

City, University of London Institutional Repository

Citation: Michalas, A., Komninos, N., Prasad, N. R. & Oleshchuk, V. A. (2010). New client

puzzle approach for DoS resistance in ad hoc networks. Proceedings 2010 IEEE
International Conference on Information Theory and Information Security, ICITIS 2010, pp.
568-573. doi: 10.1109/icitis.2010.5689528

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2486/

Link to published version: https://doi.org/10.1109/icitis.2010.5689528

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

New Client Puzzle Approach for DoS Resistance in Ad
hoc Networks

Antonis Michalas
Athens Information Technology

GR-19002 Peania (Athens), Greece
Email: amic@ait.edu.gr

Nikos Komninos
Athens Information Technology

GR-19002 Peania (Athens), Greece
Email: nkom@ait.edu.gr

Neeli R. Prasad
Aalborg University

Fredrik Bajers Vej 7,
DK - 9220 Aalborg, Denmark

Email: np@es.aau.dk

Vladimir A. Oleshchuk
University of Agder

Department of Engineering and Science
Postbox 509, N-4898, Grimstad, Norway

vladimir.oleshchuk@uia.no

Abstract—In this paper we propose a new client puzzle
approach to prevent Denial of Service (DoS) attacks in ad hoc
networks. Each node in the network first solves a computational
problem and with the solution has to create and solve a client
puzzle. By combining computational problems with puzzles, we
improve the efficiency and latency of the communicating nodes
and resistance in DoS attacks. Experimental results show the
effectiveness of our approach.

Keywords—Cryptographic Puzzles; Client Puzzles; Denial of
Service (DoS); Distributed Denial of Service (DDoS)

I. INTRODUCTION

DENIAL OF SERVICE ATTACKS (DoS) is considered to be
one of the most important threats as well as one of the hardest
problems in computer security nowadays. The main aim of a
DoS attack is the interruption of services by attempting to
limit access to a machine or service instead of subverting the
service itself. This kind of attack aims at rendering a network
incapable of providing normal service by targeting either the
networks bandwidth or its connectivity. These attacks achieve
their goal by sending at a victim a stream of packets that
swamps his network or processing capacity denying access to
his regular clients. In the not so distant past, there have been
some large - scale attacks targeting high profile Internet sites
[2]. In general, we can distinguish two different types of DoS
attacks: logic attacks and flooding attacks. Until nowadays,
there are many security vulnerabilities which an adversary can
exploit to launch a DoS attack.

Unlike common wireless networks, ad-hoc networks are
characterized by the absence of any existing network infras-
tructure or centralized administration (decentralized wireless
network) as well as the ease and speed of deployment. Such
networks are highly dynamic and each node participates in
the basic functions of the network like packet forwarding and
routing, since there are no routers or access points. Ad-hoc
networks can operate in a stand-alone way or be attached to
a larger network.

Protection against DoS attacks is a crucial component of any

security system. Traditional DoS attacks involve overwhelm-
ing a particular host. However, in ad hoc networks, mobility,
limited bandwidth, routing functionalities associated with each
node, etc, open many new opportunities for launching a DoS
attack. These attacks might be at the routing layer or at the
MAC layer [9].

A. Our Contribution

In this paper we propose a new client puzzle to avoid DoS
attacks in ad hoc networks, where nodes do not necessarily
belong to a single authority and the topology can be altered
dynamically. Our solution has the following four attributes:
• The creation of puzzles is not outsourced to a third entity

(decentralized design).
• The connection initiator is responsible to create and solve

the puzzle on the fly.
• Verifying a puzzle solution requires very little work for a

node. More precise, the time needed is comparable with
a simple table lookup.

• The difficulty of the puzzle is easy adjustable.
Lot of previous schemes involve puzzle distribution on

central units or virtual channels. Our approach is decentralized
since this is a fundamental property of ad hoc networks and
especially for mobile ad hoc networks (MANETs). In our
approach every node that is trying to contact another node
has to solve two puzzles. The first one is a discrete logarithm
problem (DLP) and the solution of this puzzle will help the
connection initiator to create and solve the second puzzle
which is considered to be the most difficult. Apart from that,
even if a node does not solve correctly the DLP but just find
the solution from a table lookup this will not make any harm
to our network since the puzzle that will have to create and
solve in the next step will be based not only to the solution
of DLP but to another random number as well.

Every node needs to follow the same procedure even if it
is legitimate or malicious, while the solution of the puzzle
can become more difficult or easy depending on the trust

level and traffic congestion. Furthermore, DLP and our puzzle
are combined with the best optimum approach for ad hoc
networks.

B. Organization

Following this introduction, the paper is organized as fol-
lows. In Section 2, we examine related works to prevent DoS
attacks with the use of client puzzles. Section 3 describes our
puzzle construction. Section 4 presents experimental results
along with the advantages and disadvantages of our technique
and Section 5 concludes the paper.

II. RELATED WORK

Client puzzles approaches have been proposed by several
researchers so as to avoid denial of service attacks. For
example Juels and Brainard in [5] applied client puzzles to
TCP SYN flooding, where they mention that also SSL encloses
a parallel problem. In this paper, the authors proposed a crypto-
graphically based countermeasure against connection depletion
attacks. Connection depletion is a denial-of-service attack in
which an attacker seeks to initiate and leave unresolved a
large amount of connection requests to a server, exhausting its
resources and rendering it unable to serve valid requests. TCP
SYN flooding is a well-known example of such an attack. They
introduced a countermeasure (a client puzzle protocol) which
the basic scheme was as follows: When a server comes under
attack, it distributes small cryptographic puzzles to clients
making service requests. To complete its request, a client must
solve its puzzle correctly.

An alternative method for implementing client puzzles
techniques was proposed by Waters et al.. [8]. This technique
assumes that the client puzzle protocol is a three party protocol
and builds a client puzzle based on the discrete logarithm
problem for which authenticity and correctness can be verified
using a Diffie-Hellman based technique. One of the main
differences of this technique is that puzzle generation can be
outsourced from the server to another external bastion host,
yet verification of solutions can be performed by the server
itself [10].

The attack and possible remedies were analyzed in detail by
Schuba et al. in [6], where they contribute a detailed analysis
of the SYN flooding attack and introduced a new solution,
which offers protection against these types of attacks for all
hosts that are connected to the same local area network and
it’s independent of their operating system or networking stack
implementation.

Narasimhan et al. in [11] introduced the notion of hidden
puzzle difficulty, where the attacker cannot determine the
difficulty of the puzzle without expending a minimal amount
of computational resources. Game theory was used to develop
defense mechanisms.

Finally, a game based analysis of the client puzzle approach
in order to defend DoS attacks have been introduced in [7],
where the optimal strategy is derived for the attacked server
in order to respond to DoS attacks effectively.

Fig. 1. Client Puzzle

III. CONSTRUCTION OF THE PUZZLE

Our approach follows similar definitions used in game
theory, where we have a set of players P1, P2 ∈ P , a set
of possible strategies S1, S2, ..., Sn ∈ S for every player and
a payoff for each combination strategies.

Based on Figure 1 let’s suppose that node1 which from
now on will be referred as P1, wants to communicate with
node2 (P2). P1 sends to P2 his ID, a hello message M and
time stamp T1. When P2 receives these three parameters it
first generates a random prime number p, a generator g of Z∗p
and a random integer x. Then sets the difficulty level d of the
puzzle that P1 will have to solve. Next, P2 calculates value y
according to expression (1) as following:

y = gxmod p (1)

and responds to P1 by sending g, y, p, T2, d.
When, P1 receives g, y and p solves equation (1) over Z∗p

by using the baby-step giant-step algorithm [12]. Next, P1

computes the integer division of x and d of the puzzle (i.e.
x/d) which is equal to number n that is needed to create the
strategies of the puzzle. After finding n, P1 is responsible for
generating and solving the puzzle. This means that P1 will
first need to calculate all strategies S and second to find the
optimum strategy Sopt.

Each nodes strategy is defined as the sum of three positive
integers (n1, n2, n3) in a non-descending order such that:

n1 + n2 + n3 = n, (2)

where n =
⌊
x
3

⌋
.

The number of strategies that each puzzle will have, can be
easily calculated from the expression (3) of Theorem 1.

Theorem 1: For all n ∈ Z∗+ the number of strategies, is
given by expression (3)1:

Π(n) =
1

2
·
⌊n

3

⌋
·n+

1

8
·(−1)n−3bn

3 c+ 1

8
·(−1)1+n− 3

4
·
⌊n

3

⌋2

(3)

1The proof is omitted due to space constrains.

Since P1 can find all possible strategies of the puzzle,
it can also find the optimum strategy (Sopt). To calculate
the optimum strategy, P1 will ’play’ every strategy against
all other strategies by using a utility function. However, P1

compares each strategy by itself and therefore the utility
function will take as input two different strategies (S =
(n1, n2, s3), S′ = (n′1, n

′
2, n
′
3)), until all possible combina-

tions have been ’played’. The utility function U(S, S′) will
have the following three possible results:
• S, if strategy S has at least two higher coordinates (ni,

i ∈ [1, 3]) than the corresponding ones of strategy S′.
• DRAW , if strategies S, S′ have one equal coordinate

(for example n2 = n′2) and two different coordinates, but
shared equally (for example n1 > n′1 and n3 < n′3)

• S′, if strategy S′ has at least two higher coordinates (n′i,
i ∈ [1, 3]) than the corresponding ones of strategy S.

When P1 finds Sopt, it sends back to P2 a set of all strategies
S, optimum strategy Sopt, value of x and its ID. Upon
reception, P2 verifies the strategies including the optimum and
serves P1. An example of how a puzzle can be solved, follows.

Example 1: Let’s assume that n = 6 2. P1 needs to calculate
all possible combinations in which n can be written as a sum
of three positive integers in non-decreasing order, such that
n1, n2, n3 ∈ [1, n − 2]. From expression (3) the number of
strategies when n = 6 is Π(n) = 3. Hence,

6 = 1 + 1 + 4, 6 = 1 + 2 + 3, 6 = 2 + 2 + 2

which means that for this particular puzzle there are the
following three strategies:

S1 = (1, 1, 4), S2 = (1, 2, 3), S3 = (2, 2, 2). (4)

Now P1 finds the optimum strategy Sopt by using the utility
function (if the number of strategies is k, P1 uses the utility

function k · (k − 1)
2 times). For strategies S1, S2, S3 we have:

u(S1, S2) = u((1, 1, 4), (1, 2, 3))

⇒ u(S1, S2) = (Draw, S2, S1)

⇒ u(S1, S2) = Draw

u(S1, S3) = u((1, 1, 4), (2, 2, 2))

⇒ u(S1, S3) = (S3, S3, S1)

⇒ u(S1, S3) = S3

u(S2, S3) = u((1, 2, 3), (2, 2, 2))

⇒ u(S2, S3) = (S3, Draw, S2)

⇒ u(S2, S3) = Draw

From the results above it’s clear that the optimum strategy
Sopt is S3 since it wins once and has two draws. Therefore,
P1 sends to P2 the optimum strategy Sopt, the set of all
strategies S, the value of x and its ID. Upon receiption of
the parameters, P2 first verifies that equation (III) holds for all

2This is the smallest value that n can have, and the solution is trivial.

Fig. 2. Small scale ad hoc network.

possible strategies and second uses Algorithm 1 to guarantee
that P1 has correctly found S and Sopt.

Algorithm 1: Verification of finding S and Sopt

Input: V (S, Sopt), x, ID
begin

if (Sopt[0] > Vi[0] and (Sopt[1] > Vi[1] or
Sopt[2] > Vi[2])) or (Sopt[1] > Vi[1] and
(Sopt[0] > Vi[0] or Sopt[2] > Vi[2])) then

optWins + +;
end
if Vi−1[1] < Vi[1] then

clientSum+ = Vi[0];
end
else

expectedSum+ = (Vi[1]− j) · Vi[0];
if expectedSum == clientSum and optWins
≥
[

Π(n)
2

]
then

giveResources;
end
else

Drop Connection;
end

end
end

IV. EXPERIMENTAL RESULTS & SECURITY DISCUSSION

In order to measure the effectiveness of our solution, we
have used the Smart Dust simulator written in Java. Our
testbend consists of a desktop computer with Xeon CPU at
2.80GHz, with 2.00 GB of RAM running Windows XP.

Our experiments where implemented in a small scale ad
hoc network as seen in Figure 2. Every message of a node
is broadcasting to each of its neighbors. When nodes wish to
communicate with their neighbors, they broadcast a message.
Upon reception of messages, nodes check whether a particular
message is intended for them. If so, the node processes
the request as we described in Section ?? else it drops the
message.

Fig. 3. Number of strategies with relation to time required for the puzzle,
the DLP and combination of them.

Figure 3 shows how much time it takes to find x from (1), to
solve only the puzzle (i.e. find Si and Sopt) and to combine
both (i.e. client puzzle of Figure 1). Particularly, we tested
our algorithm with different levels of difficulty (low, medium,
difficult) and solved puzzles that had from 3 up to 13333
number of strategies. From the results we observe that for a
puzzle with 13333 strategies the time needed P1 to solve the
puzzle is 6.38 sec, while the time for both solving equation (1)
by x and the puzzle is 6.81 sec, which is an efficient time
even for mobile ad hoc nodes even if we consider that there
are many puzzles with less number of strategies than 13333
and therefore less time to be solved. Table I, shows some
representative values of Figure 3.

TABLE I
RESULTS FROM FIGURE 3

Strategies DLP
Time(sec)

Puzzle
Time(sec)

Combiation
Time(sec)

444 0.38 0.02 0.40

1976 0.50 0.66 0.89

6769 0.53 1.68 2.21

10034 0.59 3.50 4.10

For solving equation (1) we used the Baby-Step-Giant-Step
algorithm which is a generic algorithm that falls into the class
of square root algorithms (best possible performance without
exploiting properties of a particular group with complexity
O(
√
n)).

A very important property of client puzzles is the fact that
verifying a puzzle solution should require very little work for a
server. Considering that, we measured the time that P2 needs
in order to generate the parameters of equation (1) and to
verify the solution of the client puzzle. Also we found the
time P1 needs to solve equation (1) and our client puzzle. As
seeing in Figure 4, the computational cost of P2 who generates
the DLP and verifies the puzzle, is significantly less than the

Fig. 4. Time required for P1 to solve the DLP and the puzzle and for P2

to verify the solution (Figure 1).

Fig. 5. Discrete Logarithm versus Our Puzzle with more strategies

computational cost of P1 who solves the puzzle and plays
the game. Specifically, the minimum time that a node needs
to generate the DLP and to verify the puzzle is 0.0007 secs,
while the maximum time is 0.0075 secs (Table II).

TABLE II
RESULTS FROM FIGURE 4

Strategies Total Time (sec) for
P2

Total Time (sec) for
P1

444 0.0020 0.40

1976 0.0038 0.89

6769 0.0048 2.21

13333 0.0057 6.81

To prove the effectiveness of our approach we consider that
P1 and P2 will solve only our puzzle. In order to achieve the
same level of security as before, we increased the number of
strategies from 13333 up to 36410. Furthermore, we increased
the security level from 232 to 240 for the DLP and we measured
the time that P1 needed to solve it. In this case, the average
time was 44.88 secs, while for our puzzle was 50.53 secs.

We noticed that using DLP with 40 bit numbers is making
the problem very difficult and thus it is not suitable for ad
hoc networks, since every node would have to spend many
computational resources and time until it finds the solution.
Figure 5 illustrates equation (1) with 40-bits parameters and
our puzzle based only on S and Sopt. As it is seen, there are
cases where finding S and Sopt needs slightly more time than
finding x, but in most cases finding x takes much more time.

Moreover, we have calculated the complexity of solving the
DLP (O(

√
n)), of finding S, Sopt (O(n)) and of completing

the client puzzle of Figure 1 (O(n
√
n)).

We have also made some attacks to our algorithm, in order
to see how it handles malicious requests. Random nodes send
requests to P2. From the requesting nodes, some of them
where malicious and tried to break the security of the system
with one of the following ways: Sending strategies from a
puzzle that was solved in the past (replay attack), sending the
correct optimum strategy but the rest of the strategies was
wrong, sending the correct optimum strategy but some of the
rest strategies was wrong, sending a totally nonsense answer,
sending the correct strategies but a wrong optimum strategy,
sending all the strategies correct but did not send the optimum
strategy at all and sending wrong x (did not solve the DLP
correct) or fake d.

Each of the above attacks, the system realized that some of
the expected data were wrong and thus the connection with the
malicious node was dropped. Note that in our implementation
we do not make use of any database to store information,
instead only a vector is used where the node saves the id, the
value of x and the difficulty d. Furthermore, the difficulty of
the puzzle is increasing analogous to the requests that a node
is receiving from its neighbors. If for example all neighbors
send a request between a short time interval t, then the puzzle
will be difficult for all of them. Apart from that, each node
can only have a single open connection with each node. This
means that multiple requests to the same node are not allowed.

Our approach can prevent TCP SYN flooding attacks,
because as we described in Section 3 the node that is making
the request has to perform complex computations than the one
who is receiving the request. Our technique is based on the
concept that we want to put a possible malicious node of an
ad hoc network to perform expensive computations, in order
to be able to use some of the resources of another node. This
means that the resources of the first node will end before the
other ones does. This assumption becomes even stronger in the
case of ad hoc networks where nodes have limited resources
and short battery life. Furthermore, legitimate users would
experience just a negligible computational cost, except for the
situation that a node is receiving plenty of requests at a specific
time interval t (i.e all of his/her neighbors are sending request
at the same time interval t).

Attacks like teardrop, bonk and boink are beyond the
scope of this paper and we assume that some of the existing
techniques can be used in order to defeat them. Most systems
knows how to deal with such attacks now and a firewall can
drop fragmented packets in return for more latency on network

connections since this makes it disregard all broken packets.
Furthermore, in this paper we do not make use of client

puzzle outsourcing techniques since we are referring to ad hoc
networks without central authority. The existence of a central
unit could lead to situations that malicious nodes could make
directly attacks to this machine. Consider a situation where all
the nodes in a network are overflowed. Then all the legitimate
users will be left without offered services since there would
be no one to create puzzles for them neither to verify solved
puzzles.

For small smart devices like PDA’s and mobile phones, we
achieve DoS resistance. We have shown that using only the
discrete logarithm problem with a marginary level of security,
nodes do not have the necessary resources to solve it. In other
words, by increasing the level of security in DLP, the solving
time rapidly increases. On the contrary, by adding our puzzle
and increasing the number of strategies, with lower level of
security in DLP we achieve higher efficiency of computing
resources.

V. CONCLUSION

Unlike traditional networks ad hoc networks use dedicated
nodes to support their basic functions like packet forwarding,
routing, and network management[1]. In this paper we pro-
posed a new client puzzle to prevent denial of service attacks
in ad hoc network nodes. In our approach we do not use
any central node that creates client puzzles and verifies the
solutions. Instead every node in the network is responsible to
generate puzzles and to avoid attacks that could take down the
entire network. In our future work we are planning to create
a reputation system for every node in a network, that will be
based on the solution we presented in this paper. Finally, we
are planning to extend our work by creating a distributed DoS
defensive mechanism. To do that all nodes will be distributed
in groups and they will have to take part to a multiplayer game
in order for their requests to be processed.

REFERENCES

[1] N. Komninos, D. Vergados and C. Douligeris, Layered security design
for mobile ad hoc networks, In Computer and Security Journal, Elsevier.
pages 121-130, September 2005, doi:10.1016/j.cose.2005.09.005

[2] C. Douligeris and A. Mitrokotsa 2004. DDoS attacks and defense mech-
anisms: classification and state-of-the-art. In Comput. Netw. 44, 5 (Apr.
2004), 643-666. DOI= http://dx.doi.org/10.1016/j.comnet.2003.10.003

[3] Deanna Koike, Client Puzzles as a Defense Against Network Denial
of Service, In ECS 228 (Cryptography for E-Commerce), December 4,
2002.

[4] Dean Drew and Stubblefield Adam, 2001. Using client puzzles to protect
TLS. In Proceedings of the 10th Conference on USENIX Security
Symposium - Volume 10 (Washington, D.C., August 13 - 17, 2001).
USENIX Security Symposium. USENIX Association, Berkeley, CA,
pages 1-1.

[5] Ari Juels and John Brainard, Client Puzzles: A Cryptographic Coun-
termeasure Against Connection Depletion Attacks. In S. Kent, editor,
Proceedings of NDSS ’99 (Networks and Distributed Security Systems),
pages 151-165, 1999.

[6] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spaf-
fold, Aurobindo Sundaram and Diego Zamboni. 1997. Analysis of a
Denial of Service Attack on TCP. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy (May 04 - 07, 1997). SP. IEEE
Computer Society, Washington, DC, 2008.

[7] Boldizsar Bencsath, Istvan Vajda and Levente Buttyan, A Game Based
Analysis of the Client Puzzle Approach to Defend Against DoS Attacks.
In Proceedings of the 2003 International Conference on Software,
Telecommunications and Computer Networks. pages 763-767, 2003.

[8] Brent Waters, Ari Juels, Alex J. Halderman, and Edward W. Fel-
ten, 2004. New client puzzle outsourcing techniques for DoS re-
sistance. In Proceedings of the 11th ACM Conference on Com-
puter and Communications Security (Washington DC, USA, October
25 - 29, 2004). CCS ’04. ACM, New York, NY, 246-256. DOI=
http://doi.acm.org/10.1145/1030083.1030117

[9] V. Gupta, and S. Krishnamurthy, and M. Faloutsos, Denial of
Service Attacks at the MAC Layer in Wireless Ad Hoc Net-
works. In MILCOM - Network Security, Anaheim, 2002. cite-
seer.ist.psu.edu/karpijoki01security.html

[10] P. Morrissey, N. Smart, and B. Warinschi, Security notions and generic
constructions for client puzzles. In ASIACRYPT, 2009. pages 151-165.

[11] Harikrishna Narasimhan, Venkatanathan Varadarajan and C. Pandu Ran-
gan, Game Theoretic Resistance to Denial of Service Attacks Using
Hidden Difficulty Puzzles. In ISPEC, 2010. pages 359-376.

[12] Stinson, D. R. 2002. Some baby-step giant-step algorithms for the low
hamming weight discrete logarithm problem. Math. Comput. 71, 237
(Jan. 2002), 379-391. DOI= http://dx.doi.org/10.1090/S0025-5718-01-
01310-2

