IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Komninos, N., Soroush, H. & Salajegheh, M. (2007). LEE: Light-Weight Energy-
Efficient encryption algorithm for sensor networks. Paper presented at the IEEE 9th
International Symposium on Communication Theory & Applications (ISCTA'07), 16 - 20 July
2007, Ambleside, UK.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2480/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

LEE: Light-Weight Energy-Efficient Encryption
Algorithm for Sensor Networks

Nikos Komninos, Hamed Soroush, and Mastooreh Salajegheh
Algorithms & Security Group
Athens Information Technology
GR-190 02 Peania (Attiki), Greece
{nkom, hsor, msal}@ait.edu.gr

Abstract—Data confidentiality in wireless sensor networks is
mainly achieved by RCS and Skipjack encryption algorithms.
However, both algorithms have their weaknesses, for example
RCS supports variable-bit rotations, which are computationally
expensive operations and Skipjack uses a key length of 80-bits,
which is subject to brute force attack. In this paper we introduce
a light-weight energy-efficient encryption-algorithm (LEE) for
tiny embedded devices, such as sensor network nodes. We present
experimental results of LEE under real sensor nodes operating
in TinyOS. We also discuss the secrecy of our algorithm by
presenting a security analysis of various tests and cryptanalytic
attacks.

Index Terms—Feistel network, block cipher, wireless sensor
networks, encryption, cryptanalysis.

I. INTRODUCTION

Wireless sensor networks (WSN) have recently attracted
many computer engineering and computer science researchers
due to their wide range of applications ranging from surveil-
lance and industrial control to inventory tracking and military.
A wireless sensor network is made of tiny embedded sys-
tems which are employed in the processing of sensor data.
These small devices are extremely constrained in terms of
their basic components. They usually consist of sensors (for
light, temperature, etc.), a low-power communication device
(radio transceiver), small amount of memory and a power
supply. Consequently, this unique set of resource constraints
(such as finite on-board battery power and limited network
communication bandwidth) results in very different design
trade-offs than those in general-purpose systems.

Since WSN in-network packet transmission consumes more
energy than computation, there has been a relatively rich
body of work on designing communication protocols that are
customized for use in wireless sensor networks; coping with
WSN inherent limitations which make conventional schemes
a poor fit for the newly emerged technology. However, the
need for effective, energy-efficient computational algorithms
should not be ignored. According to an observation made by
Karlof and Wagner [1] WSNs will more likely ride Moores
Law downward, i.e. instead of relying on the computing power
to double every 18 months, we are bound to seek ever cheaper
solutions leading to systems operating at a fixed performance
point, rather than having a constant price for the system and
improving performance over time.

As sensor networks are usually deployed in hostile envi-
ronments, many of their applications require that data must
be exchanged in a secure and authenticated manner. Being an
essential part of any security architecture, efficient yet suffi-
ciently secure cryptographic primitives can serve as a means
of conserving resources, i.e. saving small amount of storage
and consuming little energy. The necessary cryptographic
primitives for WSN are block ciphers, message authentication
codes (MACs) and hash functions. The already available hash
functions (such as SHA1 or MDS5) are relatively cheap and can
be used in sensor nodes without significant overhead. In ad-
dition, message authentication codes can be constructed from
block ciphers [2]. Therefore, we have focused on designing a
secure and lightweight block cipher algorithm suitable for use
in sensor network nodes.

In this paper, we introduce the design and implementation of
a Light-weight Energy-Efficient Encryption Algorithm (LEE)
that can be used in tiny constrained devices especially sensor
nodes to provide security services (such as confidentiality) for
the communications. This encryption algorithm does not use
complicated operators or any s-Boxes. We have implemented
our algorithm in both java and nesC, the programming lan-
guage used in TinyOS [7], which is the de facto event-driven
operating system for sensor networks.

The organization of the paper is as follows: In Section II, we
briefly consider the suitability of currently available security
primitives for the sensor-net platform. Section III discusses our
design goals and rationale. In section IV we provide the details
of our algorithm. Section V presents our security analysis.
We provide the implementation results of our block cipher in
section VI. Section VII concludes the paper.

II. RELATED WORK

Public-key cryptography has long been considered inap-
propriate for wireless sensor networks because of its expen-
sive computational operations [3]. Therefore, symmetric-key
schemes which are either stream ciphers or block ciphers
using modes of operation are more suitable schemes for these
networks.

Although the fastest stream ciphers are faster than the fastest
block ciphers [4] which can propose them as a candidate in
resource-constrained environments, they have the drawback
that the same IV value should not be used more than once

in order to encrypt two or more different packets (otherwise
the scheme will not be acceptably secure). This means that,
a relatively long IV value should be employed, imposing an
unacceptable packet overhead (at least 8 bytes in a usually
30-byte long packet of WSN). Since acquiring short IVs and
accepting the occurrence of IV reuse violates the robustness
of the security scheme [8] using block ciphers and applying
proper modes of operation is the most suitable way of con-
structing the encryption primitive.

Investigating the suitability of the already proposed secure
block ciphers is a prerequisite of designing a more efficient
one for the sensor networks platform. Rijndael [5] stands out
as a potential candidate, especially since it has been selected as
the Advanced Encryption Standard (AES) by NIST. However,
as pointed out in [6], its suitability for sensor-net platform
is not obvious, due to the fact that its average performance
on a range of standard platforms (and not the specific WSN
platforms) has been higher comparing to other block ciphers.
As a matter of fact, designers of TinySec [8], which is a basic
security platform available in TinyOS, have not found AES
a suitable cipher for sensor networks'. Furthermore, it ranks
lower than other ciphers such as Skipjack [9] and RC5 [10]
based on its performance on WSN nodes [6]. On the other
hand, hardware implementations of AES - though expected to
appear with the advent of IEEE 802.15.4 or ZigBee - might not
be an appropriate choice for WSN due to cost considerations
[6].

Skipjack is used in TinySec, SenSec [11] and TinyKey-
Man [12], well-known security platforms for sensor networks.
Although since its controversial declassification by NSA in
1998, Skipjack has resisted years of cryptanalysis, its short
key length of 80 bits makes it susceptible to the exhaustive key
search attack; leading to a security margin® of 2013. In order to
make Skipjack stronger against this attack, SenSec Designers
propose Skipjack-X?, a scheme similar to DES-X originally
devised by Rivest in 1984. However it has been shown that
such an strategy is not a sound investment of memory making
Skipjack-X not a proper replacement for Skipjack in WSN [6].

RCS is a very flexible cipher parameterised in word size,
number of rounds and key length. It has been used in dif-
ferent sensor network security schemes like [15] and [16]
and proposed by the authors of TinySec as another proper
candidate to be used in WSN. Although RCS5 is faster than
Skipjack it is patented. Furthermore, for good performance

The authors point out that AES has performed very slow in their initial
experiments, though they have found later that an efficient implementation is
possible. No such implementation has yet been made available.

2Suppose an attacker who could afford sufficient number of computations
to break DES in 1982 can also afford sufficient number of computations to
break a cipher C in year y. Thus, the security of cipher C' in year y is
computationally equivalent to the security of DES in 1982. y is called the
security margin of C' which can be derived from the following formula [13]:
y = 1982 + 30/23(k — 56) where k is the key length of C.

3Suppose K is the 80-bit Skipjack key, K3 and Koy are two 64-
bit keys and P is the plain text. According to this scheme we have:
SkipjackX g i, K, (P) = K2 & Skipjackyg (K1 @ P). Although the
apparent key length of the scheme is 80 4 64 4 64 = 208, it has been shown
that the effective key length of this scheme is 111 bits [6].

TABLE I
SENSOR NETWORK NODE HARDWARE SPECIFICATIONS

Platform SmartDust | Mica | Mica2 | Tmote
CPU(bits, MHZ) 8, 4 8, 4 8, 4 16, 8
Flash (KB) 8 128 128 48
RAM(KB) 0.512 4 4 10
Frequency(MHZ) 916 916 916 2400
Band width(kbps) 10 40 38.4 250

it requires the key schedule to be precomputed which uses
extra bytes of RAM per key [8]. Another discouraging factor
against the use of RC5 is that most embedded processors do
not support the variable-bit rotation instruction like ROL of
the Intel architecture [17], which RCS5 is designed to take
advantage of.

According to the survey and benchmark of block ciphers
for wireless sensor networks presented in [6] which analyzes
and compares the performances of a a wide range of ciphers
based on code memory, data memory, encryption/decryption
efficiency and key setup efficiency, skipjack -which is the
default encryption primitive in TinyOS- is the best performer.
Interested readers can refer to [6] for further information on the
advantages and disadvantages of using other available block
ciphers in WSN.

III. DESIGN GOALS & RANTIONALE

LEE has been designed with the following goals in mind:

o Simplicity: Since LEE is designed to be used on sensor
network nodes, it has to cope with the limitations that
exist on their platforms as well as the requirements of
the various sensor-net applications. High speed and small
memory usage as well as the ease of correct implementa-
tion are the major of these requirements. A simple design,
aids to satisfy these requirements. Table I provides the
various characteristics of the currently available hardware
platforms for WSN nodes.

o High Security Margin: Obviously the cipher should pro-
vide strong resistance against exhaustive search attacks.
A relatively large key size (128 bits), therefore, is chosen
for LEE.

o Acceptable Resistance Against Known Attacks: We
have tried to design LEE in a way that it blocks or
represents strong resistance against known weaknesses
and security attacks. LEE is specifically designed to avoid
having equivalent keys and providing high confusion and
diffusion.

LEE was designed with as simple as possible computational
operations in mind, suitable for sensor devices. The small set
of elementary operations that LEE uses makes it efficient on
a larger number of software platforms. The absence of tables,
variable rotations, and multiplications makes LEE small and
efficient in hardware as well.

Similar to XTEA [18], the round function of LEE combines
integer addition (ADD) and exclusive-or (XOR) operations
alternately to provide nonlinearity. Most ciphers use lookup
tables to provide the necessary non-linearity. In LEE the

TABLE II
NOTATIONS USED IN THE DESCRIPTION OF LEE

Symbol Description
Concatenation
Bitwise Rotation to Right
Bitwise Shift to Left
Addition Modulo 232

XOR

e+ T[]

nonlinearity comes from the mixing of XORs and ADDs.
Neither of these operations can be approximated well within
the group of the other. In addition, we have combined fixed
rotations and shifts operations at the beginning of each round
so as to mix all bits of plaintext and key repetitively. While
multiplication is an effective mixer in block ciphers, we have
not considered them since efficient multipliers are complex
and large in size, slow in speed, and consume much power.
Moreover, the key scheduling technique uses fixed rotations
and bitwise-and (AND) operations to mix the subkeys with
some constant. Following this design rationale, LEE is defined
in the next section.

IV. ALGORITHM SPECIFICATIONS

Motivated by XTEA [18], LEE is a 64-bit block Feistel
Network with a 128-bit key and a suggested 32 rounds. The
Feistel Function is based on fixed length rotatation and shift
operations, XOR and addition modulo 232 Table II presents
the operations notation that we use to describe our algorithm
precisely.

In LEE, as in other Feistel type of ciphers, the plain text
block is split into two halves, Ly and Ry. Each half is used
to encrypt the other half over 32 rounds of processing and
then combine to produce the cipher text block. Therefore, the
original input of the algorithm (i.e. plain text) is P = Ly.Ry
and the final cipher text is C' = L3y.R32. The relation between
the output L;y;.R;+; and the input L;.R; for the ith round
of LEE is thus defined as follows:

Liti =R,
Rip1=L; ® F(R;,S;,6;)

where function F' operates as follows:
Let:

R, = (R; —4) @ (R; — 5)
then:
F(R;,S:,0;) = (R, +6;) ® R;) + (6; ® S))

S; is the round subkey generated by the key scheduling
algorithm for the ith round, and § is a value determined by
the round number and a constant A as follows:

A = (V5 —1) %23 = 029FE3779B9
0i =[G —1)/2] A

The key schedule algorithm produces sub-keys .S; for the ith
round of the encryption/decryption as presented in Algorithm
1.

Algorithm 1 Key Schedule
Require: 128-bit Cipher Key K
Ensure: The Sub-key used in the ith Round
1: Split the 128-bit key K into four 32-bit blocks (K =
Ko K1.K9.K3)
2: for i =1 to 32 do
3: if ¢ is odd then
4 return Ks, g3
5: else if ¢ is even then
6: return K((5,<—>11)&3)
7
8:

end if
end for

The decryption is essentially the same as the encryption
process; in the decode routine the cipher text is used as input
to the algorithm, but the sub keys .S; are used in the reverse
order.

Li X Ri
0j
s ﬁ!
6 ? d;
L W
Liy Ri-
Fig. 1. LEE Stucture

Figure 1 shows the internal structure of the LEE cipher.

V. SECURITY ANALYSIS

In order to measure the secrecy of our block cipher and
the level of diffusion and confusion that it provides, we have
performed several tests. These tests are aimed at providing
measures of

1) Independence of plain text and ciphertext

2) Mathematical properties of the algorithm

3) Avalanche effect

4) Cryptanalysis

In the following sub-sections we give a brief description of
each test and provide the results of performing each test on
our algorithm.

A. Independence of Plaintext and Ciphertext

The aim of the test performed in this section is to test
the hypothesis that patterned plain text will produce random
ciphertext blocks, using a fixed key. To test this hypothesis a
large number of patterned plain text blocks is selected together

with the corresponding ciphertext output blocks for a large
number of fixed keys. Thus, the following tests are performed
to the ciphertext:

o Frequency Test. The number of n-bit ciphertext blocks
whose count of ones is as expected based on the chi-
square, X2, distribution.

« Binary Derivative Test. The frequency test is applied to
a new ciphertext formed by the exclusive-or of successive
bits in the ciphertext. By taking the binary derivative
of each of the ciphertext blocks to be examined, a
set of ciphertext blocks of length n-1 are formed. The
randomness of the binary derivative ciphertext blocks is
compared using the x?, goodness-of-fit test.

« Subblock Test. Subblocks of n-bit length are chosen from
each ciphertext block and determined whether ciphertext
bits of different positions are independent or dependent
between them.

e Block Entropy Estimate. The number of independent
bits of the ciphertext block is estimated using the number
of repetitions in the subblock test.

It was found that patterned plain text blocks were producing
random ciphertext blocks, even when several weak keys were
tested.

B. Mathematical Description of Block Cipher Properties

The tests described in this section are performed in order
to estimate the strength of our block cipher. Note that by
satisfying any of these properties, the strength of the block
cipher is decreased.

o Affine Property. The method used to test for the affine
property was performed by encrypting four known plain
text blocks randomly chosen and by checking whether
one derives from the other by single exclusive-or calcu-
lation.

o Complementation Property. The resulting complement
of the ciphertext, which is derived from the complement
of the plain text and key block, is examined with the
original ciphertext.

o Linear Relationship Property. For a linear relationship
to hold between subsets of plain text and ciphertext bits,
then the sum of these plain text and ciphertext bits would
always equal O or 1. The method of detection of this
relationship involves a (2n + 1) x (2n + 1) matrix A.
Twenty-one samples of 2n+1 plain text-ciphertext pairs of
bit-vectors are concatenated and these vectors are placed
in columns below an initial row of 2n+1 ones in A. If
a row of all zeros exist, then the history rows involved
in the row-reduction is kept. If a row of all zeros exists,
then the history of the rows involved to obtain the result
gives the bits involved in the resulting linear equation
under exclusive-or operation. If linear equations exist for
all twenty-one matrices then these equations are applied
to the initial data to check that they are true for all input-
output pairs.

The above tests were performed for more than 1GByte of plain
text-ciphertext pairs and none of these properties hold for LEE.

C. Avalanche Effect

The plain text avalanche effect and the key avalanche effect
were measured. By definition, a block cipher satisfies the plain
text (key) avalanche effect if for a fixed key (or plain text) a
small change in the plain text (or key) causes a large change
in the resulting ciphertext block [10]. Having a strong level
of the avalanche effect is desired, indicating a high level of
diffusion.

In order to test the plain text-ciphertext avalanche criterion,
we generated a 1GByte of random plain text blocks and using
a large number of keys, including weak keys, we generated
ciphertext vectors. The hypothesis that the entry of a particular
ciphertext position changes was examined and it was found
that the entry in the plain text (or key) position changes with
probability 1/2 for more than 4 rounds of LEE.

The distribution of the number of changes in ciphertext
bits was also investigated and compared with the expected
frequency of changes in the x? distribution. The Kolmogorov-
Smirnov statistic [18] was applied to determine whether the
changes significance probabilities satisfy a normal distribution.
For each plain text bit complemented, a record of the pairs
of avalanche variables whose chi-squared statistic yielded a
significance probability less than 0.01. It was found that a
change in a bit in the plain text exhibits a random distribution
of the changes in ciphertext.

D. Cryptanalysis

We have designed LEE with a view to reducing or avoiding
any vulnerabilities that might arise from the following possible
weaknesses and attacks.

o Dictionary Attack. As the block size is 64 bits, a
dictionary attack will require 26 different plain text
blocks to allow the attacker to encrypt or decrypt arbitrary
messages under an unknown key. This attack applies
to any deterministic block cipher with 64-bit blocks
regardless of its design. It is worth observing that with
a cipher running at the rate of one terabit per second,
or 102 bits/second, the time required for 50 computers
working in parallel to encrypt 254 blocks of data is more
than a year; to encrypt 280 blocks of data is more than
98,000 years; and to encrypt 2128 blocks of data is more
than 109 years.

« Modes of Operation. After encrypting about 232 plain
text blocks in the CBC or CFB mode, one can expect to
find two equal ciphertext blocks. This enables an attacker
to compute the exclusive-or of the two corresponding
plain text blocks. With progressively more plain text
blocks, plain text relationships can be discovered with
progressively higher probability. In addition, when the
algorithm is used in feedforward mode as a hash function,
a collision can be found with an effort somewhat more
than 232, This attack applies to any deterministic block
cipher with 64-bit blocks regardless of its design.

o Key-Collision Attacks. For key size k, key collision
attacks can be used to forge messages with complexity
only 2¥/2. This attack applies to any deterministic block

cipher, and depends only on its key size, regardless of its
design.

o Linear Cryptanalysis. To mount a linear cryptanalytic
attack, there appear to be two different operations. The
first might be to find a linear approximation over several
rounds that uses a linear approximation across the shifts,
rotations operations and ¢; values. Since there appear to
be some very suitable linear approximations using the
least significant bits, the bias of these approximations
drops rapidly as more rounds are added, and the amount
of data required for a successful attack exceeds the
amount of data available. Moreover, it is possible to
find a two-round iterative linear approximation that does
not use an approximation across the combination of the
shifts and rotations operations and ¢§; values. Using basic
but established techniques, we observed that the data
requirements to exploit this appromixation over a version
of LEE with 12 rounds is about 2'3° known plain texts.
This provided our rationale for choosing 32 rounds for
LEE.

o Higher Order Differential Cryptanalysis. It is well
known that a dth order differential of a function of
nonlinear order d is constant, and this can be exploited in
higher order differential attacks [18]. The fixed shifts and
rotations in LEE have nonlinear order 3 so one would
expect that the nonlinear order of the output bits after
r rounds is about 3", with the maximum value of 127
reachable after 5 rounds. Therefore, we are convinced
that higher order differential attacks are not applicable to
LEE.

o Truncated Differential Cryptanalysis. For some ciphers
it is possible and advantageous to predict only the values
of parts of the difference after each round. This notion of
truncated differential attack [18] seems best applicable to
ciphers where all operations are done on larger block of
bits. Because of the strong diffusion over many rounds,
we believe that truncated differential attack is not appli-
cable to LEE and we are under investigation to proof our
claim.

o Related Key Attack. As the key schedule uses fixed
rotations and as we exclusive-or the round number, into
the subkey, it is highly unlikely that keys can be found
that allow related key attacks [18]. Moreover, different
rounds of LEE use different §; and subkey, so even if
related keys were found, related-key attacks would not
be applicable.

e Other - Timing Attack. The number of instructions used
to encrypt or decrypt does not depend on either the data or
the key, and even cache access cannot help the attacker
as we do not access different locations in memory for
different plain texts or keys. If follows that timing attacks
[18] are not applicable.

VI. EXPERIMENTAL RESULTS

We have implemented our encryption scheme in TinyOs
[7] which is an event-driven operating system commonly

used in WSN nodes (motes). A program written in nesC, the
programming language used for TinyOS, consists of one or
more reusable components assembled or wired, to form an
executable application. This wiring mechanism is independent
of the implementation of components; allowing each applica-
tion to customize the set of components it uses. Consequently,
unused components or services can be excluded from the ap-
plication. We present the results of our experiments performed
on both the internal TinyOS simulator called TOSSIM and on
MICA2 motes.

High speed, as we mentioned in section III is an important
requirement of any block cipher to be used in wireless sensor
network applications. In link layer security platforms such as
[8] block cipher operations have to be completed quickly in
order to make the data needed for the radio available. This
is of high importance since the cryptographic operations are
overlapped with the radio operations (which are quite energy
consuming). Furthermore, faster block ciphers consume less
energy. Table III provides the time that it takes to perform
a single cipher operation (encryption or decryption) using
various rounds of LEE. A comparison to Skipjack and RCS is
also provided.

TABLE III
TIME COMPARISON OF AVAILABLE ENCRYPTION ALGORITHMS IN TINYOS

Algorithm Name Time Round

LEE 0.08s 8
LEE 0.125 12
LEE 0.14ms 16
LEE 0.27ms 32
LEE 0.54ms 64

Skipjack 0.18ms 32
RC5 0.20ms 12

Table IV provides a comparison of Skipjack, RC5 and LEE
in terms of memory both in RAM and ROM on MICA?2 sensor
node platform. Note that the small difference of 2 bytes of
RAM between Skipjack and LEE is due to the much smaller
key-size of Skipjack. The relatively high security margin of
LEE, therefore, comes with a relatively small cost of required
RAM (comparing to Skipjack) which we believe is acceptable.
In addition, LEE is still much smaller in size than RC5, another
encryption candidate for WSN as we discussed in section II;

TABLE IV
COMPARISON OF THE REQUIRED MEMORY FOR SKIPJACK, RC5 AND LEE
ON MICA?2 NODES OPERATING UNDER TINYOS

Encryption Algorithm | ROM(Bytes) | RAM(Bytes)
Skipjack 17494 633
RC5 16128 723
LEE 16048 635

VII. CONCLUSION

In this paper we have introduced a new light-weight energy-
efficient encryption algorithm (LEE) suitable to devices with
limited computational power, such as sensor network nodes
(motes). The results of the tests performed to the cipher

imply that LEE reaches to acceptable levels of confusion and
diffusion very fast. Furthermore, it uses larger secret key (128-
bits) and requires smaller amount of memory comparing to the
best known encryption candidates for sensor networks. We are
under investigation to measure the performance of this cipher
under newer sensor node hardware platforms.

REFERENCES

[1] C. Karlof, D. Wagner, “Secure Routing in Wireless Sensor Networks:
Attacks and Countermeasures”, Elsevier’s Ad Hoc Networks Journal,
Special Issue on Sensor Network Applications and protocols, 2003, 1-
3

[2] B. Preneel, V. Rijmen, “Cryptographic primitives for information authen-
tication - state of the art”, State of the Art in Applied Cryptography,
1998

[3] D. Carman, P. Kruus, B. Matt, “Constraints and Approaches for Dis-
tributed Sensor Network Security”, Tech. Rep. #00-010, NAI Labs, 2000

[4] R. Venugopalan, P. Ganesan, P. Peddabachagari, A. Dean, F. Mueller, M.
Sichitiu, “Encryption overhead in embedded systems and sensor network
nodes: Modeling and analysis”, International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, 2003

[S5] J. Daemen, L. Knudsen, V. Rijmen, “AES Proposal: Rijndael”, 1999

[6] check it out

[7] J. Hill, et al, “System architecture directions for networked sensors”, in
Proceedings of ACM ASPLOS IX, 2000

[8] C. Karlof, N.Sastry, D. Wagner, “TinySec: Link Layer Encryption for
Tiny Devices”, ACM SenSys, 2004

[9] NIST, “Skipjack and KEA Algorithm Specifications Version 2.0”

[10] R. Rivest, “The RC5 Encryption Algorithm”, Proceedings of the 7th
Annual International Conference on Mobile Computing and Networking,
1995, Springer-Verlag, 86-96

[11] T.Li, H. Wu, F. Bao, “SenSec Design”, Institue for InfoComm Research,
Tech. Rep. TR-I12R-v1.1, 2005

[12] D. Liu, P. Ning, R. Li, “Establishing Pairwise Keys in Distributed Sensor
Networks”, ACM Trans. Inf. Syst. Secur., 2005

[13] A.Lenstra, E. R. Verheul, “Selecting Cryptographic Key Sizes”, Journal
of Cryptology, 2001

[14] J. Kilian, P. Rogaway, “How to Protect DES Against Exhaustive Key
Search”, CryptologyCRYPT096, 1996

[15] A. Perrig, R. Szewczyk, V. Wen, D. culler, D. Tygar, “SPINS: Security
Protocols for Sensor Networks”, ACM CCS, 2003

[16] Q. Xue, A. Ganz, “Runtime Security Composition for Sensor Networks
(SecureSense)”, IEEE Vehicular Technology Conference, 2003

[17] Intel Corporation, “Intel Architecture Software Developer’s Manual
Volume 2: Instruction Set Reference”, 1997

[18] A.J. Menezes, S. A. Vanstone, and P. C. Van Oorschot, Handbook of
Applied Cryptography, CRC Press, Inc., 2001.

