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Abstract

We show how to decompose the portfolio volatility into undiversi�ed volatility and diver-

si�cation components. Our decomposition has a clear statistical interpretation because it

relates the diversi�cation component to the partial covariances, i.e. the covariances between

the residuals of the regressions of the weighted asset returns with respect to the portfolio

return. On this basis, we advocate the construction of an equally diversi�ed portfolio. An

empirical analysis illustrates the superior out-of-sample performance of the equally diversi�ed

portfolios with respect to the equally weighted portfolio.
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1 Introduction

In order to build a portfolio that "is not heavily exposed to individual shocks", one popular

strategy is to select mean-variance e�cient portfolios. However, they are characterized by

very extreme weights and disappointing out-of-sample performances respect for example to

an equally weighted (EW) portfolio, see DeMiguel et al. [1]. On the other side, to hold an EW

portfolio is not necessarily a guarantee of diversi�cation. For an extreme example, suppose

an investor is optimizing a portfolio with only two assets: a broad market index, such as the

SP500, and one of its constituents (e.g. the IBM stock). The (true) optimal portfolio would

likely be very di�erent from the equally weighted one. In a more realistic example, a portfolio

equally weighted in 10 high-tech �rms would be less diversi�ed than one invested in ten stocks

from very di�erent industries. In this paper, we aim to quantify the level of diversi�cation

of a given portfolio. We introduce a new diversi�cation index by decomposing the portfolio

volatility into undiversi�ed volatility and a diversi�cation component. The diversi�cation

component o�sets the undiversi�ed part leaving as a �nal result the portfolio volatility itself.

Our decomposition has a clear statistical interpretation because it relates the diversi�cation

component to the so called partial covariances, i.e. the covariances between the residuals

of the regressions of the weighted asset returns with respect to the portfolio return. The

undiversi�ed component is related to the sum between the individual asset variance and the

(partial) variance of the residual of the just mentioned regressions. Moreover, the risk that

can be diversi�ed is measured with reference to the partial variances, i.e. the risk orthogonal

to the portfolio return, and not with respect to the variance of the assets. The idiosyncratic

risk is completely o�set by the component related to the partial covariances.

2 The Diversi�cation Index

We consider a portfolio with n risky securities and its volatility σ is the risk measure

σ =
√

w′Σw (1)



where Σ is the n×n covariance matrix with elements σij, i, j = 1, · · · , n and w is the vector

of weights with elements wi.

We consider the n linear regressions of each weighted asset return with respect to the portfolio

return

wjrj = αj + βjrp + εj, j = 1, · · · , n. (2)

where αj is the average return not related to the portfolio, βj is the beta of the weighted

return with respect to the portfolio and εj is the diversi�able risk. At portfolio level, we

have that
∑

j αj =
∑

j εj = 0,
∑

j βj = 1. The coe�cients of the least-square �t are

β̂j =
wjσjρjp

σ
(3)

where ρjp is the correlation between the returns of asset j and the portfolio. It is convenient

to introduce the quantity γj = wjσjρjp and, given that
∑

j γj = σ, we can interpret it as

measure of the risk contribution of asset j to the overall portfolio risk (and therefore β̂j as

percentage contribution). This decomposition of the portfolio volatility is very popular in

the asset management industry: the risk contribution is the basis of risk parity portfolios

for which weights are chosen so that the ex-ante risk contributions of each asset are equal,

i.e. γj = σ/n, ∀j, see Maillard et al. [6]. The decomposition of the volatility as sum of

the individual risk contributions holds because the adopted risk measure is homogeneous

of degree one and we can apply the Euler's theorem. Therefore, the risk contribution of

asset j has the equivalent mathematical representation as weighted partial derivative of the

portfolio volatility and, according to the regression, it also measures the exposure of each

weighted return to the portfolio return.

Whilst the coe�cients γj are measuring the risk contribution of each asset, the variance of

the residuals of the regressions is a measure of the risk unrelated to the portfolio risk and

can be taken as a measure of how well the portfolio is diversi�ed. The reason for this choice

is now detailed.

Let us consider the covariance σi,j.rp between residuals of regressions i and j

σi,j.rp = cov(wiri − β̂irp, wjrj − β̂jrp) (4)



This quantity is called partial covariance and it equals

σi,j.rp = wiwjσi,j − γiγj (5)

Therefore, we can decompose the covariance between two weighted stock returns as follows

cov(wiri, wjrj) = γiγj + σi,j.rp (6)

and, setting i = j, we also have the variance decomposition

var(wiri) = γ2
i + σ2

i.rp (7)

where σ2
i.rp is called partial variance.

Formulas (6) and (7) provide a decomposition of the covariances (and variances) of the

weighted returns: the �rst component is the product γiγj, that, once summed across all i

and j, builds to up to the portfolio variance; the second term is the idiosyncratic covariance,

σi,j.rp , that allows us to diversify away, at stock and portfolio level, the partial variances.

Indeed, summing over all indexes i and j, we have

σ2 =
∑
i,j

cov(wiri, wjrj) =
∑
i,j

(
γiγj + σi,j.rp

)
=
∑
i

γi
∑
j

γj+
∑
i,j

σi,j.rp = σ2+
∑
i,j

σi,j.rp (8)

and it is clear that the sum of partial covariances must be equal to zero. In particular, we can

split it into two components, and, after normalizing with respect to the portfolio volatility,

we have

σ = σ +
1

σ

(∑
i

σ2
i.rp +

∑
i,j,i6=j

σi,j.rp

)
(9)

that con�rms that, at portfolio level, the partial variances are o�set by the partial covari-

ances. Due to the homogeneity of the risk contribution, a similar decomposition holds also

at asset level

γj = γj +
1

σ

(
σ2
j.rp +

∑
k,j 6=k

σj,k.rp

)
(10)

i.e. the partial variance of asset j is cancelled by the partial covariances with all the remaining



assets. Therefore, according to (10) we can call γj +
σ2
j.rp

σ
the undiversi�ed risk contribution

of asset i and γi the (diversi�ed) risk contribution. According to (9), σ +
∑

i σ
2
i.rp

σ
is the

undiversi�ed portfolio risk. Combining an asset with the remaining ones, the portfolio risk

becomes σ.

On this basis, we introduce the Quantitative Diversi�cation Index measuring the diversi�-

cation contribution of asset j

QDXj =
σ2
j.rp

σ
(11)

and rewrite (10) as

γj = γj +QDXj +DIVj (12)

and (9) as

σ = σ +QDX +DIV (13)

where QDX =
∑

i=1 QDXi, DIVj = 1
σ

∑
i,i 6=j σi,j.rp and DIV =

∑
i=1DIVi. A few com-

ments are useful.

First. The novel idea here is that in measuring the diversi�cation e�ect of an asset we need to

control for the portfolio return, so that the diversi�cation contribution of an asset is related

to the partial covariance of that asset with the remaining assets rather than being measured

by the covariances among weighted returns. This is also con�rmed when we notice that in

our decomposition, the covariances among residuals counter-balance the speci�c variances:

indeed, at an asset level, QDXi +DIVi = 0 and, at a portfolio level, QDX +DIV = 0, so

σ +QDX can be interpreted as the un-diversi�ed portfolio risk.

Second. We can rewrite QDXi in terms of the correlation of the asset with the portfolio

QDXi =
w2
i σ

2
i

(
1− ρ2

ip

)
σ

, i = 1, · · · , n (14)

According to intuition, diversi�cation should be related to the elimination of the risk un-

related to the portfolio. This is con�rmed by the above expression: an asset having a low

correlation with the portfolio provides diversi�cation bene�ts. Viceversa, if the asset has

a large correlation with the portfolio, it cannot help in diversifying away the risk of the

remaining assets.



Third. Diversi�cation does not mean low volatility. Indeed, according to formula (13) we

can build portfolios with the same level of risk σ but very di�erent values of QDX, or

viceversa portfolios having di�erent levels of risk but similar diversi�cation levels. In order

to reduce the portfolio risk we exploit the covariances between asset returns. In order to

control the level of diversi�cation of the portfolio we need to control the partial covariances:

diversi�cation is not related to the low correlation between assets, but to the variance of the

residuals in a factor model, where the factor is the portfolio return. The decomposition does

not hold anymore using di�erent portfolios.

Fourth. The use QDX can be motivated using a second order Euler decomposition formula,

see Mignacca and Fusai [8]. In other words, our decomposition is not arbitrary and it is

valid whenever the risk-measure is homogeneous of order one. In addition, this implies that

our measure can promptly be extended to other risk measures, such as Value at Risk and

Expected Shortfall.

Finally, our analysis complements the one in Hallerbach [3]. In particular, Hallerbach ob-

serves that the orthogonal projection of the weighted asset returns into the space spanned

by the portfolio return is linear whenever the returns belong to the class of multivariate

elliptical distributions, for which the Gaussian distribution is a member of. This is a rich

family of distributions that exhibit heavy tails and can be very useful for capturing extreme

events. To be in an elliptical world is very important. Indeed, if we adopt an homogeneous

risk-measure such as VaR and Expected Shortfall, the diversi�cation measure is related to

the second partial derivatives of the risk function, and from the statistical point of view to

conditional covariances that, in the ellipitcal world, can be computed analytically. On the

other side, the decomposition of the portfolio volatility in (12) and (13) holds whatever the

joint distribution of asset returns: it only requires the homogeneity of the risk measure, and

its calculation is based on the partial covariances rather than on conditional covariances5.

5Except for the multivariate normal distribution, in the elliptical class conditional covariances are random,
depending on the conditioning variable, whilst partial covariances are deterministic.



3 Diversi�cation Parity

Given that the contribution of each asset to the overall portfolio diversi�cation is measured by

QDXj, in the vein of risk parity portfolios in Maillard et al. [6] and the principal portfolios

Meucci [7], we build a portfolio where the diversi�cation contributions are similar across

assets: we minimize the cross-section dispersion of the variances of the idiosyncratic risks.

A low diversi�ed portfolio is one with idiosyncratic variances concentrated in few assets. We

aim to solve

ŵQDX = argminw

n∑
j=1

(
Rj −

1

n

)2

(15)

where Rj is the ratio between the quantity of diversi�cation relative to the single asset and

their sum, i.e.

Rj =
QDXj

QDX
.

The balance and the no short-sell constraints can be also added. In practice, we look for

a portfolio allocation such that Rj =
1
n
,∀j. It is also useful to use the concept of e�ective

number of bets, see Meucci [7], via

N (w,Σ) = exp

(
−

n∑
i=1

Rj ln(Rj)

)
. (16)

N (w,Σ) achieves the maximum value of n when the diversi�cation parity condition holds, and

takes the minimum value of 1 for a portfolio fully invested in one asset. Moreover, if the

weight of a subset made of m assets is zero, the entropy measure has a maximum value of

n−m. Therefore, this entropy measure takes values in [1, n] and its value can be interpreted

as the e�ective number of uncorrelated risks we are investing respect to the nominal number

of constituents in a portfolio.



4 An Empirical Analysis

The backtesting period goes from February 1, 1995 through December 31, 2019 and considers

the S&P 500 index as the investable universe6. Only securities that at rebalancing times

were part of the benchmark have been considered. To validate the QDX methodology we

have also considered other benchmarks such as MSCI Europe, MSCI Japan and MSCI US.

Beside the QDX and EW portfolios, we also consider other popular risk-based portfolio

strategies, such as: b) Risk parity (RP), where each position has the same contribution to

portfolio risk; c) Inverse volatility (IV) where assets are weighted in inverse proportion to

their risk; d) Most Diversi�ed (DR) which consists in maximising the ratio between the

weighted average volatilities and the portfolio volatility.

In order to reduce the e�ect of sampling errors, we estimate the covariance matrix by taking a

weighted average of the sample covariance matrix with Sharpe's single index model estimator,

as in Ledoit and Wolf [4].

The portfolio is constructed and rebalanced with a semi-annual frequency, at the end of May

and at the end of November. The portfolio is always fully invested and cash allocations as

well as short positions are not permitted at any time.

From a theoretical point of view, diversi�cation should work by moderating some of the neg-

ative returns during adverse markets, though not necessarily eliminating them and this can

be relevant to long-term investment success. For this reason, in Table 1, aside traditional

performance measures, we also consider conditional performance measures: i.e. we mea-

sure the average return and volatility conditional to the benchmark experimenting adverse

movements, such as going below the 5% empirical percentile.

We can clearly identify a cluster, which contains the QDX, the EW, IV and the RP strategies:

their performances have a correlation above 0.99. We can explain this on the basis of formula

(7). According to it, the QDX parity portfolio assigns the weights so that σ2
i.rp is the same

across assets; the IV portfolio requires w2
i σ

2
i to be equal across assets and the RP portfolio

sets the portfolio weights so that assets have the same γi. The EW portfolio simply requires

6The datasets are sourced and maintained by the Quant Solutions team of Sarasin & Partners in London.



wi = 1/N . In practice, these strategies are focusing on di�erent components of the same

formula and it is not a surprise that they have very similar metrics. They also considerably

improve with respect to the wide market SP500 index and to the equally weighted portfolio

in terms of larger realized return, lower volatility and larger Sharpe ratio, so con�rming that

we can achieve some bene�t deviating from the EW strategy. Moreover, the QDX strategy

appears to generate returns that are less leptokurtic (i.e. lower skewness and kurtosis)

respect to the other strategies. The lowest turnover is achieved by the inverse volatility and

the QDX strategies. Both in-sample and out-of-sample, the QDX strategy turns out to be the

most diversi�ed according the e�ective number of bets, computed either according to Meucci

and to formula 16. The DR strategy has a di�erent investment style respect to the other

strategies, see Pola [9]. It returns a larger Sharpe ratio, a larger tracking error volatility,

a lower Information ratio, a very large turnover. The DR portfolio su�ers from high levels

of concentration, having the lowest number of e�ective bets (in and out-of sample). The

probability of beating the benchmark over mid-long horizons is signi�cantly lower respect to

the other strategies.

The bene�ts of diversi�cation need to be assessed in the long run, and for this reason the

empirical probability of beating the benchmark and the EW portfolio at di�erent horizons

(here 1 and 5 years) can be an useful metric: all strategies outperform the EW portfolio.

Table 1 also reports performance measures conditional to the benchmark realizing extreme

negative returns, i.e. below the 5% empirical percentile. In such a case, the three strategies,

QDX, IV and RP, have very similar (conditional) average return, volatility, and a larger

probability of beating the benchmark with respect to the EW and DR portfolios.

Table 2 reports performance measures conditional to the benchmarks (MSCI US, MSCI

JAPAN and MSCI Europe) realizing very extreme negative return, i.e. below the 1%, 5%

and 10% empirical percentiles. In all considered markets, at both an unconditional and

conditional level, the QDX portfolio performs better respect to the EW strategy. These

results con�rm that equally diversifying can give marginal bene�ts with respect to equally

weighting.

Leote de Carvalho et al. [5] and references therein show that di�erent diversi�cation strate-

gies can be viewed as simple active strategies with respect to a few factors. Following the



Table 1: Performance measures of di�erent diversi�cation strategies, considering stocks
within the SP500, EW: equally weighted portfolio. MV: global minimum variance port-
folio; QDX: QDX parity portfolio; RP: risk parity portfolio; IV: inverse volatility portfolio;
DR: maximum diversi�cation portfolio. The backtesting period goes from February 1. 1995
through December 31. 2019.

EW QDX RP IV DR S&P 500

Average Return % 10.70% 10.96% 11.02% 10.92% 11.48% 9.62%

Volatility % 15.12% 14.36% 13.53% 13.96% 13.68% 14.68%

Sharpe Ratio 0.7078 0.7628 0.8145 0.7820 0.8395 0.6553

Skewness -0.8882 -0.8994 -0.9742 -0.9505 -0.9255 -0.8933

Kurtosis 5.9254 5.8490 6.2121 6.0139 6.1573 4.7607

TEV % 5.51% 5.58% 6.34% 5.75% 12.29% 0.00%

Inf. Ratio 0.1969 0.2400 0.2216 0.2256 0.1518

Max. DD% 31.12% 30.28% 29.06% 29.61% 28.38% 27.72%

Max. DD/Vol. % 2.0579 2.1078 2.1469 2.1212 2.0750 1.8886

Prob 1y over S&P 51.90% 56.06% 58.48% 59.52% 57.79% 0.00%

Prob 5y over S&P 83.40% 83.82% 83.82% 87.97% 85.06% 0.00%

Prob 1y over EW 0.00% 56.40% 51.90% 53.63% 50.17% 48.10%

Prob 5y over EW 0.00% 80.50% 77.59% 73.86% 80.50% 16.60%

Turnover 7.74 7.32 7.91 7.19 14.21 5.88

E�ective Bets (Meucci) 394 395 403 396 234

E�ective Bets (formula 16) 282 387 270 338 15

SP500 has performance below the 5% percentile

Conditional Ann. Ret. % -117.28% -109.78% -100.24% -106.14% -76.20% -120.51%

Conditional Vol. % 16.51% 16.07% 17.22% 16.40% 23.54% 10.75%

Prob. Over SP500 46.67% 53.33% 73.33% 60.00% 73.33% 0.00%



Table 2: The Table returns the unconditional and conditional monthly average return.
monthly volatility and (empirical) probability of beating the benchmark for the EW and
QDX strategies and the benchmark itself. The conditioning is with respect to the bench-
mark having a return below its empirical percentiles (at level 1% and 5% ). The same sample
period as in Table has been considered.

Percentile EW QDX S&P 500 EW QDX MSUS

Unconditional Mon. Ret. % 0.89% 0.91% 0.80% 0.75% 0.77% 0.66%

Mon. Vol. % 4.37% 4.15% 4.24% 4.47% 4.18% 4.11%

Prob. over bncmk 49.33% 52.33% 0.00% 54.17% 55.09% 0.00%

5% Mon. Ret. % -9.77% -9.15% -10.04% -10.58% -9.93% -9.91%

Mon. Vol. % 4.77% 4.64% 3.10% 3.92% 3.86% 3.24%

Prob. over bncmk 46.67% 53.33% 0.00% 36.36% 54.55% 0.00%

1% Mon. Ret. % -15.72% -14.69% -15.17% -16.38% -15.52% -15.36%

Mon. Vol. % 5.30% 5.13% 3.46% 6.98% 6.45% 4.79%

Prob. over bncmk 66.67% 66.67% 0.00% 50.00% 50.00% 0.00%

EW QDX MSJP EW QDX MSEU

Unconditional Mon. Ret. % 0.58% 0.59% 0.39% 0.58% 0.60% 0.41%

Mon. Vol. % 5.01% 4.82% 5.12% 4.63% 4.40% 4.25%

Prob. over bncmk 57.41% 56.48% 0.00% 60.65% 63.89% 0.00%

5% Mon. Ret. % -11.13% -10.72% -11.66% -11.40% -10.83% -11.02%

Mon. Vol. % 4.26% 3.91% 4.23% 2.97% 2.81% 1.96%

Prob. over bncmk 72.73% 90.91% 0.00% 54.55% 72.73% 0.00%

1% Mon. Ret. % -17.74% -16.71% -18.85% -16.02% -15.03% -14.26%

Mon. Vol. % 7.54% 6.80% 6.79% 1.64% 1.63% 0.86%

Prob. over bncmk 100.00% 100.00% 0.00% 50.00% 50.00% 0.00%



above Authors, we have run a multi-factor regression of the excess returns of each strategy

against di�erent Fama-French (FF) factor portfolios (MKT-RF is the market-cap index re-

turn minus the U.S. one-month T-Bill rate, HML and SMB are the Value and Size factors,

LBMHB and LRVMHRV are the Beta and residual Volatility Factors). The regression co-

e�cients can be interpreted as weights of a multi-factor portfolio that closely tracks excess

returns. Table 3 con�rms the remarks in [5]: the DR is a defensive strategy with a negative

exposure to the market; the remaining strategies (QDX, EW, RP and IV) look very similar

in terms of factor exposures and this con�rms that they represent a cluster. In conclusion,

diversi�cation is a relative concept depending on the dimension we are considering, i.e. asset

or factor level, and the portfolio manager has to clarify if his/her aim is to build a balanced

portfolio at asset or factor level. Forgetting one dimension, diversi�cation bene�ts can be

overstated.

Table 3: Factor Regression Coe�cients for Risk-Based Strategies. Factors series have been
downloaded from the French data library. Signi�cance levels at 0.1%, 1% and 5% are marked
by a, b and c.

EW QDX RP IV DR S&P 500

Intercept 0.0007 0.0009 0.0010 0.0009 0.0027 -0.0001

MKT-RF 0.0391 0.0288 0.0092 0.0181 -0.0777 0.0052

HML 0.2831a 0.2681a 0.2508a 0.2511a 0.1515b 0.0339b

SMB 0.1273a 0.1091a 0.1395a 0.1202a 0.1718b -0.1116a

LBMHB 0.1152a 0.1419a 0.2196a 0.1640a 0.5396a 0.0301b

LRVMHRV 0.0499c 0.0649b 0.0420c 0.0677b -0.1078c 0.0691a

R2 68% 73% 73% 74% 57% 81%
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