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We study the dynamics of entanglement in the scaling limit of the Ising spin chain in the presence
of both a longitudinal and a transverse field. We present analytical results for the quench of the
longitudinal field in critical transverse field which go beyond current lattice integrability techniques.
We test these results against a numerical simulation on the corresponding lattice model finding
extremely good agreement. We show that the presence of bound states in the spectrum of the
field theory leads to oscillations in the entanglement entropy and suppresses its linear growth on
the time scales accessible to numerical simulations. For small quenches we determine exactly these
oscillatory contributions and demonstrate that their presence follows from symmetry arguments.
For the quench of the transverse field at zero longitudinal field we prove that the Rényi entropies
are exactly proportional to the logarithm of the exponential of a time-dependent function, whose
leading large-time behaviour is linear, hence entanglement grows linearly. We conclude that, in the
scaling limit, linear growth and oscillations in the entanglement entropies can not be simply seen as
consequences of integrability and its breaking respectively.

Introduction.— Over the past two decades, one-
dimensional many-body quantum systems far from equi-
librium have become ubiquitous laboratories to scrutinize
fundamental aspects of statistical mechanics. Out-of-
equilibrium protocols featuring unitary dynamics, such
as quantum quenches, have been commonly employed to
test relaxation and thermalization hypothesis [1, 2] in
experimentally realizable setups [3–6]. A powerful the-
oretical device that tests whether a physical system can
eventually approach equilibrium is represented by its en-
tanglement dynamics [7]. In 1+1 dimensions, the linear-
in-time increase of the entanglement entropies is a signa-
ture that local observables relax exponentially fast [8–10]
and thermalize [11, 12]. This characteristic growth has
been further conjectured to be a generic feature of in-
tegrable models [13], where it has been analyzed within
a quasi-particle picture, inspired by conformal field the-
ory [7] and free fermion calculations [14]. In such a frame-
work, entangled quasi-particle pairs propagate freely in
space-time and generate linearly growing entropies. Min-
imal models, with random unitary dynamics, that show
analogous entanglement growth, have been also stud-
ied [15, 16] in connection with quantum chaos [17, 18]
and non-integrable systems.

Nonetheless, there exist a vast class of one-dimensional
systems that escape this paradigm and fail to relax
at large times after the quench. They have been ob-
served both in earlier studies [19] and in actual recent
experiments [20], see also [21]. Within a qualitative
quasi-particle picture [22], absence of thermalization has

been associated with integrability breaking interactions
and confinement. Numerical studies in the Ising spin
chain [22] and its scaling limit [23–26] indicated that in
the presence of a longitudinal field entanglement growth
is strongly suppressed while local observables feature per-
sistent oscillations whose frequencies coincide with the
meson masses. A similar lack of relaxation has been
also found later in a variety of physical models spanning
from gauge theories [27–30] and fractons [31] to Heisen-
berg magnets [32] and systems with long-range interac-
tions [33]. However, despite a large number of numeri-
cal investigations, most of the understanding of whether
and how local observables will equilibrate after a quench
remains at a phenomenological level. This is mainly be-
cause no lattice integrability technique [34] is available
to systematically analyze these strongly interacting sys-
tems.

In this Letter, we put forward a unified picture to ad-
dress perturbatively questions about entanglement dy-
namics and relaxation in gapped 1+1 dimensional sys-
tems close to a Quantum Critical Point (QCP). In par-
ticular, for the first time, we provide an analytical grasp
on how entanglement growth can be so dramatically dif-
ferent depending on the non-equilibrium protocol con-
sidered. The formalism combines the perturbative ap-
proach of [35, 36] with the mapping in the scaling limit
between powers of the reduced density matrix and corre-
lation functions of a local field, called the branch point
twist field [37, 38]. For massive systems, this mapping
has been successfully employed at equilibrium [39] and
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recently also in a time-dependent context [40]. Crucially,
its conclusions do not rely on any a priori assumption
about the space-time evolution of the quasi-particles.

Focussing on the illustrative example of a quench of the
longitudinal field in the ferromagnetic Ising spin chain,
we will provide examples of how bound state formation
and symmetries of the twist field are responsible for slow
relaxation of local observables and oscillations in the en-
tanglement entropies. Although derived through field
theory techniques our results are tested numerically in
the lattice model in the scaling limit and very good agree-
ment is found.

Model.— Consider the ferromagnetic Ising spin chain
defined by the Hamiltonian

Hlattice = −
∑

n∈Z

[
σxnσ

x
n+1 + hzσ

z
n + hxσ

x
n

]
. (1)

The Ising chain is a prototype of a quantum phase tran-
sition with spontaneous breaking of Z2 symmetry and is
critical for hz = 1 and hx = 0. At criticality, the low
energy excitations are massless free Majorana fermions
described by a conformal field theory with central charge
c = 1/2 [41]. Within the renormalization group frame-
work, near the QCP, expectation values of local operators
in the spin chain can be calculated from the relativistic
Quantum Field Theory (QFT) action

A0 = ACFT−λ1

∫
dx dt ε(x, t)−λ2

∫
dx dt σ(x, t) , (2)

which is the celebrated Ising field theory (IFT) [42–44].
In Eq. (2), the conformal invariant action ACFT is per-
turbed by the Z2 even field ε (energy), which is the con-
tinuum version of the lattice operator σzn, and the Z2 odd
field σ (spin), which is instead the continuum version of
the order parameter σxn. The coupling constant λ1 is pro-
portional to the deviation of the transverse field from its
critical value hz − 1, while λ2 is proportional to the lon-
gitudinal field hx. At the QCP, the scaling dimension of
σ is ∆σ = 1/8 and that of ε is ∆ε = 1.

Let |Ω〉 be the ground state of the Hamiltonian H of
the field theory (2). Following a widely studied non-
equilibrium protocol, dubbed quantum quench, at time
t = 0 one of the two coupling constants λi (i = 1, 2) is
modified according to λi → λi+ δλ. The evolution of the
pre-quench ground state |Ω〉 is governed by the perturbed
Hamiltonian

G(t) := H + θ(t)δλ

∫
dx Ψ(x) , (3)

Ψ being either the spin or the energy field and θ(t), the
Heaviside step function. This dynamical problem is an-
alytically not solvable in general [35]. To provide theo-
retical predictions for local observables and entanglement
entropies following a quench, one thus sets up a perturba-
tive expansion in the relative quench parameter δλ

λi
� 1.

Perturbation Theory.— We revisit and extend to in-
clude entanglement calculations, the perturbative ap-
proach to the quench problem [35]. In a relativistic scat-
tering theory, it is possible to consider a basis of in and
out states, denoted by |α〉in/out, which are multi-particle
eigenstates of the Hamiltonian H = G(−∞). In partic-
ular, a single-particle eigenstate of H has energy e(p) =√
m2

0 + p2, where m0 is its pre-quench mass and p the
momentum. Similar eigenbases are constructed for the
post-quench Hamiltonian Hpost := H + δλ

∫
dx Ψ(x) =

G(∞). In this case, the energy of a single-particle state

will be denoted by ẽ(p) =
√
m2 + p2, being m its post-

quench mass.
The initial state |Ω〉 can be formally expanded into the

basis of the out-states of Hpost as: |Ω〉 =
∑
α cα|α〉out

post.
Assuming for simplicity a unique family of particles,
|α〉out

post is then the multiparticle out-state |p1, . . . , pn〉out
post

while the symbol
∑
α is a shorthand notation for the

Lorentz invariant integration measure in 1+1 dimen-
sions [47]. The overlap coefficients cα are the elements of
the scattering matrix for the quench problem in Eq. (3).
At first-order in perturbation theory, one has [45, 46]

|Ω〉 = |Ω〉post + 2πδλ
∑

α 6=Ω

δ(Pα)

Eα
(FΨ
α )∗|α〉out

post +O(δ2
λ) .

(4)
In Eq. (4), Eα and Pα are the pre-quench energy
and momentum of the state |α〉out; δ(x) is the Dirac
delta and the function FΨ

α is the form factor: FΨ
α :=

〈Ω|Ψ(0, 0)|α〉in, calculated in the pre-quench theory.
From the expansion in Eq. (4), it is straightforward to
derive the post-quench evolution of a local operator Φ

〈Ω|Φ(0, t)|Ω〉 = post〈Ω|Φ(0, 0)|Ω〉post (5)

+4πδλ
∑

α6=Ω

δ(Pα)

Eα
Re
[
e−itE

α
post(FΨ

α )∗ 〈Ω|Φ(0, 0)|α〉out
post

]

+O(δ2
λ) ,

with now Eαpost the energy of the state |α〉out
post. At O(δλ),

one can replace |α〉out
post by |α〉out inside the sum in Eq. (5)

and, by using known properties of the form factors, is
also possible to relax the ordering prescription on the
momenta of the out-states [48]. We will denote then by∑′
α, a Lorentz invariant integration over the pre-quench

multiparticle states with unrestricted momenta [49]. The
leading order correction to the one-point function of a
local operator after a quench is therefore [35, 36]

〈Ω|Φ(0, t)|Ω〉 = post〈Ω|Φ(0, 0)|Ω〉post (6)

+4πδλ

′∑

α6=Ω

δ(Pα)

Eα
Re
[
e−itE

α
post(FΨ

α )∗FΦ
α

]
+O(δ2

λ) .

Consider now a semi-infinite spatial bipartition of the
Hilbert space of the QFT associated to the quench
problem (3). In particular, let L be the semi-infinite
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negative real line and R the semi-infinite positive real
line and denote by ρR(t) := TrL[e−iHpostt|Ω〉〈Ω|eiHpostt],
the reduced density matrix after the quench obtained
tracing over the left degrees of freedom. In QFT,
half-space Rényi entropies after a quench Sn(t) :=

1
1−n log[TrRρnR(t)] are related to the one-point function
of the twist field Tn [37, 38] by

Sn(t) =
1

1− n log
[
ε∆Tn 〈Ω|Tn(0, t)|Ω〉

]
. (7)

In Eq. (7), ε is a short distance cut-off and ∆Tn = c
12 (n−

n−1) is the scaling dimension of the twist field at the
QCP [50–52]. The von Neumann entropy S(t) is defined
through the limit S(t) := limn→1 Sn(t).

In writing Eq. (7), a new difficulty arises: the expec-
tation value of the twist field has to be calculated in
an n-fold replicated QFT and the time evolution of the
twist field after the quench is governed by the replicated

Hamiltonian
∑n
r=1H

(r)
post =

∑n
r=1(H(r) + δλ

∫
dxΨ(r)), r

being the replica index. However, when calculating the
overlaps out

post〈α|Ω〉 at first-order in δλ, the sum over the

replica trivializes since the perturbing field Ψ(r) has non-
vanishing matrix elements only between particles in the
same copy. One therefore gets Eq. (4) with a prefactor
n in front of the sum, which only involves states within
one particular replica, for instance the first. By repeating
now the derivation of Eq. (6), we conclude that the lead-
ing order expansion of the twist field one-point function
after a quench is

〈Ω|Tn(0, t)|Ω〉 = post〈Ω|Tn(0, 0)|Ω〉post (8)

+4πnδλ

′∑

α 6=Ω;
α∈1st rep.

δ(Pα)

Eα
Re
[
e−itE

α
post(FΨ

α )∗F Tnα
]

+O(δ2
λ) ,

where, as indicated, the sum only contains states in the
first replica. Similarly to the discussion around Eq. (6),
F Tnα in Eq. (8) denotes the pre-quench twist-field matrix
element F Tnα = 〈Ω|Tn(0, 0)|α〉in.

Longitudinal Field Quench.— We examine a quench
along the vertical axis of the phase diagram of the IFT
depicted in Fig. 1. This quench, cf. Eq. (2), involves a
sudden change of the coupling λ2 → λ2+δλ while keeping
λ1 = 0. In the lattice model described by Eq. (1), it
modifies the longitudinal field hx → hx + δhx at fixed
transverse field hz = 1. In the presence of a longitudinal
field, the Ising spin chain is strongly interacting and the
perturbative approach is the only analytical device to
study entanglement dynamics.

From a QFT perspective, at λ1 = 0 and λ2 6= 0, both
the pre- and post-quench theories are integrable. The
spectrum contains of eight stable particles [42, 53], whose
masses are in correspondence with the components of the
Perron-Frobenius eigenvector of the Cartan matrix of the
Lie algebra E8. We will refer to such a field theory, in

•

•

•

Free massive fermionsE8 field theory

QCP λ1 ∝ (1− hz)

λ2 ∝ hx

FIG. 1. Phase diagram of the IFT, described by the action
(2). We consider applications of the perturbation theory to
a quench of the longitudinal field hx ∝ λ2, while keeping the
transverse field (1− hz) ∝ λ1 at its critical value, i.e. λ1 = 0.
In the scaling limit, the pre-quench theory is integrable and
corresponds to the E8 field theory. For λ2 = 0, the pre-quench
theory can be mapped to non-interacting fermions with mass
λ1.

short, as the E8 field theory, see Fig. 1. The masses of
the eight particles have been partially measured exper-
imentally [54] and numerically estimated in the scaling
limit using matrix product states [55]. In the E8 field
theory both the spin operator and the twist field couple
to the eight one-particle states. Eqs. (6) and (8), pre-
dict in this case that at O(δλ) the one-point function of
the spin and the entanglement entropies must oscillate in
time without relaxing. The first-order result for the order
parameter [36] is re-obtained in [56]. For the time evolu-
tion of the entanglement entropies, perturbation theory,
combined with Eq. (7), gives at large times

Sn(t)− Sn(0)
t�1
=

δλ
λ2

[
2nCσ
1− n

8∑

a=1

F̂σa F̂
Tn
a

r2
a

cos(mrat)

+
1

1− n
∆Tn

2−∆σ

]
+O(δ2

λ) . (9)

where the coefficient [63] Cσ = −0.065841 . . . and the
(real) normalized pre-quench one-particle form factors of
the spin field [64], F̂σa , and the twist field [65], F̂ Tna are
also summarized in [56]. The universal ratios ra in Eq. (9)
are the masses of the particles in the E8 field theory nor-
malized by the mass of the lightest particle, whose value
after the quench is m. It is finally possible [56] to extrap-
olate the results for the Rényi entropies to n → 1, and
predict the long-time limit of the von Neumann entropy.
There are subleading corrections in time to Eq. (9) of or-
der t−3/2 (but of leading order in δλ) which are discussed
in [56].

The field theoretical result in Eq. (9) can be tested
against numerical simulations through matrix product
states in the Ising spin chain near the QCP. For find-
ing the initial state and for the time evolution we use
the iTEBD algorithm [66, 67] extrapolated to the scal-
ing limit, details are given in [56]. In a non-equilibrium
protocol, the longitudinal field is quenched from hx to
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0
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FIG. 2. The time evolution of the von Neumann entropy (top)
and the second Rényi entropy (bottom) differences ∆Sn =
Sn(t) − Sn(0) for quenches with δhx/hx = −0.04 (left) and
δhx/hx = 0.05 (right). The dots are the extrapolated iTEBD
data. Lines are the theoretical prediction from Eq. (9) (n→ 1
limit for von Neumann), up to the first four particles in the
sum, and incorporating the two particle contributions given
in [56].

hx + δhx with δhx/hx = δλ/λ2 = −0.04, 0.05. Due to the
absence of visible linear growth of the entanglement en-
tropies [56], the simulation can reach large enough time to
carry out a Fourier analysis. The non-universal mass cou-
pling relation is obtained by fitting the numerical data for
the order parameter to the theoretical curve given in [56],
and we have m ≈ 5.42553(hx + δhx)8/15, consistent with
earlier estimates [55, 68].

According to Eq. (9), in the scaling limit, with time
measured in units of m−1, the time evolution of entan-
glement entropies should follow a universal curve. The
numerical results for real time evolution in the scaling re-
gion are summarized in Fig. 2 for the von Neumann and
the second Rényi entropy, showing excellent agreement
with theoretical predictions obtained from Eq. (9). The
curves for the entanglement entropies have been shifted
vertically by an empirical value to account for higher or-
der corrections [40] to the twist field post-quench expec-
tation value, cf. Eq. (39) in [56]. In Fig. 3 we also show
the numerical Fourier spectrum of the von Neumann en-
tropy calculated from extrapolated data up to mt = 170.
The Fourier transform was carried out with respect to
the rescaled time mt, therefore the main frequency is at
ω̃ = 1 for both quenches. The various peaks are re-
lated to the mass ratios of different particles summarized
in [56]. For infinite time the one particle peaks would
be δ-function peaks, but for finite time they have finite
height. The height ratios are related to form factors of

0 1 2 3

10−5

10−4

10−3

10−2

10−1

m2 −m1 m1

m2
m3 2m1

m4

m1 + m2

ω̃

∆̃
S

1

FIG. 3. Numerical Fourier transform of the variation of
the von Neumann entropy (related to the variable mt) for
quenches with δhx/hx = 0.05 (solid) and δhx/hx = −0.04
(dashed). Vertical lines indicate different frequencies. The
horizontal lines mark the peaks corresponding to the masses
of the four lightest particles. From top to bottom they corre-
spond to m1,m2,m3 and m4, respectively. The dashed hor-
izontal line is set by hand, and the three dotted horizontal
lines were calculated from the ratios of the one-particle form
factors based on Eq. (9).

the longitudinal field and the twist fields through Eq. (9).
The horizontal line in Fig. 3 related to the lightest par-
ticle is set by hand, the ones related to m2,m3 and m4

are calculated from the form factors given in [56].
Transverse Field Quench.— We consider now a quench

of the transverse field hz → hz+δhz for longitudinal field
hx = 0. In the IFT, see Fig. 1, this protocol displaces
along the horizontal axis of the phase diagram: λ1 →
λ1 + δλ, modifying the mass of the Majorana fermion [9,
69]. The ground state |Ω〉 of the pre-quench theory can
be expanded in the post-quench quasi-particle basis as

|Ω〉 = exp

[∫ ∞

0

dp

2πẽ(p)
K̃(p)a†post(−p)a†post(p)

]
|Ω〉post ,

(10)

where the function K̃(p) is given in [69] and a†post(p) are
post-quench fermionic creation operators. Due to the
properties of the free fermionic form factors, the expec-
tation value of the twist field exponentiates

〈Ω|Tn(0, t)|Ω〉
post〈Ω|Tn(0, 0)|Ω〉post

= exp



∞∑

k,l=0

Dc
2k,2l(t)


 . (11)

For a proof of Eq. (11), we refer to the Supplementary
Material [56]. The amplitudes Dc

2k,2l(t) contribute at

leading order
(
δλ
λ1

)k+l

in perturbation theory and can

be systematically computed. Differently from Eq. (9),
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the oscillatory first-order term is O(t−3/2) for large time,

while in [40] it was shown that Dc
2,2(t) =

(
δλ
λ1

)2 [
−|A|t+

O(1)
]
. In the absence of interactions, exponentiation of

second order contributions, leads then to linear growth
of the Rényi entropies as a by-product of relaxation of
the twist-field one-point function.

Discussion.— Absence of relaxation of the order pa-
rameter and persistent oscillations in the entanglement
entropies have been observed previously in several numer-
ical investigations of the Ising spin chain and its scaling
limit [22–26]. In this Letter, we formulated a new first
principle perturbative approach which quantitatively ex-
plains these phenomena. Persistent oscillations in the
one-point function of a local observable are only possible
if it can create a single quasi-particle excitation of the
post-quench Hamiltonian. This is a necessary condition
that is never satisfied in absence of interactions, as also
emphasized in [35]. By mapping entanglement entropies
into correlation functions of a local field, the twist field,
we then provided an analogous criterion to understand
when entanglement growth can slow down.

An important question is whether the exponentiation
of higher orders in perturbation theory will damp the os-
cillatory first-order result for local observables derived in
Eqs. (6) and (8). The time-scale for this to happen de-
fines the relaxation time which is model-dependent and
relates specifically to the analytic structure of the over-
laps with the initial state [71, 72]. For instance, see
Eq. (11), for mass quenches in free theories the relaxation
time can be calculated starting from the second-order
in perturbation theory. To test the robustness of the
first-order result in an interacting theory, we performed
in [56] additional numerical simulations. They indicate
that along the E8 line, see Fig. 1, the order parameter σx

does not relax and the entanglement entropies still shows
long-living oscillations also when the quench parameter
δhx/hx is of order one. Remarkably then, even after a
large longitudinal field quench, the late-time dynamics
continues to be qualitatively captured by first-order per-
turbation theory.

The formalism in this Letter allows calculating entan-
glement entropies in the scaling limit for any interacting
massive theory without fine-tuning of the initial state.
A priori this includes non-integrable models, even if the
development of a perturbation series will generally be
more challenging. It could be adapted to quench pro-
tocols in absence of translation invariance [73] and we
believe that it will be useful for other one-dimensional
systems [28, 33, 70] that show similar long-living oscilla-
tions.
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[19] M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Strong and
Weak Thermalization of Infinite Nonintegrable Quantum
Systems, Phys. Rev. Lett. 106, 050405 (2011).

[20] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Om-
ran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres,
M. Greiner, V. Vuletic, and M. Lukin, Probing many-
body dynamics on a 51-atom quantum simulator, Nature
551 (7682) (2017).

[21] C. Turner, A. Michailidis, D. Abanin, M. Serbyn, and
Z. Papic, Weak ergodicity breaking from quantum many-
body scars, Nature Physics 14, 745–749 (2018).

[22] M. Kormos, M. Collura, G. Takács, and P. Calabrese,
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SUPPLEMENTARY MATERIAL

The Supplementary Material is organized as follows. In Section 1 we summarize the main
analytical results that we have used in our Letter, particularly when comparing the predictions
of quench perturbation theory [1, 2] to lattice numerical calculations in the scaling limit. These
analytical results are principally the form factors of local fields in the theories under consider-
ation. The fields involved here are the branch point twist field whose correlators are directly
linked to measures of entanglement, and the field associated with the coupling whose sudden
change generates the quench.

In our Letter we have mainly discussed the longitudinal field quench (for critical transverse
field). In the QFT setting, this is equivalent to a mass quench in the E8 minimal Toda field
theory. The mass m0,1 of the lightest particle in the model before the quench (see Section 1)
and the coupling constant λ2 are related as

m0,1 “ κλ
8
15
2 , with κ “ 4.40490858... , (1)

where the constant κ has an analytical expression in terms of Γ-functions first found in [3].
Therefore a change of the longitudinal field hx proportional to λ2 is equivalent to a change of
the masses of the eight particles in the spectrum, which are all multiples of m0,1. As shown in
Fig. 1 and equation (2) of the Letter, in the QFT, the perturbing field is the spin field σpx, tq.
We analyze such a quench in Section 1 of the supplementary material.

In Section 2, we also present a complete proof of the exponentiation of the one-point function
of the branch point twist field in the case of a transverse field quench (for zero longitudinal
field). That is equivalent to a mass quench in Ising field theory since now the fermion mass m0

is proportional to |hz ´ 1|, where hz is the transverse field. Our proof complements the detailed
study presented in [4]. In this case the perturbing field is the energy field εpx, tq as also shown
in Fig. 1 of the Letter.

In Section 3 we provide a description of the numerical techniques, with additional results
not included in the Letter. Finally in Section 4 we comment on the robustness of entanglement
oscillations at higher order in perturbation theory.

1 Longitudinal Field Quench: Mass Quench in E8 Minimal Toda
Field Theory

Let us start by fixing the basic definitions and notations for the form factors that we have
employed in the present work. Although in our Letter we have written formulae involving form
factors of an arbitrary state |αyout{in, in practise the only form factors that have been analytically
evaluated are those associated with one- and two-particle states. We will therefore only review
those here. In a 1+1-dimensional QFT we define the one- and the two-particle form factors of
a local, spinless field O as the matrix elements

FO
a1

:“ xΩ|Op0, 0q|θ1ya1 and FO
a1a2

pθ1 ´ θ2q :“ xΩ|Op0, 0q|θ1θ2ya1a2 , (2)

where a1, a2 are particle quantum numbers, θ1, θ2 are rapidities, in terms of which—and with
a slight abuse of notations— the energy and momentum are given by eapθq “ m0,a cosh θ and
papθq “ m0,a sinh θ, where m0,a is the mass of a particle of type a in the pre-quench theory. The
state |Ωy is the pre-quench vacuum.
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n 2 3 4

F̂ Tn
1 ´0.17124900374494678 ´0.1996259878353373 ´0.20930848250173

F̂ Tn
2 0.07005900535572894 0.08788104227633028 0.094313951168679

F̂ Tn
3 ´0.03440203483936546 ´0.04473113820315836 ´0.048562882373633

F̂ Tn
4 0.023657419055677746 0.031870010789866426 0.0349996171170825

Table 1: Newly evaluated (normalized) one-particle form factors of the branch point twist field
for the four lightest particles in the spectrum. The hat in F̂ Tn

i indicates normalization by the
vacuum expectation value of the branch point twist field.

In general, |θ1 . . . θkya1...ak , is an asymptotic in-state of k particles and |Ωy is the ground state.
For spinless fields in relativistic QFT the one-particle form factors are rapidity-independent
whereas the two-particle form factors depend only upon rapidity differences, hence our notation.
It is also useful to introduce the normalized one-particle form factor as

F̂O
a1

:“ xΩ|Op0, 0q|θ1ya1

xΩ|Op0, 0q|Ωy ; (3)

for the spin field and the twist field we will use the shorthand notation xΩ|σp0, 0q|Ωy ” σ̄ and
xΩ|Tnp0, 0q|Ωy ” τn.

The E8 minimal Toda field theory is an integrable model with diagonal scattering matrix
and an eight particle spectrum. They were both first given in the seminal papers [5, 6]. The
mass spectrum takes the form

r2 “ 2 cos
π

5
, r3 “ 2 cos

π

30
, r4 “ 2r2 cos

7π

30
, r5 “ 2r2 cos

2π

15
,

r6 “ r2r3 , r7 “ r2r4 , r8 “ r2r5 , (4)

where ri :“ m0,i{m0,1 (hence, r1 “ 1). It should be noticed that the ratios ri are the same for
both the pre-quench and post-quench theories as a consequence of universality of the scaling
limit.

1.1 One-Particle Form Factors

As we have seen in equation (9) of the Letter the calculation of the entanglement entropies is
based upon the knowledge of the one-particle form factors of the branch point twist field and
the spin field. So far the only computation of the twist field form factors in this theory was
performed in [7]. There, explicit values of the form factors of the first four lightest particles for
n “ 2 were given, whereas for 2 ă n ď 4 the values of F̂ Tn

a were presented graphically. However,
while carrying out detailed comparison with the lattice results in the scaling limit, we realized
that it was critical to have a more accurate evaluation of the quantities F̂ Tn

a with n “ 2, 3, 4.
The values given in [7] were dependent on the asymptotic behaviour of certain two-particle form
factors, and we have realized that this asymptotic value was systematically underestimated in
[7] . In Table 1 we present the values of F̂ Tn

a with n “ 2, 3, 4 as newly obtained using a different
technique (we will present further details in subsection 1.2). For n “ 2 they differ from those
presented in [7] by between 10% and 20% (depending on the particle). This has allowed us to
reach a much improved matching with numerical values.
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As we can see, equation (9) in the Letter also requires the knowledge of one-particle form
factors of the spin field. These were computed in [8, 9]. Their (normalized) values are given in
Table 2.

F̂ σ1 F̂ σ2 F̂ σ3 F̂ σ4

-0.64090211 0.33867436 -0.18662854 0.14277176

F̂ σ5 F̂ σ6 F̂ σ7 F̂ σ8

0.06032607 -0.04338937 0.01642569 -0.00303607

Table 2: Normalized one-particle form factors of the spin field F̂ σi “ F σi {σ̄, where σ̄ is the
expectation value of the spin field.

In order to compute the von Neumann entropy we also need the values of

ga :“ lim
nÑ1

F̂ Tn
a

1´ n . (5)

It is well-known that the functions F̂ Tn
a tend to zero for nÑ 1. However, the precise asymptotics

was not investigated in [7]. This asymptotics can be studied by analysing the consistency
equations that these form factors must satisfy and which were given in [7]. These give rise to a
Taylor expansion in powers of n´ 1, starting with power one. Once more, the derivation relies
heavily on properties of the functions that enter the two particle form factors. We will briefly
discuss these below. Table 3 gives the values of the first four functions ga.

1.2 Two-Particle Form Factors

In [7] the two-particle form factors F Tn
11 pθq and F Tn

12 pθq were also computed. Here we are referring
always to particles in the same copy so we omit copy numbers. They are given by

F Tn
11 pθq “

τnQ
Tn
11 pθq

2nK11pθ;nq ś
α“ 2

3
, 2
5
, 1
15

Bαpθ;nq
f11pθ;nq
f11piπ;nq , (6)

and

F Tn
12 pθq “

τnQ
Tn
12 pθq

2n
ś

α“ 4
5
, 3
5
, 7
15
, 4
15

Bαpθ;nq
f12pθ;nq
f12piπ;nq , (7)

g1 ´0.4971505471133315

g2 0.10034674000675149

g3 ´0.03659195487267996

g4 0.01914945194919403

Table 3: The functions (5) for the four lightest particles in the spectrum.
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with

f11pθ;nq “ ´i sinh
θ

2n
exp

«
2

ż 8

0

dt

t

cosh t
10 ` cosh t

6 ` cosh 13t
30

cosh t
2 sinhpntq sin2

ˆ
it

2

ˆ
n` iθ

π

˙˙ff
, (8)

and

f12pθ;nq “ exp

«
2

ż 8

0

dt

t

cosh t
10 ` cosh 3t

10 ` cosh t
30 ` cosh 7t

30

cosh t
2 sinhpntq sin2

ˆ
it

2

ˆ
n` iθ

π

˙˙ff
, (9)

where

K11pθ;nq “ sinh
`
iπ´θ

2n

˘
sinh

`
iπ`θ

2n

˘

sin π
n

, (10)

Bαpθ;nq “ sinh

ˆ
iπα´ θ

2n

˙
sinh

ˆ
iπα` θ

2n

˙
, (11)

τn is the vacuum expectation value of the branch point twist field and the functions QTn
ij pθq have

the general structure

QTn
11 pθq “ A11pnq `B11pnq cosh

θ

n
` C11pnq cosh2 θ

n
, (12)

and

QTn
12 pθq “ A12pnq `B12pnq cosh

θ

n
` C12pnq cosh2 θ

n
, (13)

with coefficients that can be determined for each value of n. They have also been re-evaluated
with greater precision for this work and are listed in Table 4.

n 2 3 4

A11pnq 0.05028656966443226 0.008222663493673649 0.003094920413703075

B11pnq 0.0011995725313121055 ´0.005436476679120888 ´0.004685055209534106

C11pnq 0.009415788449439522 0.0053536637424471565 0.0032612776790863058

A12pnq ´0.03893395394244009 ´0.0052884492808026595 ´0.0014212064608825764

B12pnq ´0.0006333785909299339 0.0024712680272948595 0.0017331405976600545

C12pnq ´0.004484918093780377 ´0.002327262587055512 ´0.0011767365122042212

Table 4: The coefficients of the functions QTn
11 pθq and QTn

12 pθq.

At the heart of these improved values is the improved evaluation of the the leading asymp-
totics of the functions f11pθ, nq, f12pθ, nq for θ Ñ8. The understanding of this asymptotic plays
an important role in fixing the one-particle form factors because the two-particle form factors
are expected to satisfy the clustering property in momentum space, namely

lim
θÑ8F

Tn
a1a2

pθq9F Tn
a1
F Tn
a2
. (14)
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For a1 “ a2 “ 1 and a1 “ 1, a2 “ 2 this gives two of the conditions that were employed in [7] to
fix the one-particle form factors. It turns out that both functions f11pθ, nq and f12pθ, nq can be
expressed as products of the following blocks:

f pθ, α;nq “ exp

$
&
%2

ż 8

0

dt

t

cosh
“
t
`
α´ 1

2

˘‰

cosh
`
t
2

˘
sin2

´
triπn´θs

2π

¯

sinh pntq

,
.
- , (15)

for particular choices of α. In fact

f11pθ, nq “ fpθ, 0;nqfpθ, 2

3
;nqfpθ, 2

5
;nqfpθ, 1

15
;nq , (16)

f12pθ, nq “ fpθ, 4

5
;nqfpθ, 3

5
;nqfpθ, 7

15
;nqfpθ, 4

15
;nq . (17)

A natural simplification of the formula (15) that helps to extract the asymptotics is to pull out
a factor f0pθ, nq :“ fpθ, 0;nq using the integral representation

f pθ, α;nq “ f0 pθ;nq exp

$
&
%2

ż 8

0

dt

t

«
cosh

“
t
`
α´ 1

2

˘‰

cosh
`
t
2

˘ ´ 1

ff
sin2

´
triπn´θs

2π

¯

sinh pntq

,
.
-

“ f0 pθ;nq exp

$
&
%´4

ż 8

0

dt

t

sinh
`
t
2α

˘
sinh

`
t
2p1´ αq

˘

cosh
`
t
2

˘
sin2

´
triπn´θs

2π

¯

sinh pntq

,
.
- (18)

“ f0 pθ;nqN pα;nq exp

$
&
%2

ż 8

0

dt

t

sinh
`
t
2α

˘
sinh

`
t
2p1´ αq

˘

cosh
`
t
2

˘
cos

´
triπn´θs

π

¯

sinh pntq

,
.
- ,

with

N pα;nq “ exp

#
´2

ż 8

0

dt

t

sinh
`
t
2α

˘
sinh

`
t
2p1´ αq

˘

cosh
`
t
2

˘
sinh pntq

+
. (19)

For large θ, one can then show that

lim
θÑ8 f pθ, α;nq “ N pα;nq lim

θÑ8 f0 pθ;nq „ N pα;nq
2i

e
θ

2n . (20)

It is easy to show that N pα;nq are convergent integrals, but the remaining integral

Ĩ pθ, α;nq “ 2

ż 8

0

dt

t

sinh
`
t
2α

˘
sinh

`
t
2p1´ αq

˘

cosh
`
t
2

˘
cos

´
triπn´θs

π

¯

sinh pntq

“ 4

ż 8

0

dt

t

sinh
`
t
2α

˘
sinh

`
t
2p1´ αq

˘
sinh

`
t
2

˘

sinh ptq
cos

´
triπn´θs

π

¯

sinh pntq , (21)

needs regularization. Our strategy is to express the sinh t in the denominator as

1

sinh t
“ 2

N´1ÿ

k“0

e´p2k`1qt ` e´2Nt

sinh t
, (22)
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and use the integral identity

ż 8

0

dt

t

sinh pβtq sinh pγtq e´µt
sinh pδtq “ 1

2
logω pβ, γ, µ, δq

“ 1

2
log

$
&
%

Γ
´
β`γ`µ`δ

2δ

¯
Γ
´´β´γ`µ`δ

2δ

¯

Γ
´´β`γ`µ`δ

2δ

¯
Γ
´
β´γ`µ`δ

2δ

¯

,
.
- . (23)

The regularized integral then is

Ĩ pθ, α,N ;nq “ 2

ż 8

0

dt

t

sinh
`
t
2α

˘
sinh

`
t
2p1´ αq

˘

cosh
`
t
2

˘
cos

´
triπn´θs

π

¯

sinh pntq e´2Nt (24)

`
N´1ÿ

k“0

log
ω
`
α
2 ,

1´α
2 , 2k ` 1

2 ` n` i θπ , n
˘
ω
`
α
2 ,

1´α
2 , 2k ` 1

2 ´ n´ i θπ , n
˘

ω
`
α
2 ,

1´α
2 , 2k ` 3

2 ` n` i θπ , n
˘
ω
`
α
2 ,

1´α
2 , 2k ` 3

2 ´ n´ i θπ , n
˘ .

The asymptotics of the Γ function for large imaginary values is

lim
yÑ8Γpx` iyq „ ?2πyx´1{2`iye´iπ{4`iπx{2´iy´πy{2`Op1{yq , (25)

hence

lim
θÑ8ωpβ, γ, µ` iθ{π, nq “ 1 . (26)

Since the value of Ĩ pθ, α,N ;nq is independent of the value of N

lim
θÑ8 Ĩ pθ, α,N ;nq “ lim

θÑ8 Ĩ pθ, α,8;nq “ 0 , (27)

which then gives the behaviour (20).
With the more accurate evaluation of the asymptotics, the solution of the consistency equa-

tions for the first four one-particle and first two two-particle form factors boils down of solving
a cubic equation, whose appropriate solution is chosen by the property that it should vanish as
n approaches 1. The expressions for the coefficients are cumbersome, hence we do not list them
over here, only the numerical values for n “ 2, 3, 4 in Table 1 and Table 4.

In order to evaluate the von Neumann entropy we also need the asymptotic values of the
constants in equations (12) and (13) as nÑ 1. This requires the values

lim
nÑ1

p1´ nqK11pθ;nq “ π cosh2 θ

2
, (28)

and

Bαpθ; 1q “ 1

2
pcospαπq ´ cosh θq , (29)

and the fact that the functions fpθ, α;nq all have leading behaviour Oppn ´ 1q0q as n tends
to 1. Employing once more the improved asymptotics we have obtained the results of Table 3
and Table 5. It is important to note, that it was crucial to have an explicit solution for the
coefficients to extract the n Ñ 1 limit, since the fit from different values of 1 ă n ă 2 can give
misleading coefficients in certain cases.

We point out, that to evaluate integrals of the two-particle form factors, like in Eq. (34), in
a numerically stable way, we need to regularize the integrals in (15) on the line as was presented
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A11pnq 0.2036599645689198`O pn´ 1q
B11pnq 0.0418206628975086`O pn´ 1q
C11pnq O pn´ 1q
A12pnq ´0.4583212393562862pn´ 1q `O

`pn´ 1q2˘

B12pnq ´0.0581657847796917pn´ 1q `O
`pn´ 1q2˘

C12pnq O
`pn´ 1q2˘

Table 5: n Ñ 1 leading behaviour of the coefficients of (12) and (13). Note that the precise
coefficient of pn ´ 1q in C11pnq is not given because such term will give no overall contribution
to the von Neumann entropy. The same applies to C12pnq.

above for Ĩpθ, α;nq, instead of using the formula where the f0pθ, 0;nq factor was pulled out of
the expression. The reason is that Ĩpθ, α;nq diverges around θ “ 0, which is compensated by the
f0pθ, 0;nq term leading to a finite result, however this makes the numerical evaluation unstable
around θ “ 0.

For the spin field, the structure of the two-particle form factors is very similar to that of the
twist field form factors but slightly simpler. The formulae for F σa1a2

pθq were all given in [8, 9].
Here we will only recall

F σ11pθq “
σ̄ cos2 π

3 cos2 π
5 cos2 π

30Q
σ
11pθqś

α“ 2
3
, 2
5
, 1
15

Bαpθ; 1q
f11pθ; 1q
f11piπ; 1q , (30)

and

F σ12pθq “
σ̄ cos2 3π

10 cos2 2π
5 cos2 7π

30 cos2 2π
15Q

σ
12pθqś

α“ 4
5
, 3
5
, 7
15
, 4
15

Bαpθ; 1q
f12pθ; 1q
f12piπ; 1q . (31)

In [9] functions

Qσ11pθq “ c1
11 cosh θ ` c0

11 , Qσ12pθq “ c2
12 cosh2 θ ` c1

12 cosh θ ` c0
12 , (32)

were computed and the coefficients are

c1
11 “ ´2.093102832, c0

11 “ ´10.19307727, c2
12 “ ´7.979022182 ,

c1
12 “ ´71.79206351, and c0

12 “ ´70.29218939 . (33)

1.3 Entanglement Dynamics after a Quench of the Longitudinal Field

Following Eq. (9) of the Letter and the formulae given in [1, 4] we have that the change experi-
enced by the one-point function of the branch point twist field after a quench of the longitudinal
field takes the form

xΩ|Tnp0, tq|Ωy “ postxΩ|Tnp0, 0q|Ωypost ` δλn
8ÿ

a“1

2

m2
0,a

F σa F
Tn
a cospmatq (34)

`2δλn
8ÿ

a,b“1

ż 8

´8
dpadpb
2πeaeb

δppa ` pbq
ea ` eb Re

”
rF σabppa, pbqs˚F Tn

ab ppa, pbqre´ipẽa`ẽbqts
ı
`Opδ2

λq ,
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where δλ is the small change of the QFT coupling constant λ29hx. Here we also used the fact
that the one particle form factors are real. We also remind that ẽappq “

a
m2
a ` p2, being ma

the post-quench mass of the type-a particle.
From this expression it is relatively straightforward to arrive at the formula for the change of

the entanglement entropies given in the Letter, see Eq. (9) there. We know from the definition
that

Snptq :“ 1

1´ n log
`
ε∆Tn xΩ|Tnp0, tq|Ωy

˘
, (35)

therefore

Snptq ´ Snp0q :“ 1

1´ n log

ˆ xΩ|Tnp0, tq|Ωy
xΩ|Tnp0, 0q|Ωy

˙

“ 1

1´ n log

ˆ
1` xΩ|Tnp0, tq|Ωy ´ xΩ|Tnp0, 0q|ΩyxΩ|Tnp0, 0q|Ωy

˙
, (36)

and, at first order in perturbation theory

Snptq ´ Snp0q « 1

1´ n
xΩ|Tnp0, tq|Ωy ´ xΩ|Tnp0, 0q|Ωy

xΩ|Tnp0, 0q|Ωy . (37)

The quantity postxΩ|Tnp0, 0q|Ωypost, appearing on the RHS of (34) can be also expanded in a
power series of δλ. From dimensional analysis and the mass-coupling relation (1) we have that

τn “ xΩ|Tnp0, 0q|Ωy “ ATn λ
∆Tn

2´∆σ
2 , (38)

where ATn is a non-universal function of n. Similarly

postxΩ|Tnp0, 0q|Ωypost “ ATnpλ2 ` δλq
∆Tn

2´∆σ “ τn

ˆ
1` δλ

λ2

∆Tn
2´∆σ

`Opδ2
λq
˙
. (39)

From (39) and (34) it then follows at first order in δλ

Snptq ´ Snp0q « 1

1´ n
δλ
λ2

∆Tn
2´∆σ

` δλn

1´ n
8ÿ

a“1

2

m2
0,a

F σa F̂
Tn
a cospmatq (40)

` 2δλn

1´ n
8ÿ

a,b“1

ż 8

´8
dpadpb
2πeaeb

δppa ` pbq
ea ` eb Re

”
rF σabppa, pbqs˚F̂ Tn

ab ppa, pbqre´ipẽa`ẽbqts
ı
` ¨ ¨ ¨ ,

where the form factors of the twist field are normalized by the pre-quench vacuum expectation
value τn. Analogously, we can normalize the σ form factors by the pre-quench expectation value

σ̄ introduced earlier. Generally, this expectation value has the form σ̄ “ Aσ λ
∆σ

2´∆σ
2 , where Aσ is

a known constant. Expressing the masses m0,a in the denominators of Eq. (40) in terms of the
coupling as well (i.e. recalling Eq. (1)) we end up with

Snptq ´ Snp0q “ 1

1´ n
δλ
λ2

«
∆Tn

2´∆σ
` n Cσ

8ÿ

a“1

2

r2
a

F̂ σa F̂
Tn
a cospmatq (41)

`2n Cσ
8ÿ

a,b“1

ż 8

´8
dpadpb
2πeaeb

δpp̂a ` p̂bq
êa ` êb Re

”
rF̂ σabppa, pbqs˚F̂ Tn

ab ppa, pbqe´ipẽa`ẽbqt
ı
` . . .

fi
fl`Opδ2

λq ,
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where

Cσ “ Aσ
κ2

, (42)

is constant featuring in Eq. (9) of the Letter, κ is given in Eq. (1), Aσ “ ´1.277p2q has been
determined for instance in [10], ra are the normalized masses defined earlier, and êa and p̂a are
the relativistic energies and momentums (see below Eq. (2)) divided by the mass m0,1. The
ellipsis denotes higher particle number terms that are still first order in δλ.

In the E8 minimal Toda field theory the (post-quench) particle masses are such that m5 ą
m1 `m2 ą m4 ą 2m1. For this reason, oscillations coming from the two-particle form factor
involving only particle types one and two, will have smaller frequency than those coming from the
one-particle form factors of particle type five. Therefore, the six contributions to our expansion
which involve the six smallest oscillation frequencies are precisely those coming from the form
factors we have reviewed above. It is against these six contributions, that we have compared
our numerical results in the Letter. More explicitly, expressing everything in terms of rapidities
they are

Snptq ´ Snp0q “ 1

1´ n
δλ
λ2

«
∆Tn

2´∆σ
` n Cσ

4ÿ

a“1

2

r2
a

F̂ σa F̂
Tn
a cospram1tq (43)

`2n Cσ
ż 8

´8
dθ

2π

1

2 cosh2 θ
Re

”
rF̂ σ11p2θqs˚F̂ Tn

11 p2θqe´2im1t cosh θ
ı

`2n Cσ
ż 8

´8
dθ

2π

1

cosh θpcosh θ ` r2 cosh θ̃q
ˆRe

”
rF̂ σ12pθ ´ θ̃qs˚F̂ Tn

12 pθ ´ θ̃qe´im1tpcosh θ`r2 cosh θ̃q
ı
` . . .

ı
`Opδ2

λq ,
where

θ̃ :“ ´ sinh´1

ˆ
sinh θ

r2

˙
. (44)

The limit n Ñ 1 needed to compute the von Neumann entropy can also be performed with
the results given in the previous sections. For instance, for the one-particle form factor con-
tributions, we just need to replace the form factors with the functions gi defined in (5). This
formula will give oscillatory terms of frequencies m1,m2,m3, 2m1,m4 and m1 ` m2 and can
easily be evaluated numerically. Terms coming from the one-particle form factor contributions
give undamped oscillations, whereas contributions from two-particle form factors, will produced
damped oscillations, similar to those found in [4] for a different quench. For large t it is possible
to extract the leading oscillatory part of the two-particle form factor contributions by stationary
phase analysis. These terms are suppressed as t´3{2.

Finally, the variation of the expectation value of the spin field after the quench can also be
obtained by the same techniques and the expression is almost identical to (34)

xΩ|σp0, tq|Ωy ´ σ̄ “ σ̄
δλ
λ2

«
∆σ

2´∆σ
` Cσ

8ÿ

a“1

2

r2
a

|F̂ σa |2 cospmatq (45)

` 2Cσ
8ÿ

a,b“1

ż 8

´8
dpadpb
2πeaeb

δpp̂a ` p̂bq
êa ` êb |F̂ σabppa, pbq|2 cosppẽa ` ẽbqtq ` . . .

fi
fl`Opδ2

λq .

In Fig. 3 we compare the numerical results for the one-point function of σp0, tq against the
analytical formula (45), incorporating the first four one-particle and the first two two-particle
contributions.
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2 Transverse Field Quench: Mass Quench in Ising Field Theory

Considering the Ising field theory with λ2 “ 0, the model can be described by a free Majorana
fermion with mass m0 “ λ1. In [4] we presented a study of the evolution of entanglement after
a mass quench in this model. As explained in [4], the linked cluster expansion of the quench
one-point function developed in [11] generalizes to the branch point twist field as

xΩ|Tnp0, tq|Ωy
xΩ|Ωy “ τ̃n

8ÿ

k,l“0

D2k,2lptq , (46)

where |Ωy is the pre-quench vacuum expressed in the post-quench particle basis as recalled in
Eq. (10) of the Letter, τ̃n is the post-quench expectation value of the branch point twist field,
D2k,2l is the combination of the expansion coefficients

xΩ|Tnp0, tq|Ωy “ τ̃n

8ÿ

k,l“0

C2k,2lptq , (47)

and

xΩ|Ωy “
8ÿ

q“0

Z2q , (48)

in the form

D2k,2lptq “
minpk,lqÿ

p“0

Z̃2pC2pk´pq,2pl´pqptq , (49)

and Z̃2p is the inverse of Z2q defined as
ř8
q“0 Z2q ¨ř8

p“0 Z̃2p “ 1. In [4] we showed that (46) was in
fact the expansion of the exponential of a Laurent expansion in powers of t, with highest power
1. Our proof however was only carried out for terms in the expansion of order K2 where Kpθq
is a known function that enters the definition of Ci,jptq. Our aim here is to provide a complete
proof of exponentiation. Namely, the statement that (46) is an exponential is a general one and
can be shown at all orders in Kpθq. The precise definitions are

τ̃nC2k,2lptq “ 1

k!l!

nÿ

i1,...,ik“1

nÿ

j1,...,jl“1

ˆ
«

kź

s“1

ż 8

0

dθ1s
2π

Kpθ1sq˚e2itEpθ1sq
ff«

lź

r“1

ż 8

0

dθr
2π

Kpθrqe´2itEpθrq
ff

ˆ n;i1i1...ikikxθ11,´θ11, . . . , θ1k,´θ1k|Tnp0, 0q| ´ θl, θl, . . . ,´θ1, θ1yjljl...j1j1;n , (50)

and

Z2q “ 1

pq!q2
nÿ

i1,...,iq“1

nÿ

j1,...,jq“1

«
qź

s“1

ż 8

0

dθ1sdθs
p2πq2 Kpθ

1
sq˚Kpθsq

ff

ˆi1i1...iqiqxθ11,´θ11, . . . , θ1q,´θ1q| ´ θq, θq, . . . ,´θ1, θ1yjqjq ...j1j1 for q ą 0 , (51)

with Z0 “ 1. Combining the form of the expansion with the properties of the form factors such
as the crossing relation and the Pfaffian nature of the multi-particle form factors (see [4] for
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details), a “connected” expansion for the coefficients C2k,2lptq and Z2q is suggested which reads

C2k,2lptq “
k,lÿ

tni,ju

8ź

i,j“0

´
Cc2i,2jptq

¯ni,j

ni,j !
, (52)

Z2q “
qÿ

tñju

8ź

j“0

´
Zc2j

¯ñj

ñj !
, (53)

where the summations go for non-negative integer partitions satisfying the constraints
ř8
i,j“0 i ni,j “

k,
ř8
i,j“0 j ni,j “ l, and

ř8
i“0 i ñi “ q.

The inverse coefficients Z̃2k also admit a connected expansion

Z̃2p “
pÿ

tm̃iu

8ź

i“0

p´Zc2iqm̃i
ñi!

, (54)

with the constraint
ř8
j“0 j m̃j “ p , that we show by evaluating the inverse relation

8ÿ

q“0

Z2q ¨
8ÿ

p“0

Z̃2p “
8ÿ

q“0

qÿ

tñiu

8ź

i“0

pZc2iqñi
ñi!

¨
8ÿ

p“0

pÿ

tm̃ju

8ź

j“0

´
´Zc2j

¯m̃j

m̃j !
. (55)

Let us reorganize the terms and group them according to number of the function K, i.e. ac-
cording to the value ∆ “ k ` p

8ÿ

∆“0

∆ÿ

k“0

kÿ

tñiu

8ź

i“0

pZc2iqñi
ñi!

∆´kÿ

tm̃ju

8ź

j“0

´
´Zc2j

¯m̃j

m̃j !
. (56)

The sum of the integer partitions tñiu and tm̃ju can be seen as a new partition ts̃iu with
constraint

ř8
i“0 i s̃i “ ∆ that suggest further reorganization of the series to

8ÿ

∆“0

∆ÿ

ts̃iu

8ź

i“0

s̃iÿ

ti“0

pZc2iqti
ti!

p´Zc2iqs̃i´ti
ps̃i ´ tiq! , (57)

that, according to the binomial theorem, is nothing else but

8ÿ

∆“0

∆ÿ

ts̃iu

8ź

i“0

rZc2i ´ Zc2iss̃i
s̃i!

“ 1 , (58)

proving the connected expansion of the inverse coefficients.
Examining the connected coefficients Cc2k,2lptq, we see that only diagonal terms, where k “ l,

are singular, since the successive application of the crossing relation leads to Cc2k,2kptq „ Zc2k in
these cases. To have these singularities visible, we reorganize the expansion for C2k,2lptq into
product of diagonal and non-diagonal coefficients as

C2k,2l “
minpk,lqÿ

p“0

»
—–

pÿ

tm̃iu

8ź

i“0

´
Cc2i,2i

¯m̃i

m̃i!

fi
ffifl

»
———–
k´p,l´pÿ

 
nij

(

i ‰ j

8ź

i,j“0

´
Cc2i,2j

¯nij

nij !

fi
ffiffiffifl . (59)
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Plugging this back to (49) combining with (54) leads to

D2k,2l “
minpk,lqÿ

q“0

minpk´q,l´qqÿ

p“0

»
–

qÿ

tñiu

8ź

i“0

p´Zc2iqñi
ñi!

fi
fl (60)

ˆ

»
—–

pÿ

tm̃iu

8ź

i“0

´
Cc2i,2i

¯m̃i

m̃i!

fi
ffifl

»
———–
k´q´p,l´q´pÿ

 
nij

(

i ‰ j

8ź

i,j“0

´
Cc2i,2j

¯nij

nij !

fi
ffiffiffifl . (61)

Introducing the variable Λ “ p` q we can rearrange the expression to

D2k,2l “
minpk,lqÿ

Λ“0

$
’&
’%

Λÿ

r“0

»
–

rÿ

tñiu

8ź

i“0

p´Zc2iqñi
ñi!

fi
fl

»
—–

Λ´rÿ

tm̃iu

8ź

i“0

´
Cc2i,2i

¯m̃i

m̃i!

fi
ffifl

,
/.
/-

(62)

ˆ

»
———–
k´Λ,l´Λÿ

 
nij

(

i ‰ j

8ź

i,j“0

´
Cc2i,2j

¯nij

nij !

fi
ffiffiffifl . (63)

By a similar argument as above, we can argue that the terms inside the curly bracket evaluate
to

Λÿ

ts̃iu

8ź

i“0

´
Cc2i,2i ´ Zc2i

¯s̃i

s̃i!
. (64)

The combinations Dc
2i,2i “ Cc2i,2i ´ Zc2i are regular, so are Dc

2i,2j “ Cc2i,2j for i ‰ j, hence the
D2k,2lptq also admits a connected expansion that is regular in the form

D2k,2l “
k,lÿ

tniju

8ź

i,j“0

´
Dc

2i,2j

¯nij

nij !
. (65)

Combining this with (46) leads to the proof of the exponential form of the one-point function

xΩ|Tnp0, tq|Ωy
xΩ|Ωy “ τ̃n exp

»
–

8ÿ

k,l“0

Dc
2k,2l

fi
fl . (66)

In the proof we did not use any special property of the branch point twist field form factors
other than the crossing relation and the Pfaffian structure for the multi-particle form factors.
These are true for other local operators as well, such as the spin field σ, hence we showed the
full exponentiation of the one-point function of such operators too.
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3 Numerical Results

The numerics in the present work were done using the infinite time evolving block decimation
algorithm (iTEBD) [12, 13]. Exploiting translational invariance, a general many-body state can
be approximated by a matrix product state (written in the canonical form)

|Ψy “
ÿ

...,sj ,sj`1,...

. . .ΛoΓ
sj
o ΛeΓ

sj`1
e . . . | . . . , sj , sj`1, . . .y , (67)

where Γse{o are χˆχ matrices associated with the even/odd lattice sites, Λe{o are diagonal χˆχ
matrices, with singular values λi corresponding to the bipartition of the system along even/odd
bonds. The value of χ is the bond dimension. Expectation values of local operators can be
calculated with standard tensor contraction procedures. The singular values on the bonds are
the Schmidt coefficients corresponding to the bipartition, meaning that they are the eigenvalues
of the reduced density matrix, therefore the entropies can be easily calculated.

The simulation is based on the available code [14]. In our adaptation, both for finding
the initial state (pre-quench ground state) using imaginary time evolution, and for the real
time evolution we used a fourth order Suzuki–Trotter decomposition [15] of the time evolution
operator. For the imaginary time evolution, the time step was set to τ “ 0.0005 and we applied
N “ 200000 Trotter steps, starting the iteration from the fully polarized state. For the post
quench real time evolution the time step was set to δt “ 0.005. We kept singular values λi ą
10´12 up to a maximal bond dimension which was set to χmax “ 300. Due to the suppression
of the entanglement growth shown in Fig. 2 this was sufficient to carry out the simulations. We
used the same bond dimension for different couplings. As one gets closer to the critical point the
von Neumann entropy of the initial state is expected to grow logarithmically with the inverse
mass. This was perfectly captured by our simulation that justifies the choice for the maximal
bond dimension. We can also conclude that the suppression of the entanglement growth is not
due to truncation effects since states with higher entanglement are well approximated in our
numerics. We run simulations close to the critical point with couplings hz “ 1 (the critical
value) and hx “ 0.0005, 0.001, 0.002, 0.003, 0.005 for quenches with δhx{hx “ ´0.04, 0.05. The
time dependent data has a leading frequency, corresponding to the mass of the lightest quasi-
particle m. Due to dimensional analysis, rescaling the time with m “ Blatticephx ` δhxq8{15 one
can plot the time signal in units of m´1, i.e. all the time signals have “leading” frequency ω̃ “ 1.
For quenches with δhx{hx “ 0.05 we obtained the fit Blattice « 5.42553, which was used for the
δhx{hx “ ´0.04 quenches as well for consistency, leading to the same period. This procedure
is summarized in Fig. 1 for the magnetization. In Fig. 2 we show the result of the rescaling for
the von Neumann entropy.

Once all the curves are scaled together, we approximate the data with interpolating curves.
This allows us to extrapolate to the scaling limit hx Ñ 0 up to mt “ 170. In the extrapolation
procedure, first we determine the mass for each hx, clearly having m Ñ 0 for decreasing hx.
Together with the time rescaling, this can be also interpreted as sending the lattice spacing (a)
to zero, with fixed field theoretical mass m “ 1. The mass and the lattice spacing always come
in dimensionless combinations. We claim that one can extrapolate to the scaling limit using
the scaling functions Snpamq “ ∆Tn{p1 ´ nq logpamq ` Bpamq1{n ` Sn,scal.lim. for the entropies
and p∆σ{σ̄qpamq “ B̃am ` p∆σ{σ̄q|scal.lim. for the magnetization for any value of mt as in
the transverse field case, see [16, 17] and the Appendix of [4]. For the von Neumann entropy
the prefactor of the logarithm term is ´c{6, and the fit of our data leads to c « 0.49 for all
times less or equal than mt “ 170, and for both quenches studied. This is very close to the
theoretical value 1{2 which is a further indication that the maximal bond dimension applied
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Figure 1: The rescaling and mass coupling relation fit, for a quench with δhx{hx “ 0.05 for
the magnetization difference ∆σ{σ̄ “ σp0, tq{σ̄ ´ 1. Solid curves correspond to hx “ 0.0005 and
dashed curves to hx “ 0.005. In the top plot the time is measured in “proper” time, based on
the energy scale defined by the lattice Hamiltonian Eq.(1) in the Letter, therefore the curve of
larger hx (larger mass) has higher frequency oscillations. In the bottom we rescaled the time to
be measured in units of m´1, where m « 5.42553phx` δhxq8{15 to have the same frequency and
allow for extrapolation.
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Figure 2: Left panel: Results of the rescaling for the von Neumann entropy for δhx{hx “
0.05. In the time frame we have simulation data for extrapolation, there is no visible trace
of entanglement growth. The time is rescaled to be measured in units of m´1, where m «
5.42553phx ` δhxq8{15. Right panel: Demonstration of the change of ∆S1 on a smaller time
window, leading to convergence to the scaling limit. The colour of the curves denote the same
hx values as on the left panel. The dashed line is the extrapolated, scaling limit value of ∆S1,
demonstrating the importance of calculating the scaling limit values to match the numerical
data to the theoretical prediction.
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was sufficient to capture the behaviour of the entanglement dynamics. For entropy differences
between different times, the universal, time-independent logarithmic terms cancel, therefore we
perform two parameter fits to extract the scaling limit values for ∆Sn. This process is displayed
on the right hand side of Fig. 2 for the von Neumann entropy difference.

Additionally to the plots in the main text, here we plot our results for the initial time
evolution of the magnetization in Fig. 3, and for the third and fourth Rényi entropies in Fig. 4.
As in the main text for the von Neumann and the second Rényi entropies, we shifted the
curves vertically by empirical values to compensate for possible higher order corrections that
are constant in time. We comment on these contributions on the next Section and list the values
of the shifts applied in Table 6.
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Figure 3: The time evolution of the magnetizatoin for quenches with δhx{hx “ ´0.04 (left) and
δhx{hx “ 0.05 (right). The dots are the extrapolated iTEBD data. The lines are the theoretical
predictions given in (45), incorporating the first four one-particle and the first two two-particle
contributions.
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Figure 4: The time evolution of the 3rd (top) and 4th (bottom) Rényi entropies for quenches with
δhx{hx “ 0.05 (left) and δhx{hx “ ´0.04 (right). The dots are the extrapolated iTEBD data.
The lines are the theoretical predictions given in (43), incorporating the first four one-particle
and the first two two-particle contributions.
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δhx{hx “ δλ{λ2 Dσ D̃σ D1 D̃1 D2 D̃2

´0.04 ´0.00267 0.00005 0.00178 0.00015 0.00133 0.0001

0.05 0.00333 ´0.00025 ´0.00222 0.00015 ´0.00167 0.00005

δhx{hx “ δλ{λ2 D3 D̃3 D4 D̃4

´0.04 0.00119 0.00015 0.00111 0.00025

0.05 ´0.00148 0 ´0.00139 ´0.0001

Table 6: The empirical vertical shifts applied to ∆σ{σ̄ and ∆Sn to compensate for possible
higher order corrections that are constant in time are denoted by D̃σ and D̃n respectively. As
comparison, we also list the value of the first order constant terms coming from the change of
the expectation values in (45) and (40), and we denoted them by Dσ “ δλ{λ2 ¨∆σ{p2´∆σq and
Dn “ δλ{λ2 ¨∆Tn{p2´∆σq{p1´ nq. The applied shifts are one order of magnitude smaller than
the first order result, in agreement with the expectation.

4 Beyond First Order Perturbation Theory

Finally we present some remarks on the suppression of linear growth and the constant in time
shifts beyond first order perturbation theory.

First of all we comment on the empirical vertical shifts applied to our results summarized
in Table 6. The vertical offset is related to corrections to the VEV of local operators given
in Eq. (39) up to the first order. However there are higher order corrections to the VEVs.
These second order corrections were calculated for the transverse field Ising quench in [4], and
their magnitude is one order smaller to the first order values. Calculating the second order
corrections to the offset for the longitudinal quench is an open problem beyond the scope of
this paper, hence they were calibrated by hand to match the numerical data to the theoretical
prediction. The magnitudes of the these additional offsets compared to the first order results
are one order smaller, as expected from the results of [4].

In [18], a perturbative expansion for the pre-quench state |Ωy was determined in the eigen-
states of the post-quench Hamiltonian Hpost for the E8 field theory up to Opδ2

λq; cf. Eq. (4)
of our Letter. Of particular importance to estimate the rate of entanglement growth are the
overlaps of pairs with zero momentum [19]

Kabpθq :“ post;a,bxθ,´θ|Ωy ; a, b “ 1, . . . , 8 . (68)

An interesting feature of these functions can be inferred from plots presented in Section 4
of [18]. One observes that the value of |K11pθ‹q| where θ‹ is the value of θ for which |K11pθq| is
maximal, is of order 10´3 for δλ{λ2 “ 0.05. In addition, |K11pθq| represents the largest particle
overlap, so the maxima of other functions Kabpθq where a, b are not both 1, are generally at least
one order of magnitude smaller. If we compare these orders of magnitude with the same values
for the function |Kpθq| involved in the study of the Ising field theory mass quench [11], we see
that |Kpθ‹q| « 10´2 for the same relative quench parameter, so roughly one order of magnitude
larger. Since both the entanglement slope [4] and the higher order mass corrections [20] are
expected to be proportional to |Kabpθq|2, for small quenches in the E8 field theory, they are
small and not visible on the timescales accessible with iTEBD. In order to further support these
claims we have run an additional simulation for a quench of hx “ 0.005, δhx “ 0.005 and very
large times. The resulting time evolution is plotted in Fig. 5. The time rescaling was carried out
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using the same mass coupling relation as for small quenches. In this way the smallest frequency
of the oscillations is close to one, within the resolution provided by the finite time window. This
implies that even for a large quench, δhx{hx “ 1, renormalization of the frequencies is absent. It
is worth mentioning that the amplitudes of the oscillations are not predictable from a first order
perturbative calculation. However, the numerical results certainly suggest that the oscillations
in the entanglement entropy are not suppressed by higher order in perturbation theory. It is
hard to assess whether the entropy will eventually grow linearly at large time from the numerical
data, though failure to relax toward equlibrium is clear. Finally we note that there is a very
low frequency modulation of the signal, which turns out to be related to the mass difference
2m1 ´m3: it originates from a second order contribution in perturbation theory, involving the
operator matrix element between a one-particle state of particle 3 and a two-particle state of
particle 1.
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Figure 5: Time evolution of entanglement entropy for a large relative quench parameter δhx{hx “
1 with hx “ 0.005. The data suggest a slight drift in time of the entanglement entropy with
oscillations present for large times as well. The low frequency modulation is related to the mass
difference 2m1 ´m3 that is indicated by vertical dashed lines.
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