
              

City, University of London Institutional Repository

Citation: Komninos, N. (2007). Morpheus: stream cipher for software & hardware 

applications. Paper presented at the IEEE 9th International Symposium on Communication 
Theory & Applications (ISCTA’07), 16 - 20 July 2007, Ambleside, UK. 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/2482/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Morpheus: Stream Cipher for Software & Hardware Applications 
Nikos Komninos 

Algorithms & Security Group  
Athens Information Technology 

GR-190 02, Peania (Attiki), Greece 
nkom@ait.edu.gr 

 
 

ABSTRACT 

In a world where electronic devices with different 
characteristics are networked, privacy is an essential element 
for the communicating process. Privacy can be achieved by 
encryption algorithms with unique features based on the 
application that are deployed. In this paper a word-oriented 
stream cipher, or Morpheus, for both hardware and software 
devices, is proposed. Morpheus targets multimedia 
applications, such as Games-On-Demand or IPTV, where 
data are usually streamed over different kind of networks and 
devices. Morpheus behaves very well in all known statistical 
tests and is resilient to known attacks for both synchronous 
and self-synchronous encryption modes. 
 

I. INTRODUCTION 

There is a big industry demand for secure and efficient stream 
ciphers, the mobile/wireless communication sector being one 
of the foremost “consumers” of such ciphers. Stream ciphers 
are considered “more” appropriate than block ciphers, and in 
some cases mandatory, when buffering is limited or when 
characters must be individually processed as they are 
received. Because they have limited or no error propagation, 
stream ciphers may also be advantageous in situations where 
transmissions errors are highly probable. From scientific point 
of view, there is also an interest to get a better understanding 
for how to design stream ciphers, since many of the proposed 
schemes in the past have been more or less severely attacked. 

Nowadays, the European Network of Excellence for 
Cryptology (ECRYPT) funded within the Information Society 
Program (IST) has launched the eSTREAM project, a stream 
cipher contest whose purpose is to identify new stream 
ciphers that might become suitable for widespread adoption. 
The eSTREAM project has defined mainly two categories, or 
profiles in the project context, for software and/or hardware 
applications. Some have emphasized the importance of 
including an authentication method and so two further 
profiles have been proposed which combine authentication 
methods in stream ciphers for software and/or hardware 
applications. 

Current stream ciphers, including those in eSTREAM 
project, do not provide high flexibility to software and 
hardware applications. In this paper we propose Morpheus, a 
stream cipher that can be efficiently used for both software 
and hardware applications since it uses simple mathematical 
operations, such as eXclusive-OR, addition modulo 2w, 
lookup table and fixed rotations that can be implemented 
efficiently in both software and hardware. Several tests were 

performed to Morpheus in synchronous and self-synchronous 
encryption modes, i.e., when the generation of the keystream 
was both independent and dependent of the plaintext and 
ciphertext.  

Following this introduction, this paper is organized as 
follows. Section II presents current efforts to the eSTREAM 
project with ciphers such as Phelix, LEX and Salsa20 suitable 
for hardware and/or software applications. Section III 
analyzes in detail the design of the Morpheus algorithm. 
Section IV discusses security, implementation, and 
cryptanalysis issues of the algorithm. This paper concludes 
with remarks and comments on the proposed algorithm.  

 

II. RELATED WORK 

Several stream cipher designs have been proposed that are 
efficient in either software or hardware or both. Here we 
present three relatively recent designs which introduced some 
interesting cryptographic techniques some of which where 
adopted in the design of Morpheus. All of them were 
submitted to the eSTREAM Project as being both hardware 
and/or software efficient and have successfully passed the 
first round of evaluation. 

Whiting et al. [7] proposed the Phelix algorithm that has 
successfully passed the first evaluation phase and it is 
implemented together with a Message Authentication Code 
(MAC). Phelix design consists of a network of simple bitwise 
operations with an initial state of eight 32-bit words; four 
“active” words that participate in the block update function 
and four “old” words which are used in the keystream output 
function. The operations used in the network are bitwise 
exclusive-or, addition modulo 232 and fixed left cyclic shifts, 
or rotations. The generation of the MAC is conducted after 
the encryption of the plaintext, which consists of 12 Phelix 
rounds with specific parameters. The keystreams generated by 
the last 4 of these rounds represent the MAC tag. However, 
some weaknesses have been published by Wu and Preneel 
introducing some differential attacks against Phelix [9, 10]. 

Biryukov [3] proposed LEX stream cipher for software 
applications only and has successfully passed the first 
verification phase of the eSTREAM project. LEX introduces 
the notion of a leak extraction from the Advanced Encryption 
Standard (AES), which is used in a chain-like design. The 
keystream is generated by the intermediate rounds of AES; on 
each round, a certain part of the 16-byte state is leaked, which 
depends on whether the round is odd or even. According to 
the author, this cipher is 2.5 times faster than AES in the 128-
bit key version, 3 times faster in the 192-bit version and 3.5 



times in 256-bit versions. However, based on an attack in 
[11], LEX design was slightly modified in order to be 
qualified to the second phase of the eSTREAM project.  

Salsa20, another stream cipher for software applications, 
was proposed by Bernstein [2] and has entered the second 
phase of eSTREAM in the software category. In fact, Salsa20 
is a hash function with 64-byte input and 64-byte output and 
is used in counter mode as a stream cipher. The hash function 
is implemented by four mixing functions and an invertible 
function that transforms a 4-byte sequence into a 32-bit word 
in a little-endian manner. 

The first of the mixing functions, called quarterround, 
mixes four 32-bit words, by using XORs, additions modulo 
232 and left rotations, and produces four new 32-bit words. 
The next two functions, rowround and columnround, are very 
similar to each other. They both mix sixteen 32-bit words, by 
applying four times the quarterround function, and return 
sixteen new 32-bit words.  Their difference is that, if the 
sixteen words where seen as a 4x4 matrix, then the rowround 
function modifies the rows and the columnround function 
modifies the columns of this matrix. The last mixing function, 
named doubleround, mixes sixteen 32-bit words by applying 
first the rowround and next the columnround function. 
Although several attacks on Salsa20 were published, the 
cipher was left unchanged by its author. 

 

III. AN OVERVIEW OF MORPHEUS 

Morpheus is a word-oriented stream cipher designed to use a 
128, 256, and 512 bits key and a 128-bit initialization vector 
(IV).  The key is secret, and the IV is typically public 
knowledge. It produces a keystream, which is XORed with 
the plaintext (P) to produce the ciphertext (C). The decryption 
function takes the key and IV and produces the plaintext after 
XORing the ciphertext with the keystream. 

Morpheus is key flexible as mentioned above and it 
consists of four words of 32 or 64 or 128 bits each that form 
an initial state. The state is broken up into groups: 4 “new” 
state words, which participate in the block update function, 
and 4 “old” state words, that are only used in the keystream 
output function. As shown in Figure 1a, a single round of 
Morpheus consists of adding (modulo 2) one new state word 
with a key material, adding (modulo 2w) a second new state 
into the first and rotating the second word. The first word is 
an input to a lookup table, or substitution box (S-Box). 

S-BOX <<<

Ki

         
        (a)              (b) 

Figure 1: Single round on Morpheus 
 

However, Morpheus changes its form in the round as 
illustrated in Figure 1b. Morpheus now consists of adding 
(modulo 2w) one new state with a key material, adding 

(modulo 2) a second state into the first and rotating the 
second word. The first word is also an input to an S-Box. The 
new states are shown as vertical lines in Figure 1. Two rounds 
are applied in a diagonal pattern to the new state and create 
one block (see Figure 2).  

Each block is represented by a unique number i. For the i-
th block, the input state is denoted by Z0

(i), Z1
(i), Z2

(i), Z3
(i) and 

the output state by Z0
(i+1), Z1

(i+1), Z2
(i+1), Z3

(i+1), which forms 
the input to the next block with number i+1. During the block 
i, one word of keystream (Si) is generated and four words of 
key material are added (Ki,0, Ki,1, Ki,2, and Ki,3). 
 

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

 

Figure 2: one block of Morpheus encryption 
 
All states can be 32-bit or 64-bit or 128-bit words according 
to the key length and for the clarity of this paper we will 
consider 128-bit key that results to 32-bit words. In 
Morpheus, exclusive or is denoted by ⊕, addition modulo 2w 
is denoted by +, left rotation is denoted by <<<, and lookup 
table is denoted by S-Box. The cipher block function F is 
defined as: 
 
Function F ( Z0

(i), Z1
(i), Z2

(i), Z3
(i), Ki,0, Ki,1, Ki,2, Ki,3 ) 

Begin 
Z0

(i+1) := Z0
(i) ⊕ Ki,0;  Z0

(i+1) := S-Box(Z0
(i+1)); 

Z3
(i+1) := Z3

(i) + Ki,1;  Z3
(i+1) := S-Box(Z3

(i+1)); 
Z1

(i+1) := Z1
(i) + Z0

(i+1); Z1
(i+1) := Z1

(i+1) <<< 9; 
Z2

(i+1) := Z2
(i) ⊕ Z3

(i+1); Z2
(i+1) := Z2

(i+1) <<< 11; 
Z0

(i+1) := Z0
(i+1) + Z2

(i+1);  Z2
(i+1) := Z2

(i+1) ⊕ Ki,3; 



Z3
(i+1) := Z3

(i+1) ⊕ Z1
(i+1);  Z1

(i+1) := Z1
(i+1) + Ki,2; 

Z1
(i+1) := Z1

(i+1) ⊕ Z2
(i+1); Z3

(i+1) := Z3
(i+1) + Z2

(i+1); 
Z2

(i+1) := Z2
(i+1) + Z1

(i+1); Z0
(i+1) := Z0

(i+1) ⊕ Z1
(i+1); 

Z2
(i+1) := S-Box(Z2

(i+1)); Z2
(i+1) := Z2

(i+1) + Z0
(i+1); 

Z1
(i+1) := S-Box(Z1

(i+1)); Z1
(i+1) := Z1

(i+1) ⊕ X3; 
Z3

(i+1) := Z3
(i+1) <<< 5; Z3

(i+1) := Z3
(i+1) ⊕ Z0

(i+1); 
Z0

(i+1) := Z0
(i+1)  <<< 11; Z0

(i+1) := Z0
(i+1) + Z3

(i+1); 
Return (Z0

(i+1), Z1
(i+1), Z2

(i+1), Z3
(i+1)); 

End. 
 
Given the function F, one round of encryption is computed as 
follows: 
 
( Z0

(i+1), Z1
(i+1), Z2

(i+1), Z3
(i+1) ) := F ( Z0

(i), Z1
(i), Z2

(i), Z3
(i),    

Ki,0, Ki,1, Ki,2, Ki,3 ) 
 
Each round produces one word of keystream Si := [(Z0

(i+1) ⊕ 
Z2

(i+1)) + (Z1
(i+1) + Z3

(i+1))]. The ciphertext words are defined 
by Ci := Pi ⊕ Si. 

A. Initialization & Encryption 
Morpheus takes two parameters as input values; a secret key 
of 128-bits and a publicly known 128-bits IV. The IV value 
is considered as a four word input IV = (IV3, IV2, IV1, IV0) 
where IV0 is the least significant word. Likewise, the key is 
considered as a four word input K = (k3, k2, kl, k0), where k0 
is the least significant word. States Z0

(i), Z1
(i), Z2

(i), Z3
(i) are 

initialized with K and IV according to function H. 
 
Function H(k0, k1, k2, k3, IV0, IV1, IV2, IV3) 
Begin 
 Z0 := k0 ⊕ IV3; Z1 := k1 + IV2; 

Z2 := k2 ⊕ IV1;  Z3 := k3 + IV0; 
 Return (Z0, Z1,  Z2, Z3); 
End. 
 
The resulting 32-bit values Z0, Z1, Z2 and Z3 are used as an 
initial input to Morpheus block function F. F is executed for 
three times without producing any output bits. On the first 
time, the round- keys K0,j are equal to constant values (see 
section round key scheduling), but on the next two times the 
round-keys K1,j and K2,j are generated by the key scheduling 
function, described in the next 
section. The final four 32-bit 
words are used as the initial 
state of the encryption rounds.  

After the initialization, the 
plaintext is encrypted. Each 
block generates one word of 
keystream, which is used to 
encrypt one word of plaintext. 
Decryption is almost identical 
to encryption. The keystream Si 
generated after the first 
application of the F function in 
each block is used to decrypt 
the ciphertext, producing the 
plaintext word. The 

implementation must insure that any unused bytes of the final 
plaintext word are taken as zero for purposes of computing 
the block function, regardless of the value of the extra 
keystream bytes.   

B. Round Key Scheduling 
The output states Z0

(i+1), Z1
(i+1), Z2

(i+1), and Z3
(i+1) of the 

initialization phase are used to generate the round keys Ki,j 
according to function S. 
 
Function S (Z0

(i+1), Z1
(i+1), Z2

(i+1), Z3
(i+1), Ki,0, Ki,1, Ki,2, Ki,3) 

Begin 
K0,0 := 0xf35A;  K0,1 := 0xB718;  
K0,2 := 0xC59A;  K0,3 := 0xE46D;  
For i ≥ 1 and 0 ≤ j ≤ 3 do  

Ki,j := {[(Zj
(i+1) <<< 3) ⊕ ((i•(j+1) <<< 10)] + Ki-1,j}; 

Return (Ki,0, Ki,1, Ki,2, Ki,3); 
End. 
 
Initially, K0,0, K0,1, K0,2 and K0,3 are randomly set to constant 
values 0xf32A, 0xB718, 0xC59A, 0xE46D, respectively. For 
the next 3 blocks, each round-key is calculated by XORing, 
adding modulo 232 with variable values and rotating with 
fixed numbers.    

C. S-box Design 
Morpheus defines a 16 × 16 matrix of byte values (Table 1) 
that contains a permutation of all possible 8-bit values (i.e. 28 
possible combinations = 256 values). Each individual byte its 
input is mapped into a new byte in the following way: The 
leftmost 4 bits of the byte are used as a row value and the 
rightmost 4 bits are used as a column value. These row and 
column values serve as indexes into the S-Box to select a 
unique 8-bit output value. For example, the hexadecimal 
value {67} references row 6, column 7 of the S-Box, which 
contains the value {C7}. Accordingly, the value {67} is 
mapped into the value {C7}. 

 

Table 1 – S-Box in Hexadecimal Values 

 

y  0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 F1 93 A9 0B 6C C9 AA 19 32 EF 03 8A 92 B6 49 35 
1 4A 4F 6B 3F 85 E6 B1 45 4E 94 CF E3 0F 06 AB 78 
2 F5 6F 5F 53 C2 B7 9C 67 59 13 72 5C 8B 26 BF B4 
3 62 83 E2 C6 86 9F 76 7A AE 91 44 69 EB FC 27 F2 
4 D5 3D 73 CB 71 81 25 31 98 0E AF 9B 11 65 8D 1A 
5 1B 41 28 2F 02 88 C8 08 3E 1E 84 AD D1 E7 39 D0 
6 B8 DA A6 10 3A 80 A2 C7 04 C3 BC 0C 30 3C FF 7F 
7 87 96 4D 01 F7 A8 34 A3 DE E5 A1 0A D8 F3 48 16 
8 A4 BB 1C D6 43 BD FB CD 9D C1 F6 E0 7B 4C 3B 1D 
9 82 6E C4 99 8F 24 29 8C CC FE 95 D7 A0 B2 50 14 
A 36 B3 1F EA D9 DF 55 66 58 38 47 4B 20 D4 05 5B 
B DB D2 23 33 57 F8 E9 ED 6D 68 89 54 A7 56 52 61 
C 21 CE 2B 90 74 F0 2A 5D 97 A5 EC F9 75 63 E8 BE 
D 60 12 5A D3 2D 6A 9A 64 9E 0D 46 07 F4 22 70 18 
E 79 09 B0 5E 7E 40 BA DD B5 7C EE 15 7D CA 8E 2C 

x 

F FA 42 E4 B9 51 77 AC C0 00 17 E1 FD C5 2E DC 37 



The S-Box is constructed as follows: 
 
1. Initialize the S-Box with the byte values in ascending 

sequence row by row. The first row contains {00}, {01}, 
{02}, …, {0F}; the second row contains {10}, {11}, etc.; 
and so on. Thus the value of the byte at row x, column y 
is {xy}. 

2. Use the Secure Hash Algorithm (SHA-256) to create 
256-bit values for each byte in row and column, i.e., 
{00}, {01}, {02}, … etc. The MSB of the hash value is 
stored in the corresponding xy byte. When two MSBs are 
the same the next byte is chosen. The procedure carries 
on from the MSB to the LSB.     

3. Statistically correct the columns and rows of the S-Box 
(i.e. balance with the frequency and block test the 
number of 0s’ and 1s’ in each row and column) 

 

IV. AN ANALYSIS OF MORPHEUS 

Compared to many ciphers, Morpheus is relatively easy to 
implement in both software and hardware.  

A. Implementation  
If 32-bit addition, exclusive-or, and rotation functions are 
available, all the functions are easily implemented in 
software. A single round takes only one clock cycle to 
compute on most current Pentium CPUs because the 
superscalar architecture can perform an addition and/or XOR 
simultaneously with a 32-bit rotation [8]. A block of 
Morpheus takes 8 cycles plus some overhead for the handling 
of the plaintext, keystream and ciphertext. The processing 
overhead of Morpheus is due to the initialization. The key 
scheduling only need to be done once for each key value and 
thus does not reserves any processing. 
Morpheus is also fast in hardware. The rotations incur no gate 
delays, only wiring delays although they do not consume 
routing resources in chip layouts. The keystream is generated 
after 8 additions, 9 XORs, 4 fixed rotations and 4 memory 
accesses to the S-Box. There are several techniques for high-
speed implementation but a conservative estimate of a low-
cost ASIC layout is 2.5ns per 32-bit adder, 0.5 ns per XOR 
and 1.5 ns per access [7], which adds up to 30.5 ns/output. 
This translates to more than 150 MByte per second, or just 
under 1.5 Gbit per second. We roughly estimate that such a 
design would consume fewer than 25,000. Such a design 
would acquire about a 2 clock overhead per packet in order to 
process the initialization. 

B. Security Issues  
For flexibility, Morpheus allows several key sizes to be used 
as there are many situations in which larger than 128 bits of 
key material are available. The small set of elementary 
operations that Morpheus makes is efficient on a large 
number of software platforms. The absence of variable 
rotations and multiplications makes Morpheus small and 
efficient in hardware as well. The number of state words (4) 
used for output was chosen so that the total amount of 

unknown internal state is always at least 128 bits, even after 
the keystream output. 

Morpheus use a lookup table (S-Box) to provide the 
necessary nonlinearity in conjunction with mixing of XORs 
with additions. Neither of these operations can be 
approximated well within the group of the other. In addition, 
the diffusion in Morpheus is fast and the attacker has very 
little control over the state it is not possible to limit the 
diffusion of differences. In those areas where dynamic attacks 
are possible, we use a sequence of 8 blocks instead of 3 to 
ensure thorough mixing of the state words with the round-
keys. 

The key initialization and round-key scheduling when 
combined is an unkeyed bijective function. The purpose is to 
spread the available entropy over all round key words. The 
round key scheduling ensures that all four key words depend 
on the key material. Using a bijective mixing function ensures 
that no two 128-bit input keys lead to the same working key 
values.  

One of the dangers of a stream cipher is that the keystream 
will be re-used. To avoid this problem the sender must ensure 
that each (Key, IV) pair must be unique for every encryption. 
A single sender must use a new and unique IV for each 
message. Multiple senders that want to use the same key must 
employ a scheme that divides the IV space into non-
overlapping sets, in order to ensure that the same IV is never 
used twice. If two different messages are ever encrypted with 
the same (Key, IV) pair, Morpheus loses most of its security 
properties. 

Like any stream cipher, Morpheus is a cryptographically 
strong pseudorandom number generator (PRGN). For every 
input it produces a stream of pseudorandom data. Using the 
full block function, we ran statistical tests on many candidate 
rotation count sets to see how these values would affect the 
ability of the block function to diffuse changes and mix 
together separate information within the internal state.  

C. Statistical Tests 
Morpheus is a strong cryptographic PRGN since the tests 
below were successfully passed. Among our tests, we 
considered different rotation numbers and test the keystream 
and ciphertext for: 

• the proportion of ones and zeros in the keystream; 
• the proportion of ones and zeros in the binary 

derivate of the keystream; 
• the difference between the proportion of ones up to 

and including the point and the proportion of ones 
after the point is noted; 

• the number of repetitions and the χ2 value of 
subblocks of the keystream; 

• the run in the keystream of all ones (block) and all 
zeros (gap); 

• the comparison between the actual sequence 
complexity and the sequence complexity threshold 
value for a bit stream of the same length; 

• the minimum number of bits required to re-create the 
whole keystream using a linear feedback shift 
register; 



• the probability of ciphertext block change whenever 
any bit of the plaintext block changes; 

   
Most rotation counts did pretty well but our carefully selected 
rotation count sets were slightly better than random ones. 
Morpheus was tested in both synchronous and self-
synchronous encryption modes and passed statistics with 
frequent re-initializations of 160 and 256 bits of ciphetext. 

D. Cryptanalysis 
A successful attack is considered when an attacker can either 
predict a keystream bit he has not seen with a probability 
slightly higher than 50%. A number of attacking methods 
were considered in this section. We have not yet discovered 
any method of attacking Morpheus.  

1) Static analysis 
A static analysis takes the keystream and tries to reconstruct 
the state and key. Several properties make this type of attack 
difficult. Even if the whole state is known, any four 
consecutive keystream words are fully random. This is 
because each Ki,0 key value affects Si in a bijective manner, so 
for any given state and any sequence of Ki,1 words, there is a 
bijective mapping from Ki to Si. A similar argument applies 
when the block function is computed backwards. Any attempt 
to recover the key, even if the state is known at a single point, 
must span at least 4 blocks.  

2) Period length 
The Morpheus internal state is updated continuously by the 
round-keys Ki,j. The Ki,j values depends on the “old” key 
words Zj, the previous round-key Ki-1,j, the block number i, 
and the input key length. All 8 key words and all 4 IV words 
affect the state every block.  

The initialization and key scheduling also ensures that 
different (Key, IV) pairs produce different key sequences. To 
demonstrate this, we look at the sequence Si of key words in 
the order they are used. Given just part of the sequence Si, 
without the proper index values i, we cannot recover the key, 
IV and block number. This is due to the fact that the “old 
states” and the IV are different in the key scheduling and 
initialization phases. So long as the IV is not repeating, the 
keystream should have an arbitrarily long period, up to 
maximum packet size of 264 bytes. The non-repeating IV word 
values prevent the state from ever falling into a cycle.   

3) State collisions 
To avoid internal collisions in less than 2128 words of chosen 
plaintext, Morpheus added 4 “old” state words, increasing the 
internal state significantly to 256 bits. Thus, the unknown 
state remains at 128 bits even after outputting the keystream 
word within a block, so no collisions are reasonably expected 
within the security bounds. 

4) Weak keys 
Morpheus makes constant use of the words of the working 
key. An all-zero working key it effectively omits a few 
operations from the block function, but we have not 

discovered any possible attack based on it. Once again 
statistical tests were performed to the keystream when K and 
IV are set to zeros or pattern data (i.e. 0s and 1s). 

5) Chosen input differential attacks 
One powerful mode of attack is for the attacker to make small 
changes in the input values and look at how the changes 
propagate through the cipher. 

In Morpheus, this can be done only with the key or the IV. 
In each case, the block function is applied multiple times to 
the input. In Morpheus, all the places where such attacks are 
possible have several consecutive blocks without any output. 
A change to the IV, such as is considered in [5], was 
thoroughly mixed into the state by the time the first keystream 
word was generated. A search found no useful differentials 
for 3 blocks of Morpheus, nor useful higher-order 
differentials. 

6) Algebraic attacks over GF(2) 
Linearization and general algebraic techniques have been 
used to successfully analyze stream ciphers [1, 4]. The two 
round functions in Morpheus that combine integer addition, 
XOR, rotation and substitution yield to impractical algebraic 
attacks that require more than 2128 steps. 
 

V. CONCLUSIONS 

The design of Morpheus is based on various cipher design 
principles that have resulted from the intense research taking 
place on this area of cryptography. It combines the aspect of 
having a long chain of simple operations, rather than a small 
chain of complex ones for applications that work both in 
software and hardware. However, ciphers that are based on 
simple operations (i.e. addition, XORing and rotation) are 
susceptible to linear and algebraic attacks. Morpheus design 
incorporates lookup table and round keys to break such 
linearity. 

Extensive statistical tests were performed to the keystream 
and to the ciphertext with special and weak keys. Known 
cryptanalytic methods were also applied and to our 
knowledge we have not yet discovered any workable method 
of attacking Morpheus.  
 

REFERENCES 
[1] Armknecht, F. A linearization attack on the Bluetooth key stream 

generator. Cryptology ePrint Archive Report 2002/191, 2002. 
http://eprint.iacr.org/2002/191. 

[2] Bernstein, D. J. Salsa20. eSTREAM, ECRYPT Stream Cipher Project 
Report 2005/025. 

[3] Biryukov, A. A New 128-bit Key Stream Cipher: LEX, eSTREAM. 
ECRYPT Stream Cipher Project Report 2005/013. 2005 

[4] Courtois, N. and Pieprzyk, J. Cryptanalysis of block ciphers with over 
defined systems of equations. In Advances in Cryptology 
ASIACRYPT2002, Yuliang Zheng (editor) volume 2501 of Lecture Notes 
in Computer Science, pages 267-287. Springer-Verlag, 2002. 

[5] Daemen, J., Govaerts, R., and Vandewalle, J. Resynchronisation 
weaknesses in synchronous stream ciphers. In Advances in Cryptology-
EUROCRYPT '93, Tor Helleseth (editor) volume 765 of Lecture Notes in 
Computer Science, pages 159-167. Springer-Verlag, 1993. 



[6] Dj. Golic, J. Dj. Modes of operation of stream ciphers. In Selected Areas 
in Cryptography, 7th Annual International Workshop, SAC 2000, 
Douglas R. Stinson and Stafford Tavares (editors) volume 2012 of 
Lecture Notes in Computer Science, pages 233-247. Springer-Verlag, 
2000. 

[7] Whiting, D., Schneier, B., Lucks, S., and Muller F. Phelix: Fast 
encryption and authentication in a single cryptographic primitive. 
eSTREAM, ECRYPT Stream Cipher Project Report 2005/020. 
http://www.schneier.com/phelix.html.  

[8] Lipmaa, H. and Moriai, S. Efficient algorithms for computing differential 
properties of addition. In Mitsuru Matsui, editor, Fast Software 
Encryption2001, Lecture Notes in Computer Science. Springer-Verlag, 
2001. Available from http://www.tcs.hut.fi/helger/papers/lm01/. 

[9] Muller, F. Differential Attacks against the Helix Stream Cipher. In Bimal 
K. Roy and Willi Meier, editors, Fast Software Encryption, 11th 
International Workshop, FSE'04, volume 3017 of Lecture Notes in 
Computer Science, pages 94-108. Springer-Verlag, 2004. 

[10] Wu, H. and Preneel, B. Differential Attacks against Phelix. eSTREAM, 
ECRYPT Stream Cipher Project Report 2006/056. 
http://www.ecrypt.eu.org/stream/. 

[11] Wu, H. and Preneel, B. Attacking the IV Setup of Stream Cipher LEX. 
eSTREAM, ECRYPT Stream Cipher Project Report 2005/059. 
http://www.ecrypt.eu.org/stream/ 


