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“Quid est ergo tempus?  

Si nemo ex me quaerat, scio;  

si quaerenti explicare velim, nescio” 

“What then is time? 

If no one asks me, I know; 

If I wish to explain it to one that ask, I know not” 

St. Augustine (354 AD - 430 AD) 
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Abstract 

Typical recorded acceleration traces of seismic ground motions (GMs) exhibit a time-varying 

frequency composition due to the dispersion of different types of seismic waves having different 

amplitudes and pre-dominant frequencies and arriving at the recording station at different time 

instants. However, none of the current GM properties used in earthquake engineering to quantify 

the structural damage potential of GMs account for the time-evolving trends of GM frequency 

content. Indeed, intensity measures (IMs) and record selection criteria adopted in the context of 

performance-based earthquake engineering (PBEE) do not account for the non-stationary 

frequency content of GMs. This lack of a metric to characterise non-stationary frequency content 

in recorded GMs has hindered, consequently, the systematic investigation of the influence of the 

evolutionary frequency content of recorded GMs to the inelastic response of different types of 

yielding structures. To address this gap in the current state-of-knowledge, this thesis puts forth a 

novel scalar quantity termed alpha, “𝛼”, defined by the average slope (angle) of the wavelet-based 

mean instantaneous period (MIP) to characterize the temporal evolution of the mean frequency 

content of recorded GMs. Specifically, the MIP is the time-varying first-order average along the 

frequency or, equivalently, along the period axis of the wavelet-based GM spectrogram (squared 

magnitude of the GM wavelet transform) treated as a GM energy distribution on the time-

frequency/period plane. Hence, 𝛼 captures the rate by which the mean frequency content of GMs 

changes in time.  

Linear regression analyses involving 611 typical far-field recorded GMs from 30 seismic events 

of magnitude 6.5<M<8 and distance to rupture plane 20km<Rrup<120km demonstrate no 

significant correlation between 𝛼 and M, Rrup, or peak ground acceleration (PGA). However, it is 

established that 𝛼 correlates with the average frequency content of GMs as captured by the mean 

Fourier-based period (Tm) and with the peak ground velocity (PGV): the lower the average 

frequency content, the larger the value of 𝛼 tends to be, that is, the faster the time evolution 

(transition) of the average frequency content is from higher to lower frequencies. Further, linear 

regression between 𝛼 and shear wave velocity (Vs30) dictates that GMs recorded on softer soils 

are more likely to have larger α, a phenomenon that is attributed to the fact that soft soils under 

strong seismic shaking exhibit strong non-linear behaviour that enriches the low frequency 

content of recorded GMs at later time instants. The reported numerical data suggest that increased 

level of correlation between α-Tm and α-Vs30 is exhibited for as PGA increases. 

Next, the influence of the non-stationary GM frequency content as captured by α to the peak 

inelastic response of hysteretic single-degree-of-freedom (SDOF) oscillators used as proxies of 

multi-storey yielding structures is assessed within the PBEE framework. First, it is shown that 



Abstract 

 

 
xi 

 

PGA and PGV, treated as non-structure specific IMs in conducting incremental dynamic analysis 

(IDA), are non-sufficient in predicting the peak drift of a hysteretic oscillator with strength and 

stiffness degradation representing a benchmark 12-storey reinforce concrete frame exposed to the 

above set of 611 GMs. These results provide for an indirect indication of the significance of α 

and, thus, of the non-stationary GM frequency content to peak inelastic structural response. Next, 

IDA results from two different benchmark SDOF systems corresponding to ductile and non-

ductile structural inelastic behaviour with different pre-yielding natural periods are considered 

using advanced IMs accounting for spectral shape. It is found statistically that α is increasingly 

important for close to collapse limit states irrespective of structural ductility and stiffness. As 

stiffness increases α influences more substantially the ductile structure and it is mostly important 

for flexible (T1=2s) non-ductile structures and for intermediate stiffness (T1=1s to 1.5s) ductile 

structures. 

Finally, the concept of spectrally equivalent GMs is used in conjunction with a large database of 

1222 far-field GMs to construct several sets of 50 and 25 GMs each having significantly different 

median α values but closely matching mean response spectral shapes, as well as effective duration 

and Tm distributions. Numerical results obtained from IDA to lumped- plasticity multi-degree-of-

freedom (MDOF) models of benchmark, 3-storey and 7-storey code-compliant structures 

demonstrate that median peak inter-storey drift ratio demand posed by the GM set with high α 

values is significantly larger from the GM set with low-𝛼 values for the flexible 7-storey structure 

(T1=1.6s), but not for the stiffer 3-storey structure (T1=0.55s) confirming conclusions drawn for 

the case of inelastic SDOF structures. This is the true even for the case of a high-sufficiency and 

efficiency intensity measure accounting for spectral shape averaging over several spectral 

ordinates centered at T1. Overall, findings suggest that the evolutionary frequency content of 

recorded GMs does influence peak inelastic structural response and should be accounted for in 

GM record selection used for seismic performance evaluation of structures with T1>=1s. To this 

aim, the herein proposed 𝛼 index can serve as a potent record selection criterion. 
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1 Motivation, Aims, and Objectives 

Past and most of current codes of practice for earthquake resistant design of ordinary structures 

rely primarily on a force-based design approach usually for a single (nominal) design level of 

seismic action (e.g., Avramidis et al. 2016). The latter is defined in terms of seismic forces 

obtained from a (design) response spectrum with reduced spectral ordinates compared to the 

elastic seismic demands to allow for structures to yield and, thus, resist the design seismic action 

through ductile (energy dissipative) behaviour. Conveniently, in this approach, linear types of 

analyses suffice to estimate design seismic demands in line with structural design for all other 

types of loading (e.g., gravitational, wind loads, etc.), while relatively simple capacity design 

rules ensure sufficient ductility capacity to resist earthquakes even stronger than the nominal 

seismic design action without global collapse. However, one of the many limitations attributed to 

traditional force-based seismic design approach is the inability to assess, let alone account for in 

design, the actual performance of the structure for different levels of seismic action including 

those that are higher than the nominal design seismic action (Priestley et al. 2007). The latter 

consideration has become increasingly important in the past two decades in the wake of several 

major seismic events affecting large cities in developed countries and causing disproportionally 

high seismic loss such as Loma Prieta (1989), Northridge (1994), Kobe (1995), L’Aquila (2009), 

and Christchurch (2011) to name some. In this context, equally important is the development of 

tools for accurate seismic vulnerability assessment and (monetary) seismic loss prediction of 

existing structures which requires examining different levels of seismic action and accounting for 

their site-specific relative probability of occurrence or exceedance in a probabilistic/statistical 

context (McGuire 1995). Such tools facilitate decision making on allocating judicially limited 

funds/resources to mitigate seismic risk from the building owner level all the way up to 

Governmental decisions and public safety policies.    

It is well-recognized that the Performance-Based Earthquake Engineering (PBEE) framework 

(e.g., Porter 2003) fulfils the above requirements both for the seismic design of new structures 

and for the vulnerability assessment of existing ones. This is achieved by implementing a number 

of methodological steps to link different (ideally all possible for a given site) levels of seismic 

action onto seismic performance represented through Engineering Demand Parameter (EDPs) 

(usually chosen to be peak seismic response quantities of interest to structural engineers such as 

inter-storey building drifts), which are well-representing structural damage and, thus, can 

ultimately, be readily mapped onto (monetary) seismic loss. Whilst it is possible to represent the 

seismic action within PBEE through stochastic seismological models (e.g., Boore 2003, Jalayer 

and Beck 2008, Rezaeian and Der Kiureghian 2008, Tsioulou, Taflanidis and Galasso 2019), such 

models are not commonly used currently for the task since they require specialist knowledge to 



Chapter 1 – Introduction 

 

 
32 

 

interpret and define their (seismological) input parameters (such as magnitude M and epicentre 

distance R) while use of different stochastic models often lead to differences to seismic 

vulnerability analyses (Vetter and Taflanidis 2014). To this end, the seismic action is widely 

represented in PBEE applications via suites of recorded ground motions (GMs) appropriately 

selected to represent site-specific seismotectonic environment and local effects. These GMs are 

sometimes selected and, even, modified to match linear (i.e., non-reduced) response spectra for 

design (e.g., Katsanos et al. 2010, Smerzini et al. 2014) or, more generally, site-specific spectral 

shapes/ordinates (e.g., Baker and Cornell 2006). In most cases, GMs are amplitude scaled 

up/down through a scalar intensity measure (IM) to span different seismic intensity levels 

(Ebrahimian et al. 2015). This is the case of applying the so-called incremental dynamic analysis 

(IDA), arguably, the most widely used procedure, out of a number of alternatives, to derive a 

mapping of different levels of the input seismic action in terms of an IM onto an EDP obtained 

from non-linear response history analyses (NRHA) (Vamvatsikos and Cornell 2002, Vamvatsikos 

and Cornell 2004). IDA considers a set of judicially selected recorded GMs which are amplitude 

scaled to span EDPs related to different limit states and, if so desired, all the way to collapse. Still, 

alternative approaches to IDA such as multi-stripe analysis (MSA) (Jalayer and Cornell 2009) 

and cloud analysis (Bazzuro et al. 1998) uses un-scaled GMs in conjunction with NRHA to span 

a certain range of EDP-IM plane (Jalayer et al. 2015).  

Regardless of the NRHA-based procedure of choice, all the established procedures require 

accounting for aleatory uncertainty to seismic loss due to GM record-to-record variability within 

PBEE by considering an adequate number of GMs. Still, performing NRHA for large numbers of 

GMs is computationally onerous especially for large nonlinear finite element models. In this 

regard, on one hand much research effort has been devoted to define single degree of freedom 

(SDOF) inelastic structural systems and related EDPs used as proxies of more complex multi 

degree of freedom (MDOF) models in the context of PBEE. On the other hand, similarly 

significant research effort has been devoted in the past two decades by the earthquake engineering 

community to define IMs in conjunction with GM record selection criteria to facilitate the 

establishment of dependable IM-EDP relationships within a statistical/probabilistic context using 

as fewer as possible GMs (e.g. Baker and Cornell 2005, Baker and Cornell 2006, Kazantzi and 

Vamvatsikos 2015, Tothong and Cornell 2007 and Minas and Galasso 2019). Nevertheless, none 

of the current GM record selection criteria and IMs considered in the literature account for the 

time-dependent frequency content of recorded GMs due to the arrival of different types of seismic 

waves at different times at recording stations (e.g., Kramer 1996). This is so, despite the fact that 

several parametric stochastic models of the seismic ground motion, which account for non-

stationary frequency content, have been developed over the past decades (Liu 1972, Yeh and Wen 

1990, Conte and Peng 1997, Rezaeian and Der Kiureghian 2008). In this respect, the influence of 
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non-stationary frequency content, in establishing statistical IM-EDP relationships and, ultimately, 

fragility curves, is not accounted for in modern seismic risk quantification studies relying on 

recorded GMs. Moreover, the lack of a metric to characterise non-stationary frequency content in 

recorded GMs has hindered investigating the influence of the evolutionary frequency content of 

recorded GMs to the inelastic response of different types of yielding structures. This is the case, 

even though exist a number of studies demonstrating influence of non-stationary frequency 

content to peak inelastic demands where the seismic action is represented by stochastic models 

accounting for non-stationary frequency content (e.g., Wang et al. 2002, Vetter and Taflanidis 

2014). 

The above considerations and lack of knowledge motivate the present research work whose 

overarching aims are to: 

1) Propose a novel scalar quantity, invariant to uniform GM scaling, that can effectively 

represent the time-evolving frequency content and its time-dependent relative 

significance/amplitude in recorded GMs. 

2) Quantify the influence of the non-stationary frequency content of recorded GMs, as 

captured by the proposed scalar quantity, to the inelastic response of yielding structures 

and, ultimately, to delineate the range of importance of considering non-stationary 

frequency content attributes in establishing statistical IM-EDP relationships within the 

PBEE framework. 

In this context, the research work reported in this thesis addresses the following objectives/tasks: 

(i) To undertake a detailed literature survey on time-frequency signal analysis tools and any 

previous successful applications in earthquake engineering capable of tracing the salient 

features of non-stationary frequency content time-series in time.   

(ii) To build on or tailor, as appropriate, the above identified tools to address the rich 

frequency content of recorded GMs and their transient characteristics leading, ultimately, 

to the definition of a scalar metric representative of the time-evolving frequency content 

of GMs and computationally efficient to compute. 

(iii) To establish statistical relationships between the novel metric of non-stationary frequency 

content and standard seismological parameters and GM properties widely used for record 

selection and/or as IMs in order to establish its relevance in earthquake engineering. 

(iv) To utilise this metric and the insights obtained from relationships with other parameters 

and IMs, to demonstrate and quantify the influence of non-stationary GM frequency 

content to the IM-EDP relationships governing inelastic single-degree-of-freedom 

(SDOF) oscillators widely used as proxies of yielding structures within the PBEE 

framework. Thus, ultimately, to establish the types of SDOF structures whose hysteretic 
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seismic response is most likely to be influenced by the non-stationary frequency content 

of recorded GMs.   

(v) To utilise the same metric to demonstrate and verify the influence of non-stationary 

frequency content of recorded GMs to the hysteretic seismic response of real-

life/benchmark multi-storey yielding building structures modelled through detailed multi-

degree-of-freedom FE models.  

1.1 Thesis Organisation  

The thesis is composed of seven chapters and five appendices. The current introductory chapter 

(§1 - Introduction) outlines the motivation of the present work in relation to PBEE and specifies 

overarching aims and objectives. 

Chapter 2 (§2 – State-of-Art Review on Frequency Content Signal Characterisation in 

Performance Based Earthquake Engineering) offers a brief overview of the PBEE framework 

focusing on the concepts of intensity measures (IMs), engineering demand parameters (EDPs) as 

well as the use of incremental dynamic analysis (IDA) approach to derive statistical IM-EDP 

relationships which is a main computational tool used throughout the thesis to gauge the seismic 

inelastic response of structures to recorded ground motion accelerograms (GMs) using nonlinear 

response history analysis (NRHA) in a probabilistic context. Moreover, the Chapter highlights 

the need for characterising time-histories in earthquake engineering using time-frequency/period 

signal analysis tools and reviews the use of such tools with a focus on the continuous wavelet 

transform (CWT) spectrogram. Ultimately, research gaps are identified and approaches to fill 

them are put forth building on the presented literature review. 

Chapter 3 (§3 – Morlet Wavelet-Based Mean Instantaneous Period and moving resonance of 

yielding structures under recorded GMs) discusses salient properties of CWT coupled with 

Morlet wavelets which facilitate significantly useful signal energy representation/distribution on 

the time-frequency/period plane. Ridge analysis of the CWT spectrogram is illustrated and its 

limitations for the case of recorded GMs is provided giving way to the concept of the mean 

instantaneous period (MIP) herein tailored as a bona fide tool to trace temporal changes of the 

average frequency content of recorded GMs relevant to structural earthquake engineering. MIP 

curves are derived for a small suite of GMs used as benchmark in developing IDA as well as for 

NRHA time-series aiming to demonstrate phenomenologically the relevance of the MIP to 

hysteretic response of simple yielding structures based on moving resonance and period 

elongation phenomena.  

Chapter 4 (§4 – “Aplha”(𝛼): A Novel Wavelet-based Scalar Capturing the Average Non 

Stationary Frequency Content of Recorded GMs) defines mathematically a novel scalar parameter 
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termed “alpha”, 𝛼, extracted from the MIP of Morlet CWT spectrograms to quantify the non-

stationary frequency content of GMs in a fashion expected to be relevant to hysteretic structural 

response. Further, statistical relationships of this novel scalar quantity, 𝛼, with seismological 

parameters (M, R), local soil conditions (shear wave velocity Vs30) and GM properties, PGA and 

PGV, are pursued. First statistical evidence identifying (but not quantifying) the influence of α as 

a proxy of non-stationary frequency content of recorded GMs are further provided based on IDA 

results for the small benchmark suite of GMs used in Chapter 3. 

Chapter 5 (§5 - Influence of Non-Stationary Frequency Content of GMs to Seismic Demands of 

Inelastic Single-Degree-of- Freedom Systems) undertakes novel numerical study to quantify the 

influence of 𝛼, and thus of the average non-stationary GMs frequency content trends, to the 

response of SDOF ductile and non-ductile inelastic oscillators with various elastic periods widely 

used as proxies of yielding structures in undertaking seismic structural vulnerability and loss 

assessment within PBEE.  This is pursued via gauging the influence of 𝛼 on widely used IMs 

adopted in undertaking IDA to propagate the seismic hazard onto peak inelastic seismic 

deformation used as EDP.  

Chapter 6 (§6 - Influence of Non-Stationary Frequency Content of GMs to Seismic Demands of 

Inelastic Multi-Degree of Freedom System) quantifies the influence of the average non-stationary 

GM frequency content, as captured by 𝛼, to peak inelastic seismic demands of MDOF inelastic 

models representing multi-storey building structures which yield under seismic excitation with 

progressively increasing intensity. In this regard, this chapter extends the numerical work of the 

previous chapter 5, by considering IDA results for MDOF inelastic systems as opposed to SDOF 

systems together with rigorous GM record selection to construct GM sets with same spectral 

shape and other GM properties known to influence EDP estimation but very different α values. 

Lastly, Chapter 7 (§7 - Concluding Remarks) summarises the contributions achieved by this 

doctoral thesis and highlights areas for future research.  

The appendices provide the following supportive information and topics underpinning various 

chapters of the thesis. Appendix A contains catalogues of three different recorded GM suites used 

in various chapters to support the numerical work of this thesis. Appendix B provides a brief 

review of energy approach in the analysis of simple hysteretic oscillators under seismic excitation. 

Appendix C presents brief notes on linear regression analysis while Appendix D does the same 

for standard hypothesis statistical testing used in several instances in the thesis. Lastly, Appendix 

E provides input details for OpenSees modelling.   
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2 Preliminary remarks    

This chapter begins with a brief outline of PBEE to highlight the importance of dependable 

statistical IM-EDP relationships in assessing seismic risk and loss in a probabilistic context. Then, 

a succinct review of different approaches for deriving IM-EDP relationships is offered utilising 

NRHA for recorded GMs. Special attention is focused on the IDA approach which is exclusively 

used in later chapters of this thesis to establish IM-EDP relationships and, ultimately, to 

demonstrate statistically the importance of accounting for the non-stationary frequency content 

of recorded GMs in estimating peak inelastic demands (EDPs) of seismically excited yielding 

structural models. Further, the chapter reviews studies adopting various joint time-frequency 

signal representation techniques, with emphasis given on the wavelet transform, to study the time-

varying frequency content of typical signals encountered in earthquake engineering applications 

including recorded GMs and response time-histories of seismically excited structures. The chapter 

concludes with research gaps identified based on the provided state-of-the-art literature review. 

 

2.1 Overview of Performance-Based Earthquake Engineering (PBEE) 

framework 

2.1.1 Methodological steps of the PBEE framework  

PBEE is an approach which goes beyond the current seismic codes of practice, unifying seismic 

design (for new structures) and assessment (for existing structures) under a single 

probabilistic/statistical framework (Porter 2003). Its purpose is to facilitate decision making by 

various stakeholders (e.g. owners of civil infrastructure, insurance companies, Governments, etc.) 

on issues such as the achieved (targeted) level of seismic protection as a function of the seismic 

hazard and cost (FEMA P-58-1 2012) (FEMA-273 1997). PBEE aims to quantify seismic 

performance in terms of discrete quantifiable limit states expressed by means of an EDP as a 

function of the severity of seismic action which, for all practical reasons, is also discretised and 

expressed probabilistically in terms of an IM (e.g., probability that some critical IM is met or 

exceeded within a specific time window of exposure). Thus, for the design of new structures, 

PBEE renders the overall performance of the building as a function of the design process 

(Deierlein 2004), (FEMA-273 1997), (Porter 2003). 
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Figure 2-1 PBEE performance levels, (Deierlein 2004), (SEAOC Vision 2000 1995) 

 

An early implementation of performance based design was made by (SEAOC Vision 2000 1995) 

and (FEMA-273 1997) in which analytical procedures for seismic performance quantification 

were formulated and the relation between performance (horizontal axes of the charts in Figure 2-

1) and the severity of the seismic in terms of frequency of occurrence and/or in terms of total 

design base shear (vertical axes of the charts in Figure 2-1) were conceptually defined. Each cell 

represents a performance objective, which therefore is defined as a performance level at specific 

earthquake intensity. Stakeholders can then decide to implement different designs achieving 

different performance levels based on the type of infrastructure and/or capital available. For 

example, an owner may adopt the Basic Objective for an ordinary residential building, whereas a 

local borough may require that a hospital should meet safety-critical criteria.  

Probabilistically, cost-effectiveness of different decisions within the PBEE framework may be 

expressed through the mean annual frequency (MAF) of exceedance, 𝜆⁡(𝑫𝑽), of a judicially 

defined “decision variable” (DV) (e.g. repair cost) or vector of decision variables DV, given 

information about the structure (including its location) and a standard seismic hazard curve.  

This is accomplished by considering the following steps with reference to the flowchart of Figure 

2-2. 
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Figure 2-2  Steps of PBEE Methodology, (PEER Report 2007/08 2008), (Porter 2003) 

 

Notably, the second step of PBEE involves hazard analysis to determine the MAF of exceedance 

𝜆(𝑰𝑴) of a seismic GM “intensity measure” (IM) which can be a single scalar IM or a vector 𝑰𝑴. 

Examples of IMs are the peak ground acceleration (PGA), peak ground velocity (PGV), the 

spectral acceleration at the fundamental natural period T1 of the structure (𝑆𝑎(𝑇1)) and many 

others (e.g. Tothong and Cornell 2007, Kazantzi and Vamvatsikos 2015, Minas and Galasso 

2019). The third step involves structural analysis to establish a statistical relationship between the 

IM and an “Engineering Demand Parameter” (EDP). The latter is chosen to be a (peak) response 

quantity of seismically excited structures such that it is representative of, and thus readily related 

to, a particular “Damage Measure” (DM). That is, the EDP needs to map well onto Damage limit 

states. For building structures, common EDPs are the peak inter-storey drift which is well-

correlated to damage in structural and non-structural components and the peak floor acceleration 

which is well-correlated to damage in sensitive equipment, objects, and artefacts. It is noted that 

the PBEE framework allows for the treatment of both the “aleatoric” and the “epistemic” 

uncertainty (Der Kiureghian and Ditlevsen 2009). Aleatoric uncertainty is considered to be 

independent of our state of knowledge or number of experimental/simulation “runs”. Such 

uncertainty is possessed by the properties/characteristics of future earthquake induced GMs 

observing the same (or almost the same) seismological (e.g. Magnitude M, epicentral distance R, 

etc.) and site-specific characteristics (e.g. soil conditions). This uncertainty is practically 

accounted for by representing the seismic action with a suite of historic ground motion 

accelerograms recorded under the same (or almost the same) seismological and site-specific 

characteristics.  

Therefore, the structural analysis step involves non-linear response history analysis (NRHA) of 

appropriate finite element (FE) models which capture the dynamic/hysteretic behaviour of the 
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structure under consideration. Further, epistemic uncertainty (e.g. due to lack of knowledge of the 

structural properties) can be accommodated by considering a Monte-Carlo based or a reliability 

based structural analysis step in which properties of the adopted FE model are treated as random 

variables (Liel et al. 2009, Vamvatsikos and Fragiadakis 2009). 

In any case, the structure analysis step in PBEE needs to provide adequate statistical information 

to establish the conditional probability 𝑝⟨𝑬𝑫𝑷|𝑰𝑴⟩. The next (fourth) step involves damage-limit 

state analysis which seeks the quantification of the level of damage suffered by the structure in 

terms of a judicially chosen DM for a particular EDP value. This is accomplished in a 

probabilistic/statistical sense by establishing fragility (survival probability) functions to obtain 

the conditional probability 𝑝⟨𝑫𝑴|𝑬𝑫𝑷⟩. The final step is the loss analysis involving DVs such 

as the repair costs and loss of lives, which is expressed via the conditional probability 𝑝⟨𝑫𝑽|𝑫𝑴⟩. 

The following mathematical expression, using the same steps of Figure 2-2 and based on the total 

probability theorem, can be used to express the MAF of exceedance of a DV computed by means 

of the PBEE methodology considering the IM, EDP, DM, and DV (PEER Report 2007/08 2008).  

 

𝑀𝐴𝐹⁡𝑜𝑓⁡𝑒𝑥𝑒𝑒𝑑𝑎𝑛𝑐𝑒 =∭(𝑆𝑇𝑅𝑈𝐶𝑇𝑈𝑅𝐴𝐿) ∙ (𝐹𝑅𝐴𝐺𝐼𝐿𝑌) ∙ (𝐿𝑂𝑆𝑆) ∙ ⁡𝑑(𝑆, 𝐹, 𝐿) (2.1) 

or 

𝜆(𝑫𝑽) =∭𝑝⟨𝑬𝑫𝑷|𝑰𝑴⟩ ∙ 𝑝⟨𝑫𝑴|𝑬𝑫𝑷⟩ ∙ 𝑝⟨𝑫𝑽|𝑫𝑴⟩ ∙ 𝑑𝜆(𝑰𝑴) ∙ 𝑑𝐼𝑀 ∙ 𝑑𝐸𝐷𝑃 ∙ 𝑑𝐷𝑀 (2.2) 

 

Implied by the triple integral is that the assessment can be modelled as a Markov process, where 

the conditional probabilities are independent and can each be evaluated as such. While 

conceptually simple, there are many details associated with the implementation of each step of 

the framework that renders the procedure challenging. Some discussion is provided below on the 

development of statistical relationship between IM and EDP. 
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Figure 2-3 Components of PBEE Methodology, (Deierlein 2004) 

 

2.1.2 Establishing statistical IM-EDP relationships 

Information for IM is conventionally obtained through probabilistic seismic hazard analyses and 

it is expressed as a mean annual frequency of exceedance 𝜆(IM), which is specific to the location 

and potentially to the structure. On one hand, conventional IMs, such as PGA and Sa(T1), are 

simple to use as seismic hazard curves for these IMs are readily available. Since the aim of the 

structural analysis step of PBEE is the evaluation of conditional probability 𝑝⟨𝑬𝑫𝑷|𝑰𝑴⟩, the 

stronger the correlation between the selected IM to the predicted EDP is the higher the accuracy 

of the analysis becomes (Luco and Cornell 2007). In order to make this conditional probability 

estimation more effective and accurate the IM of choice should be both sufficient and efficient 

(Tothong and Cornell 2007). A sufficient IM, should be pursued among all the possible IMs which 

make the EDP conditionally independent, given IM, at least from the two most basic 

seismological parameters: fault distance, R, and earthquake magnitude, M. This enables the 

simplification p⟨𝑬𝑫𝑷 > 𝒙|𝑰𝑴,𝑴,𝑹⟩ = ⁡𝑝⟨𝑬𝑫𝑷 > 𝒙|𝑰𝑴⟩. Then, the most efficient IM should be 

ideally sought among all sufficient IMs to minimise the variability between EDP for a given IM 

(Luco and Cornell 2007). In this regard, efficiency is the amount of variability of an EDP given 

an IM and the measure used to evaluate efficiency is the dispersion, defined as the standard 

deviation of the logarithm of the demand model residuals. An efficient demand model requires a 

smaller number of GMs and, therefore, of NRHAs to achieve a desired level of confidence in 

obtaining accurate statistical IM-EDP relationships (Shome and Cornell 1999).  
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Examples of IMs, beyond the obvious peak ground acceleration (PGA), include Sa(T1) as well as 

the more advanced geometric mean of spectral ordinates, AvgSa, (e.g., Cordova et al. 2000, 

Kazantzi and Vamvatsikos 2015). In principle, quality IMs are those that can better reflect 

relations of GM properties to the structural response as well as to seismological parameters. An 

example of the former consideration would be that Sa(T1) is a preferable IM over PGA since it 

accounts for structural natural period and inherent damping while PGA does not bring in any 

information about the structure (e.g., Vamvatsikos and Cornell 2002). An example of the latter 

consideration is AvgSa (a parameter, later defined, which captures the period shift effect) is an 

even more quality IM than Sa(T1) as it accounts for the influence of GM spectral shape and not 

only on a single spectral ordinate (at T1). This aspect is important as it accounts for the influence 

of higher modes, in case structures are modelled as multi degree-of-freedom (MDOF) systems 

(e.g., Kazantzi and Vamvatsikos 2015), as well as of longer effective structural periods associated 

with period elongation phenomena of yielding (softening) structures (e.g., Katsanos et al. 2014).   

On the other hand, EDPs describe structural response in terms of deformation, acceleration or any 

other structural property which can characterise seismic demand of the structure and relate in a 

meaningful way to structural damage. To this end, a common EDP in building structures is the 

interstory drift ratio which monitoring the relative deformation of two consecutive floors. 

Considering the discrete nature of limiting states, statistical relationships between EDP and IM 

are typically obtained through conducting nonlinear response history analyses (NRHA) using 

inelastic structural models for GMs with increasing intensity expressed through the selected IM. 

Currently there are several databases of GM records spanning large range of seismological 

parameters (such as magnitude, fault distance, etc) which helps to create the IM vector quantities 

generating IM-compatible input records. Even though these databases have developed in the last 

decades (PEER Database https://ngawest2.berkeley.edu/ (Global), the European database 

https://esm.mi.ingv.it/ (Europe and Middle east) and the Japanese 

http://www.kyoshin.bosai.go.jp/) there are still missing combination of parameters which may be 

important in constructing dependable statistics for the full range of 𝑝⟨𝑬𝑫𝑷|𝑰𝑴⟩ probability. One 

approach to fill in missing data which is receiving increasing prominence in recent years is to 

consider artificial and/or simulated GMs consistent with stochastic models reflecting site-specific 

seismological environment (e.g., Tsioulou et al. 2018). Still, arguably, the most popular approach 

is to consider representative suites of GMs using certain GM selection criteria and to 

incrementally scale them up uniformly in time (i.e., by application of a multiplier different for 

each GM in the suite) to sufficiently high IM levels such that the structure reaches the limit state 

of interest (measured in terms of the EDP) which, if so desired, may be all the way to collapse 

(total structural instability). This is the essence of IDA (Vamvatsikos and Cornell 2002) resulting 

in an IDA curve for each GM on the IM-EDP plane. By using a collection of IDA curves, it is 

https://ngawest2.berkeley.edu/
https://esm.mi.ingv.it/
http://www.kyoshin.bosai.go.jp/
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possible to plot discrete IM conditioned on EDPs (i.e., vertical stripes on the IM-EDP plane), 

where each IDA contributes a single data point corresponding a particular GM. By convention 

IDA curves are limited to a maximum value of interstorey drift which depends on the ductility of 

structures, where they all terminate with a horizontal segment, referred to as “flatline.” Horizontal 

segments in IDA curves mean that large displacements occur at small increments in ground 

motion intensity, which is indicative of lateral dynamic instability. The intensity where IDA 

curves become horizontal is taken as the final (collapse) capacity of the system.  

 

 

Figure 2-4 IDA Curves with respect to Sa(T1) - (a) Individual IDA Curves; (b) normal distribution;(c) 

Median (Solid Lines) and ± 1 𝜎 Standard Deviation (Broken Lines) Ensemble Curves. 

 

Figure 2-4 provides an example of IDA analysis. It shows that the collapse capacity varies 

significantly from one GM record to another (record-to-record variability). Since their variability 

is quite substantial it is normal to use statistical tools to quantify the response of a suite of ground 

motions, such as the central tendency (median) and variability (dispersion) of the behaviour of a 

structural system. To this aim, typically, the 16th, 50th (median) and 84th percentile curves are 

used, which represent the fixed percentile at 𝜇 ∓ 1𝜎, mean ∓ standard deviation (Figure 2-4 (b)). 

A percentile is the percentage transposition of the fractile which is the cut off point for a certain 

fraction of a sample. Knowing the probability distribution, the fractile becomes the cut-off point 

where the distribution reaches a certain probability. The 16th, 50th (median) and 84th percentile 

curves are therefore obtained, at each EDP value (i.e., vertical stripes on the IM-EDP plane), from 

a probability distribution function, constructed by fitting a normal distribution within the points 

extracted at the specific EDP values (Figure 2-4 (b)).  
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Importantly, the IDA curves are obtained through amplitude scaling of as-recorded GMs (after 

perhaps some pre-processed by seismologists), judicially selected from large GM databanks. 

After selected the IM, the scaling process is carried out on the unscaled vector of accelerograms 

𝒂 = [𝑎1⁡, ⁡𝑎2⁡, … , 𝑎𝑛⁡] via a non-negative scalar factor 𝜆 ∈ [0,+∞) such as 𝒂𝝀 = 𝜆 ∙ 𝒂 

(Vamvatsikos and Cornell, 2002). Commonly, and throughout this thesis, an algorithm is 

configured to use an initial first elastic run at 0.005 g, with a step increment of 0.01 g, to a 

maximum number of 32 scaling steps. The Collapse limit state (CP) is reached for a point of the 

IDA curve where the local tangent reached 20% of the elastic slope or 𝜃𝑚𝑎𝑥 = 10%. The Global 

Instability happens when the IDA curves are flat, where any increase of IM comports an infinitive 

increase of the EDP (i.e. 𝜃𝑚𝑎𝑥) chosen (Vamvatsikos and Cornell, 2004). 

As a closure to this section, it is noted in passing that despite the wide popularity of IDA, 

alternative NRHA-based procedures are available which circumvent GM amplitude scaling: 

arguably the main deficiency of IDA which received much criticism as excessive scaling may be 

inconsistent with seismological/physical considerations (Jalayer and Cornell 2009). The most 

well-known alternatives to IDA are Cloud Analysis and Multi Strip Analysis (MSA). The former 

is based on fitting a logarithmic linear regression to the pairs of structural response parameters 

(such as Maximum inter-storey drift) and IM for a set of recorded GMs (Jalayer et al. 2017). It is 

a well-known method for its simplicity but criticised for being very much sensitive to the selected 

suite of records, let alone to the lack of statistically significant number of records corresponding 

to large IM levels required to drive modern ductile structures to collapse in undertaking seismic 

collapse risk studies. On the other end, MSA carries out MRHAs at discrete set of IM levels each 

one having possibly a different GM set providing statistical information about structural demand 

over a wide range of spectral acceleration values. Thus, in contrast, to IDA approach, the MSA 

employs unique records with different intensities in lieu to the scaling approach (Jalayer and 

Cornell 2009). However, the requirement of varying GM records at different IMs adds a 

significant layer of complexity compared to IDA especially for routine/practical PBEE 

implementation. Further, as in the cloud analysis, lack of statistically significant number of 

records corresponding to large IM levels may again become an issue. Given the significant 

popularity of IDA among researchers and practitioners and the fact that the novelty of the herein 

pursued work should be independent of the tool used in deriving IM-EDP relationships, IDA is 

adopted throughout this work as the approach of choice in the establishing IM-EDP statistics 

using NRHA for recorded GMs. 
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2.1.3 GM record selection criteria in deriving IM-EDP relationships  

Aleatory uncertainty in EDPs stemming from GM natural randomness (record-to-record 

variability), require the use of an adequate number of GMs in deriving IM-EDP relationships 

through NRHA-assisted procedures such as IDA, MSA, or cloud analysis. In order to reduce the 

computational cost of these procedures, GM record selection criteria beyond the standard 

seismological criteria of earthquake magnitude, M, and characteristic distance from the fault, R, 

are often employed. This is because carefully selected records reduce record-to-record variability 

thus relaxing the number of required GMs to establish statistically dependable IM-EDP 

relationships through NRHA. Further, they reflect better site-specific conditions resulting in more 

representative IM-EDP relationships for the site. Examples of GM record selection criteria, 

beyond the obvious M and R seismological parameters, include the GM pseudo-acceleration 

response spectrum shape or simply spectral shape. In this regard, the use of GMs with average 

response spectrum close to a given spectral shape has been widely considered in the literature to 

expedite IM-EDP derivations (see e.g., Katsanos et al. 2010). A common choice of a spectral 

shape is the one typically used by design seismic codes to specify design seismic action 

accounting for local soil conditions and seismicity. Alternatively, the conditional mean spectrum 

(Baker 2010) is taken as the target spectral shape. The latter is specified with the aid of the so-

called epsilon “ε” parameter defined as the number of standard deviations by which the logarithm 

of the spectral acceleration, Sa(T1), of a recorded GM evaluated at the fundamental natural period 

T1 of a structure differs from the median logarithm of Sa(T1) calculated from GM prediction 

relationships (Baker and Cornell 2006). The ε parameter attracted much the interest of researchers 

as it relates well to spectral shape which, in turn, is closely correlated to the damage potential of 

a GM for structures with T1 pre-yield (elastic) fundamental period.  

Other GM properties that were found to influence significantly peak inelastic seismic response 

demands of certain types of yielding structures is the effective GM duration (Trifunac and Brady 

1975) and the mean Fourier-based GM period, Tm, (Rathje et al. 1998 and 2004). The former 

affects mostly the response of ductile structures close to collapse (Chandramohan et al. 2015), 

while the latter affects wider class of structures with T1 close to Tm (Kumar et al. 2011, Katsanos 

and Sextos 2015). In this regard, the previous works suggested that effective GM duration and Tm 

are used as record selection criteria in PBEE. Given the focus of this thesis in capturing the 

frequency content of GM and studying its impact to GM structural potential, more details on the 

Tm are provided in the following section since this is currently the most well-recognised frequency 

domain GM property to influence peak inelastic structural demands.  
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2.2 Fourier transform-based time-histories characterisation in PBEE 

As in all engineering fields, standard Fourier or frequency domain time-series (signal) analysis is 

an indispensable signal representation tool in earthquake engineering which is widely used to 

resolve the significant frequencies included in recorded GMs and in structural response time-

histories of earthquake excited structures (e.g., Kramer 1996). This is achieved by means of the 

Fourier transform (FT) which decomposes a signal on a basis of harmonically related sinusoidal 

functions. Effectively, the FT assigns a “weighting coefficient” (Fourier coefficient) to each 

harmonic, the modulus of which represents the total signal energy (or information) carried by 

each harmonic, or at each frequency. 

Specifically, consider a band-limited time t signal 𝑥(𝑡) (e.g., a recorded GM or a response time-

history of an  earthquake excited structure) of duration 𝑇0 and its discrete-time version 𝑥[𝑛] =

𝑥(𝑛 ∙ ∆𝑡) with n = 0, 1, 2, …, N-1 sampled at (at least) the Nyquist frequency with time step Δt, 

such that 𝑇0 = 𝑁 ∙ ∆𝑡. The discrete Fourier transform (DFT), defined as (e.g., Bracewell 1999) 

 

�̂�[𝑘] =
1

𝑁
∑ 𝑥[𝑛]𝑒−𝑖𝜔𝑘𝑛𝛥𝑡

𝑁−1

𝑛=0

⁡ (2.3) 

 

decomposes/projects 𝑥[𝑛] onto an orthogonal basis of harmonically related discrete-time 

sinusoidal functions with frequencies 𝜔𝑘 = 2𝜋𝑘/𝑇𝑜 (in rad/s) for k≤N/2 assuming N is even and  

𝜔𝑘 = −2𝜋𝑘/𝑇𝑜 (in rad/s) for k>N/2 with k=0, 1, 2, …, N-1. In the above equation and henceforth 

𝑖 = √−1. The magnitude of the complex-valued Fourier coefficients |�̂�[𝑘]| can be viewed as a 

measure of similarity between the signal 𝑥(𝑡) and a non-decaying in time sinusoidal function of 

frequency 𝜔𝑘 (i.e., single frequency component). Therefore, the magnitude of the DFT achieves 

a representation of the average over time frequency composition of 𝑥(𝑡) on a discretised domain 

(axis) of frequency ω with discretisation step ∆𝜔 = 2𝜋/𝑇0 and maximum frequency 𝜋/𝛥𝑡 or, 

equivalently, on the period 𝑇 = 2𝜋/𝜔 axis consistent with the above discretisation. 

In this regard, the predominant frequency, 𝜔𝑝 at which the magnitude DFT is maximised, that is,  

 

𝜔𝑝 =
2𝜋𝑝

𝑇𝑜
⁡⁡⁡where⁡⁡⁡𝑝 = argmax

𝑘
{|�̂�[𝑘]|}⁡ (2.4) 

 

or, equivalently, the predominant period, 𝑇𝑝 = 2𝜋/𝜔𝑝, is the simplest frequency domain metric 

to characterise the frequency content of recorded GMs in relation to their structural damage 

potential (Kramer 1996) . The rationale of this consideration is that structures with T1 close to the 

Tp of a GM are expected to be mostly affected by the GM. Nevertheless, Rathje et al. (1998, 2004) 
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found that the most representative frequency-domain metric of GM structural damage potential 

is the Fourier-based mean period, Tm, over several other Fourier-based and response spectrum 

based metrics (see also Kumar et al. 2011). In detail, Tm is computed within a frequency range 

[0.25 20] Hz as (Rathje et al. 1998) 

 

 

where K1 and K2 are the closest integers to 0.25NΔt and 20NΔt, respectively, and 𝑇𝑘 =
2𝜋

𝜔𝑘
. It can 

be interpreted as the central GM period by noting that the DFT in equation (2.3) is energy 

preserving (i.e., (𝑥[𝑛])2 ∝ |�̂�[𝑘]|
2
) and, therefore, by treating the square magnitude of the 

Fourier coefficients as a distribution of the signal energy in the frequency domain. Indeed, several 

recent studies (Kumar et al. 2011, Katsanos et al. 2014, Katsanos and Sextos 2015) quantified 

statistically relationships (correlation) between standard EDPs (such as peak inelastic structural 

deformation), Tm and T1.   

Turning the attention to structural seismic response time-histories, Omori (1922) was the first to 

show almost a century ago that earthquake-induced damage elongates natural frequencies of 

buildings which, in turn, can be readily estimated by local “peak-picking” in the Fourier-

transformed response acceleration time-histories (Brincker and Venutra 2015). The latter 

approach involves identifying the frequencies at which the DFT of structural response (vibrations) 

signals, measured by accelerometers installed in structures for health monitoring purposes, attain 

local maximum values for sufficiently broadband excitations (e.g., due to ambient noise). In this 

setting, several recent case-studies (e.g., Regnier et al. 2013, Vidal et al. 2013, Çelebi et al. 2016, 

Ubertini et al. 2017) quantified period elongation estimated from acceleration measurements 

before and after damaging earthquakes in various structures and related shifts of the period to the 

level of structural damage (see also Gkoktsi and Giaralis 2020). They verified, based on field 

recorded data, that the stronger the inelastic behaviour yielding structures exhibit under 

earthquake excitation (i.e., the heavier the damages structures suffer), the more flexible they 

become (i.e., the higher lateral stiffness degradation they sustain). Further, Goulet et al. (2015) 

developed a data-driven statistical learning framework for predicting, at city-scale, the safety state 

of buildings based on measured period elongation and a limited number of inspections. Moreover, 

Katsanos et al. (2014) quantified the period elongation in seismically excited single degree of 

freedom inelastic oscillators representing reinforced concrete building structures by monitoring 

the change of the predominant period, Tp, of response acceleration time-histories in the context of 

IDA. Ultimately, they found positive correlation between Tp of response time-histories with the 

Tm of GMs as GMs were scaled up in undertaking IDA. Importantly, note that the establishment 

𝑇𝑚 =
∑ |�̂�[𝑘]|

2
𝑇𝑘

𝐾2
𝑘=𝐾1

∑ |�̂�[𝑘]|
2𝐾2

𝑘=𝐾1

 (2.5) 
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of such response Tp with excitation Tm for scaled GMs is enabled by the fact that Tm in equation 

(2.5) is invariable to signal (GM) scaling since FT is a linear transformation. More recently, 

Trevlopoulos and Guéguen (2016) showed positive correlation between period elongation and 

peak inter-storey drift in a number of typical inelastic multi-storey planar reinforced concrete 

structural models subject to MSA. They thus used period elongation as an EDP to represent  

cumulative seismic damage for sequences of earthquakes in seismic risk assessment of reinforce 

concrete structures within a PBEE context.   

Collectively, the above reviewed works adopting FT-based metrics to relate GM excitation to 

structural damage represented by structural period elongation demonstrate clearly the usefulness 

of looking into the frequency composition of GMs and seismic response time-histories to inform 

PBEE. However, by definition, the FT cannot trace the time-varying (non-stationary) attributes 

of GMs and of response histories of inelastic seismically excited structures. This is because the 

sinusoidal functions employed by the transformation (signal projection) do not decay in time and, 

thus, the signal energy distribution in time is lost upon application of the FT. In other words, 

|�̂�[𝑘]| is only a function of frequency. To this end, literature survey on the need and importance 

of representing transient time-histories encountered in earthquake engineering on the joint time-

frequency plane is undertaken in the following section which reviews briefly signal analysis tools 

beyond the standard FT for joint time-frequency signal representation and their applications in 

earthquake engineering. 

 

2.3 Non-stationary signal attributes in earthquake engineering: 

Physical considerations, signal representation tools, and 

applications 

2.3.1 Physical considerations 

Recorded acceleration GM signals are inherently non-stationary as their intensity and frequency 

content evolve with time. This is due to the dispersion of different types of seismic waves having 

different amplitudes and pre-dominant frequencies and arriving at the recording station at 

different time instants (Kramer 1996). Commonly, tension-compression (P-waves) characterised 

by relatively low amplitude and high frequencies arrive first as they tend to propagate faster than 

other seismic waves. Then, shear waves (S-waves) arrive and, in the case of far-field recording 

sites, various types of surface waves follow up which have typically lower frequencies and higher 

amplitudes than the P-waves. As a result, the intensity of typical GMs decay smoothly in time, 

after a short initial period of growth, while the dominant frequency content reduces in time. These 

GM attributes have been recognized since the early days of earthquake engineering (e.g. Housner, 
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1947; Housner, 1955; Thomson, 1959), and can be readily deduced by inspection of recorded GM 

time-histories. An example of a recorded acceleration time-history is given in Figure 2-5 where 

at different time segments different intensity levels are exhibited and radically different rates of 

zero-crossings occur (Giaralis 2008). The latter intuitively relates to the presence of time-evolving 

dominant frequencies.   

 

 

Figure 2-5 An example of a recorded seismic accelerogram illustrating the time-varying frequency 

content, in terms of zero-crossings, and intensity of strong ground motions (Giaralis 2008).  

 

Furthermore, response time-histories, such as floor displacements, accelerations, and inter-story 

drifts of buildings subject to seismic excitation, are also nonstationary signals whose evolving 

frequency content not only reflects, obviously, some characteristics of the input GM but also 

carries information about the structures and the possible level of potential structural damage. This 

information includes the onset of structural damage which phenomenologically leads to transient 

apparent softening of structures due to structural members stiffness degradation experienced 

during seismic excitation (e.g., DiPasquale and Cakmak 1990). Note that transient softening is a 

time-evolving phenomenon exhibited during the earthquake excitation and, thus, is different from 

the period elongation discussed in the previous section which is related to post-

earthquake/residual stiffness degradation of members reflected, phenomenologically, to a shift of 

structural natural periods measured before and after a seismic event (see also Trevlopoulos and 

Guéguen 2016). Indeed, DiPasquale and Cakmak (1990) monitored the evolution of an effective 

fundamental period in field recorded seismic response acceleration time-histories across three 

stages: an initial period at the start of the ground shaking, a maximum (longest) period 

corresponding to the strong phase of shaking, and a final period corresponding to the damaged 

structure vibrating under low seismic excitation towards the end of the ground shaking and 

beyond (free vibration). This effective fundamental period was obtained by fitting a linear system, 
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following system identification techniques, to response time-history data during earthquake 

shaking delimited by a series of windows under known (measured) ground shaking.  

In view of the above physical considerations, it is evident that joint time-frequency signal analysis 

is required to achieve a full picture of the energy distribution of recorded GM and of response 

time-histories in seismically excited structures, for it is clear that their time- dependent frequency 

content cannot be adequately represented by Fourier analysis which provides only the average 

spectral decomposition of a signal (Cohen, 1995; Qian, 2001). A qualitative overview of various 

time-frequency signal analysis tools considered over the years in earthquake engineering 

applications is provided in the following section before dwelling on the continuous wavelet 

transform (CWT) which is arguably the most widely considered of these tools by the earthquake 

engineering community. 

 

2.3.2 Qualitative overview of joint time-frequency signal analysis tools 

Gabor (1946) introduced historically the first joint time-frequency signal analysis approach by 

extending the application of the FT to signals with time-varying (non-stationary) properties. This 

was achieved by time-limiting the non-decaying sinusoidal function employed by the FT in 

equation (2.3) for signal decomposition by means of a window in time giving birth to what is 

known as windowed Fourier transform or short-time Fourier transform (STFT). The window is 

shifted in time (i.e., sliding along the time axis) as well as modulated in frequency (i.e., sliding 

along the frequency axis) without changing its width (or support) in time. These shifting and 

modulating operations results in the STFT of a signal being a two-variable function of both time 

(with reference to the window shifting in time) and frequency (with reference to the window 

modulating in frequency). Ultimately, the spectrogram, defined by the modulus of the STFT 

squared, emerges as a distribution of the signal energy on the time-frequency plane (Cohen 1995). 

Whilst intuitive and widely used for decades to gain an insight of the energy distribution of non-

stationary signals on the time-frequency plane in engineering and applied physics, STFT has the 

limitation of an a priori fixed resolution in time and in frequency specified by the window 

properties, that is, its support in time and in frequency (Qian 2001). This becomes problematic 

for studying relatively broadband signals as high-frequency components (indicative of sudden 

changes in physical systems such as structural damage during earthquakes) tend to be well-

localised in time (therefore finer time resolution is usually desired), while low-frequency 

components (e.g., characteristic pulses in near-field recorded GMs)  tend to be well-spread in time 

(therefore finer frequency resolution is normally sought after).  

The Wigner- Ville distribution (WVD) (Ville 1948) aims to circumvent some of the shortcomings 

of the STFT spectrogram by using a modulated and shifted window function which coincides 
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with the signal itself after being time-reversed. It can be shown mathematically that the STFT 

spectrogram is a smoothed version of the WVD, and thus the latter achieves better time-frequency 

resolution (Qian, 2001). However, the WVD lacks, to a certain degree, physical meaning since in 

several cases it yields negative values for the spectrum with obvious physical interpretation 

problems (Cohen 1995, Qian 2001). 

Having emerged in 1980s, the wavelet transform (WT) has become a potent signal analysis tool 

as, among several other applications, was proved to be quite useful for representing signals on the 

time-frequency plane (e.g. Mallat 1998, Qian, 2001). Instead of windowed versions of sinusoidal 

functions used by STFT, WT decomposes signals using oscillatory wave-like functions, termed 

wavelets, generated by scaling the effective time duration of a single “mother wavelet” function 

and shifting its position in time. The scaling operation is key as it changes simultaneously the 

effective support of wavelets in time (duration) and in frequency (bandwidth) in a way that is 

consistent with practical requirements for joint time-frequency resolution for most physical 

phenomena described by non-stationary time-histories. Specifically, low wavelet scales 

correspond to very well-localised in time wavelets with high-frequency content capturing with 

high accuracy (resolution) in time high-frequency signal components which, as discussed before, 

are usually sudden (short-lived) in time. On the antipode, high wavelet scales correspond to 

stretched in time (large duration) wavelets with well-localised in the frequency domain low-

frequency content which make them ideal to resolve accurately low frequency components of 

signals which are usually long-lived in time. Clearly, the above attributes rectify shortcomings of 

both the STFT and the WVD. At the same time, a plethora of analysing wavelet functions capable 

of achieving practically useful signal representations through the scaling operation have been 

developed to address different applications in science and engineering together with highly 

efficient algorithms for numerical implementation of the transformation founded on rigorous 

mathematical theory (see e.g., Daubechies 1988, Mallat 1998 and references therein). These facts 

endow WT with exceptional flexibility which is the main reason for gaining wide popularity in 

the past two decades in the fields of structural dynamics and vibrations-based damage detection 

(see e.g. Staszewski, 1998a; Spanos and Failla, 2005; Kijewski and Kareem, 2006; Gkoktsi and 

Giaralis 2015 and references therein).  

More recent adaptive signal processing techniques for capturing local variations of non-stationary 

signals include the adaptive chirplet transform (ACT) and the empirical mode decomposition 

(EMD). The former combines signal decomposition on a special type of analysing functions 

called Gaussian chirplets (Mann and Haykin, 1995) with the WVD of the decomposed signal, 

which is positive everywhere for the case of Gaussian chirplets (Baraniuk and Jones, 1996), to 

give rise to signal time-frequency representations with additional flexibility (degrees of freedom) 

beyond wavelet scaling. The latter provides a case-specific data-driven decomposition of a signal 
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into non parametric mono-chromatic intrinsic mode functions (Huang et al., 1998; Flandrin and 

Gonçalves, 2004) which can be processed via the Hilbert transform (see e.g. Papoulis, 1977) to 

trace the time-evolution of the dominant frequency components of the original signal. The ACT 

has been used to process recorded GMs as well as response histories from NRHA in a number of 

works (Wang et al. 2002, Spanos et al. (2007a). The EMD has been employed for the same tasks 

by Kijewski-Correa and Kareem (2006) and Spanos et al. (2007a). It was found that the success 

of these adaptive methods rely on computationally intensive algorithms requiring the fine-tuning 

of certain parameters and thresholds, while the achieved time-frequency resolution do not  

compensate for the increased computational cost. In this regard, the remainder of this review 

focuses on the CWT which is the tool of choice used throughout this thesis.  

 

2.3.3 The continuous wavelet transform (CWT)  

The Continuous Wavelet Transform (CWT) originates from the work of the geophysicist Jean 

Morlet and the physicist Alex Grossman (Grossmann and Morlet 1984) who decomposed 

empirically seismic geophysical signals using what is now known as Morlet wavelets (Mallat, 

1989). For a discrete-time signal x[n], the CWT is defined as (e.g., Torrence and Compo 1997)  
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function needs to be zero-mean and have finite support in frequency (finite bandwidth) acting 

effectively as a band-pass filter (see e.g. Mallat 1998).  

Importantly, the scaling operation and the oscillatory form of the wavelets are the salient features 

that allow for interpreting the squared magnitude (spectrum) of the wavelet coefficients, |W(τ,s)|2, 

as an estimator of the signal energy distribution on the time-frequency or, equivalently, on the 
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This is because the scale parameter s is associated with frequency through a reciprocal 

relationship /p s =  where ωp is the predominant frequency of the unscaled (i.e., s=1) mother 

wavelet (e.g., Mallat 1998). Moreover, the CWT in equation 2.6 implies that N wavelet 

coefficients can be computed for each scale value which facilitates visually meaningful wavelet 

spectrograms, SP(t,ω), in equation 2.7. The so-called ridges of the wavelet spectrogram are salient 

features defined as collections of CWT local maxima along the time axis (Carmona et al. 1997). 

That is, 

 

 

where r=1,2,…,R and R is the total number of ridges (looking across different scales) at any given 

time instant. Intuitively, the ridges of the wavelet spectrogram signify local (in time) significant 

energy corresponding to a certain scale/frequency which can be attributed to the existence of a 

local in time signal frequency component picked up by the analysing wavelet scaled at the 

considered scale/frequency. For mono-harmonic signals, it can be analytically shown that the 

(single) ridge of the wavelet spectrogram coincides with the signal frequency component, ωp, at 

each time instant (instantaneous frequency) provided a suitable wavelet is used in computing the 

CWT (Lilly and Olhede 2009). Nevertheless, multi-harmonic non-stationary signals will have 

several different ridges at each time instant and wavelet ridge analysis becomes computationally 

challenging (Carmona et al. 1999) and, in the case of noisy signals, visually counter-intuitive and, 

ultimately, non-practical (as will be demonstrated later in Chapter 3 for typical recorded GMs). 

On the other hand, for the latter type of signals, it may be desired to know only the mean frequency 

in time which is likely not to coincide with any actual frequency component present in the signal. 

This gives rise to the (energy) mean instantaneous frequency defined as the geometric mean of 

all the frequencies present in the signal at each time instant. That is (e.g., Lilly and Olhede 2009),  
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In the limiting case of mono-harmonic signals, the above MIF coincides with the signal 

instantaneous frequency (Boashash 1992a) as long as suitable analysis wavelet is used in 

computing the CWT as discussed by Lilly and Olhede (2009). 

Despite its usefulness for meaningful time-frequency signal representations, it is noted in passing 

that the CWT in equation (2.6) is redundant in the sense that it generates N wavelet coefficients 

for each chosen scale level from an N-length discrete-time signal. In this regard, Daubechies 

(1988) showed how to efficiently construct families of orthogonal wavelets compactly supported 

in time domain or in frequency domain using digital filter-banks and allowed for non-redundant 

wavelet signal analysis and reconstruction of N-long discrete-time signal using N total number of 

wavelet coefficients across different scales giving birth to what is known as the discrete wavelet 

transform (DWT). Moreover, Mallat (1989) embedded DWT within a multi-resolution analysis 

framework (Mallat, 1998). Still, whilst DWT preserves signal energy, it is not particualarly 

helpful in providing intuitive visualisations of signal energy distribution on the time-frequency 

plane. A conspectus of applications of the wavelet transform in earthquake engineering follows 

aiming to demonstrate the breadth of its usage and applicability without being, by any means, 

exhaustive. 

 

2.3.4 Indicative applications of wavelet transform signal analysis in 

earthquake engineering 

Basu and Gupta (1998) considered an early form of DWT, employing wavelets compactly 

supported in frequency domain and non-overlapping across scales, to compute spectral moments 

and, ultimately, peak structural responses of seismically excited single-degree-of-freedom 

(SDOF) oscillators. In this manner, they were able to correlate structural response to different 

frequency bands of seismic excitation. Further, Iyama and Kuwamura (1999) relied on DWT 

signal energy preservation to demonstrate that the square modulus of wavelet coefficients of 

recorded GMs is proportional to the seismic input instantaneous energy at different frequency 

bands. In addition, they found that seismic waves long periods have different velocities depending 

on the epicentral distance and that the peak wavelet instantaneous energy is proportional to the 

total input seismic energy. Moreover, Baker (2007) employed the DWT to identify and extract 

low-frequency large amplitude pulse-like content typical of near-field GMs and proposed widely 

adopted classification rules for pulse-like near-fault GMs. In addition, Montejo and Kowalsky 

(2008) used the CWT of recorded GMs to define frequency-dependent effective GM duration and 

gauged its influence for predicting damage in the context of PBEE using IDA.   
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Focusing next on applications considering treatment of structural response signals under seismic 

excitation, Pan and Lee (2002) examined the effectiveness of STFT, DWT and CWT to identify 

dynamic characteristics of bilinear elasto-plastic seismic response of SDOF and MDOF structures 

aiming to correlate signal frequency content variation with excursions of the yielding strength in 

time. Similarly, Basu (2005) used DWT with compactly supported in frequency domain and non-

overlapping across scales wavelets to analyse response acceleration signals of bilinear non-

hysteretic and of Bouc-Wen hysteretic SDOF structures subject to recorded GMs and successfully 

traced stiffness variations and temporal location of damage onset. More recently, Castellanos and 

Ordaz (2013) used DWT wavelet coefficients of yielding time-histories of bilinear elasto-plastic 

oscillators subject to seismic GMs (i.e., binary time-histories indicating time intervals that 

oscillator resisting force is above the yielding strength) to predict seismic ductility demand and, 

ultimately, the level of structural damage.  

Independently of the above line of research, Ruzzene et al. (1997) were the first to suggest that 

the ridges of the CWT in equation (2.8) of response acceleration signals of MDOF linear 

structures can be viewed as representative signatures of vibration modes. They thus used CWT 

ridges to determine the structural natural frequencies of structures in a system identification 

context. More recently, Wang et al. (2013) extended the use of CWT ridge analysis for system 

identification of yielding structures under seismic excitation by interpreting CWT ridges as 

phenomenological time-evolving effective natural frequencies of the inelastic structures treated 

as linear time-varying dynamical systems (see also Staszewksi 1998b). Further, Spanos et al. 

(2007a) extracted the MIF in equation (2.9) of response displacement time-histories obtained 

from NRHA to a 21-storey steel frame model subject to recorded GMs scaled at different 

intensities. They used wavelets compactly supported in frequency domain and non-overlapping 

across scales achieving high frequency resolution and demonstrated that the MIF decays faster in 

time (i.e., towards lower frequencies, thus longer periods) as GM intensity increase. They, thus, 

concluded that tracing the CWT MIF in time can be used as a seismic damage detection tool. 

Further to the above use of CWT ridges and MIF time-histories for structural damage detection, 

Noh et al. (2011) defined scalar CWT-based damage sensitive indices for seismic damage 

characterisation of yielding structures. It was reported that the most efficient index for the task 

relies on the energy of wavelet coefficients (wavelet spectrogram) at scales corresponding to T1. 

This index was used by Noh et al. (2012) as an EDP to perform full-fledge statistical seismic 

vulnerability analysis in the context of PBEE framework using IDA. The steps of the CWT-

assisted PBEE are shown in (Figure 2-6). In Balafas and Kiremidjian (2015), the same CWT-based 

index was obtained for excitation time-histories (recorded GMs) as well as for response 

acceleration time-histories from experimental specimens of reinforce concrete columns 

progressively damaged under shaking table testing using the recorded GMs. The authors 
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demonstrated correlation between indices of response and excitation suggesting that the 

relationship between indices can be used for rapid data-driven structural damage characterisation 

in the aftermath of major seismic events in structures instrumented with accelerometers for health 

monitoring.    

 

 

Figure 2-6  Use of a wavelet-based damage sensitive factor (DSF) to derive fragility curves (Noh, et al. 

2012) 

 

The effectiveness of various time-frequency signal analysis tools, including the CWT, to capture 

non-stationary features in response time-histories of seismically excited structures has been also 

demonstrated by various researchers using field recorded data from instrumented real-life 

structures. The main focus of such studies is to characterise earthquake-induced damage during 

seismic excitation. In this setting, Mucciarelli et al (2004) considered the STFT and the CWT, 

among other techniques, to demonstrate elongation of structural natural frequencies of an 

instrumented reinforced concrete building indicative of structural damage during a sequence of 

historic earthquake events occurred in central East Italy in 2002. Further, Todorovska and 

Trifunac (2010) successfully captured changes (elongation) to structural natural periods through 

ridge analysis to STFT-based spectrogram of seismic response acceleration time-series recorded 

in an instrumented building in California during the 1979 Imperial Valley seismic event. On a 
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different end, Michel and Gueguen (2011) studied the WVD of field recorded seismic response 

time-histories and concluded that changes of dominant frequency components in the signals are 

not necessarily due to structural damage but may actually be signatures of the excitation carried 

over to response time-series. 

A final important application of time-frequency analysis tools used in conjunction with recorded 

seismic GMs is to facilitate the development of seismic GM stochastic models which, ideally, 

should account for non-stationarity in both amplitude and frequency content as recorded (natural) 

GMs do. Such models are used as input to analytical stochastic nonlinear dynamics techniques, 

such as statistical linearisation (e.g., Roberts and Spanos 1999), to obtain seismic response 

statistics of inelastic structures without undertaking NRHA. Alternatively, they are used to 

generate artificial seismic GMs used as input for NRHA to derive seismic response statistics in a 

Monte Carlo simulation-based context (e.g., Giaralis and Spanos 2012). To this aim, Conte and 

Peng (2007) applied the STFT to recorded GMs to calibrate a parametric non-stationary stochastic 

GM model. Further, Wang et al. (2002) defined a stochastic GM model using the average ACT-

based spectrogram of recorded GMs. More recently, Jian et al. (2014) used a CWT-based signal 

analysis tool to find the evolutionary frequency content statistics including the mean and the 

variance instantaneous frequency from large suites of recorded GMs. These time-varying 

statistics were used to define a parametric stochastic GM model for simulation of artificial GMs 

achieved through filtering white noise through a linear time-varying filter.  

 

2.4 Research gaps and needs  

The above undertaken state-of-art survey reveals that the average (stationary) frequency content 

of recorded GMs, as captured by Fourier-based Tm (Rathje et al. 1998), influences the inelastic 

response of seismically excited yielding structures. The significance of this influence depends on 

the pre-yield structural stiffness, commonly expressed through T1, (e.g. Kumar et al. 2011). 

Moreover, several studies considering both field recorded data and computer generated NRHA 

data reported that structural natural periods and primarily T1 change during seismic excitation 

(apparent softening) as well as elongate (permanent change) after damaging earthquakes 

compared to values attained before earthquakes (healthy state). It was further shown that this 

change of natural frequencies is dependent on the average stationary frequency content of 

recorded GMs (Katsanos et al. 2014). Moreover, stochastic dynamics approaches showed moving 

resonance in which the effective natural frequencies follow, with some delay, the time-varying 

frequency content of the excitation. A further indication of the influence of seismic evolving 

frequency content to inelastic structural response was demonstrated by using artificially generated 



Chapter 2 – State-of-Art review on frequency content signal characterisation in PBEE 

 

 
59 

 

GMs from stochastic seismic GM models with varying freuqnecy content Wang et al. (2002), 

Vetter and Taflanidis (2014).  

However, a first major conclusion of the review is that no systematic study of non-stationary 

frequency content using recorded GMs have been undertaken in the open literature. This is an 

important gap in the current state-of-art research in earthquake engineering and applied inelastic 

structural dynamics since PBEE is commonly undertaken based on NRHA using recorded GMs. 

The undertaken literature review shows that such a systematic study is primarily hindered by the 

lack of a GM property that captures the evolutionary frequency content of GMs and can, perhaps, 

be used either as a record selection criterion or as an IM. Indeed, none of the current IMs and 

record selection criteria adopted in deriving IM-EDP relationships using recorded GMs within 

the PBEE framework accounts for the non-stationary (time-evolving) frequency content of GMs. 

Specifically, the Fourier-based average frequency Tm cannot discriminate time-evolving 

frequency composition in GM signals. Further, the spectral ordinate Sa(T1) and, more generally, 

spectral shape does not uniquely represent the time-varying amplitude trends let alone frequency 

content of GMs. This can be deduced by the work of Giaralis and Spanos (2010, 2012) and Spanos 

and Giaralis (2013) who demonstrated that stationary stochastic processes with different durations 

and energy content as well as stochastic processes with different time-amplitude properties and 

effective durations but constant frequency content can fit in the mean sense any given spectral 

shape.  

A second major conclusion is that non-stationary features of frequency content do affect the 

inelastic response of yielding structures and, therefore, EDPs as evidenced by stochastic dynamics 

approaches (e.g., Papadimitriou) which model seismic excitation by means of stochastic processes 

with non-stationary frequency content and by simulation-based approaches which model the 

seismic action by means of artificial time-histories compatible with stochastic processes with non-

stationary frequency content (e.g., Wang et al. 2002, Taflanidis and Vetter 2014). In this regard, 

there is scope in investigating the influence of non-stationary frequency content to EDPs when 

seismic action is represented by suites of recorded GMs which is currently the mode of preference 

in deriving IM-EDP relationships within PBEE. However, gauging qualitatively as well as 

quantitatively this influence is hindered by the lack of a GM metric or property measuring or 

accounting for non-stationary frequency content. This consideration establishes the premises of 

the first overarching aim pursued this thesis, that is, to propose a novel GM metric representative 

of the non-stationary frequency content of GMs. Having such a metric at hand will enable the 

quantification of the influence of GM non-stationary frequency content by probing into statistical 

IM-EDP relationships for suites of judicially selected GMs and for a variety of structural models 

with different properties. 
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To this aim, the following third major conclusion from the undertaken literature review is utilised. 

That is, the fact that CWT has been shown to be a most potent and widely used signal analysis 

tool to trace the time-evolving features of the energy composition of signals encountered in 

earthquake engineering on the joint time-frequency plane. In particular, the MIF introduced by 

Spanos et al. (2007) as a detection tool for earthquake induced structural damage is a concept that 

is reasonable to be used for characterising the evolution of the mean frequency content of GM 

signals. Apart from the well-recognized ability of the CWT for extracting time-varying frequency 

content in transient signals, a main justification behind choosing to explore the potential of MIF 

for the purpose at hand is the fact that Tm (the average in time mean frequency content of GMs) 

has already been seen to influence the response of the yielding structures (Kumar et al. 2011) as 

well as to characterise period elongation and, thus, the level of inelastic structural behaviour by 

application to response time-histories obtained through NRHA (Katsanos et al. 2014). In other 

words, Tm seems to relate excitation and response signals. One would expect that MIF of 

excitation and response may also be correlated and this hypothesis is addressed in this thesis.  

To this end, the next chapter discusses CWT potential for the purpose at hand focusing on a 

particular analysing mother wavelet found to be rather efficient for treating recorded GMs and 

used throughout this work, and defines the WT-based mean instantaneous period (MIP) for GMs 

as a generalisation of the Fourier-based Tm. 
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3 Preliminary remarks    

This chapter discusses salient properties of CWT coupled with Morlet wavelets which facilitate 

significantly useful signal energy representation/distribution on the time-frequency/period plane. 

Ridge analysis of the CWT spectrogram is illustrated and its limitations for the case of recorded 

GMs is provided giving way to the concept of the mean instantaneous period (MIP) herein tailored 

as a bona fide tool to trace temporal changes of the average frequency content of recorded GMs 

relevant to structural earthquake engineering. MIP curves are derived for a small suite of GMs 

used as benchmark in developing IDA as well as for NRHA time-series aiming to demonstrate 

phenomenologically the relevance of the MIP to hysteretic response of simple yielding structures 

based on moving resonance and period elongation phenomena.  

 

3.1 Energy distribution of continuous-time functions on the time-

frequency plane 

Any time-history or temporal signal is a function of time which carries information at different 

frequencies distributed as energy on the time- frequency plane (Cohen 1995). As detailed in 

Section 2.2, the concept of frequency and the underlying frequency domain analysis/interpretation 

of signals relies on the Fourier transform (FT) which decomposes any signal using sinusoidal 

functions. For the case of a continuous-time t signal, where 𝜓(𝑡) are functions ∈ ℒ2(ℝ) (Hilbert 

space of square-integrable functions), of finite energy, that is 

 

‖𝜓‖2 = ∫ |𝜓(𝑡)|2
+∞

−∞

𝑑𝑡 < ∞, 
(3.1) 

 

the FT is expressed by the Fourier integral (e.g., Bracewell 1999) 

 

�̂�(𝜔) = ∫ 𝜓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡.
+∞

−∞

 
(3.2) 

 

where the symbol |∙| stands for absolute value for real functions and for magnitude for complex 

functions, while the symbol ‖∙‖ denotes the standard second norm (Cohen 1995). The above 

signal decomposition allows for writing the signal 𝜓(𝑡)⁡ in terms of complex sinusoidal functions 

𝑒𝑖𝜔𝑡 of circular frequency ω (in radians per second) using the so-called inverse Fourier transform 

integral as 

 

𝜓(𝑡) =
1

2𝜋
∫ �̂�(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
+∞

−∞

. 
(3.3) 
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The FT preserves the signal energy as seen by the equalities 

 

∫ |𝜓(𝑡)|2
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−∞

𝑑𝑓⁡𝑜𝑟⁡‖𝜓‖2 =
1

2𝜋
‖�̂�‖

2
 

(3.4) 

 

where f= 2π/ω= 1/Τ is the frequency in Hertz. In this regard, it is always possible to interpret 

|𝜓(𝑡)|2/‖𝜓‖⁡2 and |�̂�(𝜔)|2/‖�̂�‖2 as probability density functions (pdfs) providing the energy 

distribution in the time and in frequency domain, respectively. Then, the mean and the variance 

of the former time-domain pdf, written as  

 

𝜇𝑡,𝜓 =
1

‖𝜓‖2
∫ 𝑡|𝜓(𝑡)|2
+∞

−∞

𝑑𝑡⁡ 
(3.5) 

 

and 

𝜎𝑡,𝜓
2 =

1

‖𝜓‖2
∫ (𝑡 − 𝜇𝑡,𝜓)

2
+∞

−∞

|𝜓(𝑡)|2𝑑𝑡, 
(3.6) 

 

can be seen as proxies of signal central location in time and its “spread” in time with respect to 

this central location, respectively. Similarly, the mean and the variance of the latter frequency-

domain pdf written as  

 

𝜇𝜔,�̂� =
1

2𝜋

1

‖�̂�‖
2∫ 𝜔|�̂�(𝜔)|

2
+∞

−∞

𝑑𝜔 
(3.7) 

and 

𝜎𝜔,�̂�
2 =

1

2𝜋

1

‖�̂�‖
2∫ (𝜔 − 𝜇𝜔,�̂�)

2
+∞

−∞

|�̂�(𝜔)|
2
𝑑𝜔 

(3.8) 

 

can be seen as proxies of signal effective/central frequency and its spread (effective bandwidth) 

with respect to the central frequency, respectively.  

The above proxies allow for localising the energy of any oscillatory wave-like function 𝜓(𝑡) on 

the time-frequency plane (t,ω) as depicted in Figure 3-1. In this setting, the time interval 

[𝜇𝑡,𝜓 − 𝜎𝑡,𝜓; 𝜇𝑡,𝜓 + 𝜎𝑡,𝜓] with length (duration) of 𝜎𝑡 = 2𝜎𝑡,𝜓 and the frequency interval 

[𝜇𝜔,𝛹 − 𝜎𝜔,𝛹; 𝜇𝜔,𝛹 + 𝜎𝜔,𝛹] with length (bandwidth) 𝜎𝜔 = 2𝜎𝜔,𝛹 define the stretch where the most 

significant part of the energy of functions 𝜓(𝑡) and⁡�̂�(𝜔) lie, respectively. Therefore, the 

rectangular box defined as 
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𝐻 ∶= [𝜇𝑡,𝜓 − 𝜎𝑡,𝜓; 𝜇𝑡,𝜓 + 𝜎𝑡,𝜓] × [𝜇𝜔,𝜓 − 𝜎𝜔,𝜓; 𝜇𝜔,𝜓 + 𝜎𝜔,𝜓] = 𝜎𝑡 × 𝜎𝜔 (3.9) 

specifies a representative area of the time-frequency plane where most energy/information of 

function 𝜓(𝑡) is located. This rectangle is called Heisenberg box  

 

 

Figure 3-1 Heisenberg box of a function 𝜓(𝑡). 

 

It can be mathematically shown (e.g., Cohen 1995, Mallat 1998) that the following relationship 

between the sides of Heisenberg box  

 

𝜎𝑡𝜎𝜔 ≥
1

2
 

(3.10) 

 

will always apply due to the property  

 

𝜓 (
𝑡

𝑠
) ↔ |𝑠|�̂�(𝑠𝜔) 

(3.11) 

 

observed by all Fourier pair functions⁡𝜓(𝑡) ↔ �̂�(𝜔), where s>0 is a scaling factor. The last two 

expressions epitomise mathematically the so-called Heisenberg uncertainty principle which states 

that any time-history (or time-domain waveform) cannot be localised concurrently in the time and 

in the frequency domain with arbitrary precision: increasing time domain resolution (i.e., 

decreasing the Heisenberg box side 𝜎𝑡) results in reduced frequency domain resolution (i.e., 

increase of the Heisenberg box side 𝜎𝜔) and vice versa.  

In this context, note that the FT in equation (3.2) uses sinusoidal functions which do not decay in 

time to decompose the signal 𝜓(𝑡). By virtue of the Heisenberg uncertainty principle, these 

functions have a sharpest possible resolution in frequency in the sense that their bandwidth is the 

minimum possible but, consequently, no time resolving (localisation) capabilities. In this respect, 
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the energy distribution in time is lost upon application of the FT. Thus, as discussed in Section 

2.2, it becomes impossible to discern transient local time behaviour due to non-stationary 

attributes of earthquake accelerograms or due to non-linear behaviour/yielding of structural 

systems in applying the FT to input acceleration time-histories or to dynamic response signals of 

seismically excited yielding structures. Nevertheless, the CWT reviewed in Section 2.3.3 uses 

oscillatory functions that are localised simultaneously in time and in frequency to decompose a 

given signal allowing for signal energy representation on the time-frequency plane. A most 

popular wavelet family and, historically, the first to be used in conjunction with CWT, namely 

the Morlet wavelet, is briefly presented in the following section and used throughout this thesis.   

 

3.2 CWT-based signal analysis on the time-period plane using 

complex Morlet wavelets 

3.2.1 Complex Morlet wavelets: definition and properties 

Given a discrete-time finite energy signal (e.g., a recorded GM or a structural response time-

history obtained from NRHA) the CWT in equation (2.6) uses series of wavelet functions to 

localise the signal energy simultaneously in time and frequency as discussed in Section 2.3.3. 

These functions are generated by scaling and translating in time a mother wavelet, ψ(t), which, at 

minimum, must satisfy the following so-called admissibility condition (e.g., Mallat 1998) 

 

∫
|�̂�(𝜔)|

2

𝜔

∞

−∞

𝑑𝜔 < ∞. (3.12) 

 

Since the 1980s, a plethora of mother wavelets have been developed with different application-

dependent properties (Mallat 1998). As mentioned in previous Chapters, the main aim of this 

thesis for using the CWT is to capture effectively the time-varying trends of the frequency content 

in recorded GMs. For this task, the complex Morlet wavelets, widely used in earthquake 

engineering and structural dynamics applications (e.g., Staszewski 1998a, Spanos and Failla 

2005, Noh et al. 2011, 2012), is adopted throughout this thesis since it furnishes advantageous 

properties for the sought aim as discussed in this section.   

The herein adopted unscaled (mother) Morlet wavelet is analytically expressed in time domain as 

(Torrence and Compo 1997) 
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𝜓(𝑡) = 𝜋−
1
4𝑒𝑖ω0𝑡𝑒−

𝑡2

2 ⁡, 
(3.13) 

 

while the Fourier transform of a scaled version by s>0 of the Morlet wavelet is given as  

 

�̂�(𝑠𝜔) = 𝜋−
1
4𝐻(𝜔)𝑒−

1
2
(𝑠𝜔−𝜔0)

2
⁡𝑤ℎ𝑒𝑟𝑒⁡𝐻(𝜔) = {

1⁡⁡⁡𝜔 > 0
0⁡⁡⁡𝜔 ≤ 0

 
(3.14) 

 

In the last two equations 𝜔0 is a characteristic frequency of the unscaled mother wavelet taken 

equal to 6 rad/s throughout this work as per Torrence and Compo (1997) which satisfies the 

admissibility condition in equation (3.12). 

Morlet wavelets attain a number of desirable properties which are important for the purposes of 

this work (e.g. Conrania and Soares 2011). First of all, it is a complex (analytic) function since 

its Fourier transform vanishes at negative frequencies. This makes the CWT in equation (2.6) a 

complex function which can be written in terms of amplitude and phase enabling a rigorous 

definition of CWT ridges as detailed the following section. Further, Morlet wavelets facilitate an 

intuitive and straightforward mapping of scales onto frequencies and, thus, periods. This is 

because the characteristic frequency ωο=6 rad/s of the (unscaled) mother wavelet coincides with 

its predominant frequency, ω𝑝
�̂�, defined in equation (2.4), with its central frequency⁡𝜇𝜔,�̂� in 

equation (3.7) as well as with its instantaneous frequency, IFψ at t=0, defined as the first time 

derivative of the wavelet phase (see 3.3.1), that is,  

 

ω𝑝
�̂� = 𝜇𝜔,�̂� = 𝐼𝐹𝜓(0) = 𝜔0,⁡ (3.15) 

 

and, at the same time, for 𝜔0= 6 rad/s the scale s almost equals the wavelet Fourier-based period 

𝑇𝜓, that is, (Torrence and Compo 1997) 

 

𝑇𝜓 =
4𝜋𝑠

𝜔0 + √2 + 𝜔0
2
≅ 𝑠. 

(3.16) 

 

Lastly, Morlet wavelets have a small Heisenberg box area (Mallat 1998) which can be interpreted 

as striking a good balance between time and frequency resolution at different scales or frequencies 

as shown in Figure 3-2. Notably, the last figure demonstrates the ability of Morlet wavelets in the 
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context of the CWT discussed in Section 2.3.2 to achieve improved frequency resolution at lower 

frequencies and better time resolution at higher frequencies.  

 

Figure 3-2 Heisenberg boxes for Morlet wavelets at different scales (Mallat 1998) 

 

3.2.2 Computation of CWT using complex Morlet wavelets 

Having defined the analysis (Morlet) wavelets, the next important step in CWT analysis of 

discrete-time signals is the numerical implementation of equation (2.6) which involves the 

selection of wavelet scale discretisation to support useful signal representations on the time-

frequency plane via the wavelet spectrogram in equation (2.7). Herein, the Fourier convolution 

theorem is utilised to compute the CWT from its inverse DFT using the formula (Torrence and 

Compo 1997) 

 

 

in which the term in front of the summation is added so that all scaled versions of the Morlet 

wavelet have the same energy with the unscaled mother wavelet which is equal to one (i.e., 

‖�̂�(𝜔)‖
2
=1) and the angular frequency is defined as 𝜔𝑘 =

2𝜋𝑘

𝑁∆𝑡
 for 𝑘 ≤

𝑁

2
 and 𝜔𝑘 = −

2𝜋𝑘

𝑁∆𝑡
 for 

𝑘 >
𝑁

2
. This consideration ensures that the computed wavelet coefficients at different scales are 

comparable to each other and that the wavelet spectrogram |𝑊[𝜏, 𝑠]|2 in equation (2.7) provides 

𝑊[𝜏, 𝑠] = √
2𝜋𝑠

Δ𝑡
∑ �̂�[𝑘]�̂�∗(𝑠𝜔𝑘)𝑒

𝑖𝜔𝑘𝜏𝛥𝑡𝑁−1
𝑘=0 , (3.17) 
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for a valid distribution of the signal energy on the time-frequency or time-period plane. From a 

computational viewpoint, equation (3.16) can be readily computed using a standard DFT 

algorithm (such as the “FFT” routine of MATLAB) to efficiently compute N wavelet coefficients 

spaced every Δt (τ=0,1,2,...,Ν-1) simultaneously for each chosen value of scale s.  

For the choice of scales, after extensive experimentation with large databanks of recorded GMs 

(See Appendix A), it was found convenient to define scales as fractional power of 2 (Torrence 

and Compo 1997) 

 

with Δj=0.1 and so=2Δt. 

 

 
Figure 3-3 Contour Morlet wavelet spectrogram (power spectrum) of recorded GM #18 in Table A-1 

(Appendix A). 

 

Figure 3-3 furnishes an illustrative example of the achieved energy distribution visualisation of 

recorded GMs on the time-period plane using the above CWT numerical scheme in conjunction 

with the adopted complex Morlet wavelets. It plots a contour of the Morlet wavelet spectrogram  

|𝑊[𝜏, 𝑠]|2 of the Plaster City (045) GM component (USGS Station 5052) recorded during the 

Imperial Valley seismic even on 15/10/1979 (record #18 in Table A-1 of Appendix A) in which 

warmer colours denote higher energy concentration. The herein employed CWT scheme achieves 

smooth visualisation of the energy distribution which is well-localised in time and in 

period/frequency.  

𝑠𝑖 = 𝑠0 ∙ 2
𝑗𝛥𝑗 ⁡; 𝑗 = 0,1, … , 𝐽⁡⁡⁡and⁡⁡⁡𝐽 =

𝑙𝑜𝑔2(𝑇𝑜/𝑠𝑜)

𝛥𝑗
 (3.18) 
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Still, it is important to note that a significant part of the wavelet spectrogram, often times called 

cone of influence (COI), cannot be used with confidence due to the analysing wavelets located 

close to the beginning and to the end of a time-limited signal extending outside the time 

boundaries of the signal. In this regard, the size of COI is scale-dependent and, consequently, 

frequency and period dependent. This is because the effective duration of the analysing (Morlet) 

wavelets increases with decreasing scale or with decreasing central frequency as seen in Figure 

3-2. To this end, the COI is approximated by a time window representing the effective support or 

duration of the analysis wavelet to the beginning of the time observation interval (e.g., t=0) and 

subtracting one same time window the end of the interval (e.g., at the end of the signal duration) 

with this time-window being different for each scale. Different criteria can be set to define the 

time-window and, thus, the COI. For the case of Morlet wavelets, the criterion adopted by 

Torrence and Campo (1997) is used throughout this thesis defined as the time it takes for the 

energy of a wavelet centred at t=0 to drop by e-2 which can be shown to be 

 

  

The COI region is delimited in Figure 3-3 and hereafter by a red broken line: the part of the 

spectrogram below the red broken line is likely to be influenced by edge effects and should not 

normally be considered. Note, that as period (and thus scale) increases tCOI becomes larger and 

for some limiting period/scale 2tCOI becomes larger than the observation time window which 

means that all wavelet coefficients at those scales should be discarded from the analysis.  

 

3.3 Instantaneous Frequency and Wavelet Ridge analysis for non-

stationary mono-harmonic signals 

3.3.1 The instantaneous frequency of non-stationary signals 

Consider the class of mono-harmonic (or mono-chromatic) signals whose energy is carried by a 

single harmonic. For stationary mono-harmonic signals the concept of frequency is well-defined 

and the single time-invariant frequency can be readily retrieved through Fourier analysis (FT) 

discussed in section 2.2 for discrete-time signals and in section 3.1 for continuous-time signals. 

However, the study of non-stationary mono-harmonic signals with varying frequency content 

requires a formal definition of a time-varying frequency: the so-called instantaneous frequency 

(IF). To assist the definition of the IF, an arbitrary real mono-harmonic continuous-time signal is 

firstly written as  

𝑡𝐶𝑂𝐼(𝑠) =
𝑠

√2
 (3.19) 
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where 𝐴𝑦(𝑡) is the time-varying amplitude and 𝜙𝑦(𝑡) is the time-varying phase of the signal 𝑦(𝑡) 

as shown in Figure 3-4. Then, the so-called analytic version of the above signal with vanishing 

negative frequencies (that is with �̂�(𝜔)=0 for ω<0) is always complex-valued and can be written 

as (Gabor 1946) 

 

 

where 𝐻[𝑦(𝑡)] is the Hilbert transform of 𝑦(𝑡) provided that time variation of the amplitude is 

much slower than time variations of the phase and, therefore, the amplitude changes little during 

one cycle of oscillation. Signals that meet this slowly varying amplitude condition are termed 

asymptotic. The IF is then defined as the time derivative of the phase (Boashash 1992) 

 

𝐼𝐹𝑦(𝑡) = 𝜙′(𝑡) =
𝑑𝜙

𝑑𝑡
=

𝑑

𝑑𝑡
[arg 𝑧(𝑡)] 

(3.22) 

 

 

Figure 3-4 Representation of an analytic mono-harmonic signal on the complex plane using the amplitude 

Ay(t) and the phase 𝜙𝑦(𝑡). 

 

Notionally, the IF can be seen as a time-dependent function which provides an effective frequency 

of the non-stationary signal with time-varying frequency content in a (very) short time-interval. 

  

𝑦(𝑡) = 𝐴𝑦(𝑡) 𝑐𝑜𝑠 𝜙𝑦(𝑡) (3.20) 

𝑧(𝑡) = 𝑦(𝑡) + 𝑖𝐻[𝑦(𝑡)] = 𝐴𝑦(𝑡)𝑒
𝑖𝜙𝑦(𝑡), (3.21) 
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3.3.2 The ridges of the CWT spectrogram   

As previously discussed, the CWT of a real signal with complex-valued wavelets such as the 

complex Morlet wavelet in equation (3.13) is complex. In case the (real) signal 𝑦(𝑡) and the 

analysing wavelet at scale s are both asymptotic, then the CWT of 𝑦(𝑡) can be approximated by 

(Carmona et al. 1997) 

 

𝑊[𝜏, 𝑠] ≅ |𝑊[𝜏, 𝑠]|𝑒𝑖𝜙𝑊[𝜏,𝑠] (3.23) 

 

where the CWT amplitude is proportional to the product of the signal amplitude with the Fourier 

transform of the analysis wavelet, that is,  

 

|𝑊[𝜏, 𝑠]| ∝ 𝐴𝑦[𝜏]�̂�
∗(𝑠𝜙𝑊′[𝜏, 𝑠]) (3.24) 

 

and 𝜙𝑊[𝜏, 𝑠] is the CWT phase given as   

 

𝜙𝑊[𝜏, 𝑠] = 𝜙𝑦(𝑛𝛥𝑡) − 𝜙𝜓 (
(𝑛 − 𝜏)𝛥𝑡

𝑠
). 

(3.25) 

 

The ridge of the CWT in equation (2.8) along which the wavelet spectrogram or, equivalently, 

the CWT amplitude attain a local maximum is defined as the set points for which the IF of the 

CWT is equal to zero (e.g., Carmona et al. 1997). Using equations (3.25) and (3.22) the above 

definition yields the following relationship for a point belonging to a ridge located at no time index 

where a wavelet analysis function at scale sr is centred (no=τ)  

 

𝜙′
𝑊
[𝜏 = 𝑛𝑜, 𝑠] = 0 → 𝜙′

𝑦
(𝑛𝑜𝛥𝑡) −

1

𝑠𝑟
𝜙′

𝜓
(
(𝑛𝑜 − 𝑛𝑜)𝛥𝑡

𝑠𝑟
) = 0 

→ 𝐼𝐹𝑦[𝜏 = 𝑛𝑜] =
1

𝑠𝑟
𝜙′

𝜓
(0) =

1

𝑠𝑟
𝐼𝐹𝜓(0) 

(3.26) 

 

The above relationship shows that the IF time-history of a mono-harmonic signal can be retrieved 

from the ridge of its CWT. This result has been used in structural dynamics and earthquake 

engineering (Staszewski 1998, Wang et al. 2013) to trace changes the resonant (natural) structural 

frequencies of non-linear structures in time through the CWT of response acceleration time-series 

as mentioned in Section 2.3.4. To this aim, Morlet wavelets proved to be rather advantageous as 

discussed in Section 3.2.1 since the above relationship simplifies by making use of equation (3.15) 
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𝐼𝐹𝑦[𝜏] =
𝜔𝜊

𝑠𝑟[𝜏]
. (3.27) 

 

Still, use of equation (3.25) requires robust computational methods to extracted the ridges of a 

wavelet spectrogram |𝑊(𝜏, s)|2 which can be viewed as “paths” of local maximum energy signal 

concentration on the time-period/frequency plane (see e.g., Figure 3-5 depicting the trivial case 

of ridge extraction of the wavelet spectrogram of a stationary harmonic signal with period 

T=0.01s). To this aim, numerous different optimisation formulations and algorithms have been 

proposed in the literature (e.g., Carmona et al. 1997, Staszewski 1998, Wang et al. 2013 and 

references therein).  

 

Figure 3-5 Wavelet spectrogram and ridge extraction for a stationary harmonic signal with T=0.01s period. 

 

Herein, an optimisation formulation detailed in Carmona et al. (1997) in conjunction with an 

algorithm proposed by Wang et al. (2013) are adopted for CWT ridges extraction. The 

formulation relies on a Lagrangian multiplier-style approach to define a penalty (objective) 

function Λ on the set of ridge candidates written in continuous-time as  

Λ(𝑡, 𝑠𝑟(𝑡)) = −∫|𝑊(𝑡, 𝑠𝑟(𝑡))|
2
𝑑𝑡 + 𝜆∫ 𝑠𝑟′(𝑡)

2 𝑑𝑡, 
(3.28) 

which needs to be minimised, where 𝑠𝑟(𝑡) is a ridge candidate and 𝜆 is a penalty factor. Note that 

for 𝜆 = 0, Λ is minimised by looking for the minimum of |𝑊(𝑡, 𝑠)|2 in the 𝑠𝑟(𝑡) direction 

(Carmona et al. 1997). In this setting, the second term in the objective function is introduced to 

smoothen out the fluctuations of the extracted wavelet ridge in time by forcing the search towards 

less abruptly changing candidates (i.e., controls the discontinuity of the ridge).  

For numerical implementation in discrete-time, equation (3.28) becomes 
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Λ[𝜏, 𝑠𝑟[𝜏]] = ∑ {−|𝑊[𝜏, 𝑠𝑟[𝜏]]|
2
+ 𝜆|𝑠𝑟[𝜏 + 1] − 𝑠𝑟[𝜏]|}

2
𝑁−1

𝜏=1

. 
(3.29) 

 

Then, the numerical algorithm in Wang et al. (2013) custom-coded script in MATLAB is used 

for ridge extraction. Figure 3-6 illustrates diagrammatically the ridge extraction algorithm which 

finds the minimum of Λ in equation (3.9) thus determining global maxima of |𝑊[𝜏, 𝑠]|2 at points 

(tk , Tk), k=1,2,… on the time-period plane.  

 

Figure 3-6 Ridge extraction procedure step - MATLAB® script.  

 

3.3.3 Illustrative applications of Morlet CWT ridge extraction  

In this sub-section, illustrative numerical examples are furnished to exemplify the accuracy of the 

ridge extraction algorithm and to delineate the concept of instantaneous frequency for mono-

harmonic signals and its relevance to the ridges of the Morlet CWT. Figure 3-7 demonstrates the 

potential of the CWT ridge to accurately trace on the time-period plane the IF of a 5s long mono-

harmonic signal with linearly varying frequency in time (linear chirp) having initial frequency of 

2.5Hz or period 0.4s (analytical form: 𝑓(𝑡) = 𝐴 ∙ 𝑐𝑜𝑠⁡(𝜔𝑡2)). Extracted ridges are marked by thick 

black line in the contour CWT plot. It is seen that outside the COI delimited by the red broken 

line the ridge follows accurately the signal IF. 
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Figure 3-7 Morlet CWT analysis of a mono-harmonic signal with linearly increasing frequency (chirp) of 

the form 𝑓(𝑡) = 𝐴 ∙ 𝑐𝑜𝑠⁡(𝜔𝑡2). Top panel: time-history; Middle panel: Contour Morlet CWT with ridges 

indicated by thick black lines; Bottom panel: Morlet CWT.   

 

Figure 3-8 illustrates the potential of the Morlet CWT ridge to localise time-limited mono-

harmonic signals in the presence of additive random noise. The test signal has the analytical form 

 

𝑓(𝑡) = {
cos(2𝜋𝜔0𝑡) , 0.1𝑠 ≤ 𝑡 < 0.3𝑠
sin(2𝜋𝜔1𝑡) , 𝑡 > 0.7𝑠

⁡⁡⁡⁡+ ⁡⁡⁡𝑁1 ∙ 𝑒(𝑡). (3.30) 

 

with t1=0.1s, t2=0.3s, t3=0.7s, 𝜔0 = 32⁡𝑟𝑎𝑑/𝑠 (period 0.196s), 𝜔1 = 64⁡𝑟𝑎𝑑/𝑠 (period 0.392s), 

N1=0.05. In the last equation, e(t) are uniformly distributed random numbers in the interval [0,1]. 



Chapter 3 - Morlet Wavelet-Based MIP and moving resonance of yielding structures 

 

 
76 

 

It is seen that CWT ridge analysis resolves frequencies 𝜔0 and 𝜔1 on the time-period plane with 

satisfactory time localisation while it is not affected by the additive random noise.  

 

 

 

Figure 3-8 Morlet CWT analysis of the signal in equation (3.30) with t1=0.1s, t2=0.3s, t3=0.7s, 𝜔0 =

32⁡𝑟𝑎𝑑/𝑠 (period 0.196s), 𝜔1 = 64⁡𝑟𝑎𝑑/𝑠 (period 0.392s), N1=0.05. Top panel: time-history; Middle 

panel: Contour Morlet CWT with ridges indicated by thick black lines; Bottom panel: Morlet CWT.   

 

Nevertheless, Figure 3-9 shows that CWT ridge analysis is affected by large level of additive 

noise. Specifically, a test signal following the analytical form in equation (3.30) with t1=0, t2=1, 

t3=3s, 𝜔0 = 100⁡𝑟𝑎𝑑/𝑠 (period 0.063s), 𝜔1 = 64⁡𝑟𝑎𝑑/𝑠 (period 0.098s), and N1=0.30 (i.e., noise 

amplitude equals 30% of signal amplitude) is considered in Figure 3-9(a). Evidently, extacted 

ridge lines become quite noisy and unreliable to resolve the signal frequencies from the noise as 

seen in Figure 3-9(b), even though frequencies 𝜔0 and 𝜔1  are visually seen in the contour Morlet 

CWT spectrogram. This observation demonstrates the limitations of CWT ridge analysis. This 

issue can be rectified by denoising first the test signal through standard low-pass filtering to 

eliminate the high-frequency noise. Figure 3-9(c) shows the contour CWT spectrograms of low-
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pass filtered signal in which the ridges now coincide with the visually discernible wavelet energy 

maximised at frequencies and times corresponding to the two harmonic signal segments (see also 

the CWT plotted in three-dimensions in Figure 3-9(d)). 

(a)

 
(b)

 
(c)

 
(d) 

 
Figure 3-9 Morlet CWT analysis of the signal in equation (3.30) with t1=0.1s, t2=0.3s, t3=0.7s, 𝜔0 =

32⁡𝑟𝑎𝑑/𝑠 (period 0.196s), 𝜔1 = 64⁡𝑟𝑎𝑑/𝑠 (period 0.392s), N1=0.05. Top panel: time-history; Middle 

panel: Contour Morlet CWT with ridges indicated by thick black lines; Bottom panel: Morlet CWT.   
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Overall, the herein reported numerical data support the capability of Morlet CWT spectrogram to 

visually discern the IF of mono-harmonic signals from the local wavelet energy concentration on 

the time-period plane. It was also seen that CWT ridges resolve signal IF as theory suggests for 

relatively low noise levels.   

 

3.4 Wavelet-based Mean Instantaneous Period (MIP) of recorded 

GMs 

Whilst the ridge analysis of the CWT spectrogram is a formidable approach to extract non-

stationary frequency content of mono-harmonic signals, the approach becomes less advantageous 

for multi-harmonic signals (as seen in Figure 3-10) and, in general, for broadband signals with 

large numbers of harmonics at each time instant (Carmona et al. 1999). The first reason is because 

of the increased complexity and computational cost of ridge extraction algorithms for multi-

harmonic signals increase significantly and their robustness to additive noise becomes an issue 

since high-pass filtering may actually eliminate parts of important signal information. The second 

reason is because knowledge of all (local) ridges becomes less important as those with low energy 

would most probably be less important/influential. Both the above reasons are particularly 

relevant for recorded GMs. Detailed ridge analysis of Morlet CWT for a large number of recorded 

GMs undertaken as part of this reaserch work (see left panel of Figure 3-11 for an example GM)  

showed that there usually exist tenths of ridges at each time instant while for higher frequencies 

(shorted periods) ridge curves tend to be too noisy to be meaningful. At the same time, previous 

published works demonstrated that the average frequency content rather than the dominant 

frequency characterises better the earhtquake damage potential of recorded GMs (Rathje et al. 

1998, 2004) as it correlates mostly with the fundamental pre-yielding structural natural period 

(e.g., Kumar et al 2011).  

 

Figure 3-10  Ridge extraction process based on local CWT maxima for multi-harmonic signals.   
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Figure 3-11  Wavelet-based significant evolutionary frequency content characterisation of a typical 

recorded GM on the time-period plane. Left panel: ridge analysis- thick black curves denote local Morlet 

CWT ridges; Right panel: thick black curve is the mean instantaneous period (MIP) computed from 

equation (3.31). 

 

In view of the above, the mean instantaneous frequency of the Morlet CWT spectrogram, MIF, 

in equation (2.9) or, equivalently, the mean instantaneous period, MIP=2π/MIF, is herein 

considered as a tool to trace time-varying features of frequency components of recorded GMs in 

a practically meritorious manner over the CWT ridges. To facilitate a qualitative comparison, 

Figure 3-11 juxtaposes CWT ridges and the MIP time-history of the CWT spectrogram plotted as 

thick back curves on top of the Morlet CWT spectrogram for a typical recorded GM. In this 

junction, it is important to note that for mono-harmonic signals the MIF in equation (2.9) 

coincides with the IF in equation (3.22). However, for multi-harmonic signals the MIF may not 

coincide with any of the existing frequency components (see Giaralis 2008 for numerical 

illustrations) at it provides an average (geometric mean) of all frequency components present at a 

given time instant in the signal. Still, in case a GM has a single prominent frequency component 

at some time instant as captured by the CWT spectrogram, the MIP will lie close to this prominent 

frequency on the time-period plane as it will be “attracted” by it. This is because the MIP=2π/MIF 

is a weighted average of the frequency components at each time instant with weights being the 

energy of the wavelet coefficients. To illustrate further this point, Figure 3-12 provides sections 

of CWT spectrogram along the period axis at two different instants. At instant ti the section has 

two prominent local peaks  at periods To and T1 and therefore the MIP[ti] will lie in between the 

two. At instant ti+1 the section has one dominant local peak at period To and therefore the MIP[ti+1] 

will pass close through To. Consequently, the MIP curve in the right panel of Figure 3-11 is 

attracted by the warm colors of the CWT spectrogram corresponding to higher energy 

concentration (larger values of magnitude wavelet coeffiecients). 
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Figure 3-12 Instantaneous CWT spectrogram across period axis. 

 

For the purposes of this work, the MIP of the Morlet CWT spectrogram is mathematically defined 

in discrete-time as  

 

⁡MIP[𝜏]=MIP(τΔ𝑡) =
∑ |𝑊[𝜏, 𝑠]|2𝑇𝜓(𝑠)
𝑆2
𝑠=𝑆1

∑ |𝑊[𝜏, 𝑠]|2
𝑆2
𝑠=𝑆1

 𝑓𝑜𝑟 
𝑡05
𝛥𝑡

≤ 𝜏 ≤
𝑡95
𝛥𝑡
, (3.31) 

 

where 𝑇𝜓 is the wavelet Fourier-based period of the Morlet analysis wavelet at scale s given in 

equation (3.16), S1 and S2 are integers specifying scales with “effective” period 𝑇𝜓  corresponding 

to frequencies 0.25Hz and 20Hz, respectively, and t05 and t95 are the time instants at which 5% 

and 95% of the total signal energy, respectively, has been accumulated in time. Three important 

practical considerations underpinning the above definition are in order in relation to recorded 

GMs. Firstly, the computation of the MIP circumvents the computationally involved for the case 

of recorded GMs CWT ridges. MIP only requires computing the standard CWT which can be 

efficiently done using equation (3.17) in conjunction with MATLAB “FFT” built-in command 

using the scale discretisation scheme in equation (3.18). Secondly, the MIP in equation (3.31) is 

band-limited to the same frequency interval as the Fourier-based mean period Tm in equation (2.5) 

specified by Rathje et al (1998) which is mostly relevant for structural earthquake engineering 

applications. Noting further the analogy between equations (2.5) and (3.31) it can be argued that 

the herein proposed MIP provides an estimate of the temporal evolution of the mean period 𝑇𝑚 

and, to this effect, it can be viewed as a generalization of 𝑇𝑚. Thirdly, the MIP is time-limited 

within a GM-dependent time-window in which the central 90% of the total signal energy lies. 

This time frame corresponds to the “effective duration” defined as (Trifunac and Brady 1975)  
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𝐷𝑠5−95=⁡𝑡95 − 𝑡05, (3.32) 

which is the most widely used criterion to define the significant duration of recorded GMs relevant 

to their structural damage potential (Kramer 1996). Figure 3-13 plots the MIP of a typical 

recorded GM superimposed on the Morlet CWT spectrogram and indicating the window of MIP 

calculation (limits in time and in frequency/period).  

 

 
Figure 3-13 Mean instantaneous period (MIP) in equation (3.31) (black thick curve) plotted on top of the 

contour Morlet CWT spectrogram. The window with broken white line indicates the limits of MIP 

calculation on the time-period plane. 

 

To further illustrate the potential of the herein proposed Morlet CWT-based MIP to represent the 

evolutionary trends of the average frequency content of recorded GMs, Figure 3-14 plots MIP 

time-histories of a small suite of 20 GMs listed in Table A-1 of the Appendix A and used by 

Vamvatsikos and Cornell (2002) to illustrate the application of IDA for a representative “scenario 

earthquake”. Significant dispersion is observed of the MIP values at every time instant and non-

monotonic fluctuation of individual MIPs. However, the ensemble average MIP has a distinct 

monotonic trend towards longer periods (lower frequencies) in time which is in alignment with 

physical considerations discussed in Section 2.3.1 (see also Figure 2-4). This average trend of 

MIPs is well represented by the mean slope of the ensemble average MIP indicated by a red 

broken line in Figure 3-14 whose significance will be discussed in the next Chapter.  

 

Figure 3-14 Morlet CWT-based MIP of the 20 GMs in Appendix A (Table A-1). The broken blue curve is 

the ensemble MIP average and the red broken line indicates the average (linear) slope of the blue curve 
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3.5 MIP of seismic inelastic structural response time-histories and 

illustration of moving resonance   

The suite of 20 GMs considered in the previous section (Table A-1 of Appendix A) is used in this 

section to perform IDA and to compare MIPs of the input GMs and of the output inelastic response 

time-histories aiming to draw relationships between the two as well as with inelastic phenomena 

reported in the literature and reviewed in Section 2.3 including transient softening and period 

elongation. To this aim, a single-degree-of-freedom (SDOF) hysteretic oscillator with strength 

and stiffness degradation following the inelastic model of Ibarra et al. (2005) as implemented in 

the OpenSees finite element platform (McKenna and Fenves 2001) is considered. The model 

incorporates energy-based parameters that controls four cyclic deterioration modes: basic 

strength, post-capping strength, unloading stiffness, and accelerated reloading stiffness 

deterioration. The capacity boundary curve of the adopted model is shown in Figure 3-15 defined 

parametrically by the elastic (initial) stiffness 𝐾𝑒, the yield strength 𝐹𝑦, and the strain-hardening 

stiffness 𝐾𝑠 = 𝛼𝑠𝐾𝑒. When deterioration is included, the softening branch initiates at the cap 

deformation (𝛿𝑐), which corresponds to the peak strength (𝐹𝑐) on the force axis. In the model there 

is the possibility to set the residual strength (𝐹𝑟), where the strength does not drop below this 

value.  

 

 

Figure 3-15  Parametric definition of the capacity boundary curve of the Ibarra et al. (2005) hysteretic 

model. 

The values of the Ibarra et al. (2005) model parameters used in the Opensees structural model are 

reported in Table 3.1 together with their qualitative description. It should be noted that the 

ductility capacity becomes unimportant if the cyclic deterioration parameter is very small 

(𝜆𝑆,𝐶,𝐴,𝐾=25), i.e. cyclic deterioration effects overpower the effect of monotonic ductility Ibarra 

et al. (2005). For simplicity it is assumed that all the rates of cyclic deterioration are approximated 

by the same c_S, c_K, c_A, and C_c value and taken as 1 Ibarra et al. (2005). 
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Table 3-1 Parameters adopted in Opensees definition of the Ibarra et al. (2005) hysteretic model 

Parameter Value Description 

𝑓𝑦 1  Normalised yield strength for positive and negative loading 

direction 

𝑓𝑐 1.02 Normalised peak strength for positive and negative loading 

direction 

𝑓𝑟 0 Normalised residual strength for positive and negative 

loading direction 

𝑢𝑦 1 Normalised first yield deformation 

𝑢𝑐 5 Normalised peak deformation 

𝑢𝑟 0 Normalised residual deformation 

𝑘0 𝑓𝑦

𝑢𝑦
 

Initial stiffness  

𝑘𝑠 (𝑓𝑐 − 𝑓𝑦)

(𝑢𝑐 − 𝑢𝑦)
⁡ 

strain-hardening stiffness 

 

as_plus, 

as_neg 
∓
𝑘𝑠
𝑘0

 
Strain hardening ratio after n modification  

FprPos 0.4 Ratio of the force at which reloading begins to force 

corresponding to the absolute maximum historic 

deformation demand 

A_Pinch 0.6 Ratio of reloading stiffness 

𝜆𝑆, 𝜆𝐶, 𝜆𝐴 100 Cyclic deterioration parameter for strength, post-capping and 

acceleration reloading stiffness deterioration  

𝜆𝐾 200 Cyclic deterioration parameter for unloading stiffness 

deterioration 

c_S, c_K, 

c_A, c_C 

1 Rate of strength deterioration, post-capping strength 

deterioration, acceleration reloading stiffness deterioration 

and unloading stiffness deterioration. The default value is 1.0 

 

The bilinear backbone curve of the considered oscillator has been calibrated, using the N2 

pushover method, against a regular benchmark 12-storey r/c frame with fundamental natural 

period of 0.715s designed according to the European seismic code of practice (EC8) for the high 

ductility class (Katsanos, Sextos and Elnashai 2014), (Mwafy and Elnashai 2001). The pre-yield 

natural period of the SDOF oscillator is equal to T1=0.966s and a viscous damping of 5% has 

been assumed. The overall plan dimensions of the configuration considered is 15 m×20 m. The 

total height is 36m with storey heights of 3 m. The lateral force resisting system is moment frames 
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with a solid slab as floor system. Live loads and loading from floor finishes and partitions are 

both assumed to be 2.0 kN/m2. The building is assumed to be founded on medium soil type ‘B’ 

of EC8 (firm). The cross-section capacities are computed by considering a characteristic cylinder 

strength of 25 N/mm2, yield strength of 500 N/mm2 for concrete and a characteristic for both 

longitudinal and transverse steel. 

 

  

Figure 3-16 Section and Plan view of the test building (Mwafy and Elnashai 2001) 

 

With the assumption that an SDOF equivalent systems would have similar elastic properties of 

the first period of the MDOF, an effective stiffness was introduced on the basis of the yield point 

of the bi-linear Standard Pushover (SPO): 

𝑇∗ = 2𝜋√
𝑚∗ ∙ 𝐷𝑦

∗

𝐹𝑦
∗

 (3.33) 

where 𝐹𝑦
∗ and 𝐷𝑦

∗ are, respectively, the yield strength point and displacement of the bi-linear 

standard pushover curve of which parameters are summarised in Table 3-2. 

The spectral pseudo-acceleration at the fundamental pre-yield natural period, Sa(T1,5%), has 

been used as the intensity measure (IM) in conducting IDA, while the immediate occupancy (i.e. 

in terms of the peak deflection (or drift) 𝜃𝑚𝑎𝑥 ⁡= 2%, following the FEMA guidelines, (FEMA 

P-58-1 2012)) and the near collapse (or collapse prevention) limit states are defined in terms of 

the peak deflection of the oscillator (i.e.⁡𝜃𝑚𝑎𝑥 ⁡= 8% or when the IM-curve has a tangent slope 

equal to 20% of the elastic slope) following the recommendations of (Vamvatsikos and Cornell, 

2002). In this study, the N2 method (P. Fajfar 2000) have been considered to substitute the above 
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five multi-storey structures by SDOF oscillators exhibiting a bilinear (envelope) pushover curve 

as shown in Table 3-2. 

 

Table 3-2 SDOF Properties (Mwafy and Elnashai 2001) – Normalised to the Yield values 

SDOF Deformation Base Shear Stiffness [kN/m] 

 Yield Collapse Yield Collapse Elastic Post-Yield 

12RFDCH 1 5 1 1.02 18260 76 

 

Stability (bounded solution) and accuracy are the most important issues of time integration 

schemes. For this reasons a Newmark Average Acceleration where 𝛼 = 0.5 and 𝛽 = 0.25 with a 

time step of ∆𝑡 = 0.01⁡𝑠 to avoid numerical instability. This model uses Rayleigh damping which 

formulates the damping matrix as a linear combination of the mass matrix and stiffness matrix:  

 

[𝑐] = 𝑎0 ∙ [𝑚] + 𝑎1 ∙ [𝑘] (3.34) 

 

where 𝑎0 is the mass proportional damping coefficient, 𝑎1 is the stiffness proportional damping 

coefficient and [𝑚] and [𝑘] are, respectively, the matrix of mass and stiffness. 

 

 

Figure 3-17  Capacity Boundary curve as implemented in Opensees  

In this junction, the same Morlet CWT-based MIP in equation (3.31) is used to treat acceleration 

structural response time-series, one for each limit state considered. Note that mathematically this 
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is a variation of the MIF introduced by Spanos et al. (2007a) obtained here in terms of period 

(MIP=2π/MIF) using a significantly different analysis wavelets (Hamornic wavelets as opposed 

to Morlet) suited for damage detection purposes (see also Gkoktsi and Giaralis 2015) rather than 

for smooth time-varying frequency content tracing considered in this research. Here Morlet 

wavelet-based, named MIRP(t), time-histories are derived from zero-mean acceleration response 

(output) signals obtained from IDAs. It is important to note that this Mean Response Period is not 

the fundamental period of the structure as obtained from a forced response where the input 

frequency energy is present in the wavelet transform. At this stage, though, the MIPR(t) will give 

useful insight information capable to shed light into concepts and effects otherwise hidden, and 

for these reasons it has been used as comparative measure.  

It is observed (Figure 3-18 and 3-19) for all individual GM records considered that the MIRP of 

the output signal tend to converge to the MIP of the GM in a point-wise manner within the strong 

ground motion duration as the IM increases, or equivalently as the structure approaches the near 

collapse limit state (see Figure 3-18 and 3-19 for illustrative examples). This is the “moving 

resonance” phenomenon firstly described by Beck and Papadimitriou (1993) in the context of 

stochastic dynamics. This is usually true (i.e., the MIRP of the output at near collapse state to 

trace closely the MIP of the input GM) after the first derivative (slope) of the input MIP attains 

locally in time a relatively large value or after the input MIP is close to T1 (Fundamental Period 

of the structure). Two representative examples are shown in Figures 3-18 and 3-19 for the No. 13 

(Imperial Valley, 1979, Chihuahua (282) Station) and the No. 12 (Superstition Hills (1987), 

Wildlife Liquefaction Array (090) Station) GMs. For the former GM considered, the output 

MIRP(t) curve at near collapse state begins to trace closely the input MIP(t) curve after about 𝑡 =

10⁡𝑠⁡when a relatively steep slope in the input MIP(t) lasting for about 4s is observed. Here it is 

to note that a period of “strong” energy frequency content, imposed by the input (Figure 3-18), is 

suffered by the structure whose frequency follows the input frequency. At the end of this 4s 

period, it is presents a local large deterioration “cycle” with a large step in the dissipated energy 

(about 25%) clear from the yielding energy ratio plots 𝜆 = 𝐸𝑦 𝐸𝑦𝑚𝑎𝑥⁄  (Figure 3-18) (see 

Appendix B for a definition of this ratio). A change in the frequency content is clearly present in 

the so-called 𝜐(𝑡) = 𝑀𝐼𝑅𝑃𝐿𝑆(𝑡) 𝑀𝐼𝑅𝑃𝑒𝑙(𝑡)⁄  ratio (the ratio between the MIRP(t) at different 

Limit States and the Elastic MIRP(t)) which shows a local increase right after the “damage” 

occurred with a “temporary shift” in period (Figure 3-18). 
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Figure 3-18. MIPs of input and output signals considered in the IDA analysis for the Ground Motion No. 

13 GM (Imperial Valley, 1979, Chihuahua (282) Station). The number of scaled curves in this case is 11. 

 
 

This important effect it is also visible a few seconds after (around 18s - Figure 3-18) when another 

“input energy push” is given by the GM, visible from the point-wise period convergence, followed 

again, with the presence of a large deteriorated cycle and a consequential “shift” in period. The 

final point-wise “accordance” in frequency happened after again a long local steep increasing in 

GM period with larger consequences suffered by the structure which reaches its dissipated 

maximum energy level and collapses. Here the MIPR(t) shows only the input energy associated 

with the GM’s MIP(t) as the energy frequency content of the structure isn’t enough to react to the 

GM influence.  

For the latter considered GM (action n.8), the output MIRP(t) at near collapse state begins to trace 

closely the input MIP after about 𝑡 = 9⁡𝑠 when the input MIP tends to sharply increase in period 

for about 10s. The final frequency accordance between the input and the output happened after 
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80% circa of the energy is dissipated. Similar trends are observed for the input/output MIPs of 

the rest of the GMs considered not shown here for brevity. 

 

 
Figure 3-19. MIPs of input and output signals considered in the IDA analysis for the No. 8 GM.  

 

 

Lastly, Figure 3-20 summarises and plots all the output MIPs for the “immediate occupancy” (or 

after first yielding) limit state and for the near collapse limit state, respectively. The most 

important observations pertain to the level of variability of the MIPs which is higher for the near 

collapse state and to the mean slope of the ensemble average MIP (shown in broken lines) which 

is steeper for the near collapse state. The latter observation relates mostly to the phenomenological 

“period elongation” phenomenon as indicated in Figure 3-20 which superposes the slopes of the 

mean ensemble average MIPs of GM’s input, with the MIRP(t) of the output- after first yielding, 

and the MIRP(t) of the output- near collapse limit state (Figure 3-20). As a final remark, Figure 

3-20 (right panel) shows clearly that the slope of the output at near collapse limit state lies much 

closer to the input slope compared to the slope of the output after first yielding. This observation 
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suggests that the average slope of the MIP may be a useful record selection criterion/scalar in 

performing IDA.  

 

 

Figure 3-20. Morlet wavelet based MIRPs of response acceleration signals at immediate occupancy (after 

first yielding – blue line) and at near collapse limit states (red line), respectively, and average slope of the 

ensemble average MIPs. On the right input/output average slopes of the ensemble average MIPs 

 

3.6 Concluding Remarks 

A time-dependent wavelet-based mean instantaneous period (MIP) has been put forth as a 

numerical tool to characterize the time-varying frequency content of typical far-field recorded 

earthquake ground motions (GMs) and to probe into the hysteretic response of seismically excited 

yielding structures. The MIP captures well the temporal change of the average frequency content 

of GMs towards lower frequencies by considering the MIPs of 20 scenario earthquake GMs 

derived using two different wavelet families. It is further argued that the MIP can be viewed as a 

generalization of the Fourier-based mean period Tm. This argument is based on the observation 

that temporal averaged MIPs lie reasonably close to Tm for judicially defined wavelet bases. 

Moreover, MIRPs of acceleration response signals are examined derived from incremental 

dynamic analysis applied to a hysteretic oscillator representing a benchmark 12-storey r/c frame 

for the above suite of GMs. It is observed that the response signal MIRPs tend to converge to the 

GM MIP in a point-wise manner as stronger inelastic behaviour is exhibited (moving resonance 

phenomenon). Further, it is shown that the slope of the ensemble average MIRP for the near-

collapse limit state lies close to the ensemble average GM MIP, while it may also be treated as 

indicator of the so-called “period elongation” phenomenon for degrading inelastic structures. 

Overall, the herein reported numerical data suggest that the time-varying frequency content is an 
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important influence factor for hysteretic systems especially at the near collapse limit state and that 

the slope of the MIP might be used as a record selection criterion accounting for the influence of 

the time-varying frequency content of GMs to structural response within the performance-based 

earthquake engineering framework. The insights gained on the relationship between input GM 

MIP and hysteretic response MIP as well as the potential of the MIP to trace the average non-

stationary frequency content of GMs motivates the definition of a scalar quantity related to the 

wavelet-based GM MIP detailed in the next Chapter in order to quantify the influence of the non-

stationary excitation frequency content to the hysteretic structural response.  

As a closure to this chapter, it is important to highlight the main difference of the proposed MIP 

with respect to the MIF=2π/MIP in Spanos et al. (2007). The usage and purpose of the MIP is 

different and, therefore, novel: In Spanos et al. (2007) MIF was used for earthquake induced 

damage detection. Here, MIP is ultimately used to trace the time-varying frequency content of 

GMs and, eventually, to define (chapter 4) a novel scalar metric quantifying the evolving 

frequency content of GMs.    
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Chapter 4 

“Alpha” (α): A Novel Wavelet-based 

Scalar Capturing the Average Non-

Stationary Frequency Content of Recorded 

GMs 
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4 Preliminary remarks 

The MIP of recorded GMs in equation (3.31) was found useful to visualize qualitatively the 

evolutionary trend of the mean frequency content of GMs as seen in Section 3.4. However, being 

a time-history on the time-period plane, it bears limited practical merit to serve as an index 

quantifying the evolving frequency content of GMs. For this task, defining a scalar quantity is 

desirable in alignment with all various GM properties currently used in PBEE either as IMs (e.g., 

PGA, PGV, Sa(T1)) or as record selection criteria (e.g., M, R, ε) to characterise recorded GMs 

(see Section 2.1 for detailed review and references). For this purpose, it is herein proposed to 

consider the mean slope of the MIP, henceforth termed “alpha”, 𝛼, as a scalar that captures the 

evolutionary trend in time of the mean frequency content of recorded GMs. This consideration is 

motivated by the numerical evidence provided in Section 3.5 demonstrating that the slope of the 

ensemble mean MIP of inelastic response time-histories (output of NRHA) increases and gets 

closer to the slope of the ensemble mean MIP of the recorded GMs (input of NRHA) as the level 

of nonlinear behaviour (limit state) increase through amplitude GM scaling in the context of IDA. 

Though limited, this evidence showcases that, on the average, the mean slope of the output MIP 

correlates to period elongation of yielding structural systems which, in turn, was shown to be a 

potent EDP in the context of PBEE (Trevlopoulos and Guéguen 2016). At the same time, the 

input MIP mean slope correlates with the output MIP mean slope which, ultimately, implies that 

the MIP mean slope of GMs is a GM property that will relate to structural damage potential in a 

statistical context.  

In this Chapter, the 𝛼 property of GMs is first defined mathematically and then statistical 

relationships of α with seismological parameters (M,R), local soil conditions (shear wave velocity 

Vs30) as well as PGA and PGV (i.e., arguably the most commonly adopted non-structural IMs in 

IDA) are derived and discussed to gain physical insights oν the significance of  α. This is achieved 

by means of standard linear regression analyses pertaining to a databank of 611 far-field GMs. 

Lastly, standard statistical sufficiency testing of PGA and PGV against α is undertaken involving 

IDA for the inelastic SDOF system previously used in Section 3.5 subjected to the above large 

suite of GMs to verify that non-stationary GM frequency content, as captured by α, does influence 

peak seismic inelastic ductility demands. This influence is quantified in subsequent Chapters.    
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4.1 Mathematical Definition of the α Property of Recorded GMs 

The proposed scalar quantity 𝛼 of a given GM is the slope of the linear function fitted using 

standard least squares minimisation criterion to the CWT-based MIP determined by equation 

(3.31) as graphically shown in Figure 4-1.  

 

 

Figure 4-1 Definition of the mean slope α of the Morlet CWT-based MIP  

 

Specifically,  assume that the MIP is given at discrete time instants with time step Δt, which, 

without loss of generality, can be taken equal to the time-step of the recorded GM. Introducing 

the notation MIP[τ]=MIPτ and tτ=τΔt, the parameters 𝛼0 and 𝑎 of the linear function are 

determined by minimising the objective function 

 

∑[MIP𝑖 − (𝛼0 + 𝛼𝑡𝑖)]
2

𝜏2

𝑖=𝜏1

, 
 (4.1) 

where 𝜏1 =
𝑡05
𝛥𝑡
⁡⁡𝑎𝑛𝑑⁡⁡𝜏2 =

𝑡95
𝛥𝑡

  following the definition of the MIP in equation 3.31. 

This is achieved by satisfying simultaneously the following two conditions (e.g., Benjamin and 

Cornell (1970) 

𝜕

𝜕𝛼0
∑[𝑀𝐼𝑃𝑖 − (𝛼0 + 𝛼𝑡𝑖)]

2

𝜏2

𝑖=𝜏1

=∑ 2[𝑀𝐼𝑃𝑖 − (𝛼
0
+ 𝛼𝑡𝑖)] ∙ (−1)

𝜏2

𝑖=𝜏1

= 0 
 (4.2) 
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𝜕

𝜕𝛼
∑[𝑀𝐼𝑃𝑖 − (𝛼0 + 𝛼𝑡𝑖)]

2

𝑛2

𝑖=𝑛1

= ∑2[𝑀𝐼𝑃𝑖 − (𝛼
0
+ 𝛼𝑡𝑖)] ∙ (−𝑡𝑖)

𝜏2

𝑖=𝜏1

= 0 
 (4.3) 

 

Further algebraic manipulation leads to the following system of linear equations in 𝛼0, 𝛼 

𝑀𝐼𝑃̅̅ ̅̅ ̅ − 𝛼0 − 𝛼�̅� = 0  (4.4) 

∑𝑀𝐼𝑃𝑖 ∙ 𝑡𝑖

𝜏2

𝑖=𝜏1

⁡− (𝜏2 − 𝜏1)𝛼0�̅� − 𝛼∑ 𝑡𝑖
2

𝑛2

𝑖=𝑛1

= 0 

 (4.5) 

where 𝑀𝐼𝑃̅̅ ̅̅ ̅̅ , 𝑡̅, are sample mean values (see also Appendix C). The solution of the above system 

of equations yields 

𝛼0 = 𝑀𝐼𝑃̅̅ ̅̅ ̅ − 𝛼�̅� 
 (4.6) 

𝛼 =
∑ MIPi ∙ 𝑡𝑖 − 𝑀𝐼𝑃̅̅ ̅̅ ̅ ∙ �̅�
𝜏2
𝑖=𝜏1

∑ 𝑡𝑖
2𝜏2

𝑖=𝜏1
− (𝜏2 − 𝜏1) ∙ (�̅�)

2
 

 (4.7) 

Therefore, equation (4.7) provides for a mathematically rigorous definition of the α GM property 

as well as a useful formula for its numerical evaluation given a discrete-time MIP time series and 

together with the vector of discrete time instants at which the MIP has been computed.  

For the purposes of this work, the angle 𝛼 is measured in degrees and is assigned a positive value 

when the mean MIP increases with time (i.e., when the average GM frequency content evolves 

from shorter periods/higher frequencies to longer periods/lower frequencies as shown in the 

illustrative example in Figure 4-2), while is assigned a negative value when the mean MIP reduces 

in time (i.e., when the average GM frequency content evolves from longer periods/lower 

frequencies to shorter periods periods/higher frequencies as shown in the illustrative example in 

Figure 4-3). Further, it is important to note that the length of the observation time window 

(duration) spanning the fitted linear function assumed in the derivation of α affects the value of α 

in as much as it affects MIP trends. From a PBEE viewpoint, it is of interest to monitor MIP 

during the relatively strong part of the recorded GM. Thus, an observation time window equal to 

the effective duration Ds5-95 in equation (3.32) is adopted throughout this study as indicated in 

equation (4.1). This definition of GM duration corresponds to the time window in which 90% of 

the central GM energy is released and is the most widely used metric to measure the duration of 

GMs of interest in earthquake engineering (Kramer 1996). As a final remark on the definition of 

α, it is important to note that the 𝛼 index is invariable to GM amplitude scaling heavily considered 
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in deriving IM-EDP relationships within the PBEE context as discussed in Section 2.1. This is 

because the CWT is a linear transformation and any amplitude GM scaling factor cancels out by 

definition of the MIP in Eq.(3.31).  

 

 

Figure 4-2 Recorded GM component RSN122: Friuli, Italy (1976)- see GM set 2 description in Appendix 

A. Upper panel: acceleration time-history; middle panel: contour plot of Morlet CWT spectrogram with 

MIP; lower panel: GM property α (slope of mean MIP) 
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Figure 4-3 Recorded GM component RSN726: Superstition Hill, CA (1987) see GM set 2 description in 

Appendix A. Upper panel: acceleration time-history; middle panel: contour plot of Morlet CWT 

spectrogram with MIP; lower panel: GM property α (slope of mean MIP) 

 

4.2 Statistical relationships of 𝛼 with seismological parameters, local 

soil conditions, and GM properties 

To gain an intuition on non-stationary average frequency content trends of typical far-field 

recorded GMs, the angle 𝛼 defined in the previous section has been computed using equation 

(4.7) for 611 recorded GMs from 30 different seismic events with magnitude range 6.5<M<8 and 

distance to rupture plane range 20km<Rrup<120km with no “pulse-like” content as classified by 

Baker (2007). The considered GMs, listed in Table A-2 in Appendix A, have been downloaded 

from the PEER NGA-West2 Ground Motion Database and post-processed as detailed in 

Appendix A. They achieve a good spread on the M-Rrup plane as shown in Figure A-1 which 

supports well the purpose of investigating statistically the α values for a wide/inclusive range of 



Chapter 4 - “Alpha” (α): A Novel Wavelet-based Scalar Quantity 

 

 
98 

 

seismological parameters. In computing the 𝛼 for each GM, the Morlet CWT is first obtained 

using equation (3.17) and, next, the MIP of the Morlet CWT spectrogram is determined using 

equation (3.31). Finally, the α is calculated for each record from equation (4.7).  

Overall, visual record-by-record qualitative inspection of Morlet CWT spectrograms and MIPs 

of all the 611 GMs herein considered (not presented for obvious practical reasons) suggests that 

the obtained α values of reflect well the actual average-in-time evolutionary trend of the mean 

frequency content as captured by the Morlet CWT. Following seismological considerations, it is 

expected that typical horizontal far-field GMs with no near-fault signatures would normally have 

a positive 𝛼 since the seismic waves that arrive first at a recording station are dominated by higher 

frequencies while lower frequencies kick in at later times (see e.g., Kramer 1996, Rezaeian 2008, 

Jian et al. 2014). Indeed, this is true for more than 90% of the 611 far-field GM components 

examined (see Figure 4-2 for a typical example). Nevertheless, there are also far-field GMs with 

𝛼<0, as the recorded acceleration considered in Figure 4-3. Careful examination of the CWT 

spectrograms and the associated MIPs reveal that GMs with negative 𝛼 values are typically 

characterized by the late appearance of significant bursts of energy carried at slightly higher 

frequencies compared to the mean frequency content at the beginning of the GM. 

Further to the above qualitative investigation of the α values obtained, standard linear regression 

analysis is undertaken to establish statistical relationships between 𝛼 and three different GM 

properties, namely PGA, PGV, and Tm, widely used in PBEE as discussed in section 2.1. For each 

GM, the values of PGA and PGV reported in the PEER NGA-West2 database are used, while Tm 

is computed using equation (2.5). Further, a similar regression analysis is also undertaken between 

α and the shear wave velocity Vs30 value (a representative measure of the local soil site conditions) 

as defined and reported in the same database. The aim of these analyses is to quantify the 

regression slope coefficients between α and PGA, PGV, Tm, and Vs,30 which, upon qualitative 

interpretation, can serve as evidence that α is a valid index to capture the non-stationary frequency 

trends of GMs, based on phenomenological arguments, rather than a signal analysis artefact.   

 

Table 4-1 Regression analysis results between α and four different GM properties 

Y R2 
Standard 

error (SE) 
Coefficient 

Coefficient 

Value 

95% confidence 

interval 
p-value 

PGA 0.0038 0.646 

C0 

(intercept) 
1.16 1.019 1.318 4.22·10-18 

C1 (slope) 0.97 -0.29 2.246 0.1304 
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PGV 0.103 0.004 

C0 

(intercept) 

0.72 0.565 0.872 5.75·10-18 

C1 (slope) 0.036 0.0275 0.044 3.5·10-16 

𝑻𝒎 0.06 0.14 

C0 

(intercept) 
0.56 0.328 0.798 3.2·10-6 

C1 (slope) 0.90 0.618 1.182 6.52·10-10 

VS,30 0.03 0.0002 

C0 

(intercept) 
1.70 1.482 1.925 4.88·10-18 

C1 (slope) -0.001 -0.0017 -0.0006 1.95·10-5 

 

 

Figure 4-4 Linear regression analyses results of α against PGA, PGV, Tm and Vs30 as indicated in the title 

of each panel for the GM data set of Table A-2 (Appendix A). 
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Figure 4-4 plots clouds of the 611 data points along with the mean linear estimatοrs of α against 

the four considered properties obtained from linear regression analysis of the form (see also 

Appendix C for further technical details) 

 

�̂� = 𝐶0 + 𝐶1 ∙ ⁡𝑌 (4.8) 

 

where Y is the property under consideration (i.e., either PGA, PGV, Tm, or Vs,30). Further, Table 

4-1 collects the coefficient of determination R2, the standard error of regression as well as the 

values and confidence intervals of the determined regression coefficients Co and C1 (see Appendix 

C for mathematical definitions and significance of these quantities). The same Table reports p-

values testing the likelihood of the hypotheses that Co=0 or C1=0 for all regression analyses 

undertaken. The p-value indicate the minimum significance level of the test for which the 

Hypothesis ℋ0 is falsified (rejected). In mathematical terms: 

 

ℋ0 ∶ ⁡the⁡slope⁡𝐶0 = 0⁡; ℋ0 ∶ ⁡the⁡intercept⁡𝐶1 = 0 

𝑇(𝑥):⁡Significance⁡levels⁡ = ⁡𝑃[reject⁡ℋ0⁡|⁡ℋ0⁡correct]  

(4.9) 

𝑝𝑣𝑎𝑙𝑢𝑒 = inf⁡{𝛾𝐼: 𝑇(𝑥) ∈ 𝐷𝐶} (4.10) 

 

where 𝑇(𝑥) is the test statistic 𝐷𝐶 is falsified region (critical region). Therefore, if there is a solid 

evidence against the hypothesis ℋ0 then 𝑝𝑣𝑎𝑙𝑢𝑒 is small (appendix D).  

It is deduced from Figure 4-4 that, on the average, 𝛼 is not significantly affected by the PGA as 

the mean fitted linear function to the (α, PGA) pairs of values is almost flat. Indeed, the fact that 

the p-value of the slope C1 coefficient of the regression analysis is relatively high in this case, 

confirms that the either way small value of the slope is not statistically significant with high 

probability (i.e., the null hypothesis of C1=0 is most likely valid). However, the average value of 

a increases appreciably as PGV increases in Figure 4-4 and slope coefficient C1 of the regression 

analysis is statistically significant as the p-value is very small (i.e., C1 is not zero with high 

probability). These trends can be intuitively justified based on the following two simultaneously 

applicable considerations. The first is that GMs with larger PGV values tend to be richer in low 

frequencies because the velocity trace of GMs is derived by integration of the acceleration trace 

which is a low-pass filtering operation suppressing the higher frequency components and 

accentuating the lower frequencies (Worden 1990). The second is that lower frequency 

components in a typical GM usually appear at later times compared to the high frequencies due 
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to the early arrival of the p-waves (see e.g., Figures 2-5 and 4-2 for a typical examples). Therefore, 

it is natural to expect that the higher the PGV value in a typical GMs is, the more significantly the 

mean frequency content shifts in time from the higher to the lower frequencies. And if this shift 

is to be accommodated within roughly the same effective duration (note that in Table 4-1 most 

GMs considered are associated with a relatively narrow magnitude range, 7<M<7.5, and hence 

with roughly the same effective duration as the latter correlates well with the magnitude (Kramer 

1996), then the angle 𝛼 (i.e., rate of change of the mean frequency content from higher to lower 

frequencies for α>0) attains higher values.  

The validity of the above reasoning is further reinforced by examining the average a-𝑇𝑚 trend in 

Figure 4-4. Specifically, it is seen that α increases with increasing mean frequency (averaged over 

all times). Hence, it is confirmed that the rate of change in time of the mean frequency content is, 

on the average, higher for GMs with rich mean low frequency content. The latter observation has 

also been reported by Rezaeian and Der Kiureghian (2010) in which the rate of change of the 

average frequency content was used as one of the parameters defining a non-stationary GM 

stochastic model but was extracted from a databank of recorded GMs based on the average zero-

crossing rate of GMs: a very different time-domain approach from the wavelet-based one herein 

adopted. Turning the attention to the 𝛼-Vs30 trend in figure 4-5 it is observed that a decreases as 

local soil conditions becomes “stiffer” (Kramer 1996), that is, as the value of Vs30 increases.  

 

Figure 4-5 Linear regression analyses results of α against Tm and Vs30 as indicated in the title of each panel 

for the GM data set of Table A-2 (Appendix A) classified in 2 different PGA bins. 
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Figure 4-6 Linear regression analyses results of α against magnitude M and fault distance Rup as indicated 

in the title of each panel for the GM data set of Table A-2 (Appendix A) classified in 2 different PGA bins. 

 

This trend can be readily justified by taking as a fact that 𝛼 is higher for GMs with richer low 

frequency content and by considering that soft soils shifts the frequency content of the GMs 

towards lower frequencies (Kramer 1996). Alternatively, by reversing the above line of 

arguments, Figure 4-4 can be used as further evidence that the temporal rate of change of the 

mean frequency content is higher for GMs that are richer in low frequencies. Overall, the 

statistical data furnished in Table 4-1 and Figure 4-5 suggest that despite the large 

scattering/variability of the 𝛼 with all 4 considered scalars as evidenced by the small R2 values of 

the regression analyses, it is seen that 𝛼 is mostly related to the mean frequency content: GMs 

with lower frequency content tend to have larger 𝛼 values. To gain an insight on the potential 

dependency of the angle 𝛼 on the amplitude of the GM acceleration trace as captured by the PGA, 

further linear regression analyses are undertaken between 𝛼 − 𝑇𝑚 and 𝛼 − 𝑉𝑆30 upon dividing the 

GM dataset of Table A-2 (Appendix A2) into 2 different bins according to their PGA: (i) 

PGA≤0.12g; low-to-medium intensity GMs, (ii) PGA>0.12g; medium-to-high intensity GMs. 

The mean regression lines between 𝛼 − 𝑇𝑚 and 𝛼 − 𝑉𝑆30  are plotted in Figure 4-5, respectively, 

for all bins on top of data points clouds mapped according to the considered PGA-based 

classification. It is observed that as PGA increases, the average value of 𝛼 becomes more sensitive 

to the values of both the 𝑇𝑚 and Vs30. Indeed, the rate by which the mean estimated value of 𝛼 

increases as the low frequency content of GMs becomes richer depends significantly on the PGA: 

the slope of the lighter coloured regression line corresponding to high intensity GMs is 

significantly steeper from the dark-coloured regression line. Note that the small p-values reported 

on the figures for the C1 regression slopes provide confidence about the statistical significance of 
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the reported data. This result indicates that although PGA is not well-correlated with 𝛼 directly 

(at least not as much as the PGV in Figure 4-4), it does influence the expected value of 𝛼 

significantly for GMs rich in low frequency content. This trend can be attributed to the fact that 

typical GMs with relatively high PGA and PGV values are characterized by an early significant 

high frequency content, which drives the MIP towards high frequencies (short periods) at the 

beginning of the GM, and by rich low frequency content kicking in later in time, which shifts the 

MIP towards long periods at a fast rate (i.e., with a large 𝛼 value). The above observation is also 

verified by visual inspection of the Morlet CWT spectrograms and MIPs of GMs with 

PGA>0.12g. Furthermore, Figure 4-5 suggests that the expected (average) value of 𝛼 is more 

sensitive to the soil conditions for high intensity GMs. Indeed, for the PGA≤0.12g bin, the average 

regression line of a with respect to the soil stiffness is flat: the expected value of 𝛼 is not sensitive 

to soil conditions. However, the average 𝛼 value increase as softer soils and higher PGA values 

are considered. This trend can be readily attributed to the fact that soft soils exhibit stronger non-

linear behaviour under intense (high amplitude) seismic shaking compared to stiff soils (Kramer 

1996), which reflects on the frequency content of GMs becoming richer in low frequencies. 

Lastly, the regression lines in Figure 4-6 suggest that the magnitude and the distance to rupture 

Rrup (at least within the considered ranges of 6.5<M<8 and 20km< Rrup <120km, respectively) do 

not influence a in a direct manner. 

 

4.3 Non-sufficiency of PGA and PGV against 𝛼 for Peak Inelastic 

Response Prediction  

Having established statistical relationships/trends between 𝛼 and a number of well-established 

GM properties including PGA and PGV used as IMs in PBEE, attention is herein focused on 

providing statistical evidence on the existence of potential influence of 𝛼 to peak inelastic seismic 

demands of yielding structures, before embarking on quantifying this influence for different 

structures. To this aim, sufficiency testing of the two most widely used non-structure specific IMs 

in PBEE, namely PGA and PGV, to predict the most commonly adopted EDP, namely peak inter-

storey drift ratio, 𝜃𝑀𝐴𝑋, against α is herein pursued (see also Section 2.1.2). The adopted statistical 

test is interpreted as follows: if the adopted IM (i.e., PGA or PGV) is shown to be non-sufficient 

in predicting 𝜃𝑀𝐴𝑋 against α, then this means that α “carries information” about θmax not included 

in PGA and PGV (see also discussion in Section 2.1.2). Indirectly, this further means that α 

influences 𝜃𝑀𝐴𝑋 in a statistical context. This can be better appreciated by noting that one way to 

rectify non-sufficiency of a specific scalar IM (say PGA or PGV) in establishing IM-EDP 

relationship against some other parameter (say α), is to include this parameter (α) in the 

specification of the IM resulting in a vector IM (see e.g., Baker and Cornell 2005).    
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Figure 4-7 Adopted IM-EDP sufficiency testing. 

 

In this context, a standard two-step sufficiency IM test is adopted which involves undertaking a 

different linear regression analysis at each step as delineated in Figure 4-7 (see also Tothong and 

Luco 2007, Mollaioli et al. 2013). In the first step, regression analysis between the IM and the 

engineering demand parameter EDP (𝜃𝑀𝐴𝑋) is undertaken (left panel of Figure 4-7) to obtain the 

residuals⁡𝜀|𝐼𝑀 as defined in Appendix C. Under the common assumption that IM-EDP 

relationship follows a power law, the linear regression model is written as 

 

𝑙𝑛(𝜃𝑚𝑎𝑥) = 𝑙𝑛(𝐶0
∗) + 𝐶1

∗ ∙ 𝑙𝑛(IM) (4.11) 

 

where 𝑙𝑛(𝐶𝑜
∗) and 𝐶1

∗ are the intercept and the slope regression coefficients of the ln(EDP)-ln(IM) 

relationship, respectively. In the second step, regression analysis is undertaken between the 

residuals ⁡𝜀|𝐼𝑀 and α as in (right panel of Figure 4-7) 

 

𝜀|IM = 𝐶𝑜
′ + 𝐶1

′ ∙ 𝛼. (4.12) 

 

Then, IM-EDP sufficiency is measured by the statistical significance of a non-zero slope in the 

last regression analysis, 𝐶1
′. If the p-value of the estimated slope coefficient between 𝜀|𝐼𝑀 − 𝛼 is 

adopted to test whether the null hypothesis 𝐶1
′ = 0 is true (see also Appendix D), then a relatively 

small p-value (typically <5%) in conjunction with an appreciably 𝐶1
′ value different than 0 (non-

flat regression line) indicate that the IM is non-sufficient in predicting the EDP (𝜃𝑀𝐴𝑋) against α 
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This is because a statistically significant non-zero trend in the regression in equation (4.12) shows 

that 𝛼 correlates with the residuals 𝜀|IM and, hence, the adopted IM would benefit by the 

additional information carried by α to improve its ability for EDP values prediction in the 

regression analysis in equation (4.11).  

 

Figure 4-8 Regression analysis of 𝜀|𝑃𝐺𝑉 residuals with 𝛼 (p-value=0.0186) 

 

Figure 4-9 Regression analysis of 𝜀|𝑃𝐺𝐴 residuals with 𝛼 (p-value=0.0096)  

 

Following the above sufficiency testing approach, clouds of 𝜀|𝑃𝐺𝑉 and 𝜀|𝑃𝐺𝐴 residuals with a 

are plotted in Figures 4-8 and 4-9, respectively (count: 611), along with the fitted linear regression 

lines. The EDP 𝜃𝑚𝑎𝑥 values used in the regression analysis in equation (4.11) are obtained by 

performing IDA for the 611 GMs considered in the previous section (Table A-2 in Appendix A) 

to the SDOF hysteretic oscillator with strength and stiffness degradation presented in section 3.5 

and implemented in OpenSees finite element platform. It is seen in Figures 4-8 and 4-9 that there 

is a non-negligible linear trend (slope 𝐶1
′) in the fitted regression lines which is statistically 
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significant as indicated by p-values lower than 0.05 (Howell 2007). These low p-values 

demonstrate non-sufficiency of the IM considered (PGA, PGV) to predict peak seismic storey 

drift demands in the considered yielding structural system against 𝛼. In this respect, 𝛼 has a 

statistically significant influence to peak inelastic demand and this effect is more prominent when 

adopting PGA as the IM as opposed to the PGV in the context of PBEE. Ultimately, the herein 

undertaken statistical tests demonstrate that the non-stationary average frequency content of GMs 

as captured by 𝛼 does influence the peak inelastic seismic demand in terms of 𝜃𝑚𝑎𝑥.  

 

4.4 Concluding Remarks 

A novel wavelet-based scalar quantity termed alpha, 𝛼, has been introduced in this chapter to 

characterize the temporal evolution of the mean frequency content of recorded GMs. It is defined 

as the average slope (angle) of the time-varying mean instantaneous period (MIP) extracted from 

the wavelet coefficients of GMs bounded in time within the GM effective duration and 

bandlimited within the [0.25 25]Hz frequency range. Morlet wavelets were considered in the 

wavelet transformation of GMs as they yield relatively smooth MIPs in time. Pertinent linear 

regression analyses involving 611 GMs with no near-fault directivity effects was undertaken to 

quantify the relationship of 𝛼 with GM properties PGA, PGV, and mean frequency content Tm, 

with seismological parameters, M, Rrup, and with the shear wave velocity Vs30. No significant 

correlation was found between 𝛼 and M, Rrup, or PGA. However, it was established that 𝛼 is well-

correlated with the average frequency content of GMs as captured by Tm and by PGV: the lower 

the average frequency content, the larger 𝛼 tends to be, that is, the faster the time evolution 

(transition) of the average frequency content is from higher to lower frequencies. Further, the 

reported numerical data indicate that the level of the above correlation depends on the intensity 

of GMs in terms of PGA (conditional on PGA): 𝛼 is larger for fixed Tm as PGA increases and 𝛼 

increases faster as Tm increases for larger PGA values. Moreover, GMs recorded on softer soils 

are more likely to have larger 𝛼 conditional on PGA, a phenomenon that is attributed to the fact 

that soft soils under strong seismic shaking exhibit strong non-linear behaviour that enriches the 

low frequency content of free field recorded GMs. Lastly, sufficiency statistical tests on 𝛼 with 

the residuals of regression analyses between peak inelastic drifts θmax of a hysteretic SDOF 

structure estimated through IDA for the previous 611 GMs with PGA and with PGV used as IMs 

were also conducted. The considered structure includes strength and stiffness degradation effects 

and is used as proxy of a 12-storey r/c frame. These statistical tests demonstrate that the non-

stationary average frequency content of GMs as captured by 𝛼 influences the peak inelastic 

structural response at collapse, as captured by θmax. Overall, the herein furnished results establish 

the validity and usefulness of 𝛼 in characterizing the evolutionary frequency content of GMs and 
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suggests that 𝛼 should be considered as a record selection criterion in undertaking IDA using 

PGA and PGV as IMs. Note, however, that the adopted sufficiency testing has been only used as 

a tool to identify influence of α to the hysteretic responses in establishing IM-EDP relationships 

when very loose GM record selection criteria where used. It does not quantify this influence. This 

is pursued in the next two chapters for SDOF and MDOF yielding structures adopting more 

straightforward statistical tools and using structure-specific IMs and/or more stringent record 

selection criteria. 
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5 Preliminary Remarks  

In the previous chapter, the usefulness of α to represent time-evolving trends of the mean 

frequency content of recorded GMs has been established as well as statistical relationships of α 

with seismological parameters, M and R, soil shear wave velocity Vs30, and GM properties PGA 

and PGV. It was further seen that α does influence peak inelastic seismic response of SDOF 

systems by relying on sufficiency testing of PGA and PGV used as IMs in undertaking IDA. In 

this chapter, further numerical work is undertaken to quantify statistically the dependency of α, 

and thus of the average non-stationary GM frequency content trends, to the response of SDOF 

inelastic oscillators widely used as proxies of yielding structures in undertaking seismic structural 

vulnerability and loss assessment within PBEE.  This is pursued via gauging the change of the 

required IM to induce a specific EDP value (i.e., IM conditioned on EDPs) due to a change in the 

𝛼 property of input GMs on the average (i.e., through regression analysis). Ultimately, tracing 

this change for SDOF oscillators with different properties, IMs and values of EDP, quantifies the 

influence/importance of GM non-stationary frequency content to hysteretic structural response 

statistically and in a phenomenological manner. In this regard, IMs and oscillators extensively 

used in pilot seismic vulnerability assessments (FEMA 2009, Kazantzi and Vamvatsikos 2015) 

are considered in the ensuing analyses aiming to conclude in which cases of practical interest to 

undertaking seismic vulnerability assessment studies using IDA this influence should be of 

concern. In this context, the use of an advanced IM accounting for the influence of spectral shape 

to period elongation, i.e., AvgSa, is studied vis-à-vis the most commonly used IM, Sa(T1) which 

only carries information about the pre-yielding structural natural period. Further, two different 

benchmark SDOF systems corresponding to ductile and non-ductile structural inelastic behaviour 

are considered with varying pre-yielding natural periods. The comparison across SDOF systems 

with different properties in terms of IM|EDP is facilitated by considering a normalised IM as 

considered in FEMA P440A report. The presentation begins from the definition of the inelastic 

SDOF systems and their numerical modelling/implementation in OpenSees. Then, different IMs 

are discussed and results from IDA to a databank of 611 GMs are obtained. Lastly, regression 

analysis probing the statistical relationship of α value to IMs conditioned on different values of 

EDP are reported with most focus given on the case of near collapse EDP values. 

 

5.1 Description and modelling of adopted inelastic SDOF systems  

The use of SDOF hysteretic oscillators/systems as proxies of detailed MDOF inelastic models of 

real-life structures is widely considered in undertaking IDA as it reduces computational cost, and 

accuracy, involved in NRHA. Properties of the SDOF systems are defined by means of a force-
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displacement capacity curve and a hysteretic law which may or may not include strength and/or 

stiffness degradation. The latter defines a cyclic envelop which coincides with the capacity curve 

if no degradation is present or may be different if degradation is considered in the modelling as 

illustrated in Figure 5-1 (FEMA 2009). Force-deformation capacity boundary curve is thus an 

outer envelope in softening systems commonly derived from nonlinear static pushover analysis 

applied to MDOF structural models (see Section 3.5 for an example).  

 

Figure 5-1 Force-Displacement capacity boundary and Hysteretic cycles with stiffness/strength degradation 

 

Hysteretic law and degradation effects, either in-cycle or through-cycle, as depicted in Figure 5-

2, are usually defined based on cyclic lab testing. The dynamic response between systems 

supporting cyclic strength degradation and in-cycle degradation are different with the first 

substantially stable and the latter presenting lateral instability to a state of collapse (FEMA 2009). 

 

Figure 5-2 Hysteretic behaviour for models with: (a) cyclic strength degradation; and (b) in-cycle 

degradation (FEMA 2009) 

 

Several such SDOF systems have been developed and generalised for wide classes of structures 

in FEMA P440A report consolidating results from 160 nonlinear degrading response of single-
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spring systems and 600 multi-spring systems into eight different backbone curves. Herein, two of 

these backbone curves are adopted and taken as representatives of typical non-ductile and ductile 

structural systems. They are specified as follows: 

 Non-Ductile SDOF – Proposed for modelling the behaviour of non-ductile moment frame 

system (e.g., steel or concrete). Their capacity boundary curve is characterized by a force-

displacement envelope that includes strength and stiffness degradation and residual 

strength plateau at 15% of the yield strength, with an ultimate deformation capacity of 

6%. The hysteretic behaviour considers the cyclic degradation. 

 Ductile SDOF – Proposed for modelling the behaviour of ductile moment frame system 

(e.g., steel or concrete). Their capacity boundary curve is characterized by a force-

displacement envelope that includes strength-hardening slope of 2% of the elastic 

stiffness, a strength degradation between 4% and 6%, with an ultimate deformation 

capacity of 8%. The hysteretic behaviour considers the cyclic degradation 

The parameters of the force-displacement capacity boundary curves of the adopted models are 

defined in Table 5-1, and graphically showed in Figure 5-3.  

 

Table 5-1 Force-Displacement Capacity Boundary 

Prototype  Quantity 
Points of the force-deformation capacity boundary 

A B C D E F G 

Non-Ductile SDOF Non-ductile moment  
F/Fy 0 1 0.15 0.15 0.15 0.15 0 

 0 0.01 0.05 0.055 0.06 0.06 0.06 

Ductile SDOF Ductile moment frame  
F/Fy 0 1 1.05 0.8 0.8 0.8 0 

 0 0.01 0.04 0.06 0.08 0.08 0.08 

 

 

Figure 5-3 Generic force-displacement capacity boundary - (FEMA P440A 2009). 
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To investigate the relation between the GMs alpha curves and the period of the systems, each 

spring were tuned to periods of 0.5s, 1.0s, 1.5s, and 2.0s. Further, the Hysteretic material used 

here reflects the uniaxial material implemented in OpenSEES that represents a 'pinched' one-

dimensional hysteretic load-deformation relationship with stiffness and strength degradation 

under cyclic loading as detailed in Appendix E. Structural systems exhibit pinching behaviour 

when large difference in stiffness during reloading-unloading cycle associated with stiffness 

recovery when displacement is imposed in the opposite direction are noted (e.g., effect to opening 

and closing of cracks in concrete). The capacity boundary curve response specifies an unload-

reload path which, in the cases considered, is multilinear and idealization of a load-deformation 

history predicted using this model as illustrated in Figure 5-4. The capacity boundary curves 1 

and 2 account for load path changes to accommodate strength decreasing due to load-deformation 

history. The hysteretic model curves 3 and 4 are defined when the load-deformation level is 

entered and it is defined by two load-deformation points. These load-deformation points include 

the point reached once unloading or reloading occured, which results to be a fraction of the 

minimum (or maximum) strength achievable. 

 

 

Figure 5-4 One-dimensional load-deformation response model (PEER 2003/10)  

 

Cyclic degradation of strength and stiffness occurs in three ways: unloading stiffness degradation 

(see left panel of Figure 5-5 for illustration), reloading stiffness degradation (see right panel of 

Figure 5-5 for illustration), and strength degradation (see Figure 5-6 for illustration). The 

hysteretic damage therefore can be split in three components. 



Chapter 5 - Influence of Non-Stationary Frequency Content of GMs to SDOF 

 

 
114 

 

 

Figure 5-5 Unloading stiffness degradation and reloading stiffness degradation (PEER 2003/10) 

 

Figure 5-6 Strength degradation (PEER 2003/10) 

 

Firstly, the capacity boundary curve section for the stiffness degradation is herein written as 

 

𝑘𝑖 = 𝑘0 ∙ (1 − 𝛿𝑘𝑖) (5.1) 

 

where 𝑘𝑖 and 𝑘0 are respectively the current and initial unloading stiffness and 𝛿𝑘𝑖 is the stiffness 

damage index associated to the current state 𝑡𝑖. Secondly, the capacity boundary curve section for 

the strength degradation is modelled as 

 



Chapter 5 - Influence of Non-Stationary Frequency Content of GMs to SDOF 

 

 
115 

 

𝑑𝑚𝑎𝑥,𝑖 = 𝑑𝑚𝑎𝑥,0 ∙ (1 + 𝛿𝑑𝑖). (5.2) 

 

Here 𝑑𝑚𝑎𝑥,𝑖 and 𝑑𝑚𝑎𝑥,0 are the current and initial deformation, respectively, and 𝛿𝑑𝑖 is the value 

of the reloading stiffness damage index associated to the current state 𝑡𝑖. Thirdly, the capacity 

boundary curve for the strength degradation is written as 

 

𝑓𝑚𝑎𝑥,𝑖 = 𝑓𝑚𝑎𝑥,0 ∙ (1 − 𝛿𝑓𝑖) (5.3) 

 

where 𝑓𝑚𝑎𝑥,𝑖 and 𝑓𝑚𝑎𝑥,0 are the current and initial maximum strength, respectively, and 𝛿𝑓𝑖 is the 

strength damage index associated to the current state 𝑡𝑖.  

The damage law adopted in modelling uses the damage index D proposed by Park et al. (1985) 

related to the displacement history and energy accumulation by 

 

𝐷 =
𝛿𝑚𝑎𝑥

𝛿𝑢
+ 𝛽1∫(

𝛿

𝛿𝑢
)
𝛽2 𝑑𝐸

𝐸𝑐(𝛿)
 (5.4) 

 

where 𝐸𝑐(𝛿) is the accumulate energy per loading cycle for the current displacement and 𝛽1 and 

𝛽2 are two calibration parameters for cyclic damage. Making use of the notation adopted by 

OpenSees the last expression is rewritten as 

 

𝐷 = 𝐴 ∙ (𝛿𝑚𝑎𝑥)
𝐶 + 𝐵 ∙ (

𝐸𝑖
𝐸𝑈(𝑚𝑜𝑛𝑜)

)

𝐷

 (5.5) 

 

where 

 

𝛿𝑚𝑎𝑥 = 𝑚𝑎𝑥 (
𝛿𝑀𝐴𝑋
𝛿𝑢,𝑀𝐴𝑋

,
𝛿𝑀𝐼𝑁
𝛿𝑢,𝑀𝐼𝑁

) 

 

(5.6) 

In equation (5.5), 𝐸𝑖 is the hysteretic energy per cycle and 𝐸𝑈(𝑚𝑜𝑛𝑜) is the energy necessary, under 

monotonic loading, to reach the collapse deformation as illustrated in Figure 5-7, while 

parameters A, B, C and D are necessary to fit the model to experimental data. Further, in equation 

(5.6), 𝛿𝑢,𝑀𝐴𝑋, 𝛿𝑢,𝑀𝐼𝑁 are the positive and negative deformation which define the collapse and 

𝛿𝑀𝐴𝑋, 𝛿𝑀𝐼𝑁 are the positive and negative historic deformation demands.  
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Figure 5-7 Illustration of energy calculation in the damage model adopted. 

Figure 5-8 Force–Displacement capacity boundary and Hysteretic cycles with stiffness/strength 

degradation 
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Figure 5-8 plots the force-displacement boundary capacity curves for the two structural models 

adopted and illustrates numerically obtained hysteretic cycles with stiffness/strength degradation. 

The following section delineates briefly the numerical integration scheme adopted.  

 

5.2 Numerical direct integration scheme  

In Opensees the transient methods used to solve the dynamic integration are all single step 

methods and the Newmark method with average acceleration has been used in all numerical work. 

Since these algorithms, though stable for linear dynamical systems, are not necessary stable for 

nonlinear structures, the conservation of total energy within each integration step has been 

implemented. The Newmark method (Newmark, 1959) is the most widely used time integration 

algorithm for structural analysis. The discretization of the dynamic equations with a time step 

Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘 are given as 

 

{
𝑴�̈�𝑘+1 + 𝑪�̇�𝑘+1 +𝑲𝒖𝑘+1 = 𝒇(𝒕𝑘+1)⁡

𝒖(𝒕𝟎) = 𝒖𝟎, �̇�(𝒕𝟎) = �̇�𝟎
 (5.7) 

 

Further, the Interpolation equations are defined as (Newmark, 1959) 

 

{
𝒖𝑘+1 = 𝒖𝑘 + �̇�𝑘Δ𝑡 + �̈�𝑘 (

1

2
− β)Δ𝑡2 + �̈�𝑘+1βΔ𝑡

2

�̇�𝑘+1 = �̇�𝑘 + �̈�𝑘(1 − 𝛾)Δ𝑡 + �̈�𝑘+1γΔ𝑡
2

 (5.8) 

 

where β and γ are the parameters of the time integration algorithm. Parameter γ = 1/2 ensures 

second order accuracy while β = 0 makes the algorithm explicit and equivalent to the central 

difference method. For β = 1/4 the algorithm becomes implicit and equivalent to the trapezoidal 

rule (unconditionally stable). Lastly, for γ = 1/2, β = 1/6 the algorithm becomes the well-known 

linear acceleration method which is adopted throughout this work. 

  

5.3 Selection of Intensity Measures 

One of the most used intensity measures (IM) is the spectral acceleration, of a given record, at the 

fundamental elastic natural period, Sa(T1,5%). This parameter is often chosen as the intensity 

measure (IM) in conducting IDA as it brings in structure-specific information in a straightforward 
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manner. However, as discussed in the previous chapter, field recorded strong ground motions 

(GMs) display a time-evolving frequency content which is difficult to capture with a single 

parameter and even more difficult if the IMs is based on the fundamental frequency only. Indeed 

a recognised deficiency of the intensity measure Sa(T1,5%) is the case when SDOF oscillators 

exhibiting strong nonlinear behaviour, and T1 is no longer representative of the effective dynamic 

property this intensity measure is that it does not consider the inelastic elongation of the period 

as the structure as period elongation becomes significant, especially for oscillators with hysteretic 

laws accounting for softens under stiffness degradation.  

 

Figure 5-9 Response effects of structural softening (Cordova, et al. 2000 ) 

 

Two different ground motion records may induce responses which may be different between each 

other (Cordova, et al. 2000 ). With reference to the Figure 5-9 the first record induces a response 

(in terms of spectral accelerations 𝑆𝑎(𝑇1)) which decreases with the increasing of the period as 

opposed to the second record where there is an effective increasing of 𝑆𝑎(𝑇1) with the increasing 

of the period. While first mode spectral acceleration is an accurate index for structures that 

respond elastically, this single parameter does not reflect many of the aspects of earthquake 

ground motions that affect inelastic stiffness and strength degradation. To account for that an 

additional structure-specific scalar IM was proposed by Cordova, et al. 2000. This parameter 

captures the period shift effect introducing a second intensity parameter at a longer delayed period 

to reflect the spectral shape. In addition, compared to Sa(T), the choice of selecting 𝐴𝑣𝑔𝑆𝑎 as 

been observed to improve both efficiency and sufficiency (Kazantzi and Vamvatsikos 2015). The 

use of more elaborate indices, which seek to improve characterization of earthquake ground 

motions, have been the subject of continuing studies. For example, Housner in 1975 proposed 

combining spectral acceleration together with strong motion duration (Cordova, et al. 2000 ). 

The proposed parameter to do this is a ratio of spectral accelerations at two periods, defined as 
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𝐴𝑣𝑔𝑆𝑎(𝑇1, 𝐶, 𝛽) = 𝑆𝑎(𝑇1) ∙ (
𝑆𝑎(𝐶𝑇1)

𝑆𝑎(𝑇1)
)

𝛽

 (5.9) 

 

where C (C>0) accounts for period elongation which reflects softening due to inelastic behavior.  

Herein, the values of C=2 and =0.5 are adopted, and therefore the previous IM specialises as  

 

𝐴𝑣𝑔𝑆𝑎 (𝑇1, 1.5,
1

2
) = √𝑆𝑎(𝑇1) ∙ 𝑆𝑎(1.5𝑇1) (5.10) 

 

The use of C=1.5 was found to minimise on average the dispersion (standard deviation) of Sa 

derived by IDA curves (Cordova, et al. 2000). Further, it was found that the value of =0.5 (given 

C) is relatively stable for C=1.5 (Cordova, et al. 2000).  

This property will be used as comparison to 𝑆𝑎(𝑇1) from now on, while a near collapse (or 

collapse prevention) limit state has defined in terms of the peak deflection (or drift 𝜃𝑚𝑎𝑥). 

Finally, the last IM is the normalised value of Sa(T1) with respect its elastic value attained at first 

yielding Say(T1), that is,  

 

𝑅 = 𝑆𝑎(𝑇1)/𝑆𝑎𝑦(𝑇1)  (5.11) 

 

The latter IM represents the ratio of the demand elastic strength to the yielding strength of the 

structure and, as such, it can be used to compare the performance of structures with different 

properties including different T1 values. 

 

5.4 Comparisons of IDA curves using different IMs 

Seismic performance is assessed through nonlinear time history analyses. Acceleration 

components of the records are scaled and the resulting ground motion intensity is reported in 

terms of IMs (either spectral acceleration 𝑆𝑎 or 𝐴𝑣𝑔𝑆𝑎) and summarized by plotting the scaled 

intensity measure versus maximum Interstory Drift Ratio (IDR), creating what are referred to 

herein as Incremented Dynamic Analysis (IDA) curves. Shome and Cornell (1997) have 

demonstrated that such scaling of records will not bias the results and is an appropriate technique 

for multi-level hazard analysis. The collection of data points (DM) (each data point corresponds 

to the peak IDR resulting from a single time history analysis) for a single ground record scaled to 



Chapter 5 - Influence of Non-Stationary Frequency Content of GMs to SDOF 

 

 
120 

 

multiple hazard levels (IM) forms the IDA curve (Cordova, et al. 2000 ). A Spline interpolation 

is used for constructing the IDA curves, where n cubic polynomial pieces are parametrised over 

n convergent runs/points including the default (0,0) (Vamvatsikos and Cornell, 2004). 

Consequentially it has been chosen to calculate the 16%, 50% and 84% fractiles curve’s points 

which represent 𝜇 ∓ 1 ∙ 𝜎⁡(∓ 1 standard deviation) which is typically used to summarise the limit-

state capacity within central values (mean 𝜇) and a measure of dispersion (the standard deviation 

𝜎). From the set of 611 pairs of GM recordings, previously described, IDA curves have been 

processed using the analysis of Non-Ductile and Ductile systems. Plotting the spectral 

acceleration at the fundamental elastic natural period, Sa(T1,5%) against the three levels of EDP 

chosen (peak deflection, or drift 𝜃𝑚𝑎𝑥) it is possible to notice the influence of the period on the 

spectral acceleration value.  

 

Figure 5-10 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for Sa(T1) – a) SDOF T=0.5s 

Non-Ductile SDOF, b) SDOF T=0.5s Ductile SDOF 
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Figure 5-11 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for AvgSa(T1) – a) SDOF 

T=0.5s Non-Ductile SDOF, b) SDOF T=0.5s Ductile SDOF 

 

Figure 5-12 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for Sa(T1) – a) SDOF T=1s 

Non-Ductile SDOF, b) SDOF T=1s Ductile SDOF 
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Figure 5-13 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for AvgSa(T1) – a) SDOF 

T=1s Non-Ductile SDOF, b) SDOF T=1s Ductile SDOF 

 

 

Figure 5-14 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for Sa(T1) – a) SDOF T=1.5s 

Non-Ductile SDOF, b) SDOF T=2s Ductile SDOF 
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Figure 5-15 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for AvgSa(T1) – a) SDOF 

T=1.5s Non-Ductile SDOF, b) SDOF T=1.5s Ductile SDOF 

 

 

 

Figure 5-16 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for Sa(T1) – a) SDOF T=2s 

Non-Ductile SDOF, b) SDOF T=2s Ductile SDOF 
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Figure 5-17 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for AvgSa(T1) – a) SDOF 

T=2s Non-Ductile SDOF, b) SDOF T=2s Ductile SDOF 

 

Notably, each of the 6 different SDOF systems considered have different lateral strength and/or 

stiffness and, therefore, direct comparison between IDA curve fractiles among different systems 

is not straightforward. To facilitate such a comparison, it has previously introduced the normalised 

IM, in this manner, the IDA curves are re-scaled proportionally for each structural system. For 

this purpose it has been assumed that the value of the elastic strength 𝑆𝑎𝑦(𝑇, 5%) is the one 

estimated to be at the (yield) drift of 𝜃𝑦 = 0.01 for both the Non-Ductile and ductile SDOF 

systems adopted (point B in Table 5-1)  

 

Figure 5-18 16, 50, 84% fractiles incremental dynamic analysis (IDA) curves for 𝑅 = 𝑆𝑎(𝑇, 5%)/

𝑆𝑎𝑦(𝑇, 5%)) – a) SDOF T=0.5s,1s,1.5, 2s Non-Ductile SDOF, b) SDOF T=0.5s,1s,1.5s, 2s  Ductile SDOF 
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It is important to note here (Figure 5-18) the dependence of the force reduction factor on the 

period of vibration of the structural system. In general, it is noted that the lowest the period of the 

structure the lowest its nonlinear capacity. Indeed, considering the inelastic response spectra basic 

principle it is well known that structures with fundamental period longer than about 1s follow the 

equal-displacement principle as strong as it is manifested their post-yield stiffness in the force-

displacement capacity boundary. In this case the force reduction factor, mentioned above, is 

equivalent to the ductility of the system 𝑅 = μ =
∆𝑢𝑓

∆𝑢𝑦
. (Figure 5-19). 

 

Figure 5-19 Influence of period on ductile force reduction and R definition (Paulay and Priestley 1992) 

Conversely, for structures whose natural period is shorter the system follows the equal-energy 

principle and the force reduction factor is equivalent to 𝑅 = √2𝜇 − 1. For very rigid systems 

where the period is 𝑇 ≅ 0 the structural behaviour results independent from the ductility of the 

system and the force reduction factor is equivalent to 𝑅 = 1. In this case the structure follows the 

equal-acceleration principle. 

Figure 5-20 Post-yield behavior comparisons of SDOF T=1s Non-Ductile SDOF and 3b and the effect to 

the collapse capacity system 
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5.5 Regression Analysis of IMs against  and statistical 

quantification of the influence of α  

To quantify the influence of the rate of variation of the non-stationary GMs frequency content (𝛼) 

to inelastic response a further study is herein undertaken using a linear regression analysis 

between the “scaled” spectral acceleration of a given record 𝑆𝑎(𝑇1) and 𝛼 and between the 

“scaled” 𝐴𝑣𝑔𝑆𝑎(𝑇1) and 𝛼. This investigation is motivated by the fact that 𝑆𝑎(𝑇1) and 𝐴𝑣𝑔𝑆𝑎(𝑇1) 

are the most commonly adopted structure-specific intensity measures (IMs) to predict certain 

engineering demand parameters (EDPs) characterizing the seismic response of yielding structures 

within the PBEE framework (Vamvatsikos and Cornell, Incremental dynamic Analysis 2002) 

(Tothong and Luco 2007) (Bommer and Alarcon 2006) (Jalayer, Beck and Zareian, 2012). To 

quantify the influence of α to the inelastic seismic demands, values of 𝑆𝑎(𝑇1) and 𝐴𝑣𝑔𝑆𝑎(𝑇1) 

are statistically examined conditioned on pre-specified EDP corresponding to different limit 

states. These data sets of 𝑆𝑎(𝑇1) and 𝐴𝑣𝑔𝑆𝑎(𝑇1) are obtained by taking “vertical strips” of points 

on IDA curves (IMs point at given EPD values) derived in the previous section for the 8 different 

structural systems. These vertical strips consist in cross sections of IDAs associated to 611 GM 

records for a given EDP (Kazantzi and Vamvatsikos 2015). For each EDP a set of IM capacity 

values have been selected, which corresponds to limit states associated to specific EDP levels. 

Moreover, for Ductile and Non-Ductile SDOF the following limit states have been set: 

• Non-Ductile SDOF 

− Sa(T1)(𝜃𝑚𝑎𝑥 =0.02) 

− Sa(T1)(𝜃𝑚𝑎𝑥 =0.04) 

− Sa(T1)(𝜃𝑚𝑎𝑥 =0.06) 

 

• Ductile SDOF 

− Sa(T1)(𝜃𝑚𝑎𝑥 =0.02) 

− Sa(T1)(𝜃𝑚𝑎𝑥 =0.04) 

− Sa(T1)(𝜃𝑚𝑎𝑥 =0.06) 

− Sa(T1)(𝜃𝑚𝑎𝑥 =0.08) 

 

To probe into dependency trends between IMs conditioned on different EDP values and α, 

standard linear regression analyses using the "least squares" method is undertaken to fit a line (see 

Appendix C) through a set of observations obtained between  of the 611 earthquake actions 

𝑆𝑎(𝑇1)|𝜃𝑚𝑎𝑥, and 𝐴𝑣𝑔𝑆𝑎(𝑇1)|𝜃𝑚𝑎𝑥 for all 8 different structural systems (ductile and non-ductile 

and for 4 pre-yielding natural periods). The final linear regression equations (5.1) and (5.2), 
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establishes a statistical relationship between  and 𝑆𝑎(𝑇1)|𝜃𝑚𝑎𝑥 for different limit states, 

𝑆𝑎(𝑇1)|𝜃𝑚𝑎𝑥 (Kazantzi and Vamvatsikos 2015).  

 

𝛼(𝑆𝑎(𝑇1)|𝜃𝑚𝑎𝑥) = 𝐴0 + 𝐵0𝑆𝑎(𝑇1) (5.12) 

𝛼(𝐴𝑣𝑔𝑆𝑎|𝜃𝑚𝑎𝑥) = 𝐴1 + 𝐵1𝐴𝑣𝑔𝑆𝑎 (5.13) 

 

The above linear regression equations are represented below for different stiffness and periods. It 

should be noted that the above approach is based on “statistically sufficiency” via p-value which 

quantifies the significance of the regression coefficients and it is defined as the probability of 

rejecting the null hypothesis (H) in order to measure the statistical significance of a set of data 

(“score”). The p-value approach, alone, implies significance or not significance in terms of 

influence of the IMs with respect to  but it does not quantify this influence (Kazantzi and 

Vamvatsikos 2015). In order to provide quantitative information on the importance of the 

influence of  on inelastic demands expressed as IMs conditioned on specific EDP levels, the 

following ratio (slope) of the linear regression curve is used (refer to Figure 5-21): 

𝜂 =
Δ𝐼𝑀𝑠

Δ𝛼
 (5.14) 

 

Figure 5-21 𝜂 ratio (slope) of the linear regression curve 

 

This information is herein used to quantify the influence of the GM predominant frequency’s 

variation in time () to the performance of a structure, which herein has been investigated varying 

its hysteretic behaviour and pre-yield natural period T1.  
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Figure 5-19 plot results of linear regression analyses between α and Sa(T1)|θmax for all θmax values 

and for both inelastic systems with T1=0.5s. It is seen both from the reported values of the slopes 

B (in Eqs.7.15) and from the p-values that the influence of α becomes statistically more and more 

significant as θmax increases. Note that this is also true for T1=1s and 2s. These trends signify the 

increased statistical importance of the GM non-stationary frequency content as the level of 

nonlinear behaviour of inelastic oscillator increases. Intuitively, these trends can be explained by 

referring to the result presented in Figure 5-22 in which the average structural response α 

approaches the average GM α as the system is pushed closer to collapse. Ultimately, they indicate 

that α may be an important GM record selection criterion for assessing collapse capacity of 

yielding structures.   
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v 

Figure 5-22 Linear regressions between the Sa(T1) and  of MIP for periods T=0.5s for Non-Ductile and 

Ductile. Sa(T1) is obtained interpolating the results at max=6% for Non-Ductile and max=8% for 

Ductile. 
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Figure 5-23 Linear regressions between the Sa(T1) and  of MIP for periods T=1s for Non-Ductile and 

Ductile. Sa(T1) is obtained interpolating the results at max=6% for Non-Ductile and max=8% for 

Ductile. 
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Figure 5-24 Linear regressions between the Sa(T1) and  of MIP for periods T=1.5s for Non-Ductile and 

Ductile. Sa(T1) is obtained interpolating the results at max=6% for Non-Ductile and max=8% for 

Ductile. 

 

  



Chapter 5 - Influence of Non-Stationary Frequency Content of GMs to SDOF 

 

 
132 

 

 

 

 

 

Figure 5-25 Linear regressions between the Sa(T1) and  of MIP for periods T= 2s for Non-Ductile and 

Ductile. Sa(T1) is obtained interpolating the results at max=6% Non-Ductile and max=8% for Non-

Ductile and Ductile. 
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To quantify further, in practical terms, the significance of the influence of  to the IM-EDP 

relationship at near collapse, the variation of IM|θmax=0.06 for the non-ductile system and of 

IM|θmax=0.08 for the ductile system for an assumed/imposed difference of α (𝛥𝛼) equal to 2 are 

reported in Table 5-2 for both Sa(T1) and AvgSa considered and for all SDOF systems. It is clearly 

seen that the influence of α is important across the board. Interestingly, it is observed that this 

influence is more important for the ductile structure which is, again, intuitively expected as ductile 

structures are more likely to act as band-pass filters near collapse thus preserving more faithfully 

input/output MIP resemblance. More importantly, it is seen that the influence of α reduces through 

the use of AvgSa as opposed to Sa(T1): this reduction is reported as percentage in brackets in 

Table 5-2. This observation is also expected as AvgSa accounts for period elongation effects 

better than Sa(T1) while these effects are well-related to α as one appreciates by Fig.3-20. It also 

explains that the well-known improved efficiency of AvgSa over Sa(T1) can be attributed to the 

fact that AvgSa appears to be more sufficient with respect to α than Sa(T1).  

 

Table 5-2 ∆𝑆𝑎(𝑇1) results for 𝛥𝛼 = 2°  

 T 

Structural System 

Non-Ductile SDOF  Ductile SDOF  

Sa(T1)  Sa(T1)/ Sa(T1)  Sa(T1)/ 

2 0.5s 0.04 g 0.020 g/deg 0.14 g 0.07 g/deg 

2 1s 0.030 g 0.015 g/deg 0.07 g 0.035 g/deg 

2 1.5s 0.008 g 0.004 g/deg 0.016 g 0.008 g/deg 

2 2s 0.006 g 0.003 g/deg 0.0038 g 0.0019 g/deg 

 

 

Still, the dependence of AvgSa|θmax on α is significant especially since a difference of 2o in α is 

not large given that the range of 𝛼 of about 90% of the GMs in the considered GM set is within 

[0o 4o]. One may be tempted to compare the influence of α across oscillators with different T1 

(varying stiffness) by looking at Table 5-2. However, it should be noted that these results may be 

misleading as they don’t take into account that structures with different periods may have higher 

or lower elastic response spectra 𝑆𝑎𝑦. To this end, Figure 5-26 to Figure 5-32 and Table 5-3 

present the same IDA results as before but with re-scaled normalised IM 𝑅 (FEMA 2009). It is 

found that the ratio between the force reduction and alpha (∆𝑅 ∆𝛼⁄ ) increases with the increase 

of the period, meaning that stiffer structures are less sensitive to a variation of the frequency 

content of GMs than more deformable ones. It is also interesting to note that this variation is 

influenced by the post-yield stiffness and the ductility. Notably, the same dependency from the 

fundamental period of the structure, has been found for the force-displacement capacity 
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boundaries from the IDA curves before documented and in accordance with FEMA 440a (FEMA 

P440A 2009). 

 

Figure 5-26 Linear regressions between the R and  of MIP for periods T=0.5s, Non-Ductile and Ductile. 

R is obtained interpolating the results at max=6% for Non-Ductile and max=8% for Ductile. 

 

Figure 5-27 Linear regressions between the R and  of MIP for periods T=1s, Non-Ductile and Ductile. R 

is obtained interpolating the results at max=6% for Non-Ductile and max=8% for Ductile. 

 

Figure 5-28 Linear regressions between the R and  of MIP for periods T=1.5s, for Non-Ductile and 

Ductile. R is obtained interpolating the results at max=6% for Non-Ductile and max=8% for Ductile. 
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Figure 5-29 Linear regressions between the R and  of MIP for periods T= 2s for Non-Ductile and Ductile. 

R is obtained interpolating the results at max=6% for Non-Ductile and max=8% for Ductile. 

 

Table 5-3 ∆𝑅 results for 𝛥𝛼 = 2° 

 T 

System 

Non-Ductile Ductile 

R R/ R R/ 

2 0.5s 0.26 0.13 0.90 0.45 

2 1s 0.77 0.385 1.71 0.85 

2 1.5s 0.96 0.479 1.36 0.68 

2 2s 1.17 0.58 0.7 0.35 

 

Indeed, it has been observed (Li et al, 2016) that low amplitudes components of GMs (normally 

present at the end of most earthquakes) may produce a relatively large response to elastic 

structures, especially for such structures whose fundamental frequency may tune in with the 

broadband frequency content of the GMs. As noted previously this phenomenon can play a 

significant role when considering non-linear systems whose natural periods varying overtime 

(elongated period). Such response is supported by the fact that the predominant periods (Fourier-

based Mean period 𝑇𝑚) of the GMs considered range between 0.2s to 1.5s with a large number of 

records between 0.3s to 0.9s (refer to Figure 4-4). This may imply a presence of a “resonant” effect 

which may magnify the influence of  to the SDOF considered. 
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Figure 5-30 Comparison 𝜂 slope values, for different condition of T (s) and 𝜃 – 3D view 

 

 

Figure 5-31 Comparison 𝜂 slope values, for different condition of T (s) – 2D view 
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Figure 5-32 Comparison 𝜂 slope values, for different condition of 𝜃 – 2D view 

 

From the slope values of the regression plots between 𝛼 and R, it appears evident that the 

influence of 𝛼 on the response of the system depends on the period of the structure and on the 

ductility/post stiffness as shown in Figure 5-27 and Figure 5-28. For the Non-Ductile SDOF the 

variation of the normalised intensity measure (R) with 𝛼 increases with its flexibility. However, 

for stiff structures (T1=0.5s) the rate of the variation of 𝛼⁡with R is statistically insignificant 

especially for limit states close to linear behaviour. On the contrary, for ductile structures the 

variation of R is substantial, even for short period structures (close to collapse limit state), and 

reach its maximum for intermediate period structures (between T1=1s and T1=1.5s). Interesting 

to note is that the effect of 𝛼 on R for the ductile long period structure (T1=2s) is almost the same 

as for the stiff ductile structure (T1=0.5s). Meanwhile, for the non-ductile structures the influence 

of α grows monotonically with period and, eventually, it becomes more important compared to 

the ductile structures for the long period (T1=2s).  
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5.6 Concluding Remarks 

The capability of a single degree of freedom (SDOF) to “simply describe” complex phenomena 

has been proven, in this chapter, as key to describe the influence of the mean variation of GMs 

frequency content (𝛼) to the collapse performance of “idealised” structures. These final plots have 

shown how the impact of 𝛼 varying with Period (T) and EDP (𝜃 [max]), investigating how post-

yield behaviour and 𝛼 are correlated, comparing two SDOF with different ductility systems. The 

discussion was focused on how ductile and non-ductile, rigid and flexible structures, are 

influenced by 𝛼 introducing the variation of the normalised intensity measure (R) to quantify the 

behaviour of the systems. It has been seen that for ductile structures the variation of R is 

substantial, both for short and long period structures, attaining the peak for medium period 

structures which seemed to be more likely to be strongly affected by the mean variation of GMs 

frequency content. In addition, it has been investigated the effect of “elongated period” captured 

by a more sophisticated IM (AvgSa(T1)) to better take into account the influence of softens under 

seismic degradation and inelastic conducts. In the next chapter these behaviours will be 

investigated with MDOF systems to account for the correlation between higher modes and 𝛼 on 

the estimation of the structural collapse capacity of “real” structural systems. 

The following Chapter extends the above analysis of the influence of α to the IM-EDP relationship 

and, thus, of the non-stationary frequency content to hysteretic structural response in the context 

of PBEE by examining MDOF inelastic structures as well as considering significantly more 

rigorous record selection in order to isolate the potential influence of α from spectral shape. The 

latter consideration is deemed important as it was observed in Table 6-4 that AvgSa, an IM that 

accounts for spectral shape to some extent, is less influenced by variations to α compared to 

Sa(T1). 
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Chapter 6 

Influence of Non-Stationary Frequency 

Content of GMs to Seismic Demands of 

Inelastic Multi-Degree of Freedom System 
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6 Preliminary Remarks 

The main aim of this Chapter is to quantify the influence of the average non-stationary GM 

frequency content, as captured by α, to peak inelastic seismic demands of multi-degree-of-

freedom (MDOF) inelastic models representing multi-storey building structures which yield 

under seismic excitation with progressively increasing intensity. In this regard, this chapter 

extends the numerical work of the previous Chapter by considering IDA results for MDOF 

inelastic systems as opposed to SDOF systems. Recognising the added complexity in 

demonstrating the influence of α for MDOF systems due to the presence of several modes, a 

significantly more rigorous GM record selection procedure is herein employed which accounts 

for response spectral shape of GMs through the concept of spectrally equivalent GMs 

(Chamohandran et al. 2015). Selected records are also checked against a number of important 

GM properties, further to spectral shape, known to influence hysteretic structural response of 

MDOF structures including Tm (Rathje et al. 1998) and the effective duration (Chamohandran et 

al. 2015). Moreover, an extended version of AvgSa compared to the one used in the previous 

chapter is considered as IM to establish IM-EDP relationships through IDA which accounts for a 

large number of spectral acceleration values with periods longer and shorter than T1. As in the 

previous Chapter, the presentation begins with a brief description of two benchmark inelastic 

(lumped plasticity) MDOF structural models representing a relatively flexible 7-storey reinforced 

concrete moment resisting frame structure and a stiffer 3-storey steel moment resisting frame. 

Then, record selection process and IMs considered in applying IDA to the two MDOF models are 

detailed. Finally, numerical results quantifying the influence of α to peak inelastic demands for 

the MDOF systems are presented and discussed. 

 

6.1 Description and modelling of adopted inelastic MDOF systems  

Throughout this chapter two different inelastic MDOF models corresponding to buildings with 

different material properties and number of stories are considered to investigate the influence of 

α on seismic structural response/performance of typical MDOF systems. The first relatively 

flexible model corresponds to a 7-storey reinforced concrete moment-resisting frame building 

(7RCMRF), developed as a benchmark structure by Kazantzi and Vamvatsikos (2015) to study 

seismic loss in large building stocks at the urban/city level. The second model is overall stiffer 

and corresponds to a benchmark low-rise 3-storey steel moment resisting frame (3CBF) 

developed as part of the EU-funded INNOSEIS project (INNOSEIS, 2017) investigating seismic 

structural response of buildings equipped with energy dissipation devices. Both structures are 

designed to contemporary (post-1980) seismic design provisions for high-seismicity regions. In 
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the following two sub-sections the overall geometry of the structures is provided together with 

some brief notes on assumptions made for their nonlinear finite element (FE) modelling. 

 

6.1.1 Nonlinear modelling considerations of flexible benchmark 7-

storey reinforced concrete building  

A plan-symmetric 7-story reinforced concrete moment-resisting frame building shown in Figure 

6-1 (Kazantzi and Vamvatsikos 2015) is herein employed as a case-study to illustrate the 

influence of the evolving GM frequency content as captured by α to structural response of 

relatively flexible modern structures with good ductility capacity. The building does not 

correspond to any single structure, rather its features have been specified by Kazantzi and 

Vamvatsikos (2015) based on a statistical data from a large number (263) of actual post-1980 

designed reinforced concrete moment-resisting frame buildings located in California gathered by 

Porter and Cho (2013). In this respect, it makes a benchmark structure representative of modern 

ductile flexible reinforced concrete buildings. The perimetric planar three-bay planar frame of the 

considered benchmark building indicated in Figure 6-1 is isolated from the structure and modelled 

by a nonlinear finite element (FE) model developed in OpenSees simulation platform (McKenna 

and Fenves 2001). The FE model represents nonlinear behaviour by lumped plasticity beam-

column elements having hinge properties determined by the empirical equations proposed by 

Panagiotakos and Fardis (2001) for reinforced concrete members which account for geometric 

nonlinearity in the form of P-Δ effects. The moment 𝑀𝑦 at yielding of the tension steel is 

computed from linear elastic analysis. Then, the corresponding chord rotation, 𝜃𝑦 is determined 

by the expression (Panagiotakos and Fardis 2001) 

 

𝜃𝑦 =
𝜙𝑦𝐿𝑠

6
+ 0.0025 + 0.25 ∙ 𝑑𝑏 ∙

𝑓𝑦
2

𝐸𝑠(𝑑 − 𝑑′)√𝑓𝑐
′
 (6.1)  

 

in which 𝜙𝑦 is the yield curvature (computed from first principles), Ls is the length of the member, 

𝑑𝑏 is the mean diameter of tension reinforcement, (𝑑 − 𝑑′) is the distance between the tension 

and compression steel and 𝑓𝑦, 𝐸𝑠 and 𝑓𝑐
′ (all in MPa) are the yield strength, elastic modulus of 

longitudinal steel and the concrete strength, respectively. Further, the ultimate chord rotation 𝜃𝑢 

is given as (Panagiotakos and Fardis 2001) 

 

𝜃𝑢 = 𝑎𝑠𝑡𝑎𝑐𝑦𝑐 (1 +
𝑎𝑠1
2.3

) (0.2𝜐) (
𝑚𝑎𝑥(0.01, 𝜔2)

𝑚𝑎𝑥(0.01, 𝜔1)
∙ 𝑓𝑐

′)

0.275

(
𝐿𝑠
ℎ
)
0.45

1.1100𝛼𝜔𝑤𝑥 ∙ 1.3𝜌𝑑  (6.2) 
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where: 

− 𝑎𝑠𝑡 and 𝑎𝑐𝑦𝑐 are parameters related to the steel grade of longitudinal bars and to the type of 

loading, respectively, the first taken equal to 0.015 and the second taken equal to 0.6 for 

cyclic loading; 

− 𝑎𝑠1 is a parameter for the slip of longitudinal bars taken equal to 0 for non-slippage; 

− 𝜈 =
𝑁

𝐴𝑐∙𝑓𝑐
 is the axial load ratio taken positive for compression; 

− 𝜔1, 𝜔2 are the mechanical reinforcement ratios; 

− 𝑓𝑐
,
 is the uniaxial concrete strength in MPa; 

− (
𝐿𝑠

ℎ
) =

𝑀

𝑉ℎ
 is the shear span ratio at the member end; 

− 𝜔𝑤𝑥 =
𝐴𝑠𝑥

𝑏𝑤𝑠ℎ

𝑓𝑦𝑤

𝑓𝑐
′  is the ratio of transverse steel parallel to the direction of loading; 

− 𝛼 is the confinement effectiveness ratio; and 

− 𝜌𝑑 ⁡(%) is the steel ratio of any reinforcement placed in each diagonal direction of the 

member. 

 

The secant-to-yield stiffness of a member in antisymmetric bending is determined by 

 

𝐸𝐼 =
𝐿𝑠
6
∙
𝑀𝑦

𝜃𝑦
. (6.3) 

The first pre-yield natural period of the FE model is 𝑇1= 1.60s and modal damping value of 5% 

for the first mode is set which is typical for concrete structures. 

   

Figure 6-1 Generic model idealization of the perimeter RCMRFs with typical plan view with perimeter 

stability frames (Kazantzi and Vamvatsikos 2015)  



Chapter 6 - Influence of Non-Stationary Frequency Content of GMs to MDOF 

 

 
144 

 

6.1.2 3-storey Concentrically-Braced Frame Building 

As a case-study of a relatively stiff modern structure, a symmetric 3-story steel building with 

lateral load-resisting system consisting of concentrically X‐braced frames with each brace 

extending between two consecutive floors is further adopted. The structure has been designed to 

the current European seismic code provisions (CEN 2004) for ductility class high, PGA= 0.24g 

and ground type B (stiff soil) as part of the research programme INNOSEIS (2017). The geometric 

properties of the building are shown in Figure 6-2. A 3-storey 4-bay perimetric planar frame of 

the structure is modelled with fundamental natural period of the structure is T1=0.55s, that is, 

about three times shorter compared to the previous model of the 7-storey reinforced concrete 

frame structure.   

  

Figure 6-2 Case study 3-storey steel frame concentrically braced building (INNOSEIS, 2017) 

 

Nonlinear fibre elements have been incorporated in the modelling of the 3-storey frame in 

OpenSees. For material specification the Steel02 material based on Menogotto Pinto (Menegotto 

and Pinto 1973) from the OpenSees (Steel02 n.d.) library is adopted with a steel Young’s modulus 

𝐸0=210GPa, the yield strength 𝑓𝑦 = 1.2 ∙ 355 = 426MPa, a strain-hardening ratio (ratio between 

post-yield tangent and initial elastic tangent) b=0.3% . To control the transition curve and allow 

a good representation of pinching effects, the following functional curvature R is used to take into 

account strain reversal (Filippou, et al. 1983) 

 

𝑅(𝜉) = 𝑅0 −
𝑎1 ∙ 𝜉

𝑎2 + 𝜉
 (6.4)  
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where ξ is normalised strain as shown in Figure 6-3. The parameters appearing in the last equation 

are set to 𝑅0 = 20, 𝑎1 = 0.925, 𝑎2 = 0.15 based on experimental testing (INNOSEIS 2017). 

Then, the following stress-strain relationship is defined in terms of the functional R (Filippou, et 

al. 1983) 

 

𝜎∗ = ⁡𝑏 ∙ 𝜀∗ +
(1 − 𝑏) ∙ 𝜀∗

[1 + 𝜀∗𝑅]
1
𝑅

 (6.5)  

where 

𝜎∗ =⁡
𝜎

𝜎𝑦
, 𝜀∗ = ⁡

𝜀

𝜀𝑦
⁡ (6.6)  

 

In the model, second-order P-Δ geometric transformation is considered for all beams and columns 

using a standard leaning column approach. 

 

 

Figure 6-3 Definition of curvature parameter 𝑅(𝜉) in Menegotto-Pinto Steel Model (Filippou, et al. 1983) 

 

 

6.2 Construction of spectrally-equivalent GM ensembles with different 

range of α values 

As extensively discussed in Chapters 2 and 5, an important issue in establishing IM-EDP relations 

and, ultimately, to predict reliably the structural collapse capacity using recorded GMs in the 
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context of IDA is to properly select GMs based on properties beyond seismological parameters 

(M,R) that affect highly nonlinear/hysteretic response behaviour. This is especially true in case 

of modelling real-life buildings through inelastic models with several DOFs. In this regard, it is 

well-known that the shape of GM linear response spectrum, hereafter spectral shape, influences 

significantly the peak inelastic response of yielding structures for fixed Sa(T1) values (e.g., Baker 

and Cornell 2006), due to its influence to the multiple natural modes of MDOF systems. It is, 

therefore, deemed herein essential to separate, as much as possible, the GM spectral shape from 

α during the record selection: a task which is intuitively feasible since the spectral shape is a 

“stationary metric” independent from non-stationary frequency content trends (i.e., it is possible 

that two recorded GMs with very different time-varying frequency content trends and, therefore, 

α value attain the same or very similar spectral shape)   To this aim, the concept of spectrally 

equivalent GM ensembles introduced by (Chandramohan, Baker and Deierlein 2015) is herein 

adopted having closely matched average response spectrum though potentially different GM 

properties not related to the spectral shape. In this regard, Chandramohan, et al. (2015) 

constructed spectrally equivalent GM ensembles with different average effective duration, Ds5-95, 

to study the effect of GM duration to the seismic response of structures.  

Herein, the same record selection algorithm proposed by Chandramohan, et al. (2015) is used to 

construct two spectrally equivalent ensembles of 50 GMs each from a large GM database: one 

ensemble with relatively high average α value, hereafter high-α set, and one with relatively low 

average a value, hereafter low-α set. This is achieved by taking the following steps.  

First, a set of 611 pairs of GM recordings (i.e. two horizontal components) from 30 different 

seismic events with magnitude range 6.5<M<8 and distance-to-rupture plane range 

20km<Rrup<120km is retrieved from the PEER NGA-West2 Ground Motion Database 

(http://ngawest2.berkeley.edu/) listed in Table A-3 of the Appendix A. Then, the angle 𝛼 of each 

adjusted GM signal is computed using the MIP computed from Morlet CWT spectrograms as 

detained in previous Chapters. It is found that 103 GMs (i.e., less than 9% of the total 611x2= 

1222 GMs considered) attain a negative 𝛼, that is, their average frequency content evolves from 

lower to higher frequencies in time. Careful examination of the Morlet wavelet spectra and the 

associated MIPs reveal that these GMs are characterized by the late arrival of significant bursts 

of energy with relatively high frequencies compared to the early mean frequency content 

observed. Such time-varying frequency content trends are non-typical. Consequently, the 103 

GMs with 𝛼 < 0 are regarded as “outliers” for the purposes of the current study and are discarded 

from the GM database. 

Next, the high-𝛼 set is constructed by taking the 50 GMs with the highest 𝛼 values from the above 

GM database. Subsequently, the low-𝛼 set is constructed by choosing 50 GMs out of half the 

http://ngawest2.berkeley.edu/
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GMs of the original database with the lowest positive a value possessing equivalent spectral 

shapes with the GMs of the high-𝛼 set on an individual record-by-record basis. This is 

accomplished through a “greedy” matching-pursuit-like algorithmic process seeking to find for 

each GM of the high-𝛼 set a low-a GM that minimizes the sum of squared error differences of 

spectral ordinates for periods in the range of [0.1, 3.0]s (Chandramohan, et al. 2015) upon scaling 

of the low-𝛼 GM. In doing so, a scale factor of up to 5 is allowed, while it is ensured that no 

record appears twice in the low-α set. It is further important to recall that the 𝛼 index is invariable 

to GM amplitude scaling and thus the spectral matching algorithm retains the value of the 

unscaled α GM property. 

For illustration, Figure 6-4(a) plots the response spectra of a pair of spectrally equivalent GMs 

one belonging to the high-a set and one to the low-𝛼 set, while Figure 6-4(b) plots the ensemble 

mean response spectra of the two GM sets. The constructed sets achieve a quite satisfactory level 

of spectral equivalency across the targeted period range (i.e., 0.1s to 3s) and can be assumed to 

be “equal” on the average in terms of spectral shape, even though the quality of spectral 

equivalency of the individual pairs may not be consistently good at all periods within the targeted 

range. 

  

Figure 6-4 (a) Response Spectra of Two Spectrally Equivalent GMs (twins) with High And Low 𝛼 Values 

from San Fernando 1971 (Station: la Hollywood Stor Ff) and Landers 1992 (Station: Silent Valley, 

Poppet Flat) events, respectively: Low-𝛼 GM Scaled by 4.52, (b) Individual and Ensemble Mean 

Response Spectra of High-𝛼 and Low-𝛼 Sets. 

 

Furthermore, Figure 6-5 provides a value histogram of the GMs belonging to the high-𝛼 and to 

the low-𝛼 sets. It is seen that the two sets have significantly different 𝛼 values (the median a of 

the high-𝛼 set is more than 5.5 times larger than the median a of the low-a set) well-clustered 

together. It can be argued that the GMs of low-𝛼 set observe on average negligible change of 

frequency composition in time, while average frequencies in the high-𝛼 set vary at a fast rate from 

high to low frequencies. Clearly, the two sets lie at the two extreme ends of the range of 𝛼 values 

found in large database of as-recorded GMs putting aside negative 𝛼 values. Moreover, the 
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histogram of Figure 6-5 shows that the effective durations of the GMs in the two sets are not 

appreciably different and will not influence peak inelastic response of structures exhibiting 

insignificant cyclic degradation effects (Chandramohan, et al. 2015). Lastly, histograms of the 

GM mean period, Tm, computed by equation (2.5) are provided in Figure 6-6 for the two spectrally 

equivalent sets. It was deemed essential to probe into the statistics of Tm across the two sets since 

Tm and α was shown to be statistically correlated in Section 4.2 while, as extensively discussed in 

Section 2.2, Tm is found to influence the response of yielding structures (Kumar et al. 2011, 

Katsanos et al 2014). Importantly, it seen that although the two GM sets have significantly 

different α their average in time stationary frequency content is very similar: the spread of the 

histograms in Figure 6-6 is comparable and the difference of the ensemble median values between 

the two sets is less than 15%.   

 

Figure 6-5 Histograms of the 50 high-α and 50 low-α sets for: (a) alpha, α, values and (b) effective 

duration Ds5-95. 

 

Figure 6-6 Histograms of the 50 high-α and 50 low-α sets for Tm, values. 
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Collectively, the numerical data in Figures 6-4 to 6-6 suggest that the two spectrally equivalent 

GM sets constructed as detailed in the previous section can be treated as “equal” in the 

mean/median sense in terms of spectral shape as well as Tm which are known to influence GM 

structural damage potential. Furthermore, it is noted that cyclic degradation is of little 

consequence for the two benchmark structures presented in Section 6.2. Thus, even though the 

median effective duration of the two GM sets show some differences in Figure 6-5, their effect 

on the response of the two benchmark structures is negligible (see also Chandramohan et al 2015). 

In this regard, if the two GM sets (high-𝛼 and low-𝛼) are used to conduct IDA for the two 

benchmark structures (results reported in the next sections) then 𝛼, can be considered as the culprit 

for any differences found in the ensemble peak seismic response statistics. This is because the 

two sets are very different in terms of the rate by which their mean frequency content varies in 

time from high frequencies to lower frequencies as captured by 𝛼 (i.e., have been purposely and 

rigorously constructed to be quite biased in terms of 𝛼).  

However, note that the above two GM sets comprise GMs that are spectrally similar in a pair-

wise manner. That is, each GM in one set has a “twin” GM, in terms of spectral shape, in the other 

set. Consequently, the difference of α between twin GMs, though certainly significant as can be 

appreciated by the left-most histogram in Figure 6-5, is varying among twins/pairs. To this end, 

it is emphasised that, beyond ensemble IDA curves statistics, a more stringent statistical test to 

demonstrate the significance of the influence of α is to probe into pairwise statistics. In the 

following section pertinent statistics and results interpretation for both ensemble-wise and 

pairwise statistics are furnished by post-processing IDA curves data obtained for the two 

benchmark structural models of Section 6.1 and for both high-α and low-α GM sets herein derived 

and discussed.     

 

6.3 Quantification of α influence on IDA curves statistics from  the 

spectrally-equivalent GM sets  

6.3.1 7-storey building: Numerical results 

Standard IDA is applied to the case study 7-story building model discussed in Section 6.2.1 for 

the high-𝛼 and the low-𝛼 spectrally equivalent GM sets presented in Section 6.2. The standard 

Newmark time-integration algorithm with in-step average acceleration assumption presented in 

section 5.2 is used as implemented in Opensees. Figure 6-7 collects coloured-coded IDA curves 

obtained for the two GM sets using the Sa(𝑇1) as the IM and the max inter-storey drift (MIDR) 

along the height of the building frame as the EDP. Specifically, Figure 6-7(a) plots individual 

IDA curves, while Figure 6-7(b) summarizes these curves statistically. The high-𝛼 GM set 
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imposes significantly higher drift demands to the structure across a wide range of post-yield limit 

states. In particular, the high-𝛼 GM set induces a MIDR = 0.2 to the structure when scaled to 20% 

lower median Sa(𝑇1) compared to the low-a GM set. The difference of median Sa(T1) between 

the two GM sets required to induce MIDRs≥0.4 reaches up to 25%. Considering that the low-𝛼 

GM set observes negligible evolution of the average frequency content compared to the high-𝛼 

GM set, the numerical data in Figure 6-7 are in alignment with pertinent numerical results 

reported in the literature which compare stochastic GM models with and without non-stationarity 

in frequency content (e.g. Vetter and Taflanidis 2014).  

   

Figure 6-7 IDA Curves with respect to Sa(T1) for High and Low 𝛼 Spectrally Equivalent Ensembles of 50 

GMs: (A) Individual Curves; (B) Median (Solid Lines) and Median ± 1 Standard Deviation (Broken Lines) 

Ensemble Curves. 

 

To further investigate the persistence of the influence of α to the inelastic peak response demands 

in case one uses a more “advanced”, than the standard Sa(T1), IM in establishing IM-EDP 

relationship, the avgSa, whose capability to account for the effect of spectral shape to period 

elongation has been discussed in Section 5.3, is further considered. Herein, the avgSa IM is 

extended to encompass several different spectral ordinates as 

AvgSa = (∏ Sa(𝑇𝑗)
𝐽
𝑗=1 )

1

𝐽, (6.7)  

 

where J spectral ordinates are considered at Tj (j=1,2,…,J) periods equally spaced in the range of 

[0.52s 2.4s] with an increment of 0.1s. Note that the lower bound of the considered range 

coincides with the second natural period of the structure (0.52s) while the upper bound is 50% 

larger from the fundamental structural natural period T1=1.6s. In this respect, the IM in equation 

(6.7) was found to be more efficient and sufficient than Sa(T1) as it accounts for period elongation 

phenomena not only in the first mode but also in higher modes of vibration (Kohrangi et al. 2016 
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and 2017). The IDA curves in Figure 6-7 are re-scaled in Figure 6-8 using the AvgSa in Eq.(6.7). 

It is seen by comparing Figure 6-7 and Figure 6-8 that the difference in the median IDA curves 

between the high-𝛼 and low-𝛼 sets remains significant from a seismic structural risk assessment 

perspective within the PBEE context. As discussed in Chapter 5 in view of results pertaining to 

SDOF structures, this observation manifests that the information on non-stationary frequency 

content trends carried by the 𝛼 index is not captured by the linear response spectral ordinates of 

GMs or by the spectral shape. In this case, this is confirmed for MDOF structures and it is verified 

by means of rigorously selected GMs based on the spectrally equivalency criterion.  

  

Figure 6-8 IDA Curves with respect to AvgSa for High and Low 𝛼 Spectrally Equivalent Ensembles of 50 

GMs: (A) Individual Curves; (B) Median (Solid Lines) and Median ± 1 Standard Deviation (Broken Lines) 

Ensemble Curves. 

 

Consequently, it is concluded that the time-evolving GM frequency content need be accounted 

for in undertaking IDA (and more generally NRHA) as it does influence the damage potential of 

GMs while the current state-of-art IMs cannot capture this influence for the considered structure. 

Further to the above results, pairwise boxplot statistics of IM|EDP (i.e., Sa(T1)|θmax) ratios 

constructed between spectrally-equivalent GM twins coming from the high-α and low-α sets are 

computed in Figure 7-11. These have been constructed by taking ‘vertical stripes’ of IM values 

separately from the two GM sets at various interstorey drift levels (i.e., EDP or limit state values) 

all the way from (almost) linear behaviour to collapse. For each EDP, the ratio of IM|EDP values 

from each of the 50 twins (spectrally equivalent) GMs are computed to produce boxplot statistics. 
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Figure 6-9 Vertical stripes on IDA curves and boxplots for 50 High and Low 𝛼 sets 

 

In the boxplots, it is seen that the median of the ratios analysed is relatively constant with limit 

state MIDR values at about 1.25. In the median sense, the high-α member of the spectrally 

equivalent twin GMs induces 25% higher demand from the low-α across consistently across all 

limit states. Furthermore, the distribution/dispersion of these ratios (upper and lower quartiles 

indicated by the upper and lower limits of the boxes) is also generally consistent with EDP value 

except for ratios corresponding to the lowest value of θmax considered corresponding to elastic 

behaviour for which the ratios show significantly smaller dispersion. Most importantly, note that 

the lower quartile attains a value of about 1 suggesting that at least 75% of the GM spectrally 

equivalent twins with high 𝛼 have higher damaging potential than their low-α “brothers” with 

95% confidence (statistically significance level). Note that , from a statistical viewpoint, the above 

boxplot-based results is the most stringent criterion that can be employed to demonstrate that the 

influence of α to the IM-EDP statistics is significant with high confidence having “set aside”, 

statistically, all other known influencing factors: spectral shape, Tm, and effective duration as 

comparison is done against pairwise quantities rather than ensemble quantities. 

 

Having established the importance of α to IM-EDP relationship for the benchmark building 

considered, additional statistics are further provided in terms of IDA curves (i.e., without focusing 

onto spectral-equivalent GM twins statistics). This is done for a number of additional GM sets 

constructed from GM twins coming from the high-α and low-α sets based on different GM record 

selection criteria involving α. The criteria are: (i) choice of 25 GMs from the high-α set with the 

highest α and their twins from the low-α set; (ii) choice of 25 GMs from the high-α set and their 

twins from the low-α set with the highest α difference; (iii) choice of 25 GMs from the high-α set 

and their twins from the low-α set with the lowest α difference.  
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Table 6-1 Summary table of the GMs sets parameters 

subset 

# 
Description 

Medians Standard Deviations 

Alpha Duration Tm Alpha Duration Tm 

1 
50 Low alpha pairs, First 50 

chosen with Highest Alphas 
0.7028 37 0.856 0.2447 12.33 0.3005 

2 
50 High alpha pairs, First 50 

chosen with Highest Alphas 
4.0383 27.3 0.9065 0.6613 10.22 0.2833 

3 
25 Low alpha pairs, First 25 

chosen with Highest Alphas 
0.7730 36.1 0.8405 0.2467 10.79 0.8405 

4 
25 High alpha pairs, First 25 

chosen with Highest Alphas 
4.3945 26.7 0.9082 0.6168 10.01 0.9082 

5 

25 Low alpha pairs, First 25 

chosen with Highest 

Difference between High 

Alphas and Low alphas 

0.6128 36.10 0.8549 0.2693 12.18 0.3077 

6 

25 Low alpha pairs, First 25 

chosen with Highest 

Difference between High 

Alphas and Low alphas 

4.3945 26.4 0.9698 0.6721 11.07 0.3261 

 

 

Figure 6-10 Histograms of the 25 high-α and 25 low-α sets for: (a) alpha, α, values and (b) effective duration 

Ds5-95. 

 

 

These sets are constructed from the subsets of GMs described in Table 6-1 in which set 

#1 is the low-α set and set #2 is the high-α set. Subset statistics with respect to important 

GM properties are included in the same table and relevant histograms are plotted in 

Figures 6-10 and 6-11. 
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Figure 6-11 Histograms of the 25 high-α and 25 low-α sets for Tm, values. 

 

 

Figure 6-12 IDA curves comparisons for 25 High and Low 𝛼 sets (median curves) 

 

Figure 6-12 plots median IDA curves for the three new mixed low-α/high-α GM sets based on the 

above selection criteria. Superimposed are the median IDA low-α and high-α curves. All three 

median IDA curves of the mixed GM sets lie always in between the median low-α and high-α 

curves with the mixed GM pairs set chosen on the basis of having higher⁡𝛼 difference being the 

closest to the low-α median curve. Lastly, Figures 6-13 and 6-14 probe into IDA curve statistics 

of the mixed GM sets vis-à-vis the high-α and low-α sets by examining the coefficient of variation 

(COV= standard deviation/mean). The variability of IDA curves of the mixed set based on the 

highest α criterion lies in between the COV of the high-α and low-α sets (left panel of Figure 6-
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13). Further the COV of mixed set based on the highest α difference lies very close to COV of 

low-α. The smallest COV is observed based on the mixed GM set with criterion the lowest α 

difference. Therefore, it appears that the last criterion reduces IDA curves variability significantly. 

   

Figure 6-13 IDA COV (Coefficient of Variation) between 50 pairs and 25 max high alphas (two curves 

with 50L(red) and 50H(blue)), and one curve (25L+25H), black) 

 

 

Figure 6-14 COV (Coefficient of Variation) between 50 pairs and 25 pairs with min alpha difference 

between pairs (two curves with 50L(red) and 50H(blue)), and one curve (25L+25H), black) 
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6.3.2 3-storey building: Numerical results 

Similar as per the case of the 7-storey model, IDA are carried out the case study 3-story building 

model for the high-𝛼 and the low-𝛼 spectrally equivalent GM sets presented in the previous sub-

section. The same standard Newmark time-integration algorithm with in-step average 

acceleration assumption presented in section 5.2 is used in Opensees as before. Figure 6-15 

collects coloured-coded IDA curves (GM ensemble statistics) while and Figure 6-16 provides 

boxplot statistics (GM pairwise statistics). Contrary to the 7-storey structure, median and 

dispersion of IDA curves obtained by the two different GM sets lie close to each other. This is 

further confirmed by examining the median boxplot (middle quartile), which is about 1.1 and 

remains relatively constant for all limit states. Dispersion of boxplot increase for near collapse 

limit states as well as the median increases but, overall, these trends are not statistically significant 

with similar level of confidence as in the case of the 7-storey structure. Note that unity is always 

within the notched part of the boxplot. These results suggest that α, and therefore, the non-

stationary frequency content of GMs does not influence much the seismic response of the 3-storey 

structure in terms of IM|EDP values. Noting that this structure is stiff with T1=0.55s as opposed 

to T1=1.6s for the 7-storey structure previously considered, the herein results verify trends 

observed in the case of stiff versus flexible inelastic SDOF oscillators seen in Chapter 5: the 

influence of α is reduced for stiff structures.  

 

 

Figure 6-15 IDA curves for 50 High and Low 𝛼 sets (A) Individual Curves; (B) Median (Solid Lines) and 

Median ± 1 Standard Deviation (Broken Lines) Ensemble Curves. 
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Figure 6-16 Boxplots and IDA curves of R for 50 High and Low 𝛼 sets for the 3-storey building 

 

6.3.3 IDA curves comparison between 7-storey and 3-storey benchmark 

building models 

To further appreciate the difference in IDA curves between the two 7-story and the latter 3-story 

structure, the IDA curves have been compared in Figure 6-17. In these plots the normalised to 

yielding strength demand IM, R in equation (5.11) is employed to enable a meaningful 

comparison of IDA curves for structures with different yielding and stiffness properties. Median 

IDA curves shown in Figure 6-17 demonstrate a significant difference in the deviation of IM|EDP 

values for the 7-storey structure vis-à-vis the 3-storey structure when estimated using the low-α 

GM set as opposed to the high-α set. Ιt is seen that the low-α set brings median IDAs from the 

two structures much closer to each other than the high-α set.  
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Figure 6-17 IDA curves comparisons of R for 50 High and Low 𝛼 sets for the 3 and 7 storey building 

 

Moreover, the median pairwise ratios for the 3-storey structure in Figures 6-18 and 6-19 are 

significantly lower (around 1.05 on average and, thus, similar to median values shown in the 

boxplot of Figure 6-16) than the ratios for the 7-storey building which is up to more than 22% 

larger for the near collapse limit state. These final results and comparisons verify that the stiffer 

of the two benchmark structures is much less influenced by variations to the evolving frequency 

content as captured by α compared to the more flexible benchmark structure. 

Figure 6-18 Median IDA curves comparison in terms of R for High-α and Low-𝛼 and ratio RLow/RHigh for 

the 3-storey building. 
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Figure 6-19 Median IDA curves comparison in terms of R for High-α and Low-𝛼 and ratio RLow/RHigh for 

the 7-storey building. 

 

6.4 Concluding Remarks 

The overarching conclusion of this chapter is that a proper treatment of the evolutionary frequency 

content of recorded GMs may be important for relatively flexible MDOF structural models. The 

evolutionary trend in time of the mean frequency content of GMs captured through 𝛼 has proven 

to be a practical and suitable metric for this purpose. The numerical evaluation of two realistic 

cases shed light on the phenomenological behaviour of different MDOF under a set of low-α and 

high-α pairs of spectrally equivalent GMs. Selecting ground motions with High and Low 𝛼 set of 

GMs has been shown to significantly influence the collapse performance of a structure. Low 𝛼 

value set of GMs impact on structures in the sense of reduction of the collapse capability to 25% 

(in average) for moderate period structures. For low period MDOF the impact is less significant 

but still present with a percentage that varies between 5% to 10%. 
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7 Introduction 

The quantification of the influence of time-varying average frequency content exhibited in typical 

far-field recorded GMs bearing no pulse-like signatures or forward directivity effects to the peak 

response of yielding structures has been pursued in this thesis. This need has been motivated by 

the fact that, despite  previous work demonstrating the above influence for the case of stochastic 

GM models with and without accounting for non-stationary frequency content, the evolutionary 

frequency content trends of recorded GMs are not accounted for in the current state-of-practice 

of PBEE employing recorded GMs in undertaking NRHA (i.e., IDA). To this aim, the novel scalar 

index alpha, 𝛼, has been defined representing the average in time rate of change of the mean 

frequency content of GMs. This is invariable to GM scaling and has been herein obtained from 

continuous wavelet transforming GMs using judicially defined Morlet wavelets. Then, α has been 

used as a proxy of the time-varying GM frequency content and statistical evidence were provided 

by post-processing IDA curve statistics of the influence of GM evolving frequency content to 

peak inelastic structural response demands of interest in PBEE (i.e., EDPs). This final section 

summarises the milestones reached in each chapter, highlights the main contributions and findings 

of the reported research work and concludes with recommendations for future work.  

 

7.1 Summary of Work, Contributions and Major Findings 

Following on a comprehensive literature review on the current state-of-art on using time-

frequency analysis tools in earthquake engineering applications in Chapter 2, the continuous 

wavelet transform (CWT) was found rather advantageous for representing the time-varying 

frequency content in seismic response signals of hysteretic structures. Specifically, it was 

identified that ridge analysis on the CWT spectrogram as well as the mean instantaneous 

frequency (MIF) computed by the CWT spectrogram were successfully applied in previous 

studies for system identification of nonlinearly behaving structures under seismic excitation as 

well as for earthquake-induced damage detection.  

In this regard, Chapter 3 focused on the presentation of all pertinent theoretical principles of CWT 

to underpin the use of CWT spectrogram for identifying salient time-varying frequency content 

features in recorded ground motion accelerograms (GMs). Specifically, a detailed discussion on 

analytic wavelets which lie at the heart of the wavelet ridge extraction method has been included 

focusing on Morlet wavelets which bears significant advantages in representing signal energy on 

the time-period plane. Pertinent numerical results were provided to underline advantages and 

limitations of CWT associated with the ridge curves approach. The latter approach supports the 

capability of CWT to trace the variation of frequency content of signals, even in the presence of 
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noise, by using appropriate filters, implemented in the ridge curve detection. Ultimately, a time-

dependent CWT spectrogram-based mean instantaneous period (MIP) has been put forth as an 

advantageous alternative to CWT ridge analysis. This because it was seen, for the first time in the 

open literature, that the Morlet CWT spectrogram of typical recorded GMs provides for an 

impractically large number of simultaneous in time local ridges picking up the various different 

local frequency components out of the quite rich and inherently random frequency content. On 

the other hand, the herein proposed MIP, time-limited and band-limited to correspond to the 

effective duration of recorded GMs and to frequencies of interest to structural earthquake 

engineering, is a single time-history which was found to be capable of providing efficiently 

(visually as well as computationally) the evolution of the average frequency content of recorded 

GMs when coupled with Morlet analysis wavelets. In this regard, it was found that the herein 

developed MIP bears the same usefulness for characterising the evolution of the average 

frequency content of typical far-field recorded GMs as the MIF of CWT was found in the previous 

work of Spanos et al (2007a) to characterise the mean variation of natural frequencies of 

seismically excited yielding structures. This was achieved in Chapter 3 by considering the MIPs 

of a small benchmark suite of 20 GMs used by Vamvatsikos and Cornell (2002) to introduce IDA. 

Moreover, MIP= 2π/MIF of acceleration response signals were examined derived from IDA 

applied to a hysteretic oscillator representing a benchmark 12-storey r/c frame for the previous 

suite of 20 GMs. It was observed that the response signal MIPs tend to converge to the GM MIP 

in a point-wise manner as stronger inelastic behaviour is exhibited. This numerical evidence is 

the first in the literature to showcase phenomenologically moving resonance phenomena of 

yielding structures exposed to recorded GMs. More importantly, it has been shown that the slope 

of the ensemble average MIP for the near-collapse limit state lies close to the ensemble average 

GM MIP, while it may also be treated as indicator of the so-called “period elongation” 

phenomenon for degrading inelastic structures. Overall, the reported numerical data suggested 

that the time-varying frequency content is an important influence factor for hysteretic systems 

especially at the near collapse limit state since the average excitation MIP correlates with the 

average response MIP. This novel finding motivated considering the slope of the MIP as a useful 

proxy to account for the influence of the time-varying frequency content of GMs to structural 

response within the PBEE framework.  

Chapter 4 introduced the novel scalar wavelet-based quantity termed alpha, “𝛼”, defined by the 

average slope (angle) of the wavelet-based mean instantaneous period (MIP) to characterize the 

temporal evolution of the mean frequency content of recorded GMs. Consequently, 𝛼 captures 

the rate by which the mean frequency content of GMs changes in time. A rigorous mathematical 

definition of a was provided based on linear regression analysis of discrete-time MIP data using 

mean least squares minimization criterion. Conveniently, the closed-form mathematical 
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expression of α enables also its efficient numerical calculation. Linear regression analyses have 

been undertaken involving a dataset of 611 GMs from 30 seismic events of Magnitude 6.5<M<8 

and distance to rupture plane 20km<Rrup<120km to quantify statistical/empirical correlation 

trends between 𝛼 and well-established GM properties, namely the peak ground acceleration 

(PGA), peak ground velocity (PGV), and the mean Fourier-based frequency (Tm), oftentimes used 

as intensity measures (IMs) and record selection criteria in PBEE. Further, regression analyses 

have been carried out to probe into the relationships between a and important seismological and 

local site characteristics. It is found that no significant correlation exists between a and M, Rrup, 

or PGA. However, it was established that 𝛼 is well-correlated with the average frequency content 

of GMs as captured by Tm and by PGV: the lower the average frequency content, the larger the 

value of 𝛼 tends to be, that is, the faster the time evolution (transition) of the average frequency 

content is from higher to lower frequencies. Further, the reported numerical data indicate that the 

level of the above correlation depends on the intensity of GMs in terms of PGA (conditional on 

PGA): 𝛼 is larger for fixed Tm as PGA increases and 𝛼 increases faster as Tm increases for larger 

PGA values. Moreover, GMs recorded on softer soils are more likely to have larger a conditional 

on PGA, a phenomenon that is attributed to the fact that soft soils under strong seismic shaking 

exhibit strong non-linear behavior that enriches the low frequency content of free field recorded 

GMs. Lastly, the influence of 𝛼 in predicting the peak inelastic structural response is assessed 

within the PBEE framework through a standard sufficiency statistical test on PGA and PGV, 

treated as non-structure specific IMs in conducting IDA for a hysteretic oscillator with strength 

and stiffness degradation representing a benchmark 12-storey reinforce concrete frame exposed 

to the above set of 611 GMs. The considered statistical tests demonstrate that information of the 

non-stationary average frequency content of GMs as captured by 𝛼 is only partially included in 

the PGV and quite less in PGA when used as IMs to predict peak inelastic structural response. 

The response of benchmark inelastic SDOF oscillators developed in the literature to represent 

different classes of archetype lateral load-resisting systems used in earthquake resistant building 

structures is considered in Chapter 5 to demonstrate and quantify the influence of 𝛼 and, thus, of 

the mean variation of GMs frequency content, to different limit state performance of yielding 

structures. Pertinent numerical evidence was provided addressing ductile and non-ductile 

structures with different pre-yield stiffness relying on post-processing of IDA curves for the same 

611 GM databank considered in Chapter 6. Important novel findings based on regression analyses 

to IDA curves derived by using the standard Sa(T1) IM as well as the more advanced (efficient 

and sufficient) AvgSa|IM which partly accounts for GM spectral shape showed that (1) both IMs 

values conditioned on near collapse limit state are significantly influenced by 𝛼, though influence 

to AvgSa is smaller; (2) 𝛼 becomes more influential to mean IM|EDP trends for larger EDP values 

(i.e., as limit states corresponding to more significant nonlinear behaviour from linear all the way 
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collapse) are considered; (3) influence of 𝛼 is more prominent for the ductile structures. Overall, 

the above three findings suggest that insufficient portion of information carried by 𝛼 (i.e., non-

stationary frequency content trends as well as moving average and period elongation potential) is 

contained in the IMs considered and that IMs accounting for spectral shape (and thus for period 

elongation) are only partially able to capture some of the information in 𝛼. Consequently, 𝛼 

should be accounted for as a record selection criterion in establishing IM-EDP relationships 

especially when the routinely used Sa(T1) is adopted as the IM and ductile structures (i.e., code-

compliant/contemporary structures) and/or limit states close to collapse are studied. These 

recommendations are further supported/justified by results and discussion in Chapter 3 

demonstrating that input/excitation 𝛼 correlates better with output/response 𝛼 in structures 

amenable to develop stronger period elongation through moving average phenomena (ductile 

and/or close to collapse limit states). Moreover, the use of a normalised to the yielding strength 

IM, R, was considered to enable meaningful comparisons among stiff versus flexible structures 

(based on their pre-yielding natural period). Here, it was found that for non-ductile structures the 

influence of 𝛼 increases monotonically with the flexibility of structures for all limit states. 

However, this is not the case for the ductile structures in which the influence of a relatively stiff 

structure (Τ1=0.5s) is almost the same with a relatively flexible structure (Τ1=2s) though much 

more important for intermediate structures (T1=1s and 1.5s) for all limit states. Overall, it is found 

that 𝛼 is increasingly important for close to collapse limit states irrespective of structural ductility 

and stiffness. Further, as stiffness increases 𝛼 influences more substantially the ductile structure 

and it is mostly important for flexible (T1=2s) non-ductile structures and for intermediate stiffness 

(T1=1s and 1.5s) ductile structures. 

In Chapter 6 rigorous GM record selection has been employed to examine the potential influence 

of 𝛼 to statistics of IMs conditioned on EDP values derived through IDA for a 7-storey flexible 

and 3-storey stiff benchmark structures modelled through detailed lumped-plasticity MDOF FE 

models. Record selection involved constructing two different GM sets of 50 GMs each chosen 

from a databank of 1222 GMs such that they are pair-wise spectrally equivalent (i.e., have similar 

spectral shapes in pairs) such that their average spectral shape is the same but have very different 

𝛼 mean/median values. It was verified that the two GM sets, one high-𝛼 GMs and one with low-

𝛼 GMs have similar Tm and effective duration distributions, thus, making them ideal to check the 

influence of α to EDPs (maximum storey drift) of the benchmark structures in isolation from all 

other factors known to influence EDPs (spectral shape, Tm, effective duration). It was found that 

the evolving GM frequency content as captured by 𝛼 increases ensemble-wise median IDA curves 

by 20% or more across a wide range of post-yield limit states for the flexible 7-storey benchmark 

structure when adopting Sa(T1) as the IM. This discrepancy in the mean sense does not reduce 

appreciably by adopting an advanced AvgSa|IM accounting for spectral shape effect to period 
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elongation and to higher modes influence since the two GM sets used are spectrally equivalent 

and response spectral ordinates cannot discriminate evolutionary trends of frequency content. 

Strictest possible pair-wise statistics provided in the form of boxplots of ratios of IM|EDP values 

for spectrally matched GM twins coming from the high-𝛼 and low-𝛼 sets were further considered 

demonstrating that the increased IM/EDP median values for low-𝛼 set is statistically important 

with very high confidence level. Ultimately, this compelling statistical evidence establishes the 

important influence of non-stationary frequency content in estimating fragilities and, eventually, 

seismic loss within the PBEE framework. On the antipode, the influence of 𝛼 to the hysteretic 

response of the stiffer 3-story benchmark structure was found to be insignificant which verifies 

findings and conclusions of Chapter 5 addressing inelastic SDOF structures.   

 

7.2 Recommendations for Future Research 

It is recognized that throughout this research work the number of hysteretic structural systems 

considered to appraise the influence of GM non-stationary frequency content was kept to a 

minimum. This was purposely done, through judicial selection of benchmark structures, aiming 

to explore structural behaviour lying towards the two ends of the spectrum of possible candidate 

structures. For example, in Chapter 5 only two different inelastic SDOF systems were considered, 

cherry-picked out of at least 8 different benchmarks inelastic SDOF systems representative of the 

structural behaviour of archetype structures included in FEMA P440A (2009), corresponding to 

ductile and to non-ductile moment resisting steel or r/c frames. The purpose was to examine 

whether and how systems with different ductility attributes are influenced by the non-stationary 

GM frequency content. Moreover, in Chapter 6, again only two benchmark structures were 

considered, a relatively flexible (7-storey r/c moment resisting frame) and a relatively stiff with 

fewer DOFs (3-storey steel braced frame), out of several possible, to explore the level of influence 

of non-stationary GM frequency content to flexible/mid-rise buildings versus stiff low-rise 

buildings. In all cases, it was found that the level of influence of the non-stationary GM frequency 

content as captured by the herein proposed 𝛼 to the inelastic structural response is governed by 

structural system properties such as stiffness and ductility. In this respect, it is recommended that 

further comprehensive research work is undertaken to study the effect of non-stationary GM 

frequency content to a wide variety of inelastic structural systems with different levels of stiffness, 

ductility, number of DOFs, capacity envelops (backbone curve), and hysteretic laws (with and 

without and for different levels of stiffness and strength deterioration) representative of different 

materials and structural configurations (steel, r/c, composite, wood/timber, etc.). Along similar 

lines, the α index as well as the methodology considered in Chapter 6 on record selection can be 

used to study the effects on non-stationary GM frequency content to structures protected by 
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various passive and semi-active devices and configurations against seismic hazard including 

energy dissipation devices (i.e., all types of dampers), tuned mass dampers, inerter-based 

vibration absorbers, base isolation, magnetorheological dampers. In fact, recent work showed that 

seismic protection effectiveness of tuned mass dampers and of base isolated structures does 

depend on non-stationary GM frequency content probed through wavelet analysis without 

however making use of the 𝛼 index (De Angelis, et al. 2019 ). Accordingly, further research is 

recommended to check the influence of non-stationary frequency content through 𝛼 for other 

types of important infrastructure facilities exposed to the seismic hazard, such as bridges and wind 

turbines. 

From the engineering seismology viewpoint, numerical data in Chapter 4 indicate that further 

promising work can be undertaken to correlate trends of non-stationary GM frequency content as 

captured by 𝛼 against seismological and other key GM properties in different seismogenetic 

environments including near-fault, different types of faulting, different GM records orientation, 

etc. Moreover, given that 𝛼 was herein found to be a predictor of structural collapse capacity at 

least for certain types of structures at near collapse limit states, integrating site-specific seismic 

hazard characterisation of 𝛼 with structural collapse risk in a similar manner that this was 

undertaken by (Chandramohan, e al. 2015) for the case of effective duration, seems a promising 

and important further research to be undertaken.  

Another aspect that sets the scene for promising future research is the consideration of the 

influence of GMs to structural response and collapse capacity with negative 𝛼. It was seen in this 

research work that out of 2x611=1222 GMs of the set in Appendix A, 103 GMs (i.e., less than 

9% of the total GMs considered) attain a negative 𝛼, that is, their average frequency content 

evolves from lower to higher frequencies in time. Careful examination of the Morlet wavelet 

spectra and the associated MIPs reveal that these GMs are characterized by the late arrival of 

significant bursts of energy with relatively high frequencies compared to the early mean frequency 

content observed (Margnelli and Giaralis, 2017). However, such time-varying frequency content 

trends are non-typical and their influence to GM damage potential warrant separate treatment left 

for future work as highlighted in Chapter 6. Similarly, future research investigation is warranted 

to treat the case of pulse-like GMs which have not been considered at all in the present work. The 

use of wavelet-based procedure for classification of near-fault GMs is quite advanced (Baker 

2007) but the use of a proxy like 𝛼 (or perhaps other more suitable proxies) and their effect to 

yielding structures or to structures equipped with passive/semi-active control devices is open to 

further investigation. 

Finally, from the PBEE viewpoint, more research warranted to explore different and mostly 

practical ways to account for non-stationary frequency content through 𝛼 in performance-based 
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seismic design and/or seismic risk and loss assessments for structures expected to be mostly 

influenced by 𝛼. Possible ways forward can be to use α as an additional record selection criterion 

or the definition of alternative (vector) IMs that account for 𝛼. 

As closure, in view of the large number of items for recommended future work building on the 

current research and findings, it can be argued that a major contribution of this thesis, being 

mostly exploratory rather than conclusive, is that it opens up several new research directions in 

the field of earthquake engineering whose outcomes are expected to be fruitful from the scientific 

viewpoint and practically important from the practitioner viewpoint.    
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Appendix A 

Ground Motions (GMs) sets  
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A1 GMs SET 1 - 20 GMs 

The 20 recorded GMs used in Sections 3.4 and 3.5 are listed in Table A-1 with some key 

properties. This suite of records has been constructed by Vamvatsikos and Cornell (2002) to 

represent a “scenario earthquake” and considers seismic events of magnitude range 6.5<M<6.9 

recorded on firm soil conditions at moderate distances from the seismic fault.  

Table A-1 Properties of the 20 ground motions considered by (Vamvatsikos and Cornell, Incremental 

Dynamic Analysis 2002)  

No. 
Event 

(Year) 

Station 

(Component) 

M 

R 

(km) 

PGA 

(g) 

Tm 

(s) 

1 Loma Prieta (1989) Agnews State Hospital (090) 6.9 28.2 0.159 0.957 

2 Imperial Valley (1979) Plaster City (135) 6.5 31.7 0.057 0.378 

3 Loma Prieta (1989) Hollister Diff. Array (255) 6.9 25.8 0.279 0.798 

4 Loma Prieta (1989) Anderson Dam Downstrm (270) 6.9 21.4 0.244 0.467 

5 Loma Prieta (1989) Coyote Lake Dam Downstrm (285) 6.9 22.3 0.179 0.538 

6 Imperial Valley (1979) Cucapah (085) 6.5 23.6 0.309 0.558 

7 Loma Prieta (1989) Sunnyvale Colton Ave (270) 6.9 28.8 0.207 1.502 

8 Imperial Valley (1979) El Centro Array #13 (140) 6.5 21.9 0.117 0.585 

9 Imperial Valley (1979) Westmoreland Fire Station (090) 6.5 15.1 0.074 0.849 

10 Loma Prieta (1989) Hollister South & Pine (000) 6.9 28.8 0.371 0.935 

11 Loma Prieta (1989) Sunnyvale Colton Ave (360) 6.9 28.8 0.209 1.380 

12 Superstition Hills (1987) Wildlife Liquefaction Array (090) 6.7 24.4 0.180 0.854 

13 Imperial Valley, 1979 Chihuahua (282) 6.5 28.7 0.254 0.701 

14 Imperial Valley, 1979 El Centro Array #13 (230) 6.5 21.9 0.139 0.470 

15 Imperial Valley, 1979 Westmoreland Fire Station (180) 6.5 15.1 0.110 0.985 

16 Loma Prieta (1989) WAHO (000) 6.9 16.9 0.370 0.275 

17 Superstition Hills (1987) Wildlife Liquefaction Array (360) 6.7 24.4 0.200 1.137 

18 Imperial Valley (1979) Plaster City (045) 6.5 31.7 0.042 0.361 

19 Loma Prieta (1989) Hollister Diff. Array (165) 6.9 25.8 0.269 0.890 

20 Loma Prieta (1989) WAHO (090) 6.9 16.9 0.638 0.271 
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A2 GMs SET 2 - 611 GMs 

A set of 611 of GM recordings (i.e. one direction horizontal component) from 30 different seismic 

events with magnitude range 6.5<M<8 and distance-to-rupture plane range 20km<Rrup<120km is 

retrieved from the PEER NGA-West2 Ground Motion Database (http://ngawest2.berkeley.edu/) 

as shown in Table A-2. Table A2 lists the seismic events, number of GMs considered per event, 

magnitude, and faulting mechanism while Figure A-2 shows the spread of the seismic events on 

the magnitude (M)- rupture distance (R) plane. Unscaled and unfiltered GMs along the “as-

recorded” direction are considered and no filter was applied on the faulting type, while “pulse-

like” GMs are excluded. This GM dataset attains a relatively uniform spread on the M-Rrup plane 

as shown in Figure A-1. The same base-line adjustment is applied to each horizontal component 

of the dataset by acausal high-pass filtering using a 4-order Butterworth filter with 0.13Hz cut-

off frequency (see e.g., Giaralis and Spanos 2009 and references therein).  

 

Figure A-1 Magnitude vs distance for the set of 611 GMs 

 

Table A-2 Properties of the 611 ground motions considered  

Event Date 

Number of  

components 

Magnitude Faulting 

Northwest California 02/09/1941 2 6.6 strike slip 

Borrego Mtn, El Centro Array 04/09/1968 2 6.5 strike slip 

San Fernando 02/09/1971 32 6.6 Reverse 

http://ngawest2.berkeley.edu/
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Event Date 

Number of  

components 

Magnitude Faulting 

Friuli, Italy 05/06/1976 4 6.5 Reverse 

Imperial Valley-06 10/15/1979 9 6.5 strike slip 

Irpinia, Italy 11/23/1980 8 6.9 Normal 

Ierissos, Greece 08/06/1983 1 6.7 strike slip 

Taiwan SMART1(25) 09/21/1983 9 6.5 Reverse 

Borah Peak ID-01 10/28/1983 8 6.9 Normal 

Superstition Hills-02 11/24/1987 4 6.5 strike slip 

Spitak Armenia 12/07/1988 
1 

6.8 
Reverse 

Oblique 

Loma Prieta 10/18/1989 
62 

6.9 
Reverse 

Oblique 

Cape Mendocino 04/25/1992 2 7.0 Reverse 

Northridge-01 01/17/1994 55 6.7 Reverse 

Kobe, Japan 01/16/1995 8 6.9 strike slip 

Nenana Mountain Alaska 10/23/2002 2 6.7 strike slip 

Kern County 07/21/1952 3 7.4 Reverse 

Tabas, Iran 09/16/1978 2 7.4 Reverse 

Trinidad 11/08/1980 3 7.2 strike slip 

Taiwan SMART1 11/14/1986 15 7.3 Reverse 

Landers 06/28/1992 16 7.3 strike slip 

Gulf of Aqaba 11/22/1995 1 7.2 strike slip 

Duzce, Turkey 11/12/1999 5 7.1 strike slip 

Caldiran, Turkey 11/24/1976 1 7.2 strike slip 

Manjil, Iran 06/20/1990 4 7.4 strike slip 

Hector Mine 10/16/1999 34 7.1 strike slip 

Kocaeli, Turkey 08/17/1999 13 7.5 strike slip 

Chi-Chi, Taiwan 09/20/1999 
302 

7.5 
Reverse 

Oblique 
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Event Date 

Number of  

components 

Magnitude Faulting 

Sitka, Alaska 07/30/1972 1 7.7 strike slip 

St Elias, Alaska 02/28/1979 2 7.5 Reverse 
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A3 GMs SET 3 – 2 x 611 GMs 

A set of 611 pairs of GM recordings (i.e. two horizontal components) from 30 different seismic 

events with magnitude range 6.5<M<8 and distance-to-rupture plane range 20km<Rrup<120km is 

retrieved from the PEER NGA-West2 Ground Motion Database (http://ngawest2.berkeley.edu/) 

as shown in Table A-3. Unscaled and unfiltered GMs along the “as-recorded” direction are 

considered and no filter was applied on the faulting type, while “pulse-like” GMs are excluded. 

This GM dataset attains a relatively uniform spread on the M-Rrup plane as shown in Figure 2(a). 

The same base-line adjustment is applied to each horizontal component of the dataset by acausal 

high-pass filtering using a 4-order Butterworth filter with 0.13Hz cut-off frequency (see Giaralis 

and Spanos 2009 and references therein).  

  

Figure A-2 Magnitude vs distance for the set of 611 GMs 

 

Table A-3 Properties of the 611 ground motions considered  

Event Date 

Number of  

components 

Magnitude Faulting 

Northwest California 02/09/1941 2 6.6 strike slip 

Borrego Mtn, El Centro Array 04/09/1968 2 6.5 strike slip 

San Fernando 02/09/1971 32 6.6 Reverse 

Friuli, Italy 05/06/1976 4 6.5 Reverse 

Imperial Valley-06 10/15/1979 9 6.5 strike slip 

Irpinia, Italy 11/23/1980 8 6.9 Normal 

http://ngawest2.berkeley.edu/
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Event Date 

Number of  

components 

Magnitude Faulting 

Ierissos, Greece 08/06/1983 1 6.7 strike slip 

Taiwan SMART1(25) 09/21/1983 9 6.5 Reverse 

Borah Peak ID-01 10/28/1983 8 6.9 Normal 

Superstition Hills-02 11/24/1987 4 6.5 strike slip 

Spitak Armenia 12/07/1988 
1 

6.8 
Reverse 

Oblique 

Loma Prieta 10/18/1989 
62 

6.9 
Reverse 

Oblique 

Cape Mendocino 04/25/1992 2 7.0 Reverse 

Northridge-01 01/17/1994 55 6.7 Reverse 

Kobe, Japan 01/16/1995 8 6.9 strike slip 

Nenana Mountain Alaska 10/23/2002 2 6.7 strike slip 

Kern County 07/21/1952 3 7.4 Reverse 

Tabas, Iran 09/16/1978 2 7.4 Reverse 

Trinidad 11/08/1980 3 7.2 strike slip 

Taiwan SMART1 11/14/1986 15 7.3 Reverse 

Landers 06/28/1992 16 7.3 strike slip 

Gulf of Aqaba 11/22/1995 1 7.2 strike slip 

Duzce, Turkey 11/12/1999 5 7.1 strike slip 

Caldiran, Turkey 11/24/1976 1 7.2 strike slip 

Manjil, Iran 06/20/1990 4 7.4 strike slip 

Hector Mine 10/16/1999 34 7.1 strike slip 

Kocaeli, Turkey 08/17/1999 13 7.5 strike slip 

Chi-Chi, Taiwan 09/20/1999 
302 

7.5 
Reverse 

Oblique 

Sitka, Alaska 07/30/1972 1 7.7 strike slip 

St Elias, Alaska 02/28/1979 2 7.5 Reverse 
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Brief notes on Energy-Based methodology 
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B1 Introduction  

The present section is to describe methods based on the estimation of input energy and other 

energy parameters in order to investigate the inelastic behaviour for a SDOF. Since these 

parameters have been used in the previous chapters frequently it seemed necessary to prepare an 

introduction in this appendix  Recent studies have advised the use of energy concepts as an 

alternative way to the traditional strategies for the identification of seismic demand parameters. 

The possibility of defining a rational approach based on energy concepts required the 

understanding of the effects that energy and other relevant parameters both external (magnitude, 

soil type and distance to the causative fault) and internal (ductility, hysteric behaviour, damping), 

can have on the response of earthquake-resisting structures. There are interesting and unexplored 

ways to relate energy indexes (such as the ratio of hysteretic energy to input energy or the ratio 

of kinetic energy to input energy) with the Performance Based Seismic Design parameters (such 

as IM and DM of the IDA curves). 

 

B1.1 Energy Based methodology  

For an elastic single degree of freedom, the input energy is dissipated by the damping energy only 

whereas for an inelastic SDOF the yielding is acting an important role. The energy terms are 

normally derived by integrating the equation of motion (Uang and Bertero 1990): 

 

Figure B-1 Diagram of a SDOF  

 

∫ 𝑚�̈�(𝑡)𝑑𝑢 +
𝑢

0

∫ 𝑐�̇�(𝑡)𝑑𝑢 + ∫ 𝑓𝑠(𝑢, �̇�)𝑑𝑢 = −∫ 𝑚�̈�𝑔(𝑡)𝑑𝑢
𝑢

0

𝑢

0

𝑢

0

 

Clearly the previous equation is based on an inelastic system in which fs is the restoring force 

depending on velocity and displacement of the system. This equation is also called Energy 

Balance Equation. The energy supplied to the structure by the external seismic force −𝑚�̈�𝑔(𝑡) is 

called energy input and is the equal to the right term of the energy balance equation: 
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𝐸𝐼(𝑡) = −∫ 𝑚�̈�𝑔(𝑡)𝑑𝑢
𝑢

0

 

The first term of the energy balance equation is the Kinetic energy (relative motion to the ground): 

𝐸𝐾(𝑡) = ∫ 𝑚�̈�(𝑡)𝑑𝑢 =
𝑢

0

∫ 𝑚�̇�(𝑡)𝑑𝑢 =
�̇�

0

𝑚�̇�2(𝑡)

2
 

The second term is the energy dissipated by damping: 

𝐸𝐷(𝑡) = ∫ 𝑐�̇�(𝑡)𝑑𝑢
𝑢

0

 

The third term is the restoring strain energy: 

𝐸𝑆(𝑡) =
[𝑓𝑠(𝑡)]

2

2𝑘
 

Where k is the initial stiffness of the nonlinear system. Therefore, the hysteretic energy (energy 

dissipated by yielding) is: 

𝐸𝑌(𝑡) = ∫ 𝑓𝑠(𝑢, �̇�)𝑑𝑢 − 𝐸𝑆(𝑡)
𝑢

0

 

Summarizing the energy balance equation for an inelastic system can be rewritten as: 

𝐸𝐼(𝑡) = 𝐸𝐾(𝑡) + 𝐸𝐷(𝑡) + 𝐸𝑆(𝑡) + 𝐸𝑌(𝑡) 

The input energy relation proposed by (Uang and Bertero 1990) were based on absolute and 

relative motions supported recently by studies (Kalkan and Kunnath 2007) that corroborate the 

theory of important meanings of absolute input energy. In this section everything will be based 

on the input energy based on relative motion as it is the most meaningful approach (Chopra 2007) 

(Kalkan and Kunnath 2007). 

Based on the previous equation it has been developed a Matlab-Opensees platform (McKenna 

and Fenves 2001) that can derive all the energy terms before described and the energy ratio time-

histories. 
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B1.2 Elasto-Perfectly Plastic material and the effect on the Energy 

Actions 

The Elasto-Perfectly Plastic material used is described below: 

 

Figure B-2 Force Deformation Curve (Elastoplastic Behaviour) (Chopra 2007) 

 

Following the same approach as per (Chopra 2007) and using the normalized yield strength: 

𝑓𝑦 =
𝑓𝑦

𝑓0
=

𝑢𝑦

𝑢0
    where f0 and u0 are the peak value of the earthquake-induced resisting force and 

deformation,  

respectively, in the correspondent linear system. For example, a 𝑓𝑦 = 0.5 implies that the yield 

strength of the system is half of the minimum strength required for the system to remain elastic 

during the ground motion. Another important factor has been introduced that is the inverse of the 

normalized yield strength and it is called the yield strength reduction factor⁡𝑅𝑦: 

𝑅𝑦 =
𝑓0
𝑓𝑦
=
𝑢0
𝑢𝑦

 

In this case for 𝑅𝑦 = 1 the system is elastic, 𝑅𝑦 = 2 implies that the yield strength of the system 

is the minimum strength required for the system to remain elastic divide by 2. Introducing also 

the ductility factor 𝜇 as: 

𝜇 =
𝑢𝑚
𝑢𝑦

 

It is simple to obtain    
𝑢𝑚

𝑢𝑦
= 𝜇𝑓𝑦 =

𝜇

𝑅𝑦
 

Considering ElCentro seismic action: 
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Figure B-3 ElCentro seismic action (Chopra 2007) 

For different levels of normalized yield strength, it is possible to explore the effect of yielding in 

the response history. For a SDOF with a natural period of T=0.5s, damping of 𝜉=5% and the 

elastic max response of u0=0.05693m with a resisting force value ¼ of the yielding value 𝑓𝑦 =

0.25. In the Figure B-4 it is described the response for an elastic system (fy = 1) (no yield) and 

in the figures below a comparison between various levels of normalized yield strength 

 

 

Figure B-4 Elastic response (fy = 1) 
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Figure B-5 Elastic response (fy = 0.5) 

 

Figure B-6 Elastic response (fy = 0.25) 

 

As expecting, from the plots above, with the decreasing of 𝑓𝑦 there is an increasing of residual 

displacements and an increasing on the number of yielding levels reached. In those plots it has 

been developed an additional plot called Yield. If we introduce the number (NY) and the amplitude 

(AY) of the yield excursion of the SDOF, we can use them as indicators of the time spent by the 

SDOF to yield and looking at the above plots the time spent with 𝑓𝑦 = 0.5 is 𝑡𝑌 =
0.4

31.2
= 1.28%, 
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where with 𝑓𝑦 = 0.25 𝑡𝑌 = 5.32% and with 𝑓𝑦 = 0.125 𝑡𝑌 = 15.2%. Clearly very interesting 

considering that, reducing the normalized yield strength by 2 times from 𝑓𝑦 = 0.5 to 𝑓𝑦 = 0.25 

(with the number of yield excursion passing from Ny=5 to Ny=18 (360%)) the time spent is 

increased of 415% whereas with an additional reduction of normalized yield strength of 2 times 

from 𝑓𝑦 = 0.25 to 𝑓𝑦 = 0.125 (with the number of yield excursion passing from Ny=18 to Ny=44 

(244%)) the time spent is increased of 285%. The history of yielding is clearly very significant as 

much as the amount of energy absorbed by the system which leads to the cumulative yielding, a 

concept still at early stages of study.  

The force-deformation relation becomes larger and larger clearly showing an increasing of area 

and therefore an increasing of energy dissipated by yielding (as describe in the plots below). 

 

Figure B-7 Comparison between various levels Force-deformation relations 
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Figure B-7 shows, in addition to the enlargement of the force-displacement areas, the reduction in 

the resisting force with the decreasing of the normalized yield strength. This is even clearer 

looking at the energy plots at Figure B-8. As shown the amount of relative input energy (EI) that 

is absorbed by the SDOF is decreasing with the reduction of the levels of normalized yield 

strength. The first plot shows the elastic SDOF (fy_=1) which has also the highest value of energy 

dissipated by damping (ED), kinetic (EK) and strain (ES). Is interesting to see how the amount of 

dissipated energy by damping, changes (decrease) at every level of 𝑓𝑦 and from the elastic SDOF 

to the first Elasto-plastic SDOF (𝑓𝑦 = 0.5) the damping energy is decreasing substantially leaving 

a big part of dissipated energy to the yielding energy which was clearly absent in the elastic phase. 

The increasing of yielding energy along with the reduction of normalized yield strength is a proof 

that the yielding is absorbing energy to the detriment of all the other energies such as kinetic, 

strain and damping, being the system less stiff as the number of yield excursion increased 

(cumulative yield excursion). As discussed also the strain and kinematic energies have their peaks 

at the initial part of the graphs, where the structure is stiffer and Ny is minimal or zero, and then 

display relative peaks between the yield excursions. 

 

Figure B-8 Comparison between various levels Energies (time variation of energy): a) Elastic SDOF fy=1, 

b) Elasto-plastic SDOF with fy=0.5 

 

As mentioned before there are a few ratios which can be used to describe the energy process and 

that are representative of the SDOF behaviour as well. Those ratios are plotted against the time 

history and are essentially four (based on the relative input energy) plus one based on the yield 

values. The main two are the ratio between the hysteretic energy and the input energy (𝜂 =
𝐸𝑦

𝐸𝐼
) 



Appendix B – Brief notes on Energy-Based methodology 

 

 
186 

 

and the ratio between the hysteretic energy and the maximum hysteretic energy (𝜆 =
𝐸𝑦

𝐸𝑦𝑚
). The 

Figure B-9 indicates values of the above ratios with different levels of normalized yield strength. 

Analysing the first two figures, where the normalized yield strength is about fy=0.5, it can be 

noted that the kinetic and strain energy ratios dissipate quickly as soon as the structure starts to 

yield (as consequence of loss of stiffness), whereas the yield energy presents the maximum peak 

just right after the first group of yields and then it gradually decreases with the time showing less 

dissipation capacity at the end (clearly because there are presence of plastic residual 

displacements that reduce the ductility and therefore the yield energy capacity). On the contrary, 

the damping energy rises along the timescale until a point where intersects the yielding energy 

and exceed it becoming the biggest dissipative energy after 10s. This is very interesting because 

is happening for stiffer systems and is not happening for the others (fy_=0.25, fy_=0.125) where 

the yielding energy is the biggest dissipative energy.  

 

Figure B-10 Comparison between various levels Energy indices (time variation of energy): a) Elasto-plastic 

SDOF fy=0.5, b)Elasto-plastic SDOF with fy=0.25 



Appendix B – Brief notes on Energy-Based methodology 

 

 
187 

 

In addition for system with low normalized yield strength the ratio η is almost constant after the 

first step of yielding and at limit for⁡lim
𝑓𝑦→0

𝜂 =
𝐸𝑦

𝐸𝑖
→ 𝑐𝑜𝑠𝑡. Furthermore the system with fy_=0.5 

shows (Figure B-11 at the right) a 70% of dissipated energy, for hysteretic process, during the 

first 2.5s of the entire process where the first hinges are formed and then to reach 100% at the 2nd 

hinges, whereas the maximum ratio of 𝜂 =
𝐸𝑦

𝐸𝑖
 is about 60%, leaving also no possibility to have 

other yielding dissipation having reached the maximum quickly.  

 

 

Figure B-12 Comparison between various energy indices 𝜂 and 𝜆 (time variation of energy): a) Elasto-

plastic SDOF fy=0.5, b)Elasto-plastic SDOF with fy=0.25 
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Appendix C 

Brief notes on Regression Analysis 
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C1 Regression Analysis 

The past three decades have witnessed exponential increase in the use of linear regression models 

as quantitative tool for both theoretical and applied science. The popularity of this tool is 

attributable to its intuitive credibility and its low computational cost (Benjamin and Cornell 1970). 

Linear regression is a power statistical procedure that explores and utilize the relation among data 

(variables) to produce a prediction model in order to foresee an outcome variable from the data 

investigated. 

Suppose we collected a series of observations on a data pairs 𝑥, 𝑦. A linear model assumes the 

law which relates the mean of a random variable 𝑦 with a non-random variable 𝑥 is linear, such 

as 

 

Figure C-1 Concepts of Regression Analysis 

 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖   where 𝜀𝑖 are called residuals  

The task of estimation is to obtain parameter estimators, �̂�0⁡𝑎𝑛𝑑⁡�̂�1 which minimise the vertical 

distance (residuals) between the data points and the estimator line 

𝑦𝑖 = �̂�0 + �̂�1𝑥𝑖 + 𝜀𝑖 ⁡⇒ ⁡ 𝜀𝑖 = 𝑦𝑖 − (�̂�0 + �̂�1𝑥𝑖)   

where 𝜀𝑖 are called residuals. It is assumed that the residuals are zero mean random variables 

with constant variance: 

𝐸(𝜀𝑖) = 0, 𝐸(𝜀𝑖
2) = 𝜎𝜀

2  
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To minimise the residuals, the least square method is commonly used 

𝑚𝑖𝑛 {𝜀𝑖
2 = ∑ [𝑦𝑖 − (�̂�0 + �̂�1𝑥𝑖)]

2𝑛
𝑖=1 }   residuals sum of squares 

The solution gives: (Benjamin and Cornell 1970) 

�̂�1 =
∑ 𝑥𝑖𝑦𝑖⁡−�̅��̅�
𝑛
𝑖=1

∑ 𝑥𝑖
2−𝑛

𝑖=1 𝑛�̅�2
⁡⁡⇒ ⁡⁡�̂�𝟏 =

𝑠𝑥,𝑦

𝑠𝑥
2     is the first parameter estimator 

where: 

�̅� =
1

𝑛
(∑ 𝑥𝑖

𝑛
𝑖=1 )    is the sample mean of 𝑥 

�̅� =
1

𝑛
(∑ 𝑦𝑖

𝑛
𝑖=1 )    is the sample mean of 𝑦 

𝑠𝑥,𝑦 =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 𝑦𝑖 − 𝑛�̅��̅�    is the sample covariance 

𝑠𝑥
2 =

1

𝑛
(∑ 𝑥𝑖

2 − 𝑛�̅�2𝑛
𝑖=1 )    is the sample standard deviation of x 

𝑠𝑦
2 =

1

𝑛
(∑ 𝑦𝑖

2 − 𝑛�̅�2𝑛
𝑖=1 )    is the sample standard deviation of y 

and 

�̂�𝟎 = �̅� − �̂�1 ∙ �̅�    is the second parameter estimator  

𝜎𝜀
2 =

𝜀𝑖
2

(𝑛−2)
=

∑ [𝑦𝑖−(�̂�0+�̂�1𝑥𝑖)]
2𝑛

𝑖=1

(𝑛−2)
  is the variance of the residuals  

𝜎𝜀 is called the standard error of regression 

𝑅2 = 1 −
𝜀𝑖
2

𝑠𝑦
2    is the coefficient of determination 

𝑐𝑣 =
𝜎𝑋

�̅�
⁡     is the Coefficient of variation 
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Appendix D 

Significance Testing  
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D1 Hypothesis testing  

A conventional method, called significance testing (Benjamin and Cornell 1970), uses statistics 

to verify the validity of some hypothesis ℋ: a hypothesis is falsified or rejected by the significance 

test based on the statistics of observed empirical data acquired or generated to test the validity of 

the hypothesis. This process known as falsification was introduced by the philosopher Sir Karl 

Popper in 1934, in “Logik der Forschung“ (The Logic of Scientific Discovery). 

In this setting, a statistical hypothesis is an estimation of the distribution of one or more random 

variables and a hypothesis testing is the process for establishing the validity of the hypothesis via 

statistical testing. If we assume that a distribution of a random vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) of a 

density function 𝑓(𝒙, 𝜗) depends on a parameter 𝜃, then the hypothesis testing is to test the 

assumption where 𝜃 = 𝜃0 or 𝜃 ≠ 𝜃0 (Papoulis and Pillai 2002). We define null hypothesis in the 

event of 𝜃 = 𝜃0 denoted by ℋ0, and alternative hypothesis in the event of 𝜃 ≠ 𝜃0 denoted by ℋ𝑎. 

The aim of the hypothesis testing is to establish whether statistical data may support the 

falsifiability of the null hypothesis. Mathematically this can be represented in the following way: 

 

𝑖𝑓⁡𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) ⁡∈ {⁡
𝐷𝑐 ⁡→ ⁡ℋ0⁡𝑖𝑠⁡𝑓𝑎𝑙𝑠𝑖𝑓𝑖𝑒𝑑⁡(𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑)⁡⁡⁡⁡⁡⁡⁡⁡

�̅�𝑐 →⁡ℋ𝑎 ⁡𝑖𝑠⁡𝑛𝑜𝑡⁡𝑓𝑎𝑙𝑠𝑖𝑓𝑖𝑒𝑑⁡(𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑)
 

 

where 𝐷𝑐 is called the falsified region (or critical region). 

Typically, the falsified region (critical region) 𝐷𝑐 is of the form (Benjamin and Cornell 1970) 

𝐷𝑐 ≔ {𝑥 ≔ (𝑥1, 𝑥2, … , 𝑥𝑛): 𝑇(𝑥) > 𝑐} 

where, 𝑇(𝑥) is the test statistic and 𝑐 is the critical value. Therefore, operatively the problem of 

finding the region 𝐷𝑐 is reduced to that of finding appropriate 𝑇(𝑥) and 𝑐. The outcome of any 

hypothesis test can be summarised as in the following table 

 

 Not falsify null hypothesis ℋ0 falsify null hypothesis ℋ0 

ℋ0 is True (1 − 𝛼𝐼) correct Type I error 

ℋ1 is True Type II error (1 − 𝛽𝐼) correct 
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D2 Confidence interval 

Confidence intervals (Mood et al. 1974, Chapra 2012) contains the exact value of 𝜇 to be 

examined with a certain level of significance. The significance level of the test is called 𝛼𝐼 and it 

is chosen, normally, to have a value of 10%, 5% or 1%. 

Then the confidence interval has to contain the parameter with a confidence levels (probability) 

of 𝑝 = 1 − 𝛼.  

 

Figure D-1 Example of confidence intervals at significance levels 𝛼𝐼 = 5% and 𝛼𝐼 = 1% 

 

  

Figure D-2 Example of two-sided confidence intervals at significance levels 𝛼𝐼/2 
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Figure D-3 Example one-sided confidence intervals at significance levels 𝛼𝐼 

 

D3 Type I and II errors 

This is the error we make by choosing a critical value  

𝑃[𝜇0 − 𝑐 ≤ 𝑥 ≤ 𝜇0 + 𝑐⁡|⁡ℋ0] = 1 − 𝛼𝐼 

If the significant level’s value is 
𝛼𝐼

2
= 5% , and assuming a standard normal distribution 𝑍 (

𝛼𝐼

2
) =

𝜇−𝜇0

𝜎0
, then the confidence interval c has to be equal to 𝑐 = 1.65𝜎 where 𝜎 is the standard deviation 

and 𝜇 = 𝜇0 − 𝑐. 

In principle, therefore, on assuming a value of 𝛼 = 5% eventually we will commit a so-called 

Type I error 5% of the time (Benjamin and Cornell 1970), (Mood, Graybill and Boes 1974). 

Assuming instead that we accept the hypothesis  ℋ0 when it is not true, then we are encountering 

in a type II error. 

 

D4 P-value of a Hypothesis test 

The p-value indicate the minimum significance level of the test 𝛼𝐼 for which the Hypothesis ℋ0 

is falsified (rejected). In mathematical terms: 

𝑝𝑣𝑎𝑙𝑢𝑒 = inf⁡{𝛼𝐼: 𝑇(𝑥) ∈ 𝐷𝐶} 

where 𝑇(𝑥) is the test statistic 𝐷𝐶 is falsified region (critical region). 
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Therefore, if there is a solid evidence against the null hypothesis ℋ0 then 𝑝𝑣𝑎𝑙𝑢𝑒 is small. 

 

Figure D-4 Example of one-sided hypothesis testing 

 

Smaller 𝑝𝑣𝑎𝑙𝑢𝑒 suggests that the null hypothesis ℋ0 is likely to be falsified, but it is never 

completely negated. On using 𝑝𝑣𝑎𝑙𝑢𝑒 we are not assessing any validity of the null hypothesis but 

rather how significant the evidence are against it (i.e., it is unlikely that ℋ0 is true but not 

impossible). 

 

D5 Regression analysis and Hypothesis test 

Having established the rules for significance testing and determined the parameter estimators we 

have completed all we need for a statistical analysis of a dataset. As per Appendix C, if we assume 

a linear model (where the law which relates the mean of a random variable 𝑦 with a non-random 

variable 𝑥 is linear), such as 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖, 

the question of most practical relevance to this thesis is how significantly different from zero the 

first parameter estimator 𝛽1 (i.e., the slope) is. To answer this question, we introduce the concept 

of p-value (as defined above p-values indicate the minimum significance level of the test 𝛼𝐼 for 

which the Hypothesis ℋ0 is falsified), which in mathematical terms can be seen as: 

ℋ0 ∶ ⁡the⁡slope⁡𝛽1 = 0⁡; ℋ0 ∶ ⁡the⁡intercept⁡𝛽0 = 0 

𝑇(𝑥):⁡Significance⁡levels⁡ = ⁡𝑃[reject⁡ℋ0⁡|⁡ℋ0⁡correct]  

(0.1) 
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𝑝𝑣𝑎𝑙𝑢𝑒 = inf⁡{𝛼𝐼: 𝑇(𝑥) ∈ 𝐷𝐶} (0.2) 

where 𝑇(𝑥) is the test statistic 𝐷𝐶 is falsified region (critical region).  
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Appendix E 

Implementation of Hysteretic Material in 

OpenSees 
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E1 Hysteretic models  

The Hysteretic models have been implemented in the OpenSees, finite element platform,  

using the Pinching4_material property: 

[http://opensees.berkeley.edu/wiki/index.php/Pinching4_Material] 

 

 

Figure E-1 Force–Displacement capacity boundary and Hysteretic cycles principles as adopted in OpenSees 

The following tables describes the parameters, with their values, used as input in the settings of 

the material class: 

 

Table E-1 Non-ductile SDOF Properties 

uniaxialMaterial Pinching4  Non-Ductile SDOF 

$matTag  10 integer tag identifying material 

$ePf1 $ePd1  1, 0.01 floating point values defining force points on the 

positive response envelope 

$ePf2 $ePd2  0.15, 0.05 floating point values defining force points on the 

positive response envelope 

$ePf3 $ePd3  0.15, 0.055 floating point values defining force points on the 

positive response envelope 

$ePf4 $ePd4 0.15, 0.06 floating point values defining force points on the 

positive response envelope 

$eNf1 $eNd1  -1 -0.01 floating point values defining force points on the 

negative response envelope 

$eNf2 $eNd2  -0.15, -0.05 floating point values defining force points on the 

negative response envelope 

$eNf3 $eNd3  -0.15, -0.055 floating point values defining force points on the 

negative response envelope 

$eNf4 $eNd4  -0.15, -0.06 floating point values defining force points on the 

negative response envelope 

http://opensees.berkeley.edu/wiki/index.php/Pinching4_Material
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$rDispP $rForceP $uForceP  0.5, 0.25, 0.05 floating point value defining the ratio of the 

deformation at which reloading occurs to the 

maximum historic deformation demand, the ratio of 

the force at which reloading begins to force 

corresponding to the maximum historic deformation 

demand and the ratio of strength developed upon 

unloading from negative load to the maximum 

strength developed under monotonic loading 

$rDispN $rForceN $uForceN  0.5, 0.25, 0.05 floating point value defining the ratio of the 

deformation at which reloading occurs to the 

minimum historic deformation demand, the ratio of 

the force at which reloading begins to force 

corresponding to the minimum historic deformation 

demand, and the ratio of strength developed upon 

unloading from negative load to the minimum 

strength developed under monotonic loading 

$gK1 $gK2 $gK3 $gK4 

$gKLim  
0, 0, 0, 0, 0 floating point values controlling cyclic degradation 

model for unloading stiffness degradation 

$gD1 $gD2 $gD3 $gD4 $gDLim  0, 0, 0, 0, 0 floating point values controlling cyclic degradation 

model for unloading stiffness degradation 

$gF1 $gF2 $gF3 $gF4 $gFLim  0, 0, 0, 0, 0 floating point values controlling cyclic degradation 

model for strength degradation 

$gE  10 floating point value used to define maximum energy 

dissipation under cyclic loading. Total energy 

dissipation capacity is defined as this factor 

multiplied by the energy dissipated under monotonic 

loading. 

$dmgType "energy” string to indicate type of damage 

 

Table E-2 Ductile SDOF Properties 

uniaxialMaterial Pinching4  Ductile SDOF 

$matTag  11 integer tag identifying material 

$ePf1 $ePd1  1, 0.01 floating point values defining force points on the 

positive response envelope 

$ePf2 $ePd2  1.05, 0.04 floating point values defining force points on the 

positive response envelope 

$ePf3 $ePd3  0.8, 0.06 floating point values defining force points on the 

positive response envelope 

$ePf4 $ePd4 0.8, 0.08 floating point values defining force points on the 

positive response envelope 

$eNf1 $eNd1  -1 -0.01 floating point values defining force points on the 

negative response envelope 

$eNf2 $eNd2  -1.05, -0.04 floating point values defining force points on the 

negative response envelope 

$eNf3 $eNd3  -0.8, -0.06 floating point values defining force points on the 

negative response envelope 

$eNf4 $eNd4  -0.8, -0.08 floating point values defining force points on the 

negative response envelope 

$rDispP $rForceP $uForceP  0.2, 0.4, 0.05 floating point value defining the ratio of the 

deformation at which reloading occurs to the 

maximum historic deformation demand, the ratio of 

the force at which reloading begins to force 

corresponding to the maximum historic deformation 

demand and the ratio of strength developed upon 

unloading from negative load to the maximum 

strength developed under monotonic loading 
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$rDispN $rForceN $uForceN  0.2, 0.4, 0.05 floating point value defining the ratio of the 

deformation at which reloading occurs to the 

minimum historic deformation demand, the ratio of 

the force at which reloading begins to force 

corresponding to the minimum historic deformation 

demand, and the ratio of strength developed upon 

unloading from negative load to the minimum 

strength developed under monotonic loading 

$gK1 $gK2 $gK3 $gK4 

$gKLim  
0, 0, 0, 0, 0 floating point values controlling cyclic degradation 

model for unloading stiffness degradation 

$gD1 $gD2 $gD3 $gD4 $gDLim  0, 0, 0, 0, 0 floating point values controlling cyclic degradation 

model for unloading stiffness degradation 

$gF1 $gF2 $gF3 $gF4 $gFLim  0, 0, 0, 0, 0 floating point values controlling cyclic degradation 

model for strength degradation 

$gE  10 floating point value used to define maximum energy 

dissipation under cyclic loading. Total energy 

dissipation capacity is defined as this factor 

multiplied by the energy dissipated under monotonic 

loading. 

$dmgType "energy” string to indicate type of damage 
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