lection tasks, but they might fail when the cell content is misspelled (e.g.,
Winsconsin vs Wisconsin) or is different from the most common one (e.g.,
football player nicknames: La Pulga vs Lionel Messi).

— Real world tables are noisy and in general not well formed. Algorithms should
be evaluated also with respect to their ability to deal with such tables.

— Missing data can affect the results of the algorithms and thus this aspect
should be correctly evaluated.

— Although the overall quality of the SemTab 2019 dataset is higher compared
with the other datasets, a manual inspection of the tables in the SemTab
brought to the surface some malformed and wrongly annotated tables, like
empty rows mapped to an entity and long descriptions (with mentions of
different entities) mapped to a single entity.2

Finally, existing datasets have contributed to the benchmarking of table inter-
pretation algorithms, however, none of them provide fine grained information
about the achievement of a certain score. Some tools have been developed to at
least highlight which are the main error patterns, but those patterns must be
manually inspected (e.g., [2]). Our dataset has been built to facilitate the under-
standing of the main limitations of a table interpretation system, since it provides
a footprint about the uncovered aspects that led to certain performance score.

4 The 2T Dataset

In this paper we present Tough Tables (2T, a dataset designed to evaluate table
annotation approaches on the CEA and CTA tasks. All the annotations are
based on DBpedia 2016-10.% The structure of the dataset (depicted in Figure 2)
allows the user to know Which aspects of the entity linking task are handled
better/worse by different approaches. Indeed, the dataset comes with two main
categories of tables:

— the control group (CTRL), which contains tables that are easy to solve; a ta-
ble annotation algorithm should at least annotate these tables with relatively
high performance.

— the tough group (TOUGH), which features only tables that are hard to
annotate.

A complete algorithm should solve both the categories, because otherwise i)
solving only the CTRL group means that the algorithm is able to only cope
with obvious entities and ii) solving only the TOUGH tables highlights that the
algorithm is too complex and cannot deal with the simpler cases.

2 See Tables 53822652_0_5767892317858575530 and 12th_Goya_Awards#1 from
Round 1 and Round 2, respectively. These errors come from the T2D and W2D
datasets used in SemTab 2019.

3 We checked our annotations against a private replica of the online DBpedia SPARQL
endpoint in a local instance, loading the 2016-10 datasets listed at https://wiki.
dbpedia.org/public-sparql-endpoint.

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data 7

group CTRL TOUGH

source CTRL_WIKI || CTRL_DBP TOUGW
homonyms TOUGH_HOMO

miscellaneous

misspelled

sorted/grouped by TOUGH_SORTED

level-1 noise

level-2 noise CTRL_NOISE2

Fig. 2. 2T profile at a glance. Boxed categories are those considered during the eval-
uation phase. Each category is composed by some of/all the tables from the parent
categories.

TOUGH_NOISE2

4.1 Dataset Profile

Figure 2 provides an overview of the different table flavours included within the
2T dataset. The control group (CTRL) contains tables generated by querying
the DBpedia SPARQL endpoint? (CTRL_DBP), leaving the label as extracted
from the KG, and tables collected from Wikipedia (CTRL_WIKI), manually
revised and annotated (further details about this procedure are available in Ap-
pendix A.1l). Like the DBP ones, the WIKI tables are pretty clear and easy
to annotate, since most of the mentions refer to entities in DBpedia with just
slightly different labels from the ones contained in this KG.

The tough group (TOUGH) contains mainly tables scraped from the web.
This group contains also a small subset of T2D (TOUGH_T2D), which we re-
annotated considering the entities appearing in all the columns, and not only
entities in the “subject” column like T2D. In addition, we collected tables from
the web that contain nicknames or homonyms (TOUGH_HOMO), and misspelled
words (TOUGH-MISSP). We enriched the TOUGH_-HOMO category by adding
a few tables generated via ad-hoc SPARQL queries. Along with these tables, we
included other web tables (TOUGH_MISC), like non-cleaned Wikipedia tables
and tables available as Open Data (in a limited quantity, due to motivations
stated in Appendix A.1).

We selected some specific tables from the TOUGH_-HOMO category and
sorted them in a specific order to make the task of detecting the type more
difficult (TOUGH_SORTED). If we are creating a table describing athletes we
would probably intuitively organize them by category, having the soccer players
in the first part, then all the basket players, then all the golf players, etc. Sorting
tables might pose a problem for those algorithms that infer the column type by

* We used the online version at http://dbpedia.org/sparql.

8 V. Cutrona et al.

only looking at the first n rows (with n usually small), and then use the inferred
type as a filter for the entity linking.®

Noisy tables. We used the already collected tables to generate other noisy tough
tables. Starting from tables in TOUGH_MISSP, we generated a new category
(TOUGH-NOISEL) by adding a level 1 noise: for each table, 10 additional ta-
bles with noise have been generated, where each of them contains an incremen-
tal percentage of misspelled mentions (increasing by 10% at a time). This noise
resembles real noise since we use lists of real-world misspelled words and use
them to generate noise. From the tables in the CTRL and TOUGH categories
(excluding the TOUGH_NOISE1 category), we also created two new categories
(CTRL_NOISE2 and TOUGH_NOISE2) via a level-2 noise, i.e., random noise
that changes a bit the labels of randomly selected columns/rows (e.g., it ran-
domly duplicates a symbol). Tables in this new category feature a noise that is
random and artificial, thus it does not always resemble a real world scenario.

Novel facts. One of the main applications of the table interpretation is to extract
new facts from tables, especially for KG population/completion tasks. In data
integration pipelines, entity linking and new triples generation play an equally
important role. Novel facts detection is not considered in the standard CEA
evaluation,® but we outline that our dataset can be used to test algorithms
in finding new facts. 2T tables contain 3,292 entity mentions across 42 tables
without a corresponding entity in DBpedia 2016-10. In the CEA asset, a good
table annotation algorithm is expected to decide that such cells should not be
linked (similar to the NIL prediction in Named Entity Linking/Recognition).
In more comprehensive assets, like KG construction/population, we expect the
algorithm to generate a new triple (with rdf:type) using the discovered column
type. Depending on the context, such particular cells might be used in the future
to test novel knowledge discovery algorithms.

Overview. Benchmarking a table annotation system using 2T allows the devel-
opers to understand why their algorithms achieved a certain score as follows:

— if the algorithm performs well only on the control tables, then it relies too
much on the performance of simple string matching strategies like label
lookup (i.e., it looks only for exact matches, or considers only the canon-
ical name of entities);

— if the performance is good also on the control tables with level-2 noise,
then the algorithm adopts a kind of fuzziness in its lookup phase (e.g., edit
distance), which is still not enough to solve the tough tables;

— if the algorithm performs well on some tough tables and bad on others, then
the user can better understand the weaknesses of the algorithm by looking
at the performance on different categories of tables:

® This strategy, that might look naive, is the same implemented in OpenRefine, where
the first 10 rows are used to suggest the possible types of the current column.

5 The SemTab 2019 challenge provided the target file with the full list of cells to
annotate, disregarding novel facts.

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data 9

e if the tables with columns sorted by type are annotated in the wrong
way, then the entity linking algorithm is constrained by the type inferred
looking at the first n rows, with n too small;

e if homonyms or nicknames have been wrongly matched, that means that
the algorithm employs popularity mechanisms (e.g., page rank), or it is
based on a lookup service that returns the most popular entities first
(e.g., DBpedia Lookup).” Annotating nicknames requires the algorithms
to cover aspects of semantics that go a bit beyond simple heuristics;®

e if the tables with level-1 noise are not properly annotated, then the
algorithm cannot deal with real-world noise (that can be trickier than
the artificial level-2 noise);

e if the annotations are wrong for the tables containing nicknames, it might
be the case the algorithm only focuses on the canonical names of the
entities.

Tables 1 and 2 show statistics for 2T and existing benchmark datasets. Com-
pared to existing datasets, 2T has a higher average number of rows per table,
pushing the size of individual tables towards the size of real legacy sources; the
number of matches is slightly grater than the number available in SemTab 2019
Rounds 2 and 3 (ST19 - R2 and ST19 - R3 in Table 2), considering that 2T
comes with a number of tables that is up to two orders of magnitude smaller.
Since some tables in 2T are built starting from the same core table, we observe a
small number of unique entities. Finally, 2T tables have a lower average number
of columns per table, but the highest number of columns with at least a match:
this aspect helps in having more columns to annotate in the CTA task, and it
is also a starting point for future extensions of 2T, i.e., covering CPA task.

4.2 Evaluation

We ran experiments to evaluate the toughness of our dataset and its capabil-
ity of spotting the weaknesses of an annotator. We setup an environment that
resembles the CEA task of SemTab 2019, i.e., target cells are known and extra
annotations are disregarded. We also used the available code to score the algo-
rithms in the same way.” We introduce two simple baselines, DBLookup and
WikipediaSearch, which run a query against the corresponding online lookup
services using only the actual cell content.!? Both the baselines use the first re-

” We point out that some homonyms are very easy to solve using DBpedia (e.g.,
US cities are easy to find, since just appending the state of a city to its canon-
ical name points directly to the right city, e.g., the Cambridge city in Illinois is
dbr:Cambridge,Illinois in DBpedia).

8 Note that it is possible to solve this problem using a mapping dictionary if available,
but this is not a desired solution: this will not make the algorithm smart; the same
is true for looking up on Google Search.

9 https://github.com/sem-tab-challenge/aicrowd-evaluator

10 We used the WikipediaSearch online service available at https://en.wikipedia.
org/w/api.php, while we recreated the DBLookup online instance on a dedicated
virtual machine.

10 V. Cutrona et al.

Table 1. Detailed statistics for 2T. Values are given as avg £ st.dev. (total, min, max)

. Cols with
Category Cols Rows Matches Entities Matches Tables

4.47£1.90 1080.3842805.25 3687.94+10142.48 438.77+1241.97 2.99£1.17

ALL (804, 1, 8) (194468, 5, 15477) (663830, 6, 61908) (16464, 6, 7032) (538, 1,6) 0
CTRL 5.73+1.28 66.004:81.39 241.93+333.21 157.934224.06 3.4741.41 5
WIKI (86, 4, 7) (990, 10, 263) (3629, 20, 1041) (1940, 15, 771) (52, 2, 6) o
CTRL 4.4040.91 709.60£717.65 2510.67£2573.68 343.40+£217.08 3.53+£0.64 5
DBP (66, 3, 6) (10644, 120, 2408) (37660, 360, 7820) (4976, 68, 618) (53, 3, 5)
CTRL 5.074£1.28 387.77+599.15 1375.9342140.04 250.53+236.31 3.50+1.07 20
NOISE2 (152, 3,7) (11633, 10, 2408) (41278, 20, 7820) (6745, 15, 770) (105, 2, 6)
TOUGH 5.82+1.83 78.09477.26 165.364150.28 94.45+80.05 2.09+0.94 1
T2D (64, 3, 8) (859, 6, 232) (1819, 6, 464) (991, 6, 248) (23, 1, 4)
TOUGH 3.36+1.12 1648.824£3272.12 6422.554+13168.36 1469.27+2719.02 3.000.77 u
HOMO (37,2, 5) (18137, 13, 8302) (70648, 25, 33208) (8331, 24, 7032) (33, 2, 4)
TOUGH 6.50+1.31 122.25:+162.86 366.33+416.95 222.924261.32 3.67+1.44 1o
MISC (78,4,8) (1467, 11, 561) (4396, 22, 1215) (2374, 16, 770) (44, 2, 6)
TOUGH 3.50+1.29 4175.50£7549.48 16386.50+30381.91 204.00+£350.86 3.25:0.96 A
MISSP (14, 2, 5) (16702, 52, 15477) (65546, 178, 61908) (775, 13, 730) (13, 2, 4)
TOUGH 3.5042.12 4215.0045779.89 16732.00:23300.58 3602.0044850.75 3.0041.41)
SORTED (7, 2,5) (8430, 128, 8302) (33464, 256, 33208) (7201, 172, 7032) (6, 2, 4)
TOUGH 2.504+1.13 2000.30£3701.62 5738.15411197.12 204.004307.73 2.25:0.84 10
NOISE1 (100, 1,4 (80012, 5, 14008) (229526, 15, 42024) (775, 13, 730) (90, 1, 3)
TOUGH 5.00+1.97 1139.88+3183.53 4396.75+12774.85 697.33£1823.97 2.98+1.21 10

NOISE2 (200, 2, 8) (45595, 6, 15477) (175870, 6, 61908) (11820, 6, 7032) (119, 1, 6)

sult returned by the online service as the candidate annotation. Alongside the
baselines, we looked for a real algorithm to test among the ones that participated
in the SemTab 2019. We contacted the authors of MTab [9], CVS2KG [13], and
Tabularisi [12], the tools that performed the best, but their tools were not pub-
licly available. Only the authors of MantisTable [1], winner of the outstanding
improvement award at SemTab 2019 (CEA task), provided us with a prototype
of their tool.!! Since the performance obtained by all the tools were similar to
each other, we think that MantisTable is a good representative for the evalu-
ation. We run MantisTable and the two baselines on 2T, obtaining the results
depicted in Figure 3. We underline here that our dataset adopts the same stan-
dard format defined in SemTab2019, making it compatible with all the systems
that participated in the challenge.!?

Results. In some cases, MantisTable could not annotate all the table cells (e.g.,
it failed to annotate tables with thousands of rows); this might be due to some
general limits of the MantisTable prototype for which the solution is out of the

1A fork of the original code repository is available at https://bitbucket.org/
vcutrona/mantistable-tool.py.

12 The standard format introduced in SemTab2019 is directly derived from the T2Dv2
one, thus the number of algorithms that can be tested is potentially greater.

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data 11

Table 2. Comparison with existing benchmark datasets.

Dataset Cols (avg) Rows (avg) Matches Entities Sl(;ltscx ;Ch(avg) Tables

T2Dv2 1,157 (4.95) 27,996 (123) 26,124 - - 234
Limaye - - 142,737 - - 6,522
W2D - (5.58) 7,437,606 (15) 4,453,329 - - 485,096
ST19 - R1 323 (5.05) 9,153 (143.02) 8,418 6,225 64 (1.00) 64
ST19 - R2 66,734 (5.60) 311,315 (26.12) 463,796 249,216 15,335 (1.29) 11,920
ST19 - R3 9,736 (4.51) 154,914 (71.69) 406,827 174,459 5,762 (2.67) 2,161
ST19- R4 3,564 (4.36) 52,066 (63.73) 107,352 54,372 1,732 (2.12) 817
2T (ours) 804 (4.47) 194,468 (1080.38) 663,830 16,464 538 (2.99) 180

WikipediaSearch DBLookup MantisTable
ALL ALL

TOUGH

—— precision
TOUGH TOUGH TOUGH TOUGH TOUGH TOUGH
— recall MISC HOMO MISC HOMO MISC HOMO

— fl

Fig. 3. Precision, Recall and F1 measures for the considered algorithms.

scope of the paper. Indeed, the algorithm is based on several heuristics, and
processing big tables might lead to processing errors. For example, processing
180 tables took more than 24 hours. However, this does not compromise our
evaluation, proving again that MantisTable can effectively annotate tables as
shown in the SemTab 2019 challenge. The reader should take into account that
the reported results may not reflect the full performance of MantisTable as they
represent the output of a dry-run test without the involvement of the developers.
Nevertheless, the results suggest that tough tables are effectively difficult to
annotate for state-of-the-art algorithms. For the baselines, their precision and
recall are quite similar since the online lookup services almost always return a
result, and we set it as the annotation without further processing; focusing on
the F1 measure, we observe that WikipediaSearch reaches 0.83 F1 on the CTRL
group, which is high compared with state-of-the-art models, considering that
the process only relies on the lookup service. The performance of DBLookup is
good as well, but it decreases due to the CTRL_NOISE2 subcategory, reaching an
average F1 of 0.73 on the CTRL group. Both algorithms are not able to annotate

12 V. Cutrona et al.

the TOUGH tables, with DBLookup doing a bit better; this might be due to
the fact that some of the tough tables have been built with SPARQL queries,
giving some advantages to the DBLookup service. In general, the performance
is low as expected (0.63 overall F1 for both the baselines), given that these
algorithms do not use any kind of sophisticated semantic techniques. Looking
at MantisTable results, we see that the tool is focusing on those cells that can
be more easily linked to the KG. The semantic techniques employed in the
algorithm pushes the precision on the control group, but due to the low recall,
the algorithm performs worse (0.32 overall F1) than the previous baselines. Since
the precision on CTRL_DBP tables is higher than CTRL_WIKI ones, we can
assume that the lookup phase of the algorithm heavily depends on DBpedia (as
a lookup service or SPARQL endpoint). The same is confirmed by the low recall
on the TOUGH_NOISE1 tables, which are the ones with real-world misspelled
mentions. For the subset of T2D tables that we chose and re-annotated, we spot
a F1 score lower than the 0.98 obtained by MantisTable during the Round 1
of the SemTab challenge;'? this confirms that the T2D tables are focused on
obvious entities, disregarding the more difficult ones. The F1 score drastically
decreases on the misspelled tables, highlighting that this aspect is still not fully
covered in sophisticated state-of-the-art approaches like MantisTable.

4.3 Availability and Long-Term Plan

Resources should be easy accessible to allow data applicability and validation.
We follow FAIR (Findable, Accessible, Interoperable and Reusable) guidelines
to release our contributions.!*

We release our dataset in Zenodo (DOI: https://doi.org/10.5281/zenodo.
3840646), in such a way that researchers in the community can benefit from
this. Our dataset is released under the Attribution 4.0 International (CC BY
4.0) License.!> Together with the dataset we release the code that was used to
collect the data and create it.'® This should favor replicability and subsequent
extensions.

5 Conclusions and Future Work

In this paper, we presented a novel dataset for benchmarking table annotation
approaches on the entity linking and column type annotation tasks, equivalent
to the CEA and CTA tasks as defined in current benchmarks [7]. The dataset
comes with a mix of real and constructed tables, which resemble many real-world
scenarios. We tested our dataset using a state-of-the-art approach, MantisTable,
and two baselines. These baselines are represented by online lookup services,
usually adopted as a building block of many table annotation approaches. We

'3 https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2019/results.html
' https://www.nature.com/articles/sdata201618

5 https://creativecommons.org/licenses/by/4.0/

16 https://github.com/vcutrona/tough-tables

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data 13

demonstrate that our tables are tough, and solving them requires the algorithms
to implement sophisticated mechanisms that take into consideration many se-
mantics aspects. In the near future, we intend to extend this dataset to cover
also the CPA task; indeed, we observed that the 2T’s profile fits well the bench-
marking of this task because it contains many columns with matches, making
the CPA more challenging (having averagely three possible columns to annotate
instead of 2 increases by a degree of freedom the number of possible property
annotations). The authors are also analysing the inclusion of this dataset in one
of the rounds of SemTab 2020.'7

Acknowledgments. We would like to thank the authors of MantisTable for
sharing the prototype source code. This work was partially supported by the
Google Cloud Platform Education Grant. EJR was supported by the SIRIUS
Centre for Scalable Data Access (Research Council of Norway). FB is member
of the Bocconi Institute for Data Science and Analytics (BIDSA) and the Data
and Marketing Insights (DMI) unit.

References

1. Cremaschi, M., De Paoli, F., Rula, A., Spahiu, B.: A fully automated approach to a
complete semantic table interpretation. Future Generation Computer Systems 112,
478 — 500 (2020). https://doi.org/https://doi.org/10.1016/j.future.2020.05.019

2. Cremaschi, M., Siano, A., Avogadro, R., Jimenez-Ruiz, E., Maurino, A.: STILTool:
a Semantic Table Interpretation evaLuation Tool. In: ESWC P&D (2020)

3. Cutrona, V., Paoli, F.D., Kosmerlj, A., Nikolov, N., Palmonari, M., Perales, F.,
Roman, D.: Semantically-enabled optimization of digital marketing campaigns.
In: ISWC. pp. 345-362. Springer (2019). https://doi.org/10.1007/978-3-030-30796-
722

4. Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M., Christophides, V.: Match-
ing Web Tables with Knowledge Base Entities: From Entity Lookups to Entity
Embeddings. In: ISWC. pp. 260-277 (2017). https://doi.org/10.1007/978-3-319-
68288-4_16

5. Hussain, F., Qamar, U.: Identification and Correction of Misspelled Drugs Names
in Electronic Medical Records (EMR). In: ICEIS 2016 - Proceedings of the 18th
International Conference on Enterprise Information Systems. vol. 2, pp. 333-338
(2016). https://doi.org/10.5220/0005911503330338

6. Jiang, K., Chen, T., Huang, L., Calix, R.A., Bernard, G.R.: A Data-Driven Method
of Discovering Misspellings of Medication Names on Twitter. In: Building Con-
tinents of Knowledge in Oceans of Data: The Future of Co-Created eHealth -
Proceedings of MIE 2018, Medical Informatics Europe. Studies in Health Technol-
ogy and Informatics, vol. 247, pp. 136-140 (2018). https://doi.org/10.3233/978-1-
61499-852-5-136

7 The SemTab 2020 challenge is still in progress and it is organized to provide tables
without known ground truth. For this reason, we will publish the full 2T dataset,
including the ground truth files, at the end of SemTab 2020.

14 V. Cutrona et al.

7. Jiménez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J., Srinivas, K.: SemTab
2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Sys-
tems. In: ESWC. pp. 514-530. Springer (2020). https://doi.org/10.1007/978-3-030-
49461-2_30

8. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and Searching Web Ta-
bles Using Entities, Types and Relationships. VLDB 3(1), 1338-1347 (2010).
https://doi.org/10.14778/1920841.1921005

9. Nguyen, P., Kertkeidkachorn, N., Ichise, R., Takeda, H.: MTab: Matching Tabular
Data to Knowledge Graph using Probability Models. In: SemTab@QISWC. CEUR
Workshop Proceedings, vol. 2553, pp. 7-14 (2019)

10. Ritze, D., Lehmberg, O., Oulabi, Y., Bizer, C.: Profiling the Potential of Web
Tables for Augmenting Cross-domain Knowledge Bases. In: Proceedings of the
25th International Conference on World Wide Web, WWW 2016. pp. 251-261.
ACM (2016). https://doi.org/10.1145/2872427.2883017

11. Sun, H., Ma, H., He, X., Yih, W.t., Su, Y., Yan, X.: Table Cell Search for Question
Answering. In: WWW. p. 771-782. International World Wide Web Conferences
Steering Committee (2016). https://doi.org/10.1145/2872427.2833080

12. Thawani, A., Hu, M., Hu, E., Zafar, H., Divvala, N.T., Singh, A., Qasemi, E.,
Szekely, P.A., Pujara, J.: Entity Linking to Knowledge Graphs to Infer Col-
umn Types and Properties. In: SemTabQISWC. CEUR Workshop Proceedings,
vol. 2553, pp. 25-32 (2019)

13. Vandewiele, G., Steenwinckel, B., Turck, F.D., Ongenae, F.: CVS2KG: Transform-
ing Tabular Data into Semantic Knowledge. In: SemTab@ISWC. CEUR Workshop
Proceedings, vol. 2553, pp. 3340 (2019)

14. Zhang, S., Meij, E., Balog, K., Reinanda, R.: Novel Entity Discovery from Web
Tables. In: Proceedings of The Web Conference 2020. p. 1298-1308. WWW ’20
(2020). https://doi.org/10.1145/3366423.3380205

A 2T Ground Truth Generation Details

A.1 CEA Table Generation and Preprocessing

2T has been built using real tables. Here we clarify that as a “real table” we
intend a table, also artificially built, which resembles a real table. Examples
are “list of companies with their market segment”, or “list of Italian merged
political parties”, which look like queries that a manager or a journalist could
make against a database. The main reasons behind this choice are: (i) it is
difficult to get access to real databases; (ii) open data make available a lot of
tables, but mostly always tables are in an aggregated form that makes it difficult
to annotate them with entities from a general KG like DBpedia. When the data
are fine-grained enough, almost all the entities mentioned are not available in
the reference KG. For example, in the list of bank failures got from the U.S.
Open Data Portal, only 27 over 561 failed banks are represented in DBpedia.

In this section we describe the processes we adopted to collect real tables, or
build tables that resembles real ones.

DBpedia Tables We used the DBpedia SPARQL endpoint as a table generator
(SPARQL results are tables). We run queries to generate tables that include:

Tough Tables: Carefully Evaluating Entity Linking for Tabular Data 15

— entity columns: columns with DBpedia URIs that represent entities.

— “label columns”: columns with possible mentions for the corresponding en-
tities in the entity column. Given an entity column, the corresponding la-
bel column has been created by randomly choosing between rdfs:label,
foaf:name, or dbo:alias properties.

— literal columns: other columns, with additional information.

Wikipedia Tables We browsed Wikipedia looking for pages containing tables
of interest (e.g., list of presidents, list of companies, list of singers, etc.). We
generated different versions of the collected Wikipedia tables, applying different
cleaning steps. The following steps have been applied to Wikipedia tables in the
TOUGH_-MISC category:

— Merged cells have been split in multiple cells with the same value.

— Multi-value cells (slash-separated values, e.g., Pop / Rock, or multi-line val-
ues, e.g., Barbados
 United States, or in-line lists, e.g., ,)
have been exploded into several lines. If two or more multi-value cells are on
the same line, we exploded all the cells (cartesian product of all the values).
If a cell contains the same information in more languages (e.g., anthem song
titles), we exploded the cell in two or more columns (the creation of new
lines would basically represent duplicates).

Wikipedia tables in the CTRL_WIKI group underwent the next additional clean-
ing steps:
— “Note”, “Description”, and similar long-text columns have been removed.
— Cells with “None”, “null”, “N/A”, “Unaffiliated”, and similar values have
been emptied.
— Columns with only images (e.g., List of US presidents) have been removed.
— All HTML tags have been deleted from cells (e.g., country flag icons);
— Notes, footnotes, and any other additional within-cell information (e.g.,
birthYear and deathYear for U.S. presidents) have been removed.

Most of all the tables values are already hyperlinked to their Wikipedia page.
We used the hyperlinks as the correct annotations (we trust Wikipedia as a
correct source of information), following these criteria:

— If a cell content has several links, we took the most relevant annotation,
given the column context (e.g., in table https://en.wikipedia.org/wiki/
List_of_presidents_of_the_United_States#Presidents the “U.S. sen-
ator from Tennessee” cell in the “Prior office” column contains two annota-
tions: https://en.wikipedia.org/wiki/U.S._senator and https://en.
wikipedia.org/wiki/Tennessee; in this case we took only the https://
en.wikipedia.org/wiki/U.S._senator annotation, as the column is about
“Prior offices”, not about places).

— Sometimes it happens that if the same value appears several times in the
same column (e.g., music genres), only one instance has the hyperlink to
the Wikipedia page. In these cases we copied the same hyperlink to all the
instances.

16 V. Cutrona et al.

— When the hyperlink is missing (e.g., Hard Rock labels in the table
https://en.wikipedia.org/wiki/List_of_best-selling music_artists#
250_million_or_more_records), we manually added the right links by vis-
iting the main entity page (e.g., https://en.wikipedia.org/wiki/Led_
Zeppelin) and looking for the missing piece of information (e.g., under the
“Genre” section on the Led Zeppelin page we can find Hard Rock linked to
https://en.wikipedia.org/wiki/Hard_rock). In case when the informa-
tion is missing in the main page (e.g., in the same table, Michael Jackson
genres include “Dance”, while on his Wiki page the genre is Dance-pop), we
manually annotated the value with the most related entity in Wikipedia (in
this case, the music genre Dance https://en.wikipedia.org/wiki/Dance_
music).

Finally, we converted the Wikipedia links to their DBpedia
correspondent links, by replacing https://en.wikipedia.org/wiki/ with http:
//dbpedia.org/resource in the decoded URL, e.g., https://en.wikipedia.
org/wiki/McDonald\%27s — dbr:McDonald’s, if available, otherwise we
manually looked for the right dbpedia link (e.g., https://en.wikipedia.org/
wiki/178889_United_States_presidential_election — dbr:United_States_
presidential_election, _178889). If this attempt also failed, we left the cell
blank (no annotations available in DBpedia).

A.2 CTA Ground Truth Construction

Automatic CTA Annotations From CEA The 2T dataset focus is mainly
on the entities because, in our opinion, the CEA task is the core task: with
good performance in CEA, it is possible to approximate the CTA task easily.
We exploited this observation to automatically construct the CTA annotations
starting from the CEA ones, which we trust. For each annotated column, we
collected all the annotated entities from the CEA dataset and retrieved the
most specific type for all the entities from the DBpedia 2016-10 dump.'® We then
annotate the column with the most specific supertype, i.e., the lowest common
ancestor of all the types in the DBpedia 2016-10 ontology.'®

18 The instance types file at http://downloads.dbpedia.org/2016-10/core-i18n/
en/instance_types_en.ttl.bz2 contains entities most specific types.
!9 http://downloads.dbpedia.org/2016-10/dbpedia_2016-10.nt

